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Abstract
Several classical time series models can be written as a regression model of the

form Yt = m(Xt) + σ(Xt)εt, where (Xt, Yt), t = 0,±1,±2, . . ., is a bivariate strictly
stationary process. Some of those models, such as ARCH or GARCH models, share
the property of proportionality of the regression function, m, and the scale function,
σ. In this article, we present a procedure to test for this feature in a nonparametric
context, which is a preliminary step to identify certain time series models. The test is
based on the difference between two nonparametric estimators of the distribution of
the regression error. Asymptotic results are proved and some simulations are shown
in the paper in order to illustrate the finite sample properties of the procedure.
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1 Introduction and motivation of the test

Let (Xt, Yt), t = 0,±1,±2, . . ., be a bivariate strictly stationary discrete time process,

and assume that there exists a nonparametric relationship of the form

Yt = m(Xt) + σ(Xt)εt, (1)

where m(x) = E(Yt|Xt = x) is an unknown regression function, σ2(x) = Var(Yt|Xt = x)

is an unknown conditional variance function, and εt are the unobservable errors satisfying

E(εt|Xt) = 0 and Var(εt|Xt) = 1.

This general nonparametric framework includes typical time series models, where Xt

represents lagged variables of Yt (for instance Xt = Yt−1). In particular, consider the

ARCH(1) model [see, for example, Fan and Yao (2003), page 143]

Zt = (a0 + a1Z
2
t−1)

1/2εt,

for some constants a0, a1 ≥ 0, a1 < 1, where εt has mean 0 and variance 1 and is indepen-

dent of Zt−1 for all t. Straightforward manipulations allow us to write the above model

as

Z2
t = (a0 + a1Z

2
t−1) + c−1(a0 + a1Z

2
t−1)εt, (2)

where εt = c(ε2
t − 1) and c is a positive scaling factor given by c2 = [E(ε4

t )− 1]−1. Clearly

model (2) can be identified as a particular case of the general model (1) by simply taking

Yt = Z2
t , Xt = Z2

t−1, m(Xt) = a0 + a1Xt and σ(Xt) = c−1(a0 + a1Xt). Note that the new

errors verify E(εt) = cE(ε2
t − 1) = 0 and Var(εt) = c2[E(ε4

t )− 1] = 1. We have therefore

seen that the ARCH(1) model can be written in the form (1) with the peculiarity that

the regression function is proportional to the square root of the variance function, that is

m(·) = cσ(·), where the constant c only depends on the error distribution.

This feature is not exclusive for ARCH models, but it holds for other time series

models with a multiplicative structure of the form Zt = σtεt. Different choices of the vari-

ance function lead to different models: see, for instance, GARCH, exponential GARCH

(EGARCH) and fractionally integrated ARCH (FIARCH) in Fan and Yao (2003), au-

toregressive conditional duration models in Engle and Russell (1998), or the extension of

GARCH proposed by Carroll, Härdle and Mammen (2002).
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In other contexts, several authors discussed the problem of estimating and testing

the regression function under the assumption of a constant coefficient of variation, which

also corresponds to the situation described above. For example McCullagh and Nelder

(1989) considered generalized linear models, Carroll and Ruppert (1988) investigated a

parametric model with a constant coefficient of variation, while Eagleson and Müller

(1997) considered the problem of nonparametric estimation of the regression function in

a model where the standard deviation function is proportional to the regression function.

In this paper, we derive a test for the null hypothesis

H0 : m(·) = cσ(·), (3)

where c is a fixed positive value, in general unknown, versus the general alternative H1 :

m(·) 6= cσ(·). In time series analysis, this hypothesis is a preliminary step to be tested

before applying other procedures, such as specific tests for ARCH or GARCH models.

The problem of specification testing for nonparametric regression models for station-

ary time series has found considerable interest in the recent literature. Most authors

investigate test procedures for parametric hypotheses regarding the mean effect m(x) [see

e.g. Masry and Tjøstheim (1995), Hjellvik, Yao and Tjøstheim (1998), Fan and Li (1999)

or Dette and Spreckelsen (2004) among many others]. On the other hand – to the knowl-

edge of the authors – the problem of testing the hypothesis of a constant coefficient of

variation has not been considered in the literature, despite the fact that this characterizes

time series models defined by a multiplicative structure.

The paper is organized as follows. In Section 2 we describe the proposed testing pro-

cedure, which is based on a comparison of two empirical processes of the standardized

nonparametric residuals calculated under the hypothesis of a multiplicative structure and

the alternative of a general nonparametric regression model. Some asymptotic results

establishing weak convergence of the (appropriately standardized) difference of the pro-

cesses are stated in Section 3. For the sake of simplicity we consider a bivariate time

series, while extensions to more general models are briefly indicated in Section 4. Section

5 presents the results of a small simulation study, which illustrates the finite sample prop-

erties of a bootstrap version of the test. The proofs of the main results are complicated
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and therefore deferred to the Appendix.

