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Implied Trinomial Trees
Pavel Čı́žek and Karel Komorád

Options are financial derivatives that, conditional on the price of an underlying
asset, constitute a right to transfer the ownership of this underlying. More
specifically, a European call and put options give their owner the right to buy
and sell, respectively, at a fixed strike price at a given date. Options are
important financial instruments used for hedging since they can be included
into a portfolio to reduce risk. Corporate securities (e.g., bonds or stocks)
may include option features as well. Last, but not least, some new financing
techniques, such as contingent value rights, are straightforward applications of
options. Thus, option pricing has become one of the basic techniques in finance.

The boom in research on the use of options started after Black and Scholes
(1973) published an option-pricing formula based on geometric Brownian mo-
tion. Option prices computed by the Black-Scholes formula and the market
prices of options exhibit a discrepancy though. Whereas the volatility of mar-
ket option prices varies with the price (or moneyness) – the dependency referred
to as the volatility smile, the Black-Scholes model is based on the assumption
of a constant volatility. Therefore, to model option prices consistent with
the market many new approaches were proposed. Probably the most commonly
used and rather intuitive procedure for option pricing is based on binomial trees,
which represent a discrete form of the Black-Scholes model. To fit the market
data, Derman and Kani (1994) proposed an extension of binomial trees: the
so-called implied binomial trees, which are able to model the market volatility
smile.

Implied trinomial trees (ITTs) present an analogous extension of trinomial trees
proposed by Derman, Kani, and Chriss (1996). Like their binomial counterparts,
they can fit the market volatility smile and actually converge to the same con-
tinuous limit as binomial trees. In addition, they allow for a free choice of the
underlying prices at each node of a tree, the so-called state space. This feature
of ITTs allows to improve the fit of the volatility smile under some circum-
stances such as inconsistent, arbitrage-violating, or other market prices leading
to implausible or degenerated probability distributions in binomial trees. We
introduce ITTs in several steps. We first review main concepts regarding option
pricing (Section 1) and implied models (Section 2). Later, we discuss the con-
struction of ITTs (Section 3) and provide some illustrative examples (Section 4).

1 Option Pricing

The option-pricing model by Black and Scholes (1973) is based on the assump-
tions that the underlying asset follows a geometric Brownian motion with a
constant volatility σ:

dSt

St
= μdt + σdWt, (1)
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Figure 1: Implied volatilities of DAX put options on January 29, 1999.
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Figure 2: Two levels of a CRR binomial tree.

where St denotes the underlying-price process, μ is the expected return, and Wt

stands for the standard Wiener process. As a consequence, the distribution of
St is lognormal. More importantly, the volatility σ is the only parameter of the
Black-Scholes formula which is not explicitly observable on the market. Thus,
we infer on σ by matching the observed option prices. A solution σI , “implied”
by options prices, is called the implied volatility (or Black-Scholes equivalent).
In general, implied volatilities vary both with respect to the exercise price (the
skew structure) and expiration time (the term structure). Both dependencies
are illustrated in Figure 1, with the first one representing the volatility smile.
Let us add that the implied volatility of an option is the market’s estimate of
the average future underlying volatility during the life of that option. We refer
to the market’s estimate of an underlying volatility at a particular time and
price point as the local volatility.
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Binomial trees, as a discretization of the Black-Scholes model, can be con-
structed in several alternative ways. Here we recall the classic Cox, Ross, and
Rubinstein’s (1979) scheme (CRR), which has a constant logarithmic spac-
ing between nodes on the same level (this spacing represents the future price
volatility). A standard CRR tree is depicted in Figure 2. Starting at a node S,
the price of an underlying asset can either increase to Su with probability p or
decrease to Sd with probability 1 − p:

Su = Seσ
√

Δt, (2)

Sd = Se−σ
√

Δt, (3)

p =
F − Sd

Su − Sd
, (4)

where Δt refers to the time step and σ is the (constant) volatility. The forward
price F = erΔtS in the node S is determined by the the continuous interest rate
r (for the sake of simplicity, we assume that the dividend yield equals zero; see
Cox, Ross, and Rubinstein, 1979, for treatment of dividends).

