
Härdle, Wolfgang Karl; Lehmann, Heiko

Working Paper

Working with the XQC

SFB 649 Discussion Paper, No. 2005,010

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Härdle, Wolfgang Karl; Lehmann, Heiko (2005) : Working with the XQC,
SFB 649 Discussion Paper, No. 2005,010, Humboldt University of Berlin, Collaborative
Research Center 649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/25029

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25029
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

SFB 649 Discussion Paper 2005-010

Working with the XQC

Wolfgang Härdle*
Heiko Lehmann*

* CASE - Center for Applied Statistics and Economics,
Humboldt-Universität zu Berlin, Germany

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".

http://sfb649.wiwi.hu-berlin.de

ISSN 1860-5664

SFB 649, Humboldt-Universität zu Berlin
Spandauer Straße 1, D-10178 Berlin

S
FB

6

 4
 9

E

 C
 O

 N
 O

 M
 I

C

 R

 I
S

 K

 B

 E
 R

 L
 I

N

1 Working with the XQC
Wolfgang Härdle, Heiko Lehmann

1.1 Introduction

An enormous number of statistical methods have been developed in quantitive
finance during the last decades. Nonparametric methods, bootstrapping time
series, wavelets, estimation of diffusion coefficients are now almost standard in
statistical applications. To implement these new methods the method devel-
oper usually uses a programming environment he is familiar with. Thus, such
methods are only available for preselected software packages, but not for widely
used standard software packages like MS Excel. To apply these new methods
to empirical data a potential user faces a number of problems or it may even
be impossible for him to use the methods without rewriting them in a different
programming language. Even if one wants to apply a newly developed method
to simulated data in order to understand the methodology one is confronted
with the drawbacks described above. A very similar problem occurs in teaching
statistics at undergraduate level. Since students usually have their preferred
software and often do not have access to the same statistical software packages
as their teacher, illustrating examples have to be executable with standard
tools.

In general, two statisticians are on either side of the distribution process of
newly implemented methods, the provider (inventor) of a new technique (algo-
rithm) and the user who wants to apply (understand) the new technique. The
aim of the XploRe Quantlet client/server architecture is to bring these statisti-
cians closer to each other. The XploRe Quantlet Client (XQC) represents the
front end - the user interface (UI) of this architecture allowing to access the
XploRe server and its methods and data. The XQC is fully programmed in
Java not depending on a specific computer platform. It runs on Windows and
Mac platforms as well as on Unix and Linux machines.

2 1 Working with the XQC

1.2 Application vs. Applet

The XploRe Quantlet Client can be initiated in two different ways. The way
depends on whether the XQC is supposed to run as a standalone application
or as an applet embedded within an HTML page. The XQC comes packed
in a single Java Archive (JAR) file, which allows an easy usage. This JAR
file allows for running the XQC as an application, as well as running it as an
applet.

Running the XQC as an application does not require any programming skills.
Provided that a Java Runtime Environment is installed on the computer the
XQC is supposed to be executed on, the xqc.jar will automatically be recog-
nized as an executable jar file that opens with the program javaw. If the XQC
is embedded in a HTML page it runs as an applet and can be started right
after showing the page.

1.3 Configuration

Property files allow configuring the XQC to meet special needs of the user.
These files can be used to manage the appearance and behavior of the XQC.
Any text editor can be used in editing the configuration files. Generally, the use
of all information is optional. In its current version, the XQC works with three
different configuration files. In its actual version the XQC works with three
different configuration files. The xqc.ini file contains important information
about the basic setup of the XploRe Quantlet Client, such as server and port
information the client is supposed to connect to. It also contains information
about the size of the client. This information can be maintained either relative
to the actual size of the screen by using a factor or by stating its exact width
and height. If this information is missing, the XQC begins by using its default
values.

The xqc language.ini allows for setting up the XQC’s language. This file con-
tains all texts used within the XQC. To localize the client, the texts have to be
translated. If no language file can be found, the client starts with its default
setup, showing all menus and messages in English.

The xqc methodtree.ini file finally contains information about the method tree
that can be shown as part of the METHOD/DATA window, see section 1.7. A
detailed description of the set up of the method tree will be part of section 1.8.