2 Testing for multiplicative structure

Our testing procedure is based on the comparison of two estimators of the error distribu-

tion, and it can be justified as follows. First, consider the errors of regression model (1) :

εt =
Yt −m(Xt)

σ(Xt)
,

with distribution function Fε(y) = P (εt ≤ y). Note that the stationarity of the process

ensures that the distribution of εt is the same for any value of the index t. The same

happens for the following random variables

εt0 =
Yt − cσ(Xt)

σ(Xt)
,

with distribution function Fε0(y) = P (εt0 ≤ y).

Under the null hypothesis H0, the random variables εt and εt0 are equal, and conse-

quently they have the same distribution. On the other hand, if εt and εt0 have the same

distribution then necessarily m(·) = cσ(·). This idea is stated in the following theorem,

whose proof can be found in the Appendix.

Theorem 1 Let m and σ be continuous functions. The hypothesis H0 : m(·) = cσ(·) (for

some c > 0 fixed) is valid if and only if the random variables εt and εt0 have the same

distribution.

In practice the regression errors are estimated from observations (X1, Y1), . . . , (XT , YT )

generated from model (1). For this purpose we consider the following nonparametric

estimators of the regression and variance functions :

m̂(x) =
T∑

t=1

Wt(x, h)Yt and σ̂2(x) =
T∑

t=1

Wt(x, h)Y 2
t − m̂2(x),

where Wt(x, h) = K((x − Xt)h
−1)/[

∑T
t′=1 K((x − Xt′)h

−1)] are Nadaraya-Watson type

weights, K is a known kernel function (typically, a symmetric density) and h = hT is an

appropriate bandwidth sequence converging to 0 with increasing sample size. Also, let ĉ
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be any root-T weakly consistent estimator of the scaling factor c. An obvious example is

the statistic

ĉ2
ls =

∑T
t=1 m̂2(Xt)(Yt − m̂(Xt))

2∑T
t=1 σ̂4(Xt)

, (4)

which arises from the least squares problem

min
c2

T∑
t=1

(
m2(Xt)− c2σ2(Xt)

)2
.

Note that the minimum is attained for

c2
min =

∑n
t=1 m2(Xt)σ

2(Xt)∑n
t=1 σ4(Xt)

.

For the construction of the estimator ĉ2
ls we replace σ2(Xt) in the numerator by its residual

(Yt − m̂(Xt))
2 and in the denominator by σ̂2(Xt). Similarly, m(Xt) is estimated by

m̂(Xt). By interchanging the role of σ̂2(Xt) and (Yt − m̂(Xt))
2 alternative estimates can

be obtained, but we restrict ourselves to ĉ2
ls for the sake of brevity. A structural different

estimate can be obtained from the method of moments which yields

ĉ2
mom =

{
1

T

T∑
t=1

(
Yt

m̂(Xt)
− 1

)2
}−1

(5)

as an estimate of c2, since E[(Yt/m(Xt)− 1)2] = c−2 when H0 holds. Under appropriate

assumptions on the stationary process it follows that these estimates are root-T consistent

(see Theorems 5 and 6 below).

In the general nonparametric model (1) the error distribution is estimated by the

empirical distribution of the estimated residuals, that is

F̂ε(y) =
1

T

T∑
t=1

I

(
Yt − m̂(Xt)

σ̂(Xt)
≤ y

)
. (6)

On the other hand, under the null hypothesis H0 of a multiplicative model, we can also

estimate the error distribution by the empirical versions of the random variables εt0, i.e.

F̂ε0(y) =
1

T

T∑
t=1

I

(
Yt − ĉσ̂(Xt)

σ̂(Xt)
≤ y

)
. (7)

As seen in Theorem 1, any difference between the two estimators of the error distribution

in (6) and (7) gives evidence against the null hypothesis. A typical example is depicted
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in Figure 1, where we show the empirical distribution functions F̂ε and F̂ε0 corresponding

to the cases (a) m(x) = σ(x) = 1+0.1 x, and (b) m(x) = 1+0.1 x, σ(x) = 0.5
√
|x|. The

statistical comparison of the two distributions is now performed through the empirical

process

Ŵ (y) = T 1/2(F̂ε0(y)− F̂ε(y)), −∞ < y < ∞. (8)

More precisely, we consider Kolmogorov-Smirnov and Cramér-von Mises type statistics

defined over the process (8) :

TKS = sup
y
|Ŵ (y)| and TCM =

∫
Ŵ 2(y)dF̂ε(y).

