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An optimal stopping problem in a diffusion-type model
with delay

PavelV. Gapeev∗ and Markus Reiß†

We present an explicit solution to an optimal stopping problem in a model described by
a stochastic delay differential equation with an exponential delay measure. The method of
proof is based on reducing the initial problem to a free-boundary problem and solving the
latter by means of the smooth-fit condition. The problem can be interpreted as pricing
special perpetual average American put options in a diffusion-type model with delay.

1 Introduction

The main aim of this paper is to present a solution to the optimal stopping problem (3) for
the process X that solves the stochastic differential equation (1) with an exponential delay
measure on an infinite time interval. This problem is related to the option pricing theory in
mathematical finance, where the process X can describe the logarithm of the price of a risky
asset (e.g. a stock) on a financial market. In that case the value (3) can be formally interpreted
as a fair price of a special perpetual average American put option in a diffusion-type market
model with delay. In this model the dynamics of the price depends on its deviation from the
running average over past values.

In recent years several control problems for models described by stochastic delay differen-
tial equations were studied. Øksendal and Sulem [14] proved maximum principles for certain
classes of such models and applied them to solving some problems related to finance. Elsanosi,
Øksendal and Sulem [4] proved a verification theorem of variational inequality type and applied
it to finding explicit solutions for some classes of optimal harvesting delay problems. Larssen
[9] established the dynamic programming principle for stochastic delay differential equations.
Larssen and Risebro [10] exhibited certain classes of delayed control problems that can be re-
duced to ordinary control problems. In this paper we show how an explicit solution to an
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optimal stopping problem in a model described by a stochastic delay differential equation can
be derived.

The paper is organized as follows. In Section 2, using change-of-measure arguments, for the
initial problem (3) we construct an equivalent optimal stopping problem for the one-dimensional
Markov deviation process. In order to find explicit expressions for the value function and
the optimal boundary, we formulate an associated free-boundary problem. In Section 3 we
derive a solution to the free-boundary problem which can be expressed by a Kummer confluent
hypergeometric function and thus admits a representation in closed form. In Section 4 we verify
that the solution of the free-boundary problem turns out to be a solution of the initial optimal
stopping problem. The main result of the paper is stated in Theorem 4.1.

2 Formulation of the problem

First, let us give a precise description of the diffusion-type model with delay.

2.1. Suppose that on some probability space (Ω,F , P ) there exists a standard Wiener
process W = (Wt)t≥0 and a continuous process X = (Xt)t∈R solving the stochastic differential
equation:

dXt = −(θ2/2)(Xt − λYt)
2 dt + θ(Xt − λYt) dWt for t ≥ 0, X0 = x, (1)

where the process Y = (Yt)t≥0 is defined by:

Yt =

∫ 0

−∞
eλsXt+s ds, Xt = X0

t for t ≤ 0, (2)

for some θ > 0, λ > 0, and x ∈ R given and fixed. Here X0
t , t ≤ 0, is a (deterministic)

bounded measurable function. Since the exponential of X is a local martingale, the process X
can be thought of the logarithm of a (discounted) stock price on a financial market. The goal
of this paper is to compute the value:

V∗ = sup
τ

E
[
e−δτ

(
KeλYτ − eXτ

)+
]
, (3)

where the supremum is taken over all finite stopping times τ of the process X (i.e. stopping
times with respect to the natural filtration (Ft)t≥0 of X ), and to determine an optimal stopping
time at which the supremum in (3) is attained. The value (3) can be interpreted as an arbitrage-
free price of a special average American put option, where K > 0 and δ > 0 are some given
constants. Some other optimal stopping problems for geometric Brownian motion with gain
functions containing integrals were solved in [8] and [15]. Note that a different class of optimal
stopping problems can be obtained when the underlying process is Markovian, but at the same
time there is a delay in the available information as in [13].

By differentiation it can be shown that the process Y admits the representation:

dYt = Zt dt, Y0 = y, (4)

where the process Z = (Zt)t≥0 is defined by:

Zt = Xt − λYt (5)
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for all t ≥ 0. The process Z defined in (5) expresses the deviation of the logarithm of the
present value of the process X from its exponentially weighted average λY . By means of Itô’s
formula (see e.g. [11; Theorem 4.4] or [7; Theorem I.4.57]) it can be shown that the deviation
process Z solves the stochastic differential equation:

dZt = −(θ2/2) Zt (Zt + 2λ/θ2) dt + θZt dWt, Z0 = z, (6)

which admits the explicit solution:

Zt =
exp

(
θ Wt − (λ + θ2/2) t

)
1/z + (θ2/2)

∫ t

0
exp

(
θ Ws − (λ + θ2/2) s

)
ds

(7)

for z 6= 0 (cf. e.g. [12; Example 5.15] or [5; Chapter IV]). From the structure of the solution
(7) it follows that the process Z started at some z < 0 remains negative and explodes in finite
time with positive probability. On the other hand, started at some z > 0 the solution Z exists
globally and remains positive, while started at z = 0 it is trapped at the same point. To avoid
degeneracy we thus further assume that z > 0.

