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Abstract

In this paper we propose the GHADA risk management model that is based on the gener-
alized hyperbolic (GH) distribution and on a nonparametric adaptive methodology. Com-
pared to the normal distribution, the GH distribution possesses semi-heavy tails and repre-
sents the financial risk factors more appropriately. The nonparametric adaptive methodol-
ogy has the desirable property of estimating homogeneous volatility in a short time interval.
For DEM/USD exchange rate data and a German bank portfolio data the proposed GHADA
model provides more accurate value at risk calculation than the traditional model based on
the normal distribution. All calculations and simulations are done with XploRe.

Keywords: adaptive volatility estimation, generalized hyperbolic distribution, value at risk,
risk management.
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Economic Processes” at Humboldt-Universität zu Berlin. Special thanks are due to Prof.
Dr. Ernst Eberlein for his kind contribution to the proof of Lemma 1.

1 INTRODUCTION

One of the most challenging tasks in the analysis of financial markets is to measure and
manage risks properly. After the breakdown of the fixed exchange rate system of the
Bretton Woods Agreement in 1971, a sudden increase of volatility was observed in the
financial markets. The following boom of financial derivatives accelerated the turbulence of
the markets. The incoming scale of losses astonished the world and pushed the development
of sound risk management systems. Financial risks have many sources and are typically
mapped into a stochastic framework where various kinds of risk measures such as Value at
Risk (VaR), expected shortfall, lower partial moments are calculated. Among them, VaR
has become the standard measure of the market risk since J.P. Morgan launched RiskMetrics
in 1994, making the analysis of VaR simple and standard, Jorion (2001).

The importance of VaR was even reinforced after it was used by the central banks to
govern and supervise the capital adequacy of the banks in the Group of Ten (G10) countries
in 1995. Mathematically VaR at p probability level is defined as:

V aRp,t = F−1
t (p),

where F−1
t is the inverse function of the conditional cumulative distribution function of the

underlying at time t, Franke, Härdle and Hafner (2004). From the definition, it is clear that
the accuracy of VaR and the other risk measures depends heavily on the assumption of the
underlying distribution. In the literature, for reasons of stochastic and numerical simplicity,
it is often assumed that the involved risk factors are normally distributed. This is done e.g.
in the RiskMetrics framework. However empirical studies have shown that financial risk
factors have leptokurtic distributions which include a high peak and fat tails.

Figure 1 illustrates this fact on the basis of the daily standardized (devolatilized) returns
of the foreign exchange (FX) rates DEM/USD from 1979/12/01 to 1994/04/01. The non-
parametrically estimated kernel density and log kernel density obviously deviate from the
normal density. In order to capture this empirical fact, the heavy-tailed distribution families
such as the hyperbolic distribution have been attracting the attention of the researchers.
Conditional Gaussian models can mimic the fat tails as well and were found to perform well
at a moderate VaR (e.g. 95%) confidence level. Nevertheless, they are unsatisfactory for
the extreme events such as profit and loss (P&L) at 99% confidence level, Jaschke and Jiang
(2002). Recently, Eberlein, Kallsen and Kristen (2003) applied the generalized hyperbolic
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(GH) distribution to the VaR calculation. Based on their empirical studies, the model with
GH distribution gave more accurate VaR values than that with the normal distribution.

Estimated density (nonparametric)
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Figure 1: Graphical comparison of the density (left) and the log-density (right) of the daily
DEM/USD standardized returns from 1979/12/01 to 1994/04/01 (3719 observations). The
kernel density estimate is graphed as a line and the normal density as dots with h ≈ 0.54.

GHADAfx.xpl

In addition to the distributional tail assumption, the usual heteroscedastic model on the
returns Rt:

Rt = σtεt,

where σt denotes the volatility and εt the stochastic term, suggests that the role of the
volatility model is of great significance. The most often used volatility estimation meth-
ods are not uniformly applicable in risk management. ARCH (Engle, 1995), GARCH
(Bollerslev, 1995) and stochastic volatility models (Harvey and Shephard, 1995) are used
to estimate or forecast volatility in specified time periods. This cannot be applied for long
time series since the form of the volatility model is time-unstable with a very high pos-
sibility. It is therefore plausible to use more flexible methods by providing a data-driven
“local” model, which can avoid this potential miss-specification problem. In Eberlein et
al. (2003), parametric volatility models of GARCH type were studied and compared with
a nonparametric approach using the rectangular moving average. They argued that the
GARCH (1,1) model performed superior. However this “under-performance” of the non-
parametric model can possibly be improved by an adaptive methodology. Mercurio and
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Spokoiny (2004) proposed such an improvement by adaptively estimating the volatility.
A simple “local constant” model was constructed but an intrinsic assumption in their study
was the normality of the risk factors.

In this paper we intend to improve the risk management models by combining:

a. a heavy-tailed distribution family to mimic the empirical distribution of the underlying
risk factors, and

b. a nonparametric adaptive methodology to estimate and forecast the local volatilities.

Motivated by the above two research lines, we combine these two approaches: we estimate
the volatility adaptively and model the heavy-tailed risk factors by the GH distribution.
Here we name this new VaR technique as Generalized Hyperbolic Adaptive Volatility
(GHADA) technique. The devolatilized return density plot in Figure 1 is in fact calculated
with the GHADA technique.

The paper is organized as follows. In Section 2 we will discuss the properties of the
GH distribution and its subclasses. The adaptive volatility estimation methodology will be
described based on the GH distribution. The validation of the GHADA technique is shown
via Monte Carlo simulation. In Section 3 several VaR calculations will be presented based
on a DEM/USD series and a German bank portfolio data. According to the backtesting
result, the GHADA technique provides more accurate precision than the model with the
normal distribution. Finally we will conclude our study in Section 4. All the pictures may
be recalculated and redrawn using the indicated link to an XploRe Quantlet Server.