The null hypothesis is rejected for large values of the test statistics. In the following

section we study the asymptotic properties of the process Ŵ (y) and – as a corollary –

derive the asymptotic limit of the statistics TKS and TCM .
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Figure 1: The empirical processes F̂ε (solid line) and F̂ε0 (dotted line) corresponding to

the testing problem (3). The sample size is T = 200, m(x) = 1 + 0.1x. The left panel

corresponds to the null hypothesis of a multiplicative model H0 : m(x) = cσ(x), where both

processes are visually non distinguishable. The right panel shows the two processes for the

alternative σ(x) = 0.5
√
|x|.
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3 Asymptotic results

Let us first introduce some notation. Throughout this paper FX(x) = P (Xt ≤ x) denotes

the distribution function of the random variable Xt, F (x, y) = P (Xt ≤ x, Yt ≤ y) the

joint distribution function of (Xt, Yt), Fε(y) = P (εt ≤ y) the distribution function of the

error, and Fε(y|x) = P (εt ≤ y|Xt = x) the conditional distribution function of the error

given Xt = x. Note that the distributions of these random variables do not depend on

t, because of the strict stationarity of the process (Xt, Yt), t ∈ Z. Lower case letters are

used for the corresponding densities. Some regularity assumptions are needed in order to

prove our main results:

(A1) The process (Xt, Yt), t = 0,±1,±2, . . ., is strictly stationary and absolutely regular

[β-mixing – see Doukham (1994)], with mixing coefficients satisfying βt = O(t−β), for

some β > 2.

(A2)

(i) Xt is absolutely continuous with density fX . The support of fX , which we denote by

RX , is a compact interval of R.

(ii) The functions fX , m and σ2 are twice continuously differentiable, infx∈RX
fX(x) > 0

and infx∈RX
σ2(x) > 0.

(A3)

(i) E(|Y0|s) < ∞ and supx∈RX
E(|Y0|s | X0 = x) < ∞ for some s > 2 + 2/(β − 2).

(ii) There exists some j′ such that for all j ≥ j′,

sup
x0,xj∈RX

E(|Y0Yj|2 | X0 = x0, Xj = xj)fj(x0, xj) < ∞,

where fj(x0, xj) denotes the joint density of (X0, Xj).

(iii) The errors of the regression model satisfy

E(εt|Xt,F t−1
−∞(X, Y )) = E(εt|Xt) = 0 and Var(εt|Xt,F t−1

−∞(X, Y )) = E(ε2
t |Xt) = 1 ,

where F t−1
−∞(X, Y ) denotes the σ-algebra generated by the sequence {(Xj, Yj), j =

−∞, . . . , t− 1}.
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(A4) The function F (x, y) is continuous in (x, y), differentiable with respect to x

and y, and the corresponding density f(x, y) is also continuous in (x, y) and satisfies

supy |y2f(x, y)| < ∞. The same holds for all other partial derivatives of F (x, y) with

respect to x and y up to order two.

(A5)

(i) The bandwidth sequence hT satisfies the following three conditions

(log T )−1T θhT →∞ for θ = β−2−(1+β)/(s−1)
β+3−(1+β)/(s−1)

,

(log h−1
T )−1Th3+δ

T →∞ for some δ > 2,

and (log T )−1Th5
T = O(1) .

(ii) The kernel K is a symmetric density function with compact support and is twice

continuously differentiable.

(A6) The estimator ĉ has a stochastic expansion of the form

ĉ− c =
1

T

T∑
t=1

s(Xt, εt) + oP (T−1/2),

where the function s(x, e) is twice continuously differentiable in (x, e), E[s(Xt, εt)] = 0

and E[s2+δ(Xt, εt)] < ∞ for some δ > 0.

As an additional remark, note in the case of independence the assumptions above can

be relaxed in the following sense: (A1) disappears since the mixing coefficients are zero;

in (A3) it suffices to take s = 2 as in Akritas and Van Keilegom (2001), so the assumption

is redundant with the model itself; finally, θ = 1 in (A5-i) and hence the first condition

on the bandwidth is redundant with the second one.

The asymptotic results can now be stated. In Theorem 2, a stochastic expansion for the

difference F̂ε0(y)−F̂ε(y) is obtained. The weak convergence of the corresponding empirical

process is stated in Theorem 3 and the asymptotic distributions of the test statistics under

the null hypothesis are presented in Corollary 4. The proofs are complicated and therefore

deferred to the Appendix.
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Theorem 2 Assume that conditions (A1)-(A6) are satisfied. Then, under the null hy-

pothesis H0 of a multiplicative model, the following representation holds:

F̂ε0(y)− F̂ε(y) =
1

T

T∑
t=1

fε(y|Xt)Wt + oP (T−1/2),

uniformly in −∞ < y < ∞, where Wt = 0.5cε2
t − εt − 0.5c + s(Xt, εt), t = 1, . . . , T .