Observe that from the one-to-one correspondence (5) between the processes (Xt, Yt)t≥0 and
(Zt, Yt)t≥0 , by virtue of (4) it follows that the natural filtration of the process Z coincides with
(Ft)t≥0 , and from (6)-(7) it is seen that the latter coincides with the natural filtration of the
process W . Note that Y0 = y in (4) and Z0 = z in (6) can be straightforwardly expressed by
means of the initial function X0

t , t ≤ 0. It therefore follows that the value (3) takes the form:

V∗ = sup
τ

E
[
e−δτ+Xτ

(
Ke−Zτ − 1

)+
]
, (8)

where the supremum can equivalently be taken over all finite stopping times of the process Z .
Taking into account the multiplicative structure of the gain function in (8), without loss of
generality we can further assume that x = 0.

2.2. Let us define the process W̃ = (W̃t)t≥0 by:

W̃t = Wt −
∫ t

0

θZs ds, (9)

where Z = (Zt)t≥0 is given by (5)-(7). Hence, from (6) it follows that the process Z solves the
stochastic differential equation:

dZt = −(3θ2/2) Zt (Zt + 2λ/(3θ2)) dt + θZt dW̃t, Z0 = z, (10)

which admits the explicit solution:

Zt =
exp

(
θ W̃t − (λ + θ2/2) t

)
1/z + (3θ2/2)

∫ t

0
exp

(
θ W̃s − (λ + θ2/2) s

)
ds

(11)

for z > 0. Substituting the expression (11) into (9) we see that W̃ is a diffusion-type process
with respect to the Wiener process W (cf. e.g. [11; Section IV.2]), and its natural filtration
clearly coincides with (Ft)t≥0 .
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Let us denote by At(W̃ ) the right-hand side of the expression (11). Taking into account

the assumption z > 0 and using the continuity of At(W̃ ) and At(W ), we get:

P

[∫ t

0

A2
s(W̃ ) ds < ∞

]
= P

[∫ t

0

A2
s(W ) ds < ∞

]
= 1 (12)

for all t ≥ 0. Then, by means of the result of [11; Theorem 7.6] we obtain:

E

[
exp

(∫ t

0

θZs dWs −
1

2

∫ t

0

θ2Z2
s ds

)]
= 1 (13)

for all t ≥ 0. Hence, following the arguments in [20; Section 7] and [17; Section 2], we apply
the results of [11; Theorem 7.1] and [16; Theorem A.6.1] and conclude that there exists a

probability measure P̃ being locally equivalent to P with respect to the filtration (Ft)t≥0 and
such that its density process is given by:

dP̃ |Ft

dP |Ft

= exp

(∫ t

0

θZs dWs −
1

2

∫ t

0

θ2Z2
s ds

)
(14)

for all t ≥ 0. Thus, by virtue of Girsanov’s theorem (see e.g. [11; Theorem 6.3] or [12;

Theorem 8.6.4]) it follows that the process W̃ = (W̃t)t≥0 defined in (9) is a standard Wiener

process under the measure P̃ . Using (11) it can be verified that Z = (Zt)t≥0 is a time-

homogeneous (strong) Markov process under P̃ with respect to its natural filtration which
coincides with (Ft)t≥0 .

Observe that (14) also implies that for any finite stopping time τ with respect to (Ft)t≥0

the restriction P̃ | Fτ is equivalent to P | Fτ . Then, using the explicit expressions (1) and (5)
as well as the assumption x = 0, we obtain the following representation:

dP̃ |Fτ

dP |Fτ

= eXτ (15)

for all finite stopping times τ . It therefore follows that for computing the value (8) we can
consider the following optimal stopping problem for the Markov process Z given by:

V∗(z) = sup
τ

Ẽz

[
e−δτ

(
Ke−Zτ − 1

)+
]
, (16)

where P̃z denotes the law of the diffusion process started at the point z > 0 and solving
equation (10), and the supremum is taken over all finite stopping times of Z . Thus, we may
say that the deviation process Z plays the role of a sufficient statistic in the optimal stopping
problem (16). We will search for an optimal stopping time in (16) of the following form:

τ∗ = inf{t ≥ 0 |Zt ≤ B∗}, (17)

where B∗ is the largest number from 0 < z ≤ log K such that V∗(z) = Ke−z − 1. The point
B∗ is called an optimal stopping boundary. Note that if K ≤ 1 and z > 0 then the problem
(16) becomes trivial, so that we further assume that K > 1.
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2.3. Standard arguments based on the application of Itô’s formula (see e.g. [12; Theo-
rem 7.3.3]) imply that in this case the infinitesimal generator L of the process Z acts on a
function F ∈ C2(0,∞) like:

(LF )(z) = −(3θ2/2) z (z + 2λ/(3θ2)) F ′(z) + (θ2/2) z2 F ′′(z) (18)

for all z > 0. In order to find the unknown value function V∗(z) from (16) and the unknown
boundary B∗ from (17), we refer to the general theory of optimal stopping problems for con-
tinuous time Markov processes (see e.g. [6] and [18; Section III.8]) and formulate the following
free-boundary problem:

(LV )(z) = δV (z) for z > B (19)

V (B+) = Ke−B − 1 (continuous fit) (20)

V (z) = (Ke−z − 1)+ for z < B (21)

V (z) > (Ke−z − 1)+ for z > B (22)

where 0 < B ≤ log K and (20) plays the role of an instantaneous-stopping condition. Observe
that the superharmonic characterization of the value function (see [3] and [18]) implies that
V∗(z) is the smallest function satisfying (19)-(22) with the boundary B∗ . Because of the
continuity of the process Z we also assume that the following condition holds:

V ′(B+) = −Ke−B (smooth fit). (23)

3 Solution of the free-boundary problem

Let us now derive a solution to the free-boundary problem formulated above.

3.1. By means of straightforward calculations it can be checked that equation (19) has the
general solution:

V (z) = C1 zγU

(
γ, 2γ − 2λ

θ2
; 3z

)
+ C2 zγL

(
−γ, 2γ − 2λ

θ2
− 1; 3z

)
, (24)

where C1 and C2 are some arbitrary constants and γ is given by:

γ =
1

2
+

λ

θ2
+

√(
1

2
+

λ

θ2

)2

+
2δ

θ2
. (25)

Here U(a, b; z) is the Kummer confluent hypergeometric function, which admits the integral
representation:

U(a, b; z) =
1

Γ(a)

∫ ∞

0

e−zt ta−1(1 + t)b−a−1 dt (26)

for a > 0 and b > 1 (see e.g. [1; Chapter XIII] or [2; Chapter VI] with a different parametriza-
tion), and L(a, b; z) is the generalized Laguerre polynomial function defined by:

L(a, b; z) =
∞∑

k=0

Γ(a + b + 1)

Γ(b + k + 1)Γ(a− k + 1)

(−1)kzk

k!
(27)
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(see e.g. [1; Chapter XXII] or [2; Chapter X]), where Γ denotes the Euler Gamma function.
It thus follows that in (24) we have C2 = 0, since otherwise V (z) → ±∞ as z →∞ , which

should be excluded by virtue of the obvious fact that the value function (16) is decreasing and
bounded for all z > 0. Hence, imposing conditions (20) and (23) on the function (24) we obtain
the following equalities:

C1 BγU

(
γ, 2γ − 2λ

θ2
; 3B

)
= Ke−B − 1 (28)

γC1 Bγ−1U

(
γ, 2γ − 2λ

θ2
; 3B

)
− 3γC1 BγU

(
γ + 1, 2γ − 2λ

θ2
+ 1; 3B

)
= −Ke−B. (29)

Then, solving equations (28)-(29) it therefore follows that the solution of system (19)-(20)+(23)
is given by:

V (z; B∗) =
(
Ke−B∗ − 1

)( z

B∗

)γ U(γ, 2γ − 2λ/θ2; 3z)

U(γ, 2γ − 2λ/θ2; 3B∗)
(30)

for all z > B∗ , where B∗ satisfies the transcendental equation:

γ
3B U(γ + 1, 2γ − 2λ/θ2 + 1; 3B)

U(γ, 2γ − 2λ/θ2; 3B)
− γ =

KBe−B

Ke−B − 1
. (31)

3.2. In order to prove the existence and uniqueness of the solution of equation (31) on the
interval (0, log K), let us denote by G(B) the left-hand side and by H(B) the right-hand side
of equation (31). Then H(B) is a strictly increasing function on (0, log K) with H(0+) = 0
and H(log K−) = ∞ . Thus, if we deduce that G(B) is a decreasing function on (0, log K)
such that G(0+) > 0, then we will be able to conclude that there exists a unique solution B∗
of equation (31) on the interval (0, log K).