2 PILLARS

Let Rt = log St − log St−1 denote the (log) return where St is the asset price at time point
t for t = 1, 2, .., T. The return process is modelled in a heteroscedastic form:

Rt = σtεt, (1)

where εt is assumed to be independently and identically distributed (i.i.d.) with E(εt) = 0
and Var (εt) = 1. Volatility σt is time varying and unobservable in the market. In the
case that volatility is measurable with respect to a σ-field Ft−1 generated by the preceding
returns R1, . . . , Rt−1, the variance σ2

t can be interpreted as the conditional variance of the
return.

In risk management models we are interested in estimating the future return distribu-
tion accurately. It depends on the estimation of volatility σt and the assumption on the
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stochastic term εt. In this paper, we use a nonparametric algorithm to estimate the volatil-
ity “locally”, avoiding the potential mis-specification problem. Details will be discussed in
Section 2.2. Another key factor, the distribution assumption of the stochastic term, influ-
ences the performance of the risk management procedures to a great extent. VaR is defined
through a pre-decided quantile of the P&L distribution. Models based on the normality as-
sumption achieve almost the same values at the 5% quantile (95% confidence level) as those
with a leptokurtic (more heavy tailed) distribution. This explains to a certain extent the
popularity of the normal distribution in the risk management models although the financial
risk factors are empirically leptokurtic distributed. However concerning the extreme events,
we need to consider lower quantiles such as 1% quantile. The difference relative to the nor-
mal becomes larger for lower quantiles of course. In this case, the normality assumption
becomes invalid. Therefore in the next section, we concentrate on a heavy-tailed distribu-
tion, the generalized hyperbolic distribution, and discuss the application of this distribution
family in risk management.

2.1 Generalized Hyperbolic Distribution

The GH distribution introduced by Barndorff-Nielsen (1977) is a heavy-tailed distribution
that can well replicate the empirical distribution of the financial risk factors. The density
of the GH distribution for x ∈ IR is:

fGH(x;λ, α, β, δ, µ) =
(ι/δ)λ

√
2πKλ(δι)

Kλ−1/2

{
α
√

δ2 + (x− µ)2
}

{√
δ2 + (x− µ)2/α

}1/2−λ
· eβ(x−µ) (2)

under the conditions:

• δ ≥ 0, |β| < α if λ > 0

• δ > 0, |β| < α if λ = 0

• δ > 0, |β| ≤ α if λ < 0

where λ, α, β, δ and µ ∈ IR are the GH parameters, ι2 = α2 − β2. The density’s location
and scale are mainly controlled by µ and δ respectively:

E[X] = µ +
δ2β

δι

Kλ+1(δι)
Kλ(δι)

Var[X] = δ2
{

Kλ+1(δι)
διKλ(δι)

+ (
β

ι
)2[

Kλ+2(δι)
Kλ(δι)

− {Kλ+1(δι)
Kλ(δι)

}2]
}

,

whereas β and α play roles in the skewness and kurtosis of the distribution. For more details
of the parameters’ domains we refer to Bibby and Sørensen (2001). Kλ(·) is the modified
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Bessel function of the third kind with index λ, Barndorff-Nielsen and Blæsild (1981):

Kλ(x) =
1
2

∫ ∞

0
yλ−1exp{−x

2
(y + y−1)} dy

Furthermore, the GH distribution has semi-heavy tails:

fGH(x;λ, α, β, δ, µ = 0) ∼ xλ−1e−(α−β)x as x →∞, (3)

where a(x) ∼ b(x) as x → ∞ means that both a(x)/b(x) and b(x)/a(x) are bounded as
x → ∞. Compared to the normal distribution, the GH distribution decays more slowly.
However compared to the other two heavy-tailed distributions: Laplace distribution and
Cauchy distribution, the decaying speed of the GH distribution is often faster. The Laplace
distribution is also called double exponential distribution with the form:

fLaplace =
1
2ς

e−|x−µ|/ς

where µ is the location parameter and ς is the scale parameter.
The Cauchy distribution is defined as:

fCauchy =
1

ςπ[1 + (x−M)2/ς2]

where M is the median and ς is the scale parameter.

In Figure 2 we compared these four distributions and especially their tail-behavior. In
order to keep the comparability of these distributions, we specified the means to 0 and
standardized the variances to 1. Furthermore we used one important subclasses of the GH
distribution: the normal-inverse Gaussian (NIG) distribution with λ = −1

2 introduced more
precisely in the following text. On the left panel, the complete forms of these distributions
are revealed. The Cauchy (dots) distribution has the lowest peak and the fattest tails, in
other words, it has the flattest distribution. The NIG distribution decays second fast in
the tails although it has the highest peak, which is more clearly displayed on the right
panel. Generally the GH distribution has an exponential decaying speed as shown in (3).
By changing λ the GH distribution family covers a wide range of tail behavior. A parameter
λ > 1 introduces heavier tails than the double exponential. One may therefore think of λ as
the tail control parameter with which one (loosely speaking) may model the range between
a normal and a Cauchy tail.

The moment generating function of the GH distribution is:

mf (z) = eµz · ιλ

ιλz
· Kλ(διz)

Kλ(δι)
, |β + z| < α, (4)
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Figure 2: Graphical comparison of the NIG distribution (line), standard normal distribution
(dashed), Laplace distribution (dotted) and Cauchy distribution (dots).

GHADAtail.xpl

where ι2z = α2− (β + z)2. The GH distribution has the property that mf is infinitely many
times differentiable near 0, as a result every moment of a GH variable exists. In Section 2.2,
this feature and the tail behavior (3) of the GH distribution will be used in the adaptive
volatility estimation methodology.