Theorem 3 Assume that conditions (A1)-(A6) are satisfied. Then, under the null hy-

pothesis H0 of a multiplicative model, the process T 1/2(F̂ε0(y) − F̂ε(y)), −∞ < y < ∞,

converges weakly to a centered Gaussian process W (y) with covariance structure given by

Cov(W (y), W (y′)) =
∑∞

t=1 Cov(fε(y|X1)W1, fε(y
′|Xt)Wt).

Corollary 4 Assume that conditions (A1)-(A6) are satisfied. Then, under the null hy-

pothesis H0 of a multiplicative model,

TKS
d−→ sup

y
|W (y)| and TCM

d−→
∫

W 2(y)dFε(y).

To conclude this section, we show that the moment estimator ĉmom and the least

squares estimator ĉls, defined in (4) and (5), satisfy condition (A6).

Theorem 5 Assume that conditions (A1)-(A5) are satisfied. Then, under the null hy-

pothesis H0 of a multiplicative model,

ĉmom − c =
1

T

T∑
t=1

{
− 0.5 c ε2

t + εt + 0.5 c
}

+ oP (T−1/2).

Note that Theorem 5 implies that the main term in the representation in Theorem

2 equals zero when the moment estimator ĉmom is used. As a consequence, the limiting

distribution in Theorem 3 is degenerate in that case.

Theorem 6 Assume that conditions (A1)-(A5) are satisfied. Then, under the null hy-

pothesis H0 of a multiplicative model,

ĉls − c =
1

T

T∑
t=1

σ4(Xi)

E[σ4(X1)]
{−0.5 c ε2

t + εt + 0.5 c}+ oP (T−1/2).
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Note that the representations in Theorem 5 and 6 have a very similar structure, but

there appear additional factors σ4(Xi) / E[σ4(Xi)] in the stochastic expansion of the least

squares estimate ĉls because it is based on the estimate of the regression and variance

function. Although the expansion in Theorem 5 appears to be simpler, it turns out that

the least squares estimate ĉls yields better results in the simulation study presented in

Section 5.

4 Extensions

Extensions to models with more than one covariate are interesting in practice. Let Xt =

(Xt1, . . . , Xtd) denote now a d-dimensional covariate and let (Xt, Yt), t = 0,±1,±2, . . . , be

a strictly stationary process. A completely nonparametric model of the form Yt = m(Xt)+

σ(Xt)εt can be considered again. Unfortunately, the so-called ‘curse of dimensionality’

not only makes the estimation of the regression and variance function difficult, but also

causes some additional problems in the estimation of the error distribution.

For this reason many authors have suggested imposing some structure on the compo-

nents of the covariate, such as an additive or a multiplicative structure. In generalized

additive models each component of the covariate vector has an additive effect on the

response and then all of them are combined through a known link function g:

m(x) = m(x1, . . . , xd) = g

(
m0 +

d∑
j=1

mj(xj)

)
,

where the partial functions mj are unknown and m0 is a constant. Several procedures have

been proposed in the literature in order to estimate the functions mj nonparametrically:

backfitting, marginal integration, etc. [see e.g. Hastie and Tibshirani (1990), Linton and

Nielsen (1995), Nielsen and Sperlich (2005) among many others]. A more delicate issue,

which has not been sufficiently addressed in the literature yet, is the appropriate modeling

and estimation of the variance function σ2(x) in a multidimensional setting.

Consider, for instance, the ARCH(q) model. As in (2), this model can be written as

Z2
t = (a0 + a1Z

2
t−1 + · · ·+ aqZ

2
t−q) + c−1(a0 + a1Z

2
t−1 + · · ·+ aqZ

2
t−q)εt.
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Thus, if we consider the multidimensional covariate Xt = (Z2
t−1, . . . , Z

2
t−q) and m(x) =

cσ(x) = a0 + a1x1 + · · · + aqxq, we can consider the ARCH(q) model as a special case

of a nonparametric regression model where the regression and the standard deviation are

proportional and have additive structure.

The results given in this paper for the unidimensional case are still valid in the multi-

dimensional case as long as the estimators of the regression and variance function satisfy

certain uniform convergence rates. Some details regarding these rates can be found in the

proof of Lemma 7 in the Appendix.

5 Simulation study

In this section we study the finite sample properties of the proposed test based on the

Cramér-von Mises statistic TCM in two AR(1) models and one ARCH(1). Note that by

Corollary 4 the asymptotic distribution of the statistic TCM depends on several features

of the data generating process, which are not known by the statistician. Because the

covariance structure in Theorem 3 is difficult to estimate in practice, we have implemented

a (smooth) bootstrap test.

To be precise we have estimated the regression function by the local linear estimate m̂,

while the variance function was estimated by the Nadaraya-Watson estimate defined in

Section 2. The local linear estimate in used for the estimation of the regression function

in order to address for boundary effects, which would have a substantial influence on the

residual based (smooth) bootstrap. The two bandwidths for the estimation of the regres-

sion and variance function have been chosen separately by least squares cross validation.