1.4 Getting connected 3

1.4 Getting connected

After starting the XQC the client attempts to access and read information from
the configuration files. If no configuration file is used error messages will pop
up. If server and port information cannot be found, a pop up appears and
enables a manual input of server and port number, as displayed in figure 1.1.

Figure 1.1: Manual input for server and port number

The screen-shot in figure 1.2 shows the XQC after it has been started and
connected to an XploRe server. A traffic light in the lower right corner of the
screen indicates the actual status of the server. A green light means the client
has successfully connected to the server and the server is ready to work. If the
server is busy, computing previously received XploRe code, the traffic light will
be set to yellow. A red light indicates that the XQC is not connected to the
server.

1.5 Desktop

If no further restrictions or features are set in the configuration file (e.g. not
showing any window or starting with executing a certain XploRe Quantlet) the
XQC should look like shown in the screen shot. It opens with the two screen
components CONSOLE and OUTPUT/RESULT window. The CONSOLE
allows for the sending of single-line XploRe commands to the server to be
executed immediately. It also offers a history of the last 20 commands sent
to the server. To repeat a command from the history, all that is required is

4 1 Working with the XQC

Figure 1.2: XQC connected and ready to work

a mouse click on the command, and it will be copied to the command line.
Pressing the ‘Return’ key on the keyboard executes the XploRe command.

Text output coming from the XploRe server will be shown in the OUTPUT/RE-
SULT window. Any text that is displayed can be selected and copied for use
in other applications - e.g. for presentation of results within a scientific article.
At the top of the screen the XQC offers additional functions via a menu bar.
These functions are grouped into four categories. The XQC menu contains
the features Connect, Disconnect, Reconnect and Quit.

Depending on the actual server status not every feature is enabled - e.g. if the
client is not connected (the server status is indicated by a red traffic light) it
does not make sense to disconnect or reconnect, if the client is already connected
(server status equals a green light) the connect feature is disabled.

1.6 XploRe Quantlet Editor 5

1.6 XploRe Quantlet Editor

The Program menu contains the features New Program, Open Program (lo-
cal). . . and Open Program (net). . . . New Program opens a new and empty
text editor window. This window enables the user to construct own XploRe
Quantlets.

The feature Open Program (local) offers the possibility of accessing XploRe
Quantlets stored on the local hard disk drive. It is only available if the XQC is
running as an application or a certified applet. Due the Java sandbox restric-
tions running the XQC as an unsigned applet, it is not possible to access local
programs.

If the user has access to the Internet the menu item Open Program (net) can be
useful. This feature allows the opening of Quantlets stored on a remote Web
server. All it needs is the filename and the URL address at which the file is
located.

Figure 1.3 shows a screen shot of the editor window containing a simple XploRe
Quantlet. Two icons offer actions on the XploRe code:

• - Represents the probably most important feature - it sends the
XploRe Quantlet to the server for execution.

• - Saves the XploRe Quantlet to your local computer (not possible if
running the XQC as an unsigned applet).

The Quantlet shown in figure 1.3 assigns two three-dimensional, standard nor-
mal distributions to the variables x and y. The generated data are formatted
to a certain color, shape and size using the command setmaskp. The result is
finally shown in a single display.

1.7 Data Editor

The Data menu contains the features New Data. . . , Open Data (local). . . ,
Open Data (net). . . , Download DataSet from Server. . . and DataSets uploaded
to Server.

6 1 Working with the XQC

Figure 1.3: XploRe Editor window

New Data can be used to generate a new and empty data window. Before the
data frame opens a pop-up window as shown in figure 1.4 appears, asking for
the desired dimension - the number of rows and cols - of the new data set. The
XQC needs this information to create the spreadsheet. This definition does not
have to be the exact and final decision, it is possible to add and delete rows
and columns later on.

Figure 1.4: Dimension of the Data Set

The menu item Open Data (local) enables the user to open data sets stored on
the local hard disk. Again, access to local resources of the user’s computer is

1.7 Data Editor 7

only possible if the XQC is running as an application or a certified applet. The
file will be interpreted as a common text format file. Line breaks within the
file are considered as new rows for the data set. To recognize data belonging to
a certain column the single data in one line must be separated by either using
a “;” or a “tab” (separating the data by just a “space” will force the XQC to
open the complete line in just on cell).