In the current literature, subclasses of the GH distribution such as the hyperbolic (HYP)
or the normal-inverse Gaussian (NIG) distribution are frequently used. This is motivated
by the fact that the four parameters (µ, δ, β, α)> simultaneously control the four moment
functions of the distribution, i.e. the trend, the riskiness, the asymmetry and the likeliness
of the extreme events. Eberlein and Keller (1995), Barndorff-Nielsen (1997) have shown
that these subclasses are rich enough to model financial time series and have the benefit
of numerical tractability. Therefore in our study we concentrate ourselves on these two
important subclasses of the GH distribution: HYP with λ = 1 and NIG distribution with
λ = −1/2. The corresponding density functions are given as:

• Hyperbolic (HYP) distribution: λ = 1,

fHY P (x;α, β, δ, µ) =
ι

2αδK1(δι)
e{−α

√
δ2+(x−µ)2+β(x−µ)}, (5)

where x, µ ∈ IR, 0 ≤ δ and |β| < α,

7
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• Normal-inverse Gaussian (NIG) distribution: λ = −1/2,

fNIG(x;α, β, δ, µ) =
αδ

π

K1

{
α
√

δ2 + (x− µ)2
}

√
δ2 + (x− µ)2

e{δι+β(x−µ)}. (6)

where x, µ ∈ IR, δ > 0 and |β| ≤ α.

In order to estimate the unknown parameters (α, β, δ, µ)>, the maximum likelihood (ML)
and numerical optimization methods are used. For an i.i.d HYP resp. NIG distributed
variable X, the log-likelihood functions are:

LHY P = T log ι− T log 2− T log α− T log δ − T log K1(δι) (7)

+
T∑

t=1

{−α
√

δ2 + (xt − µ)2 + β(xt − µ)}

LNIG = T log α + T log δ − T log π + Tδι (8)

+
T∑

t=1

[
log K1

{
α
√

δ2 + (xt − µ)2
}
− 1

2
log{δ2 + (xt − µ)2}+ β(xt − µ)

]

Figure 3 shows the estimated HYP and NIG densities with the corresponding ML esti-
mators of the DEM/USD devolatilized returns. It can be seen that the estimated densities
almost coincide with the empirical density and log-density of the financial risk factor. The
empirical density f̂h(x) (line) was estimated by the kernel estimation:

f̂h(x) =
1

nh

n∑
i=1

K(
x−Xi

h
), (9)

where n is the number of observations and K is the kernel function which gives weights
to the observations according to the distances of them to the fixed point x. The further
an observation is from the fixed point, the smaller weight it will be given. We chose the
Quartic kernel function with a closed form: K(u) = 15

16(1 − u2)21(|u| ≤ 1), where 1(·) is
the indicator function which has a value of 1 if the condition in the parenthesis exists, and
a value of 0 otherwise. In addition, we used the Silverman’s rule of thumb to select the
bandwidth h:

ĥrot ≈ 1.06σ̂n−1/5,

where σ̂ is the empirical standard deviation of the variable X. Since the rule of thumb
assumes that the unknown density belongs to the normal family and we chose the Quartic
kernel, the bandwidth was adjusted to ĥ ≈ 2.62ĥrot = 2.78σ̂n−1/5 using the canonical
bandwidths. For details of the kernel and the bandwidth selections, see Chapter 3 in Härdle,
Müller, Sperlich and Werwatz (2004). Compared to the normal distribution in Figure 1,
it is convincing that the GH distribution family can represent the empirical distribution of
financial data better.

8



Estimated fx density (HYP)

-4 -2 0 2 4

X

0
0.

1
0.

2
0.

3
0.

4

Y

Estimated fx log density (HYP)

-4 -2 0 2 4

X

-6
-4

-2

Y

Estimated fx density (NIG)

-4 -2 0 2 4

X

0
0.

1
0.

2
0.

3
0.

4

Y

Estimated fx log density (NIG)

-4 -2 0 2 4

X

-6
-4

-2

Y

Figure 3: The kernel estimated density (left) and log density (right) of the standardize
return of FX rates (line) (h ≈ 0.55). The HYP density (dashed line) on the top with
the maximum likelihood estimators α̂ = 1.744, β̂ = −0.017, δ̂ = 0.782, µ̂ = 0.012 and a
simulated NIG density (dashed line) on the bottom with the maximum likelihood estimators
α̂ = 1.340, β̂ = −0.015, δ̂ = 1.337, µ̂ = 0.010.

GHADAfx.xpl

2.2 Adaptive Volatility Estimation

The basic idea of adaptive volatility estimation comes from the observation that although
the volatility is heteroscedastic in a long time period, its change in a short time interval, a so-
called time homogeneous interval, is very small. Evidence for this argument has been given
by Mercurio and Spokoiny (2004). According to time homogeneity, one specifies an interval
I = [τ−m, τ) for a fixed time point τ with 0 ≤ m ≤ τ−1, where the volatility σt, t ∈ I is al-
most constant. One may for example estimate in this case the local constant volatility στ by

9
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averaging
the past squared returns R2

t for t ∈ I:

σ̂2
τ =

1
|I|
∑
t∈I

R2
t , (10)

where |I| is the cardinality of I. Two questions arise in this procedure: how well does this
estimate work and how to specify the homogeneous interval I?

The squared returns R2
t are always nonnegative and have for the stochastic errors εt

(i.i.d. GH, HYP or NIG) a skewed distribution. In order to apply an interval selection
procedure for I we use the power transformation of the return Rt:

|Rt|γ = Cγσγ
t + Dγσγ

t ζγ,t (11)

where γ is the power transformation parameter, ζγ,t = (|εt|γ−Cγ)/Dγ are standardized i.i.d.
innovations, Cγ = E(|ε|γ |Ft−1) is the conditional mean of ζγ,t and D2

γ = E[(|ε|γ−Cγ)2|Ft−1]
is the conditional variance of ζγ,t.