The Cramér-von Mises statistic TCM has been calculated from these data in order to com-

pare the distributions of the residuals. For the generation of the bootstrap data we have

estimated the constant c in the hypothesis H0 by the least squares estimate defined in

(4), where only data corresponding to the [10%, 90%] range of the explanatory variables

Xt was considered for the estimate, in order to make the estimate ĉls less sensitive with

respect to outliers in the residuals caused by boundary effects. In a next step we have
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generated bootstrap data

Y ∗
t = ĉσ̂(Xt) + σ̂(Xt)ε

∗
t ; t = 1, . . . , T , (9)

where

ε∗t = ε̂∗t + vZt , (10)

ε̂∗1, . . . , ε̂
∗
T is an i.i.d. sample from the empirical distribution function

F̂ε(y) =
1

T

T∑
t=1

I(ε̂t ≤ y) , ε̂t = (Yt − m̂(Xt))/σ̂(Xt)

(t = 1, . . . , T ), Z1, . . . , ZT are i.i.d. standard normal random variables and v is a suf-

ficiently small constant, in our case v = 0.1. If B bootstrap replications have been

performed with ordered outcomes T
(1)∗
CM ≤ · · · ≤ T

(B)∗
CM , then the null hypothesis of a

multiplicative model is rejected if

TCM > T
(bB(1−α)c)∗
CM (11)

(buc denotes the integer part of u). In each scenario 1000 simulation runs with B = 100

bootstrap replications have been performed to estimate the empirical level of the bootstrap

test.

Example 5.1. We consider a classical (heteroscedastic) AR(1)-model

Xt = c(1 + 0.1 Xt−1) + (1 + 0.1 Xt−1) εt, t ∈ Z , (12)

where the innovations εt are i.i.d. and standard normally distributed. In the first part

of Table 1 we show the simulated level of the bootstrap test for the scaling factors c =

0.5, 1, 1.5 and sample sizes T = 50, 100 and 200. We observe that the level is very well

approximated in nearly all cases.

In order to study the power of the test we consider the non-multiplicative model

Xt = c(1 + 0.1 Xt−1) + 0.5
√
|Xt−1| εt , t ∈ Z (13)

and display the corresponding rejection probabilities in the second part of Table 1. The

alternative of a non-constant coefficient of variation is clearly detected with reasonable
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power. The empirical distribution functions F̂ε and F̂ε0 corresponding to the null hypoth-

esis and alternative have been depicted in Figure 1. Note that the parameter c in this

table represents the factor in the null hypothesis and does not correspond to deviations

from the null hypothesis.

In order to demonstrate that these results are – in some sense – representative, we

consider a second example, namely the autoregressive model

Xt = c · sin(1 + 0.5 Xt−1) + sin(1 + 0.5 Xt−1) εt ; t ∈ Z (14)

with alternative

Xt = c · sin(1 + 0.5 Xt−1) + cos(1 + 0.5 Xt−1) εt . (15)

Note that this example corresponds to a more oscillating regression and variance function.

The corresponding results are shown in Table 2 and yield a similar picture. We observe

a good approximation of the nominal level and reasonable rejection probabilities under

the alternative.

Table 1: Simulated rejection probabilities of the bootstrap test (11) under the null hypoth-

esis of a multiplicative structure H0 [model (12)] and the alternative of non multiplicative

model [model (13)].

T 50 100 200

@
@

@
@@

c

α
0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

0.5 0.026 0.039 0.084 0.041 0.058 0.107 0.038 0.061 0.106

(12) 1.0 0.024 0.037 0.084 0.039 0.062 0.109 0.037 0.058 0.105

1.5 0.036 0.052 0.094 0.040 0.057 0.112 0.034 0.053 0.102

0.5 0.244 0.328 0.416 0.287 0.363 0.491 0.351 0.434 0.570

(13) 1.0 0.176 0.236 0.320 0.185 0.249 0.371 0.203 0.281 0.393

1.5 0.244 0.288 0.364 0.254 0.301 0.389 0.282 0.312 0.401

13



Table 2: Simulated rejection probabilities of the bootstrap test (11) under the null hypoth-

esis of a multiplicative structure H0 [model (14)] and the alternative of non multiplicative

model [model (15)].