A binomial tree corresponding to the risk-neutral underlying evaluation process
is the same for all options on this asset, no matter what the strike price or time to
expiration is. There are many extensions of the original Black-Scholes approach
that try to capture the volatility variation and to price options consistently
with the market prices (that is, to account for the volatility smile). Some
extensions incorporate a stochastic volatility factor or discontinuous jumps in
the underlying price; see for instance Franke, Härdle, and Hafner (2004).In
the next section, we discuss an extension of the Black-Scholes model developed
by Derman and Kani (1994) – the implied trees.

2 Trees and Implied Trees

While the Black-Scholes model assumes that an underlying asset follows a ge-
ometric Brownian motion (1) with a constant volatility, more complex models
assume that the underlying follows a process with a price- and time-varying
volatility σ(S, t). See Dupire (1994) and Fengler, Härdle, and Villa (2003) for
details and related evidence. Such a process can be expressed by the following
stochastic differential equation:

dSt

St
= μdt + σ(S, t)dWt. (5)

This approach ensures that the valuation of an option remains preference-free,
that is, all uncertainty is in the spot price, and thus, we can hedge options using
the underlying.

Derman and Kani (1994) show that it is possible to determine σ(S, t) directly
from the market prices of liquidly traded options. Further, they use this volatil-
ity σ(S, t) to construct an implied binomial tree (IBT), which is a natural
discrete representation of a non-lognormal evolution process of the underlying
prices. In general, we can use – instead of an IBT – any (higher-order) multi-
nomial tree for the discretization of process (5). Nevertheless, as the time step
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A

Figure 3: Computing the Arrow-Debreu price in a binomial tree. The bold
lines with arrows depict all (three) possible path from the root of the tree to
point A.

tends towards zero, all of them converge to the same continuous process (Hull
and White, 1990). Thus, IBTs are among all implied multinomial trees minimal
in the sense that they have only one degree of freedom – the arbitrary choice of
the central node at each level of the tree. Although one may feel now that bino-
mial trees are sufficient, some higher-order trees could be more useful because
they allow for a more flexible discretization in the sense that transition proba-
bilities and probability distributions can vary as smoothly as possible across a
tree. This is especially important when the market option prices are inaccurate
because of inefficiency, market frictions, and so on.

At the end of this section, let us to recall the concept of Arrow-Debreu prices,
which is closely related to multinomial trees and becomes very useful in sub-
sequent derivations (Section 3). Let (n, i) denote the ith (highest) node in the
nth time level of a tree. The Arrow-Debreu price λn,i at node (n, i) of a tree is
computed as the sum of the product of the risklessly discounted transition prob-
abilities over all paths starting in the root of the tree and leading to node (n, i).
Hence, the Arrow-Debreu price of the root is equal to one and the Arrow-Debreu
prices at the final level of a (multinomial) tree form a discrete approximation of
the state price density. Notice that these prices are discounted, and thus, the
risk-neutral probability corresponding to each node (at the final level) should be
calculated as the product of the Arrow-Debreu price and the capitalizing factor
erT .
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3 Implied Trinomial Trees

3.1 Basic Insight

A trinomial tree with N levels is a set of nodes sn,i (representing the underlying
price), where n = 1, . . . , N is the level number and i = 1, . . . , 2n − 1 indexes
nodes within a level. Being at a node sn,i, one can move to one of three nodes
(see Figure 4a): (i) to the upper node with value sn+1,i with probability pi;
(ii) to the lower node with value sn+1,i+2 with probability qi; and (iii) to the
middle node with value sn+1,i+1 with probability 1 − pi − qi. For the sake of
brevity, we omit the level index n from transition probabilities unless they refer
to a specific level; that is, we write pi and qi instead of pn,i and qn,i unless the
level has to be specified. Similarly, let us denote the nodes in the new level with
capital letters: Si(=sn+1,i), Si+1(=sn+1,i+1) and Si+2(=sn+1,i+2), respectively
(see Figure 4b).
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Figure 4: Nodes in a trinomial tree. Left panel: a single node with its branches.
Right panel: the nodes of two consecutive levels n − 1 and n.