Additionally, lighter tails are obtained after this power transformation. Such a tail
behavior is required later to derive theoretical properties of the estimate later. Let us
denote the conditional mean of the transformed return |Rt|γ by θt:

θt = Cγσγ
t . (12)

Since Cγ is a constant given a fixed γ, the estimate of the volatility σt is proportional to
θt. In a time homogeneous interval I the local parameter θt is constant for t ∈ I and is
estimated by:

θ̂I =
1
|I|
∑
t∈I

|Rt|γ . (13)

Writing |Rt|γ out in (13), one has:

θ̂I =
1
|I|
∑
t∈I

θt +
sγ

|I|
∑
t∈I

θtζt

where sγ = Dγ/Cγ . One sees that the multiplicative error structure (1) is turned via (11)
into an additive one and the random variable |Rt|γ distributes more evenly. Straightfor-
wardly, one can calculate the conditional expectation and variance of the estimate θ̂I :

E[θ̂I |Fτ−1] = E
1
|I|
∑
t∈I

θt,

v2
I = Var [θ̂I |Fτ−1] =

s2
γ

|I|2
E(
∑
t∈I

θtζt)2 =
s2
γ

|I|2
E
∑
t∈I

θ2
t .
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In a time homogeneous interval I, the volatilities are expected to be time invariant, therefore
θ̂I can be considered as an estimate of θt for each time point t ∈ I. Therefore vI can be
estimated by:

v̂I = sγ θ̂I |I|−1/2.

In other words, the volatility estimate σt can be induced from an estimate θt. However
the specification of the local homogeneous interval is still open. Mercurio and Spokoiny
(2004) have derived a homogeneity test for a supermartingale process. We show that a
supermartingale of GH distributed variable can be obtained from the following lemma. It
therefore leads to the same homogeneity test theory.

LEMMA 1 For every 0 ≤ γ ≤ 1 there exists a constant aγ > 0 such that

log E[euζγ ] ≤ aγu2

2
,

where ζγ = (|ε|γ − Cγ)/Dγ is the transformed GH distributed variable ε.

The proof of this lemma is given in the Appendix.

Consider a predictable process pt (such as the volatility σt or the local parameter θt)
w.r.t. the information set Ft−1:

Υt = exp

(
t∑

s=1

psζs − (aγ/2)
t∑

s=1

p2
s

)

Υtis a supermartingale, since

E(Υt|Ft−1)−Υt−1 = E(Υt|Ft−1)− E(Υt−1|Ft−1)

= E[exp

(
t∑

s=1

psζs − (aγ/2)
t∑

s=1

p2
s

)

− exp

(
t−1∑
s=1

psζs − (aγ/2)
t−1∑
s=1

p2
s

)
|Ft−1]

= E[exp

(
t−1∑
s=1

psζs − (aγ/2)
t−1∑
s=1

p2
s

)
{exp(ptζt − aγ/2p2

t )− 1}|Ft−1]

=
exp(p1ζ1)

exp(aγ/2p1)︸ ︷︷ ︸
≤1,Lemma1

· · · exp(pt−1ζt−1)
exp(aγ/2pt−1)︸ ︷︷ ︸

≤1

·E[
exp(ptζt)

exp(aγ/2pt)︸ ︷︷ ︸
≤1

−1|Ft−1]

≤ 0

i.e. E(Υt|Ft−1) ≤ Υt−1. With this supermartingale property, the statistical properties of θ̂I

are given in:
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THEOREM 1 If R1, ..., Rτ obey the heteroscedastic model and the residual ε satisfies
Lemma 1. Furthermore, the volatility coefficient σt satisfies the condition b ≤ σ2

t ≤ bB with
some positive constants b and B, then it holds for the estimate θ̂I of θτ :

P{|θ̂I − θτ | > ∆I(1 + ηsγ |I|−1/2) + ηv̂I} ≤ 4
√

eη(1 + log B) exp{− η2

2aγ(1 + ηsγ |I|−1/2)2
}.

where ∆I is the squared bias defined as ∆2
I = |I|−1∑

t∈I(θt − θτ )2.

Theorem 1 indicates that the estimation error |θ̂I−θτ | is small relative to ηv̂I for τ ∈ I with
a high probability, if I is a time homogeneous interval and therefore the squared bias ∆I is
negligible. Straightforwardly, the following condition can be used to test the homogeneity
hypothesis in an interval I:

|θ̂I − θτ | ≤ ηv̂I .

In the test, I is split into two subintervals: I\J and J. If I is a time homogeneous interval,
the estimates based on the two subintervals must be very close. The homogeneity condition
can be stated as:

|θ̂I\J − θ̂J | ≤ η(v̂I\J + v̂J) = η′(
√

θ̂2
J |J |−1 +

√
θ̂2
I\J |I\J |−1). (14)

provided η′ = ηsγ sufficiently large. If condition (14) is violated, the homogeneity hypothesis
for the interval I is rejected.

The test procedure starts from an initial small interval I that satisfies the homogeneity
and consists of 4 steps:

Step 1: Enlarge the interval I from [τ −m0, τ) to [τ − k ×m0, τ), i.e. m = k ×m0,
and split the new interval into two subintervals J and I\J. The parameters m0 and k

are integers specified according to data. In this paper, we chose m0 = 5 and k = 2.

Step 2: Start homogeneity test for interval J = [τ − 2
3m, τ). If the homogeneity

hypothesis isn’t rejected, enlarge J one point further to [τ − 2
3m−1, τ) and repeat the

homogeneity test (14). The loop will continue until the left point of the subinterval J

reaches the point τ − 1
3m. The choice of 1

3 comes from the fact that the right 1
3 part

has been tested in the last homogeneous interval and the left one-thirds will be tested
in the next homogeneous interval, Mercurio and Spokoiny (2004).

Step 3: If (14) is violated at point s, the loop stops and the time homogeneous interval
I is specified from point τ to point s + 1.

Step 4: If time homogeneity holds for this interval, go back to Step 1.