T 50 100 200

@
@

@
@@

c

α
0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

0.5 0.025 0.038 0.079 0.026 0.047 0.086 0.033 0.052 0.097

(14) 1.0 0.023 0.034 0.081 0.028 0.041 0.089 0.029 0.043 0.094

1.5 0.032 0.052 0.100 0.037 0.055 0.106 0.039 0.057 0.108

0.5 0.232 0.312 0.428 0.356 0.445 0.548 0.593 0.641 0.713

(15) 1.0 0.220 0.266 0.376 0.369 0.420 0.554 0.586 0.664 0.776

1.5 0.148 0.204 0.312 0.229 0.305 0.394 0.382 0.458 0.602

Example 5.2. We will conclude this section discussing the application of the methodol-

ogy for testing ARCH-structures. For this purpose we generated data from the ARCH(1)-

model

Zt =
√

0.75 + 0.25 Z2
t−1 εt ; t ∈ Z, (16)

where the random variables εt are i.i.d. and standard normally distributed. We have

applied the bootstrap test to the ‘data’ (Xt, Yt) = (Z2
t−1, Z

2
t ), where the scaling factor is

estimated by the least squares method (4). The corresponding results for sample sizes

T = 50, 100 and 200 are depicted in Table 3. We observe that the nominal level is rather

well approximated for sample sizes T ≥ 100, whereas the level is over-estimated for the

sample size T = 50. Next we study the power of the bootstrap test under the alternative

Zt =
√

0.75 + 0.25 |Zt−1| εt ; t ∈ Z, (17)

where the random variables εt are i.i.d. and standard normally distributed. The corre-

sponding results are depicted in the second row of Table 3 and show that the test clearly

14



Table 3: Simulated rejection probabilities of the bootstrap test (11) for an ARCH(1) struc-

ture. The equation (16) corresponds to the “null hypothesis” of an ARCH(1) model while

equations (17) and (18) correspond to two alternatives.

T 50 100 200

@
@

@
@@

α
0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.010

(16) 0.065 0.097 0.137 0.039 0.052 0.102 0.024 0.041 0.082

(17) 0.118 0.170 0.285 0.203 0.274 0.401 0.350 0.441 0.608

(18) 0.138 0.200 0.308 0.164 0.228 0.334 0.265 0.347 0.464

detects the alternative of a non constant coefficient of variation

E[Z2
t | Z2

t−1]/
√

Var(Z2
t | Z2

t−1) .

As a further alternative we have considered the model

Zt =
√

0.75 + 0.25 sin(Zt−1) εt ; t ∈ Z , (18)

where the random variables εt are again standard normally distributed. The corresponding

results are depicted in the third row of Table 3 and this alternative is also detected with

reasonable power.

Appendix: Proofs

In this Appendix, we include the proofs of the theoretical results.

Proof of Theorem 1. Assume that the random variables εt and εt0 have the same

distribution. In particular, E(εt0) = E(εt) and Var(εt0) = Var(εt) = 1. Consider the

representation

εt0 =
Yt − cσ(Xt)

σ(Xt)
= εt +

(
m(Xt)

σ(Xt)
− c

)
.
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By applying expectations on both sides of the above expression, we obtain

E[m(Xt)/σ(Xt)− c] = 0. On the other hand, by calculating variances, we get

Var(εt0) = Var(εt) + Var

(
m(Xt)

σ(Xt)
− c

)
+ 2Cov

(
εt,

m(Xt)

σ(Xt)

)
.

It is easy to check that Cov(εt, m(Xt)/σ(Xt)) = 0 since E(εt) = E[E(εt|Xt)] = 0 and

E(εtm(Xt)/σ(Xt)) = E[E(εtm(Xt)/σ(Xt)|Xt)] = E[(m(Xt)/σ(Xt))E(εt|Xt)] = 0. It

follows that E[m(Xt)/σ(Xt) − c] = 0 and Var[m(Xt)/σ(Xt) − c] = 0. This means that

m(x) = cσ(x) with probability 1. The continuity of the functions m and σ allows us to

extend the result to the whole support of Xt. The converse implication is obvious. �

Before writing the proofs of the asymptotic results, we introduce a technical lemma.

Lemma 7 Assume that conditions (A1)-(A6) are satisfied. Then, the following repre-

sentation holds :

F̂ε(y)− Fε(y) =
1

T

T∑
t=1

I (εt ≤ y)− Fε(y) (19)

+

∫
fε(y|x)

y(σ̂(x)− σ(x)) + m̂(x)−m(x)

σ(x)
fX(x)dx + oP (T−1/2),

uniformly in −∞ < y < ∞.

Proof. The proof is based on Theorem 1 in Akritas and Van Keilegom (2001) (AVK in

the sequel). In that theorem an i.i.d. representation for the empirical process F̂ε(y)−Fε(y)

is established when the error variable εt is independent of the covariate Xt, and when it

is assumed that the data (Xt, Yt), t = 1, . . . , T , are i.i.d.