Starting from a node sn,i at time tn, there are five unknown parameters: two
transition probabilities pi and qi and three prices Si, Si+1, and Si+2 at new
nodes. To determine them, we need to introduce the notation and main re-
quirements a tree should satisfy. First, let Fi denote the known forward price
of the spot price sn,i and λn,i the known Arrow-Debreu price at node (n, i).
The Arrow-Debreu prices for a trinomial tree can be obtained by the following
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iterative formulas:

λ1,1 = 1, (6)
λn+1,1 = e−rΔtλn,1p1, (7)
λn+1,2 = e−rΔt{λn,1(1 − p1 − q1) + λn,2p2}, (8)

λn+1,i+1 = e−rΔt{λn,i−1qi−1+ λn,i(1 − pi − qi) + λn,i+1pi+1}, (9)
λn+1,2n = e−rΔt{λn,2n−1(1 − p2n−1− q2n−1)+λn,2n−2q2n−2}, (10)

λn+1,2n+1 = e−rΔtλn,2n−1q2n−1. (11)

An implied tree provides a discrete representation of the evolution process of
underlying prices. To capture and model the underlying price correctly, we
desire that an implied tree:

1. reproduces correctly the volatility smile,

2. is risk-neutral,

3. uses transition probabilities from interval (0, 1).

To fulfill the risk-neutrality condition, the expected value of the underlying price
sn+1,i in the following time period tn+1 has to equal its known forward price:

Esn+1,i = piSi + (1 − pi − qi)Si+1 + qiSi+2 = Fi = erΔtsn,i, (12)

where r denotes the continuous interest rate and Δt is the time step from tn to
tn+1. Additionally, one can specify such a condition also for the second moments
of sn,i and Fi. Hence, one obtains a second constraint on the node prices and
transition probabilities:

pi(Si−Fi)2 +(1−pi−qi)(Si+1−Fi)2 +qi(Si+2−Fi)2 = F 2
i σ2

i Δt+O(Δt), (13)

where σi is the stock or index price volatility during the time period.

Consequently, we have two constraints (12) and (13) for five unknown param-
eters, and therefore, there is no unique implied trinomial tree. On the other
hand, all trees satisfying these constraints are equivalent in the sense that as
the time spacing Δt tends to zero, all these trees converge to the same continous
process. A common method for constructing an ITT is to choose first freely the
underlying prices and then to solve equations (12) and (13) for the transition
probabilities pi and qi. Afterwards one only has to ensure that these proba-
bilities do not violate the above mentioned Condition 3. Apparently, using an
ITT instead of an IBT gives us additional degrees of freedom. This allows us to
better fit the volatility smile, especially when inconsistent or arbitrage-violating
market option prices make a consistent tree impossible. Note, however, that
even though the constructed tree is consistent, other difficulties can arise when
its local volatility and probability distributions are jagged and “implausible.”

3.2 State Space

There are several methods we can use to construct an initial state space. Let us
first discuss a construction of a constant-volatility trinomial tree, which forms
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Figure 5: Constructing a constant-volatility trinomial tree (thick lines) by
combining two steps of a CRR binomial tree (thin lines).

a base for an implied trinomial tree. As already mentioned, binomial and tri-
nomial discretization of the constant-volatility Black-Scholes model have the
same continous limit, and therefore, are equivalent. Hence, we can start from a
constant-volatility CRR binomial tree and then combine two steps of this tree
into a single step of a new trinomial tree. This is illustrated in Figure 5, where
thin lines correspond to the original binomial tree and the thick lines to the
constructed trinomial tree.