The largest interval I is finally chosen as the time homogeneous interval for point τ , based on
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which the local volatility στ is estimated. However there are still two threshold parameters
to be specified: γ in the power transformation and η′ in the homogeneity test condition.
According to Lemma 1, the parameter γ is bounded in [0, 1]. In our study, we chose γ = 0.5
as same as the model based on the normal distribution to satisfy the comparability. The
value of η′ is similar to a smoothing parameter of the nonparametric regression. We thus
propose a nonparametric way to pick up a global η′. Given a starting point t0 and provided
that there are enough past observations to estimate θ̂(t0,η′), the value η′ minimizes the
forecast error:

η′ = argmin
τ−1∑
t=t0

{
|Rt|γ − θ̂(t,η′)

}2
. (15)

2.3 Monte Carlo simulation

The GHADA technique consists of two main parts: estimate the GH distribution param-
eters, from which one calculates the quantile of the P&L, and predict the volatility using
the adaptive methodology. The calculation procedure can be described as:

1. Select the transformation parameter γ and a starting point t0.

2. Given different η′s, estimate the local volatilities using the adaptive methodology.
Choose the η′ which minimizes the forecast error and the corresponding estimated
volatility process σ̂t.

3. Calculate the devolatilized returns εt = Rt/σ̂t and estimate the GH parameters.

4. Calculate the V aRt+1, multiplying the volatility forecast σ̃t+1 and the quantile of the
devolatilized return.

The previous calculations and the comparison in Section 2.1 have provided evidence that
the GH distributions can represent the empirical distribution of the underlying well. In
this section, we focus on the volatility estimation. In order to check the performance of the
adaptive methodology, Monte Carlo simulation was applied. We intend to estimate the local
volatility on the basis of simulated HYP and NIG variables and to analyze the sensitivity
of the GHADA algorithm to jumps of the volatility. We considered two volatility processes:

σ1,t =


0.01 : 1 ≤ t ≤ 400

0.05 : 400 < t ≤ 750

0.01 : 750 < t ≤ 1000

(16)

σ2,t =


|0.02t− 5| : 1 ≤ t ≤ 300

|0.02t− 10| : 300 < t ≤ 600

|0.12t− 100| : 600 < t ≤ 1000

(17)
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We simulated 200 HYP and 200 NIG random variables. Each series consists of 1000 obser-
vations. We constructed the HYP return series by multiplying the HYP variables and the
volatility σ1,t. The NIG return series were constructed by multiplying the NIG trajectories
and the volatility σ2,t.

We applied the GHADA algorithm to estimate the local volatilities of these simulated
returns. The first 200 observations were used to estimate local volatility at the starting
point. The transformation parameter γ was pre-set as 0.5. The value η′ that minimized
the forecast error was selected and used in the homogeneity test. We repeated the mul-
tiple homogeneity test and specified the homogeneity intervals for the points from 201 to
1000. Two examples of the estimated local constant volatility series - one belongs to the
HYP distributed returns and the other the NIG returns - are displayed in Figure 4. The
estimated volatility processes for the simulated 200 HYP and 200 NIG distributed returns
can be downloaded at http://ise.wiwi.hu-berlin.de/∼ychen/ghada/ : simulation1.AVI and
simulation2.AVI respectively. Compared to the true volatility processes (dashed line), these
estimates (straight line) satisfactorily represent the movements and the sudden changes of
the volatility process. To study the sensitivity of our approach, we introduced a percentage
rule that told us after how many steps the sudden volatility jump is detected at 40%, 50%
or 60% level of the jump size. The 40% rule, for example, refers to the number of time
steps necessary to reach 40% of the jump size. Table 1 gives an overview of the detection
delays. One interesting feature of the GHADA approach is its out-performance of catching
up a sudden increasing jump in the volatility process. Concerning the volatility process σ1,
the first jump (occurring at the 401st point) was at 40% level on average detected after 6
steps. This number increases to 8 for the 60% rule of the jump. In contrast, the detection
speed is slow for downward jumps. For the second jump at t = 750, where the volatility
decreases from 5% to 1%, the yields 40% rule about 12 steps, twice slower reacting than
that to the increasing jump with the same quantity. This fact results from a loose test
power. In the homogeneity test (14), the squared conditional variance vI depends on θt, a
larger value of θt thus induces a loose test power. Consequently, a slower detection speed
occurs in the jump down from a high value. Additionally, we considered two jumps in the
second volatility process σ2. The mean values of the steps detecting 40%, 50% and 60% of
these two jumps at t = 300 and t = 600 are even smaller than those in σ1.

The mean squared error (MSE) of the estimation 1
800

∑1000
t=201(σ̂1,t − σ1,t)2 is 3.26(10−5)

for the simulation 115 (HYP). Figure 5 illustrates the mean process and the 99% confidence
interval of the estimates. At the jump point the estimate is turbulent and the confidence
interval increases. In the NIG case, the volatility process (σ2) is more volatile and not be
constant in a short interval any more. Nevertheless the GHADA model gave fine results
and the big changes of the volatility movement were catched in about 6 points as well. The
MSE of the simulation example is 6.88. From Figure 6 one can further see that the mean
process repeats the movement of the volatility process. The confidence interval around the
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Figure 4: The estimated volatility processes on the basis of two simulated examples (dashed
line): sim 115 (HYP) and sim 44 (NIG). The power transformation parameter γ = 0.5 and
the starting point t0 = 201.
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biggest change is larger than the HYP example. The scale of the volatility process could
be one reason for the large span.
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mean standard deviation maximum minimum

Detection decay to the first jump at t = 400 - σ1

40% rule 5.9 2.4 15 1
50% rule 6.9 2.6 19 2
60% rule 7.9 2.9 19 2

Detection decay to the second jump at t = 750 - σ1

40% rule 11.8 4.4 39 3
50% rule 13.5 6.5 58 5
60% rule 15.9 10.9 98 6

Detection decay to the first jump at t = 300 - σ2

40% rule 4.9 2.4 13 0
50% rule 6.2 3.0 18 2
60% rule 7.6 4.2 33 2

Detection decay to the first jump at t = 600 - σ2

40% rule 4.7 1.9 12 0
50% rule 5.7 2.7 23 2
60% rule 6.8 3.4 24 2

Table 1: Descriptive statistics for the detecting speeds to the sudden jumps of the volatility
processes.