We will restrict attention to indicating which steps in the proof of the above theorem

need to be modified. All of the notations used below are taken over from that proof. We

start by proving Propositions 3-5 in AVK, which are required in the main proof of the

theorem. These propositions state that

sup
x
|m̂(x)−m(x)| = OP ((log T )1/2(ThT )−1/2), (20)

sup
x
|σ̂(x)− σ(x)| = OP ((log T )1/2(ThT )−1/2), (21)

16



and that

sup
x
|m̂′(x)−m′(x)| = OP ((log T )1/2(Th3

T )−1/2), (22)

sup
x
|σ̂′(x)− σ′(x)| = OP ((log T )1/2(Th3

T )−1/2),

sup
x,x′

|m̂′(x)−m′(x)− m̂′(x′)−m′(x′)|
|x− x′|δ

= OP ((log T )1/2(Th3+2δ
T )−1/2),

sup
x,x′

|σ̂′(x)− σ′(x)− σ̂′(x′)− σ′(x′)|
|x− x′|δ

= OP ((log T )1/2(Th3+2δ
T )−1/2),

for some δ > 0. Regarding the validity of (20), this follows from Theorem 8 in Hansen

(2006). In that paper, the uniform consistency of kernel estimators in regression is proved

when the data (Xt, Yt) are assumed to come from a stationary β-mixing process. The

rates in (21) and (22) can be obtained in a similar way, taking into account that the

regularity conditions imposed in assumption (A2) are stronger than the corresponding

ones in Hansen (2006).

We now verify how the proof of Lemma 1 in AVK can be adapted to the present

setup. One major change is required in this proof: the condition on the boundedness of

the bracketing integral (see equation (20) in AVK) should be replaced by∫ ∞

0

√
log N[ ](λ,F , ‖ · ‖2,β) dλ < ∞, (23)

where the class F is defined as in the proof of AVK, and for any function g,

‖g‖2
2,β =

∫ 1

0

β−1(u)Q2
g(u)du,

where β−1 is the inverse cadlag of the decreasing function u → βbuc (buc being the integer

part of u, and βt being the mixing coefficient) and Qg is the inverse cadlag of the tail

function u → P (|g| > u) (see Section 4.3 in Dedecker and Louhichi, 2002).

For verifying (23), consider for simplicity the case where σ ≡ 1, i.e. no brackets for σ
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need to be constructed. First consider for 0 ≤ y < 1,

P{I(εt ≤ dU(Xt))− I(εt ≤ dL(Xt)) > y}

= P (dL(Xt) ≤ εt ≤ dU(Xt))

=

∫
P (dL(x) ≤ εt ≤ dU(x)|x)dFX(x)

=

∫
[Fε(d

U(x)|x)− Fε(d
L(x)|x)] dFX(x)

=

∫
fε(ξ(x)|x)[dU(x)− dL(x)] dFX(x)

≤ K‖dU − dL‖1 ≤ K‖dU − dL‖2 < Kλ2,

for some ξ(x) between dL(x) and dU(x) (see the proof in AVK for the definition of the

functions dL and dU), whereas for y = 1, the above probability equals 0. It follows that

the quantile function Q(u) corresponding to the above distribution function equals

Q(u) =

 1 if 0 ≤ u < p

0 if p ≤ u ≤ 1,
(24)

where p = P (dL(Xt) ≤ εt ≤ dU(Xt)). Hence,

‖I(εt ≤ dU(Xt))− I(εt ≤ dL(Xt))‖2
2,β =

∫ p

0

β−1(u) du ≤ β−1(0)p ≤ Kλ2, (25)

for some constant 0 < K < ∞. This shows that Lemma 1 in AVK continues to hold true

in the context of this paper.

Finally, we verify the main proof of Theorem 1 in AVK. Careful verification of the

different steps in that proof reveals that the only change is the replacement of fε(y) by

fε(y|x) in the main term of the representation. This finishes the proof. �

Proof of Theorem 2. Lemma 7 states that

F̂ε(y)− Fε(y) =
1

T

T∑
t=1

I

(
Yt −m(Xt)

σ(Xt)
≤ y

)
− Fε(y) (26)

+

∫
fε(y|x)

y(σ̂(x)− σ(x)) + m̂(x)−m(x)

σ(x)
fX(x)dx + oP (T−1/2)

and similarly it can be shown that

F̂ε0(y)− Fε(y) =
1

T

T∑
t=1

I

(
Yt − cσ(Xt)

σ(Xt)
≤ y

)
− Fε(y)

+

∫
fε(y|x)

y(σ̂(x)− σ(x)) + ĉσ̂(x)− cσ(x)

σ(x)
fX(x)dx + oP (T−1/2),
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uniformly in y, provided ĉ− c = OP (T−1/2), which follows from (A6) and the central limit

theorem for mixing sequences [see, for instance, Theorem 2.20 in Fan and Yao, (2003)].

Now, taking into account that under the null hypothesis m(x) = cσ(x), we obtain

F̂ε0(y)− F̂ε(y) =

∫
fε(y|x)

ĉσ̂(x)− m̂(x)

σ(x)
fX(x)dx + oP (T−1/2).