Open Data (net) lets the user open a data set that is stored on a Web server
by specifying the URL.

The menu item Download DataSet from Server offers the possibility to down-
load data from the server. The data will automatically be opened in a new
method and data window, offering all features of the method and data window
(e.g. applying methods, saving, . . .) to them.

A helpful feature especially for research purposes is presented with the menu
item DataSets uploaded to Server. This item opens a window that contains a list
of objects uploaded to the server using the data window or the console. Changes
of these objects are documented as an object history. Due to performance
reasons only uploaded data and actions on data from the CONSOLE and the
TABLE MODEL are recorded.

The appearance of the data window depends on the settings in the configuration
file. If a method tree is defined and supposed to be shown, the window shows
the method tree on the left part and data spreadsheet on the right part of the
frame. If no method tree has been defined, only the spreadsheet will be shown.
The method tree will be discussed in more detail in section 1.8. Figure 1.5
shows a screen shot of the combined data and method frame.

Icons on the upper part of the data and method window offer additional func-
tionalities:

• - If columns or cells are selected - this specific selection, otherwise the
entire data set can be uploaded to the server with specifying a variable
name.

• - Saves the data to your local computer (not possible if running the
XQC as an unsigned applet).

• / - Copy and paste.

8 1 Working with the XQC

Figure 1.5: Combined Data and Method Window

• / - Switches the column or cell selection mode on and off. Se-
lected columns/cells can be uploaded to the server or methods can be
executed on them.

The spreadsheet of the data and method window also offers a context menu
containing the following items:

• Copy

• Paste

• No Selection Mode - Switches OFF the column or cell selection mode.

• Column Selection Mode - Switches ON the column selection mode.

• Cell Selection Mode - Switches ON the cell selection mode.

• Set Row as Header Line

• Set column Header

1.7 Data Editor 9

• Delete single Row

• Insert single Row

• Add single Row

• Delete single Column

• Add single Column

Most of the context menu items are self-explaining. However, there are two
items that are worth taking a closer look at - ‘Set Row as Header Line’ and
‘Set column Header’. The spreadsheet has the capability to specify a header
for each column. This information can be used within XploRe Quantlets to
name the axis within a plot, making it easier for the user to interpret graphics.
A more detailed description is included in section 1.8. Default values for the
headers are COL1, COL2, . . . as shown in figure 1.6. Naming a single column
can be performed using the menu item ‘Set column Header’. The name has
to be maintained within the pop up window that appears right after choosing
this menu item. It can also be used to change existing column headers. The
spreadsheet also offers the possibility to set column headers all at once. If the
data set already contains a row with header information - either coming from
manual input or as part of an opened data set - these row can be set as header
using the menu item ‘Set Row as Header Line’. The row with the cell that is
active at that time will be cut out of the data set and pasted into the header
line.

Setting the header is also possible while opening a data set. After choosing the
data, a pop up asks whether or not the first row of the data set to be opened
should be used as the header. Nevertheless, the context menu features just
described above are of course still available, enabling the user to set or change
headers afterwards.

Working with the XQC’s method and data window does not require any XploRe
programming knowledge. All it requires is a pointing device like the mouse.
Applying, for example, the scatter-plot-method on the two columns would only
mean to

• Switch on the column selection mode

• Mark both columns

• Mouse click on the method “Scatter Plot”

10 1 Working with the XQC

Figure 1.6: Working with the Data and Method Window

Result will be a plot as shown in figure 1.6. As stated above, the selected area

can also be uploaded to the server using the icon in order to be used for
further investigation. This new variable can be used within XploRe Quantlets
written using the EDITOR window or manipulated via the CONSOLE.

1.8 Method Tree

The METHOD TREE represents a tool for accessing statistical methods in an
easy way. Its setup does not require any Java programming skills. All it needs
is the maintenance of two configuration files.

Settings maintained within the xqc.ini file tell to the XQC whether there will
be a method tree to be shown or not and where to get the tree information
from. The client also needs to know where the methods are stored at. The
MethodPath contains this information. Path statements can either be abso-
lute statements or relative to the directory the XQC has been started in. For
relative path information the path must start with XQCROOT. The settings in
the example below tell the client to generate a method tree by using the file
xqc methodtree.ini with the XploRe Quantlets stored in the relative subdirec-
tory xqc_quantlets/.