3 RISK MANAGEMENT

3.1 Data Set

Two data sets: DEM/USD exchange rate and a German bank portfolio were used in our
empirical analysis. They are available at MD*Base (www.quantlet.org/mdbase).

The exchange rate is daily registered from 1979/12/01 to 1994/04/01. There are 3720
observations. The first 500 observations are used as a basis to estimate the local volatility
and the GH distribution parameters. The bank portfolio data reports the market value of
the portfolio holden by a German bank. There are 5603 observations. Figure 1 and Figure
3 have shown the empirical (log) densities and the estimated HYP and NIG densities of
the exchange rate data. We estimated the GH distribution parameters using the maximum
likelihood method. Using the proposed GHADA approach, the local volatility estimates
of the DEM/USD exchange rates are displayed in Figure 7 where t0 is 501 and η′ = 1.06.
Figure 8 and Figure 9 show the respective estimates of the bank portfolio data.

The devolatilized return
ε̂t = Rt/σ̂t (18)
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Figure 5: The mean process of the local volatility estimates based on 200 simulations and
the 99% point confidence interval (dashed line) of the estimation.
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Figure 6: The mean process of the local volatility estimates based on 200 simulations and
the 99% point confidence interval (dashed line) of the estimation.

GHADAsim2.xpl

is expected to be i.i.d. but not necessarily normally distributed. We assume that the de-
volatilized return is HYP or NIG distributed. Table 2 summarizes the descriptive statistics
of the devolatilized returns for the exchange rate data and the bank portfolio data. The
first and the second moments are close to 0 and 1, but the kurtoses of these two data sets
are high with respect to the normal distribution. The graphics of the devolatilized return
processes are displayed in Figure 7 and Figure 9. Figure 10 shows the boxplots of the time
homogeneous intervals’ length for these two data sets. The average interval length for the
exchange rate data is 51 while the length for the German bank portfolio data is 71. It can be
seen that the spans of the interval length are wide for two data sets. It provides an evidence
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exchange rate data bank portfolio data

mean -0.0052 0.0113
std 0.9938 0.9264
skewness -0.0121 -0.0815
kurtosis 4.0329 5.1873

Table 2: Descriptive statistics for the devolatilized residuals of the exchange rate data and
bank portfolio data.

that the volatility model changes from time to time. Compared to a fixed time-invariant
model, the adaptive model is flexible and simple to catch the fluctuation of the volatility.

3.2 Value at Risk

Value at risk (VaR) is one of the most often used risk measure. It measures the possible loss
level over a given horizon at a given confidence level 1− p and answers the question: How
much can I lose with p probability over the pre-set horizon. The research on VaR models
has been ignited and prompted by the rule of Basel Committee on Banking Supervision
in 1995: financial institutions may use their internal VaR models. The selection of the
internal VaR model as well as the volatility estimation is essential to the VaR based risk
management. Let qp denote the p-th quantile of the distribution of εt, i.e. P (εt < qp) = p,
we have P (Rt < σtqp | Ft−1) = p. Mathematically the VaR is defined as:

VaRp,t = F−1
t (p) = σtqp.

where F−1
t is the inverse function of the conditional cumulative distribution function of the

underlying at time t, Franke et al. (2004).

In practice, we are interested in the forecast of VaR. Using the GHADA approach, we
adaptively estimated the volatility σ̂t. Since the volatility process is a supermartingale, it is
natural to use the estimate today as the volatility forecast σ̃t+1 for tomorrow, i.e. σ̃t+1 = σ̂t.
Furthermore we estimated the HYP and NIG distribution parameters of the devolatilized
returns and calculated the quantile qp. The VaR at the probability level p was forecasted
as:

˜VaRp,t+1 = σ̃t+1q̂p.

As same as the volatility model, the distribution parameters could be time-variant as well.
Figure 11 shows the HYP-quantile forecasts based on the 500 past devolatilized returns of
the exchange rate for each time point. It provides an evidence that the quantile varies as
time passes, especially for extreme probability levels such as p = 0.005. In this context we
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Figure 7: The return process of DEM/USD exchange rates (upper) and its adaptive volatil-
ity estimates (lower) for t0 = 501 and η′ = 1.06.

GHADAfx.xpl

couldn’t stick to the assumption that the innovations are identically distributed. Instead,
we updated the distribution parameters daily based on the previous 500 data points. The
same phenomenon holds for NIG distribution, which is omitted here.

The observations whose losses exceed the VaR are called exceptions. The daily VaR
forecasts of the DEM/USD rates are displayed in Figure 12 and Figure 13. The VaR fore-
casts are different between the GHADA model and the model with the normal distribution
(normal model). As we have discussed, the VaRs based on the normal distribution are
almost identical to the HYP distribution at the 5% probability level. Sometime the normal
model performs even better than the GHADA model. However at the 5% level, there are
more than 169 exceptions observed in 17 years, i.e. more than 12 exceptions annually. In
order to control the risk exposure to the market, the extreme events (lower levels) should
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Figure 8: The estimated density (left) and log density (right) of the standardize return
of the German bank portfolio rates (red) with nonparametric kernel (h ≈ 0.61) and the
estimated HYP density (blue) on the top with the maximum likelihood estimators α̂ =
1.819, β̂ = −0.168, δ̂ = 0.705, µ̂ = 0.145 and the estimated NIG density (blue) with the
maximum likelihood estimators α̂ = 1.415, β̂ = −0.171, δ̂ = 1.254 and µ̂ = 0.146.
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also be considered. It is obvious that as the probability level decreases to some extreme
values such as 1% or 0.5%, the gaps of these two models get larger and larger. Except in
the 5% case, the GHADA model is superior to the normal model at the other three levels
of 2.5%, 1% and 0.5%.
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Figure 9: The return process of a German bank’s portfolio (upper) and its adaptive volatility
estimates (lower) for t0 = 501 and η′ = 1.23. The average length of time homogeneous
interval is 71.
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3.3 Backtesting VaR