Consequently, using formulas (2) and (3), we can derive the following expressions
for the nodes of the constructed trinomial tree:

Si = sn+1,i = sn,i eσ
√

2Δt, (14)
Si+1 = sn+1,i+1 = sn,i, (15)

Si+2 = sn+1,i+2 = sn,i e−σ
√

2Δt, (16)

where σ is a constant volatility (e.g., an estimate of the at-the-money volatility
at maturity T ). Next, summing the transition probabilities in the binomial tree
given in (4), we can also derive the up and down transition probabilities in the
trinomial tree (the “middle” transition probability is equal to 1 − pi − qi):

pi =

(
erΔt/2 − e−σ

√
Δt/2

eσ
√

Δt/2 − e−σ
√

Δt/2

)2

,

qi =

(
eσ
√

Δt/2 − erΔt/2

eσ
√

Δt/2 − e−σ
√

Δt/2

)2

.

Note that there are more methods for building a constant-volatility trinomial
tree such as combining two steps of a Jarrow and Rudd’s (1983) binomial tree;
see Derman, Kani, and Chriss (1996) for more details.
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When the implied volatility varies only slowly with strike and expiration, the
regular state space with a uniform mesh size, as described above, is adequate for
constructing ITT models. On the other hand, if the volatility varies significantly
with strike or time to maturity, we should choose a state space reflecting these
properties. Assuming that the volatility is separable in time and stock price,
σ(S, t) = σ(S)σ(t), an ITT state space with a proper skew and term structure
can be constructed in four steps.

First, we build a regular trinomial lattice with a constant time spacing Δt and
a constant price spacing ΔS as described above. Additionally, we assume that
all interest rates and dividends are equal to zero.

Second, we modify Δt at different time points. Let us denote the original equally
spaced time points t0 = 0, t1, . . . , tn = T . We can then find the unknown scaled
times t̃0 = 0, t̃1, . . . , t̃n = T by solving the following set of non-linear equations:

t̃k

n−1∑
i=1

1
σ2(t̃i)

+ t̃k
1

σ2(T )
= T

k∑
i=1

1
σ2(t̃i)

, k = 1, . . . , n − 1. (17)

Next, we change ΔS at different levels. Denoting by S1, . . . , S2n+1 the original
(known) underlying prices, we solve for rescaled underlying prices S̃1, . . . , S̃2n+1

using

S̃k

S̃k−1

= exp
{

c

σ(Sk)
ln

Sk

Sk−1

}
, k = 2, . . . , 2n + 1, (18)

where c is a constant. It is recommended to set c to an estimate of the local
volatility. Since there are 2n equations for 2n + 1 unknown parameters, an
additional equation is needed. Here we always suppose that the new central
node equals the original central node: S̃n+1 = Sn+1. See Derman, Kani, and
Chriss (1996) for a more elaborate explanation of the theory behind equations
(17) and (18).

Finally, one can increase all node prices by a sufficiently large growth factor,
which removes forward prices violations, see Section 3.4. Multiplying all zero-
rate node prices at time t̃i by ert̃i should be always sufficient.

3.3 Transition Probabilities

Once the state space of an ITT is fixed, we can compute the transition proba-
bilities for all nodes (n, i) at each tree level n. Let C(K, tn+1) and P (K, tn+1)
denote today’s price of a standard European call and put option, respectively,
struck at K and expiring at tn+1. These values can be obtained by interpo-
lating the smile surface at various strike and time points. The values of these
options given by the trinomial tree are the discounted expectations of the pay-off
functions: max(Sj − K, 0) = (Sj − K)+ for the call option and max(K − Sj , 0)
for the put option at the node (n + 1, j). The expectation is taken with respect
to the probabilities of reaching each node, that is, with respect to transition

8



probabilities:

C (K, tn+1) = e−rΔt
∑

j

{pjλn,j + (1 − pj−1 − qj−1)λn,j−1 (19)

+qj−2λn,j−2} (Sj − K)+,

P (K, tn+1) = e−rΔt
∑

j

{pjλn,j + (1 − pj−1 − qj−1)λn,j−1 (20)

+qj−2λn,j−2} (K − Sj)+.