1.8 Method Tree 11

ShowMethodTree = yes
MethodTreeIniFile = xqc_methodtree.ini
MethodPath = XQCROOT/xqc_quantlets/

The actual method tree is set up in a separate configuration file that is given by
the property of MethodTreeIniFile. This file contains a systematic structure
of the tree - nodes and children, the method to be executed and its description
to be shown within the tree frame.

Node_1 = path name
Child_1.1 = method|description
Child_1.2 = method|description
Child_1.3 = method|description
Node_2 = path name
Node_2.1 = path name
Child_2.1.1 = method|description

The name of the method has to be identical to the name of the XploRe program
(Quantlet). The Quantlet itself has to have a procedure with the same name
as the method. This procedure is called by the XQC on execution within the
method tree.

Example

The following example shows how to set up a simple method tree. First of all,
we choose XploRe Quantlets used within this e-book that we want to be part
of the method tree. The aim of the Quantlet should be to generate graphics
from selected data of the data spreadsheet or to just generate text output.
Before being able to use the Quantlets within the method tree, they have to be
‘wrapped’ in a procedure. The name of the procedure - in our case for example
‘STFstab08MT’ - has to equal the name of the saved XploRe file. Our example
Quantlet STFstab08MT.xpl is based on the original Quantlet STFstab08.xpl
used in chapter ??. The procedure must further have two parameters:

• data - Used for passing the selected data to the XploRe Quantlet.

• names - Contains the names of the selected columns taken from the header
of the spreadsheet.

12 1 Working with the XQC

It might also be necessary to make some minor adjustments within the Quantlet
in order to refer to the parameter handed over by the XQC. Those changes
depend on the Quantlet itself.

1 library (" graphic ")
2 proc() = STFstab08MT(data , names)
3 ...
4 endp

Figure 1.7: STFstab08MT.xpl

The XploRe coding within the procedure statement is not subject to any further
needs or restrictions.

Once we have programmed the Quantlet it needs to be integrated into a method
tree. For this purpose we define our own configuration file - xqc methodtree STF
- with the following content shown in figure 1.8.

1 Node_1 = Stable Distribution
2
3 Node_1 .1 = Estimation
4 Child_1 .1.1 = stabreg.xpl|Stabreg
5 Child_1 .1.2 = stabcull.xpl|Stabcull
6 Child_1 .1.3 = stabmom.xpl|Stabmom
7
8 Node_1 .2 = Examples
9 Child_1 .2.1 = STFstab08.xpl|STFstab08

10 Child_1 .2.2 = STFstab09.xpl|STFstab09
11 Child_1 .2.3 = STFstab10.xpl|STFstab10

Figure 1.8: sample tree.ini

We create a node calling it ‘Estimation’. Below this first node we set up the
Quantlets stabreg.xpl, stabcull.xpl and stabmom.xpl. A second node - ‘Exam-
ples’ contains the Quantlets STFstab08.xpl, STFstab09.xpl and STFstab10.xpl.
The text stated right beside each Quantlet (separated by the ‘|’) represents the
text we would like to be shown in the method tree.

Now that we have programmed the XploRe Quantlet(s) and set up the method
tree we still need to tell the XQC to show our method tree upon opening data
sets.

The settings as shown in figure 1.9 tell the XQC to show the method tree that
is set up in our xqc methodtree STF.ini file and to use our XploRe Quantlet

1.8 Method Tree 13

1 ...
2
3 ShowMethodTree = yes
4 MethodTreeIniFile = xqc_methodtree_STF.ini
5 MethodPath = XQCROOT/xqc_quantlets/
6
7 ...

Figure 1.9: Extract of the xqc.ini

stored in a subdirectory of the XQC itself.

Our method tree is now ready for finally being tested. Figure 1.10 shows a
screen-shot of the final result - the method tree, set up above.