To evaluate the validation of the VaR calculation, consider the backtesting procedures
presented in Christoffersen (1998). Above all, a VaR calculation should not underestimate
the market risk. Let 1t denote the indicator of exceptions at time point t, t = 1, 2, . . . , T .
If the proportion of exceptions, N/T = T−1∑T

t=1 1t, is much larger than p, i.e. N/T > p,
it means that the possible losses happen more often than the fixed level. In this case, the
VaR model should be rejected. One constructs a hypothesis to test:

H0 : E[N ] = Tp vs. H1 : E[N ] 6= Tp (19)
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1. Exchange rate 2. Bank portfolio

Figure 10: Boxplots of the DEM/USD exchange rates (left) and the German bank portfolio
data (right).

Under H0, N is a Binomial random variable with parameters T and p, the likelihood ratio
test statistic can be derived as:

LR1 = −2 log {(1− p)T−NpN}+ 2 log {(1−N/T )T−N (N/T )N}, (20)

which is asymptotically χ2(1) distributed, Jorion (2001).

In addition, a VaR model that yields exception clusters should also be rejected. Since a
cluster of VaR exceedances means that if there is an exception today, an exception may also
occur tomorrow with a higher probability than the prescribed level p. Another important
test is the test of independence. Let us denote πij = P (1t = j|1t−1 = i) as the transition
probability and nij =

∑T
t=1 1(1t = j and 1t−1 = i), where i, j = 0 or 1. The independence

hypothesis is given as:

H0 : π00 = π10 = π, π01 = π11 = 1− π (21)

One can test this hypothesis using the likelihood ratio statistic:

LR2 = −2 log {π̂n0(1− π̂)n1}+ 2 log {π̂n00
00 π̂n01

01 π̂n10
10 π̂n11

11 }, (22)

where π̂ij = nij/(nij + ni,1−j), nj = n0j + n1j , and π̂ = n0/(n0 + n1). Under H0, LR2 is
asymptotically χ2(1) distributed as well, Jorion (2001).

Table 3 and Table 4 summarize the results of the backtesting for the DEM/USD data
and the bank portfolio data. On average, the GHADA model gives more accurate forecasts
at each probability level than the normal model. For example, the proportions of exceptions
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Figure 11: Quantiles estimated based on the past 500 devolatilized returns of the exchange
rate. From the top the evolving HYP quantiles for p = 0.995, p = 0.99, p = 0.975, p = 0.95,
p = 0.90, p = 0.10, p = 0.05, p = 0.025, p = 0.01, p = 0.005.

at 1% level relative to the normal model is about 1.5%, which is one and a half times of
these same level indices of GHADA models. The test of VaR level is not rejected for HYP
and NIG based model at all levels. In contrast, the normal model fails to provide acceptable
results at the extreme levels. In addition, all these models fulfill the independence test.
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Figure 12: Value at Risk forecast plots for DEM/USD data. The dots are the returns, the
solid line is the VaR forecast based on HYP underlying distribution, the yellow line is the
VaR forecast with normal distribution, and the crosses indicate the VaR exceptions of HYP
model. (a) p = 0.005. (b) p = 0.01.

GHADAfxvar.xpl
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(c) p = 0.025
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Figure 13: Value at Risk forecast plots for DEM/USD data. The dots are the returns, the
solid line is the VaR forecast based on HYP underlying distribution, the yellow line is the
VaR forecast with normal distribution, and the crosses indicate the VaR exceptions of HYP
model. (c) p = 0.025. (d) p = 0.05.
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Model p N/T LR1 p-value LR2 p-value

Normal 0.005 0.01025 13.667 0.000* 0.735 0.391
0.01 0.01460 6.027 0.014 0.138 0.710
0.025 0.02858 1.619 0.203 0.056 0.813
0.05 0.05250 0.417 0.518 0.007 0.934

HYP 0.005 0.00403 0.640 0.424 0.189 0.664
0.01 0.00963 0.045 0.832 0.655 0.419
0.025 0.02485 0.003 0.957 0.666 0.415
0.05 0.05312 0.648 0.421 0.008 0.927

NIG 0.005 0.00404 0.640 0.424 0.189 0.664
0.01 0.00994 0.001 0.973 0.694 0.405
0.025 0.02516 0.004 0.953 0.719 0.396
0.05 0.05405 1.086 0.297 0.040 0.841

Table 3: Backtesting results for DEM/USD example. * indicates the rejection of the model
which is used.

GHADAfxvar.xpl

Model p N/T LR1 p-value LR2 p-value

Normal 0.005 0.010 19.809 0.000* 1.070 0.301
0.01 0.016 13.278 0.000* 0.422 0.516
0.025 0.028 2.347 0.126 0.781 0.377

HYP 0.005 0.003 5.111 0.024 0.160 0.689
0.01 0.008 2.131 0.144 0.705 0.401
0.025 0.025 0.053 0.819 1.065 0.302

NIG 0.005 0.003 5.111 0.024 0.160 0.689
0.01 0.009 0.747 0.387 0.841 0.359
0.025 0.027 0.438 0.508 1.429 0.232

Table 4: Backtesting results for the bank portfolio example. * indicates the rejection of the
model which is used.
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4 FINAL REMARKS

We have proposed a risk management (GHADA) model based on the adaptive volatility
estimation and the generalized hyperbolic distribution. Our study is summarized as follows.

• The adaptive volatility estimation methodology by Mercurio and Spokoiny (2004) is
also applicable with generalized hyperbolic distribution. The threshold parameter
used to specify the time homogeneity interval can be estimated in a nonparametric
way.