If we set the strike price K to Si+1 (the stock price at node (n + 1, i + 1)),
rearrange the terms in the sum, and use equation (12), we can express the
transition probabilities pi and qi for all nodes above the central node from
formula (19):

pi =
erΔtC(Si+1, tn+1) −

∑i−1
j=1 λn+1,j(Fj − Si+1)

λn+1,i(Si − Si+1)
, (21)

qi =
Fi − pi(Si − Si+1) − Si+1

Si+2 − Si+1
. (22)

Similarly, we compute from formula (20) the transition probabilities for all nodes
below (and including) the center node (n + 1, n) at time tn:

qi =
erΔtP (Si+1, tn+1) −

∑2n−1
j=i+1 λn+1,j(Si+1 − Fj)

λn+1,i(Si+1 − Si+2)
, (23)

pi =
Fi − qi(Si+2 − Si+1) − Si+1

Si − Si+1
. (24)

A detailed derivation of these formulas can be found in Komorád (2002). Finally,
the implied local volatilities are approximated from equation (13):

σ2
i ≈ pi(Si − Fi)2 + (1 − pi − qi)(Si+1 − Fi)2 + qi(Si+2 − Fi)2

F 2
i Δt

. (25)

3.4 Possible Pitfalls

Formulas (21)–(24) can unfortunately result in transition probabilities which are
negative or greater than one. This is inconsistent with rational option prices
and allows arbitrage. We actually have to face two forms of this problem, see
Figure 6 for examples of such trees. First, we have to check that no forward
price Fn,i at node (n, i) falls outside the range of its daughter nodes at the level
n + 1: Fn,i ∈ (sn+1,i+2, sn+1,i). This inconsistency is not difficult to overcome
since we are free to choose the state space. Thus, we can overwrite the nodes
causing this problem.

Second, extremely small or large values of option prices, which would imply an
extreme value of local volatility, can also result in probabilities that are negative
or larger than one. In such a case, we have to overwrite the option prices which

9
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Figure 6: Two kinds of the forward price violation. Left panel: forward price
outside the range of its daughter nodes. Right panel: sharp increase in option
prices leading to an extreme local volatility.

led to the unacceptable probabilities. Fortunately, the transition probabilities
can be always corrected providing that the corresponding state space does not
violate the forward price condition Fn,i ∈ (sn+1,i+2, sn+1,i). Derman, Kani, and
Chriss (1996) proposed to reduce the troublesome nodes to binomial ones or to
set

pi =
1
2

(
Fi − Si+1

Si − Si+1
+

Fi − Si+2

Si − Si+2

)
, qi =

1
2

(
Si − Fi

Si − Si+2

)
, (26)

for Fi ∈ (Si+1, Si) and

pi =
1
2

(
Fi − Si+2

Si − Si+2

)
, qi =

1
2

(
Si+1 − Fi

Si+1 − Si+2
+

Si − Fi

Si − Si+2

)
, (27)

for Fi ∈ (Si+2, Si+1). In both cases, the “middle” transition probability is equal
to 1 − pi − qi.

4 Examples

To illustrate the construction of an implied trinomial tree and its use, we con-
sider here ITTs for two artificial implied-volatility functions and an implied-
volatility function constructed from real data.

4.1 Pre-specified Implied Volatility

Let us consider a case where the volatility varies only slowly with respect to
the strike price and time to expiration (maturity). Assume that the current

10
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Figure 7: The state space of a trinomial tree with constant volatility σ = 11%.
Nodes A and B are reference points for which we demonstrate constructing of
an ITT and estimating of the implied local volatility.
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index level is 100 points, the annual riskless interest rate is r = 12%, and the
dividend yield equals δ = 4%. The annualized Black-Scholes implied volatility
is assumed to be σ = 11%, and additionally, it increases (decreases) linearly by
10 basis points (i.e., 0.1%) with every 10 unit drop (rise) in the strike price K;
that is, σI = 0.11−ΔK ∗ 0.001. To keep the example simple, we consider three
one-year steps.