Figure 1.10: Final result of our tree example

14 1 Working with the XQC

1.9 Graphical Output

The previous sections contain some examples of graphical output shown within
a display. The XQC’s displays do not show only the graphical results received
from the XploRe server. Besides the possibility to print out the graphic it
offers additional features that can be helpful for investigating data - especially
for three-dimensional plots. Those features can be accessed via the display’s
context menu. Figure 1.11 shows three-dimensional scatter plots for three
characteristics (lower inner frame vs. diagonal vs. upper inner frame) of a
collection of 200 Swiss bank notes - containing 100 notes that are actually
counterfeits.

Figure 1.11: Scatter plot for characteristics of Swiss bank notes

The scatter plot shows genuine and counterfeit bank notes using a different
look and color. As a default setting the x-y-dimension will be shown. The
scatter plot suggests the existence of two clusters - genuine and counterfeits,
although some bank notes are overlapping when only the characteristics ‘lower
inner frame’ and ‘diagonal’ are considered. For a more detailed inspection
three-dimensional plots can be rotated by using a pointing device such as a
mouse (with the left mouse-button pressed) or by using the keyboards arrow-
keys. Figure 1.12 shows the same plot as before - it has just been rotated by

1.9 Graphical Output 15

some degrees. Now, also considering the characteristic ‘upper inner frame’,
the clusters of the data are even better to identify. Nevertheless, there still is
one data point (represented by a circle) that lies among the data of the other
cluster (represented by stars). For further research it would be helpful to know
which data point it is. Of course the user could compare the characteristics of
all data points to find the one. Here the XQC’s display offers a feature to show
the point’s coordinates. This feature can be accessed via the display’s context
menu. ‘Showing coordinates’ is not the only option. The user could also switch
between the three dimensions - ‘Show XỸ’, ‘Show XZ̃’ and ‘Show YZ̃’.

Figure 1.12: Rotating scatter plot showing the context menu

After the ‘Showing coordinates’ has been chosen all it needs is to point the
mouse arrow on a certain data point in order to get the information. Figure 1.12
shows the details “1/70 [8.0, 11.2, 139.6]” for the data point that seems to be
part of the ‘wrong’ cluster. “1/70” implies that we deal with data point number
70 of the first data set printed within the display. The information “first” is
important since there could be more than just one data set shown in the display.
The numbers within the brackets “[. . .]” are the actual characteristics of that
data point.

The possibility to configure the XploRe Quantlet Client for special purposes
as well as its platform independence are features that recommends itself for

16 1 Working with the XQC

Figure 1.13: Showing the coordinates of a data point

the integration into HTML and PDF contents for visualizing statistical and
mathematical coherences as already shown in this book.

SFB 649 Discussion Paper Series

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

001 "Nonparametric Risk Management with Generalized
Hyperbolic Distributions" by Ying Chen, Wolfgang Härdle
and Seok-Oh Jeong, January 2005.

002 "Selecting Comparables for the Valuation of the European
Firms" by Ingolf Dittmann and Christian Weiner, February
2005.

003 "Competitive Risk Sharing Contracts with One-sided
Commitment" by Dirk Krueger and Harald Uhlig, February
2005.

004 "Value-at-Risk Calculations with Time Varying Copulae" by
Enzo Giacomini and Wolfgang Härdle, February 2005.

005 "An Optimal Stopping Problem in a Diffusion-type Model with
Delay" by Pavel V. Gapeev and Markus Reiß, February 2005.

006 "Conditional and Dynamic Convex Risk Measures" by Kai
Detlefsen and Giacomo Scandolo, February 2005.

007 "Implied Trinomial Trees" by Pavel Čížek and Karel
Komorád, February 2005.

008 "Stable Distributions" by Szymon Borak, Wolfgang Härdle
and Rafal Weron, February 2005.

009 "Predicting Bankruptcy with Support Vector Machines" by
Wolfgang Härdle, Rouslan A. Moro and Dorothea Schäfer,
February 2005.

010 "Working with the XQC" by Wolfgang Härdle and Heiko
Lehmann, February 2005.

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".

	Frontpage 010.pdf
	SFB649DP2005-010.pdf
	xqc.pdf
	xqc.pdf
	Working with the XQC
	Introduction
	Application vs. Applet
	Configuration
	Getting connected
	Desktop
	XploRe Quantlet Editor
	Data Editor
	Method Tree
	Graphical Output

	Endpage 010.pdf