To prove G(0+) > 0, let us note that by applying the change-of-variable formula to (26) it
follows that:

U(a, b; z) =
z1−b

Γ(a)

∫ ∞

0

e−uua−1(u + z)b−a−1 du, (32)

which directly implies:

lim
z↓0

z U(a + 1, b + 1; z)

U(a, b; z)
=

Γ(a)Γ(b)

Γ(a + 1)Γ(b− 1)
=

b− 1

a
(33)

for any b > a+1 > 1 fixed. Hence, inserting a = γ and b = 2γ− 2λ/θ2 as well as z = 3B into
(33), for the left-hand side of (31) we get:

lim
B↓0

G(B) = lim
B↓0

γ
3B U(γ + 1, 2γ − 2λ/θ2 + 1; 3B)

U(γ, 2γ − 2λ/θ2; 3B)
− γ = γ − 2λ

θ2
− 1 > 0. (34)

To derive the monotonicity of G(B), let us observe that using the representation (32) it
follows that:

z U(a + 1, b + 1; z)

U(a, b; z)
=

∫∞
0

e−uua(u + z)b−a−1 du

a
∫∞

0
e−uua−1(u + z)b−a−1 du

=

∫∞
0

u(u + z)fz(u) du

a
∫∞

0
(u + z)fz(u) du

, (35)
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where fz(u) = C(z)e−uua−1(u+ z)b−a−2 , u ≥ 0, is a probability density with some normalizing
constant C(z) for any b > a + 1 > 1 fixed. Then, applying the Cauchy-Schwarz or Jensen
inequality and taking into account the fact that b− a− 1 > 0, we obtain:

d

dz

(
z U(a + 1, b + 1; z)

U(a, b; z)

)
(36)

=
(b− a− 1)

(∫∞
0

ufz(u) du
∫∞

0
(u + z)fz(u) du−

∫∞
0

u(u + z)fz(u) du
∫∞

0
fz(u) du

)(
a

∫∞
0

(u + z)fz(u) du
)2

≤
(b− a− 1)

(∫∞
0

u2fz(u) du + z
∫∞

0
ufz(u) du−

∫∞
0

u(u + z)fz(u) du
∫∞

0
fz(u) du

)(
a

∫∞
0

(u + z)fz(u) du
)2 = 0.

Thus, setting a = γ and b = 2γ−2λ/θ2 as well as z = 3B , we may conclude that G(B), being
the left-hand side of (31), is decreasing on (0, log K). This completes the proof of uniqueness.

3.3. So far, we have seen that V (z) = V (z; B∗) satisfies equation (19) and conditions (20)
and (23) hold with B = B∗ . Let us now show that inequality (22) is also satisfied. For this,
we take logarithms on both sides of (22) and observe that, in view of equality (20) and the fact
that V (z; B∗) is positive, it suffices to verify the inequality:

d

dz
log V (z; B∗) >

d

dz
log(Ke−z − 1) (37)

for B∗ < z < log K . Using the definition of V (z; B∗) in (30) and (31), it is straightforward to
see that inequality (37) is equivalent to:

γ
3z U(γ + 1, 2γ − 2λ/θ2 + 1; 3z)

U(γ, 2γ − 2λ/θ2; 3z)
− γ <

Kze−z

Ke−z − 1
(38)

for B∗ < z < log K . Thus, following the arguments above and using the monotonicity proper-
ties of the functions G(z) and H(z) (coinciding with the left-hand and right-hand sides of (38))
on the interval (0, log K), we may conclude that inequality (38) holds for B∗ < z < log K . The
latter fact directly implies that (22) is satisfied with V (z) = V (z; B∗) and B = B∗ .

4 Main result and proof

We are now in a position to formulate and prove the main assertion of the paper.

Theorem 4.1. Let the process Z be given by (10)-(11) with z > 0 and assume that K > 1.
Then the value function of the problem (16) takes the form:

V∗(z) =

{
V (z; B∗), if z > B∗

Ke−z − 1, if z ≤ B∗
(39)

and the optimal stopping time τ∗ has the structure (17), where the function V (z; B∗) is given
by (30) and the boundary B∗ is the unique solution of the transcendental equation (31).