First, we construct the state space: a constant-volatility trinomial tree as de-
scribed in Section 3.2. The first node at time t0 = 0, labeled A in Figure 7, has
the value of sA = 100, today’s spot price. The next three nodes at time t1, are
computed from equations (14)–(16) and take values S1 = 116.83, S2 = 100.00,
and S3 = 85.59, respectively. In order to determine the transition probabilities,
we need to know the price P (S2, t1) of a put option struck at S2 = 100 and
expiring one year from now. Since the implied volatility of this option is 11%,
we calculate its price using a constant-volatility trinomial tree with the same
state space and find it to be 0.987 index points. Further, the forward price
corresponding to node A is FA = Se(r∗−δ∗)Δt = 107.69, where r∗ = log(1 + r)
denotes the continuous interest rate and δ∗ = log(1 + δ) the continuous div-
idend rate. Hence, the transition probability of a down movement computed

11
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from equation (23) is

qA =
elog(1+0.12)·10.987− Σ
1 · (100.00 − 85.59)

= 0.077,

where the summation term Σ in the numerator is zero because there are no
nodes with price lower than S3 at time t1. Similarly, the transition probability
of an upward movement pA computed from equation (24) is

pA =
107.69 + 0.077 · (100.00− 85.59)− 100

116.83− 100.00
= 0.523.

Finally, the middle transition probability equals 1−pA−qA = 0.4. As one can see
from equations (6)–(11), the Arrow-Debreu prices turn out to be just discounted
transition probabilities: λ1,1 = e− log(1+0.12)·1 · 0.523 = 0.467, λ1,2 = 0.358, and
λ1,3 = 0.069. Finally, we can estimate the value of the implied local volatility
at node A from equation (25), obtaining σA = 9.5%.

Let us demonstrate the computation of one further node. Starting from node
B in year t2 = 2 of Figure 7, the index level at this node is sB = 116.83 and
its forward price one year later is FB = e(r∗−δ∗)·1 · 116.83 = 125.82. From this
node, the underlying can move to one of three future nodes at time t3 = 3,
with prices s3,2 = 136.50, s3,3 = 116.83, and s3,4 = 100.00. The value of a
call option struck at 116.83 and expiring at time t3 = 3 is C(s3,3, t3) = 8.87,
corresponding to the implied volatility of 10.83% interpolated from the smile.
The Arrow-Debreu price computed from equation (8) is

λ2,2 = e− log(1+0.12)·1{0.467 · (1 − 0.517− 0.070) + 0.358 · 0.523} = 0.339.

The numerical values used here are already known from the previous level at
time t1. Now, using equations (21) and (22) we can find the transition proba-
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Figure 9: Arrow-Debreu prices for σI = 0.11 − ΔK · 0.001.
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bilities:

p2,2 =
elog(1+0.12)·1 · 8.87 − Σ

0.339 · (136.50− 116.83)
= 0.515,

q2,2 =
125.82− 0.515 · (136.50− 116.83)− 116.83

100 − 116.83
= 0.068,

where Σ contributes only one term 0.215 · (147 − 116.83), that is, there is one
single node above SB whose forward price is equal to 147. Finally, employing
(25) again, we find that the implied local volatility at this node is σB = 9.3%.

The complete trees of transition probabilities, Arrow-Debreu prices, and local
volatilities for this example are shown in Figures 8–10.

As already mentioned in Section 3.4, the transition probabilities may fall out
of the interval (0, 1). For example, let us slightly modify our previous example
and assume that the Black-Scholes volatility increases (decreases) linearly 0.5
percentage points with every 10 unit drop (rise) in the strike price K; that is,
σI = 0.11 − ΔK · 0.005. In other words, the volatility smile is now five times
steeper than before. Using the same state space as in the previous example, we
find inadmissable transition probabilities at nodes C and D, see Figures 11–13.
To overwrite them with plausible values, we used the strategy described by (26)
and (27) and obtained reasonable results in the sense of the three conditions
stated on page 6.
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4.2 German Stock Index

Following the artificial examples, let us now demonstrate the ITT modeling for
a real data set, which consists of strike prices for DAX options with maturities
from two weeks to two months on January 4, 1999. Given such data, we can
firstly compute from the Black-Scholes equation (1) the implied volatilities at
various combinations of prices and maturities, that is, we can construct the
volatility smile. Next, we build and calibrate an ITT so that it fits this smile.
The procedure is analogous to the examples described above – the only difference
lies in replacing an artificial function σI(K, t) by an estimate of implied volatility
σI at each point (K, t).