• The distribution of the devolatilized returns from the adaptive volatility estimation is
found to be leptokurtic and, sometimes, asymmetric. We found that the distribution
of the innovations can be perfectly modelled by the HYP and NIG distributions,
subclasses of the generalized hyperbolic distribution.

• The proposed approach can be easily applied to calculate and forecast risk measures
such as value at risk and expected shortfall. On the basis of the DEM/USD data and
a German bank portfolio data it shows that the proposed approach performs better
than a model with the normal distribution.

In financial markets, it is more interesting and challenging to measure the risk levels
of multiple time series. Härdle, Herwartz and Spokoiny (2003) proposed an idea of the
adaptive volatility estimation method for a multiple time series. We expect to apply the
idea to a model with the multivariate generalized hyperbolic distribution. A detailed study
on this approach is left for our future research.

5 APPENDIX

Proof of Lemma 1.

Proof:
Firstly we show that the moment generating function E[euζγ ] exists for all u ∈ R.

Suppose that L(x) = GH(λ, α, β, δ, µ) with the density function f for the transformed
variable y

def= |x|γ , we have

P (y ≤ z) = P (−z
1
γ ≤ x ≤ z

1
γ ) =

∫ z
1
γ

−∞
f(x)dx−

∫ −z
1
γ

−∞
f(x)dx, z > 0
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Then the density of y ∈ (0,∞) is:

g(z) =
d

dz
P (y ≤ z) = γ−1{f(z

1
γ )z

1
γ
−1 + f(−z

1
γ )z

1
γ
−1}

= γ−1z
1
γ
−1{f(z

1
γ ) + f(−z

1
γ )}, z > 0.

Since fGH(x;λ, α, β, δ, µ = 0) ∼ xλ−1e−(α−β)x as x → ±∞, it follows

g(z) ∼ z
1
γ
−1

γ
{z

λ−1
γ e(β−α)z

1
γ + z

λ−1
γ e−(β+α)z

1
γ }

=
z

λ
γ
−1

γ
{e(β−α)z

1
γ + e−(β−α)z

1
γ }, z −→∞

For γ < 1, it holds that
∫∞
0 euzg(z)dz < ∞ ∀u ∈ R, since

limz→∞(β − α)z
1
γ + uz → −∞ ∀u ∈ R

limz→∞ − (β + α)z
1
γ + uz → −∞ ∀u ∈ R

Since the integration depends only on the exponential part, it holds also that∫ ∞

0
zneuzg(z)dz =

∫ ∞

0

∂n

∂un
(euz)g(z)dz =

∂n

∂un
E[euy] < ∞,

then it can be shown that the moment generating function and log(E[euy]) are smooth. It
holds for every t > 0,

E[euy] = E[eu|x|γ ] = E[eu|x|γ1(|x| ≤ t)] + E[eu|x|γ1(|x| > t)]

≤ eutγ + E[e|x|utγ−1
I(|x| > t)], (23)

Without loss of generality, we assume µ = 0. Further

fGH(x;λ, α, β, δ, µ = 0) ∼ xλ−1e−(α−β)x as x →∞,

and
∫∞
y xλ−1e−xdx ∼ yλ−1e−y as y→∞, Press, Teukolsky, Vetterling and Flannery (1992).

For an arbitrary but fixed u ∈ R+ and t0 > 1 so that utγ−1 < α − β, it holds for all
t ≥ t0

f(t) ≤ C1t
λ−1e(β−α)t∫ ∞

(α−β−utγ−1)t
xλ−1e−xdx ≤ C2[(α− β − utγ−1)t]λ−1e−(α−β−utγ−1)t

where C1, C2 > 1.
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Consequently for t ≥ t0,

E[eu|t|γ−1x1(|x| > t)] =
∫ ∞

t
eutγ−1xf(x)dx ≤ C1

∫ ∞

t
eutγ−1xxλ−1e−(α−β)xdx

= C1

∫ ∞

t
xλ−1e−(α−β−utγ−1)xdx

= C1(α− β − utγ−1)−λ
∫ ∞

(α−β−utγ−1)t
xλ−1e−xdx

≤ C1C2t
λ−1e−(α−β−utγ−1)t(α− β − utγ−1t)−1 (24)

If u is so large that t
def= (α−β

2 )
1

γ−1 uc ≥ t0 with 1
1−γ ≤ c, then (24) holds true since

utγ−1 = (α−β
2 )uuc(γ−1) ≤ α−β

2 < α− β.

Given t = (α−β
2 u)

1
1−γ , we get

E[eutγ−1x1(|x| > t)] ≤ 2C1C2

α− β
(
α− β

2
u)

λ−1
1−γ e−

α−β
2

(α−β
2

u)
1

1−γ
.

From which we get

log(E[eutγ−1
1(x > t)]) ≤ C3 +

λ− 1
1− γ

log(u)− (
α− β

2
)

2−γ
1−γ u

1
1−γ

Further log(E[eutγ−1
1(x > t)])u−

1
1−γ is also bounded for u → ∞. Analogously we can

show the bounding of log(E[eutγ−1
1(x < −t)])u−

1
1−γ . Therefore for γ < 1 the whole term

E[eu|x|γ1(|x| > t)]u−
1

1−γ is bounded as u →∞.

Given t = (α−β
2 u)

1
1−γ , we have

eutγ = e(α−β
2

)
γ

1−γ u
1

1−γ

u
− 1

1−γ log(eutγ ) = (
α− β

2
)

γ
1−γ = constant

Thus u
− 1

1−γ log(E[eu|x|γ ]) ≤ u
− 1

1−γ [log(eutγ ) + log{E[eutγ−1|x|1(|x| > t)]}] is bounded for
u →∞, i.e. for a sufficient large u0 there exist a constant Cu > 0 such that

E[eu|x|γ ] ≤ Cuu
1

1−γ , u ≥ u0.

2
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