Proof. It remains to show that the function (39) coincides with the value function (16) and
the stopping time τ∗ from (17) with the boundary B∗ specified above is optimal. For this, let

7



us denote by V (z) the right-hand side of the expression (39). It follows by construction from
the previous section that the function V (z) solves the system (19)-(22) and condition (23) is
satisfied. Thus, applying Itô’s formula to e−δtV (Zt), we obtain:

e−δt V (Zt) = V (z) +

∫ t

0

e−δs (LV − δV )(Zs) ds + M̃t, (40)

where the process (M̃t)t≥0 defined by:

M̃t =

∫ t

0

e−δs V ′(Zs) θZs dW̃s (41)

is a continuous local martingale under P̃z . Observe that the time spent by the process Z at
the boundary B∗ is of Lebesgue measure zero, which allows to extend (LV −δV )(z) arbitrarily
to z = B∗ .

Due to the properties (20)-(23), a Taylor expansion shows that V ′′(B∗−) ≤ V ′′(B∗+) holds,
which by the form of the generator in (18) directly implies that (LV − δV )(B∗−) ≤ (LV −
δV )(B∗+) = 0. Moreover, it can be checked that:

d

dz
(LV − δV )(z) = −(LV − δV )(z) + (4θ2 + λ)Ke−z + δ (42)

for all 0 < z < B∗ , from where we may conclude that (LV − δV )(z) is increasing and thus
negative on (0, B∗), which together with (19) yields (LV − δV )(z) ≤ 0 for all z > 0. From
expression (40) it therefore follows that the inequalities:

e−δτ
(
Ke−Zτ − 1

)+ ≤ e−δτ V (Zτ ) ≤ V (z) + M̃τ (43)

hold for any finite stopping time τ of the process Z started at z > 0. Let (σn)n∈N be an

arbitrary localizing sequence of stopping times for the process (M̃t)t≥0 . Then, taking in (43)

the expectation with respect to the measure P̃z , by means of the optional sampling theorem
(see e.g. [7; Theorem I.1.39] or [16; Theorem II.3.2]) we get:

Ẽz

[
e−δ(τ∧σn)

(
Ke−Zτ∧σn − 1

)+
]
≤ Ẽz

[
e−δ(τ∧σn) V (Zτ∧σn)

]
(44)

≤ V (z) + Ẽz

[
M̃τ∧σn

]
= V (z)

for all z > 0. Hence, letting n → ∞ and using Fatou’s lemma, we obtain that for any finite
stopping time τ the inequalities:

Ẽz

[
e−δτ

(
Ke−Zτ − 1

)+
]
≤ Ẽz

[
e−δτ V (Zτ )

]
≤ V (z) (45)

are satisfied for all z > 0.
By virtue of the fact that the function V (z) together with the boundary B∗ satisfy the

system (19)-(22), by the structure of the stopping time τ∗ in (17) and by expression (40) it
follows that the equality:

e−δ(τ∗∧σn) V (Zτ∗∧σn) = V (z) + M̃τ∗∧σn (46)
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holds. Then, using the expression (43) and the fact that the function V (z) is decreasing, we
infer the inequalities:

−V (z) ≤ M̃τ∗∧σn ≤ V (B∗ ∧ z)− V (z) (47)

for all z > 0. Note that from (11) it follows that Zt tends to zero as t →∞ (P̃z -a.s.), and the

latter fact implies that for the stopping time (17) we have P̃z[τ∗ < ∞] = 1 for all z > 0. Hence,
letting n →∞ in (46) and using conditions (20)-(21) as well as the property V (B∗ ∧ z) < ∞ ,
we can apply the Lebesgue dominated convergence theorem to obtain the equality:

Ẽz

[
e−δτ∗

(
Ke−Zτ∗ − 1

)+
]

= V (z) (48)

for all z > 0, which together with (45) directly implies the desired assertion. �

Remark 4.2. Let us briefly consider the dependence of the solution from the deviation
parameter λ , which reflects the impact of the delay. For this, let us denote by V∗(z; λ) the
value function from (16) and by B∗(λ) the optimal stopping boundary from (17), where we
underline the dependence on λ . Then, by the comparison theorem for stochastic differential
equations applied to (10) and by the structure of the value function (16), it follows that V∗(z; λ)
increases in λ . Hence, a simple comparison argument yields that B∗(λ) decreases in λ . The
intuition behind these properties is that the deviation Z is likely to be much smaller when the
weighted average λY is mainly taken from recent values (i.e. when λ is large). In that case the
solution X of equation (1) converges to zero more slowly, and we should await a lower optimal
deviation level B∗(λ) before exercising the option in view of the discounted payoff in (8).
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