14



1.000

0.467

0.358

0.069

0.205

0.362

0.182

0.038

0.011

0.107

0.206

0.266

0.099

0.024

0.008

0.001

C

D

Figure 12: Arrow-Debreu prices for σI = 0.11 − ΔK · 0.005. Nodes C and D
had inadmissible transition probabilities (21)–(24).

STFitt06.xpl

0.095

0.087

0.095

0.113

0.108

0.086

0.093

0.113

0.108

C

D

Figure 13: Implied local volatilities for σI = 0.11 − ΔK · 0.005. Nodes C and
D had inadmissible transition probabilities (21)–(24).

STFitt07.xpl

For the purpose of demonstration, we build a three-level ITT with time step
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Δt of two weeks. First, we construct the state space (Section 3.2) starting at
time t0 = 0 with the spot price S = 5290 and riskless interest rate r = 4%, see
Figure 14. Further, we have to compute the transition probabilities. Because
option contracts are not available for each combination of price and maturity,
we use a nonparametric smoothing procedure to model the whole volatility sur-
face σI(K, t) as employed by Aı̈t-Sahalia, Wang, and Yared (2001) and Fengler,
Härdle, and Villa (2003), for instance. Given the data, some transition proba-
bilities fall outside interval (0, 1); they are depicted by dashed lines in Figure 14.
Such probabilities have to be corrected as described in Section 3.4 (there are
no forward price violations). The resulting local volatilities, which reflect the
volatility skew, are on Figure 15.

Probably the main result of this ITT model can be summarized by the state price
density (the left panel of Figure 16). This density describes the price distribution
given by the constructed ITT and smoothed by the Nadaraya-Watson estimator.
Apparently, the estimated density is rather rough because we used just three
steps in our tree. To get a smoother state-price density estimate, we doubled the
number of steps; that is, we used six one-week steps instead of three two-week
steps (see the right panel of Figure 16).

Finally, it possible to use the constructed ITT to evaluate various DAX options.
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Figure 16: State price density estimated from an ITT for DAX on January
4, 1999. The dashed line depicts the corresponding Black-Scholes density. Left
panel: State price density for a three-level tree. Right panel: State price
density for a six-level tree.
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For example, a European knock-out option gives the owner the same rights
as a standard European option as long as the index price S does not exceed
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or fall below some barrier B for the entire life of the knock-out option; see
Härdle, Kleinow, and Stahl (2002) for details. So, let us compute the price of
the knock-out-call DAX option at maturity T = 6 weeks, strike price K = 5200,
and barrier B = 4800. The option price at time tj (t0 = 0, t1 = 2, t2 = 4, and
t3 = 6 weeks) and stock price sj,i will be denoted Vj,i.

At the maturity t = T = 6, the price is known: V3,i = max{0, sj,i − K}, i =
1, . . . , 7. Thus, V3,1 = max{0, 4001.01− 5200} = 0 and V3,5 = max{0, 5806.07−
5200} = 606.07, for instance. To compute the option price at tj < T , one just
has to discount the conditional expectation of the option price at time tj+1

Vj,i = e−r∗Δt{pj,iVj+1,i+2 + (1 − pj,i − qj,i)Vj+1,i+1 + qj,iVj+1,i} (28)

provided that sj,i ≥ B, otherwise Vj,i = 0. Hence at time t2 = 4, one obtains
V2,1 = 0 because s2,1 = 4391.40 < 4800 = B and

V2,3 = e− log(1+0.04)·2/52(0.22 · 606.07 + 0.55 · 90 + 0.23 · 0) = 184.33

(see Figure 17). We can continue further and compute the option price at
times t1 = 2 and t0 = 0 just using the standard formula (28) since prices no
longer lie below the barrier B (see Figure 14). Thus, one computes V1,1 = 79.7,
V1,2 = 251.7, V1,3 = 639.8, and finally, the option price at time t0 = 0 and stock
price S = 5290 equals

V0,1 = e− log(1+0.04)·2/52(0.25 · 639.8 + 0.50 · 251.7 + 0.25 · 79.7) = 303.28.
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