The uniform rates given in (20) ensure that Lemmas 8 and 9 in Pardo-Fernández, Van

Keilegom and González-Manteiga (2007) can be applied here (note that in the cited results

in that reference the factor fε(y|x) does not appear inside the integral, but it does not

represent any additional difficulty in the proof):∫
fε(y|x)

m̂(x)−m(x)

σ(x)
fX(x)dx =

1

T

T∑
t=1

fε(y|Xt)
Yt −m(Xt)

σ(Xt)
+ oP (T−1/2)

and ∫
fε(y|x)

ĉσ̂(x)− cσ(x)

σ(x)
fX(x)dx

=
1

T

T∑
t=1

fε(y|Xt)

{
c(Yt −m(Xt))

2 − cσ2(Xt)

2σ2(Xt)
+ s(Xt, εt)

}
+ oP (T−1/2).

Hence,

F̂ε0(y)− F̂ε(y)

=
1

T

T∑
t=1

fε(y|Xt)

{
c

2

(
Yt −m(Xt)

σ(Xt)

)2

− Yt −m(Xt)

σ(Xt)
− c

2
+ s(Xt, εt)

}
+ oP (T−1/2),

which equals the representation given in the statement of the theorem. �

Proof of Theorem 3. Let us consider the following class of functions

F =
{
(u, e) → fε(y|u)(0.5ce2 − e− 0.5c + s(u, e)),−∞ < y < +∞

}
.

Then, T 1/2(F̂ε0(y)− F̂ε(y)), −∞ < y < +∞, is asymptotically equivalent to the empirical

process indexed by F . General results concerning weak convergence of empirical processes

with dependent sequences are provided in Dedecker and Louhichi (2002), where some

special cases are treated in detail, such as absolutely regular sequences (β-mixing).

In our case, the mixing coefficients of the sequence (Xt, Yt) satisfy
∑

t t
b−1βt < ∞

for b ∈ (1, β) (assumption A1), and, due to property number iv on page 170 in Bradley
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(1986), so do the corresponding coefficients of the sequences (Xt, εt) and fε(y|Xt)(0.5cε
2
t −

εt−0.5c+s(Xt, εt)). In this situation, as explained on page 146 in Dedecker and Louhichi

(2002), the process T 1/2(F̂ε0(y)−F̂ε(y)) is weakly convergent as long as the entropy integral∫
log N[ ](λ,F , Lr(P ))dλ is finite, where N[ ](λ,F , Lr(P )) is the bracketing number, P is

the probability measure induced by the pair (Xt, εt) and Lr(P ) is the Lr-norm, with

r > 2β/(β − 1).

We will use Corollary 2.7.4 in Van der Vaart and Wellner (1996) to show the finiteness

of the entropy integral for the class F with the Lr-norm. Given that Z2 is countable, there

exists a bijective application ν between N and Z2, such that for each (j1, j2) ∈ Z2 there is

one and only one j ∈ N such that ν(j) = (j1, j2). This identification satisfies j1 = O(j1/2)

and j2 = O(j1/2). Let Ij = {(x1, x2) ∈ R2 : max{|x1−j1|, |x2−j2|} ≤ 0.5, where (j1, j2) =

ν(j)} be the unit square centered at ν(j) = (j1, j2). Obviously, R2 =
⋃∞

j=1 Ij.

If g ∈ F , assumptions (A4) and (A6) ensure that the restriction of g to any Ij is

a function of the class C1+δ
M (Ij), as defined on page 154 of Van der Vaart and Wellner

(1996), with δ ∈ (0, 1) and where M is a global bound for ‖g‖1+δ on the whole real plane.

Under these circumstances, Corollary 2.7.4 in Van der Vaart and Wellner (1996) provides

the following bound for the logarithm of the bracketing number (k will denote a generic

constant which can vary from line to line along this proof):

log N[ ](λ,F , Lr(P )) ≤ kλ−V

(
∞∑

j=1

p
V

V +r

j

)V +r
r

, (27)

for any V > 2/(1 + δ), where pj = P ((Xt, εt) ∈ Ij). Note that the constant k involves the

Lebesgue measure of the set {(x1, x2) ∈ R2, ||(x1, x2) − Ij|| < 1} (which is a constant),

and the global bound M . If we put V = r (this can always be done since r > 2), then

(27) becomes

log N[ ](λ,F , Lr(P )) ≤ kλ−r

(
∞∑

j=1

p
1/2
j

)2

. (28)

Assumption (A3-i) concerning moment conditions and the boundedness of Xt ensure that

E(|Xt|a1 |εt|a2) < ∞, where a1 > 2 and a2 > 2. This implies that, for j sufficiently large,

pj =

∫
Ij

f(Xt,εt)(x, e)dxde ≤
∫
|x|−a1|e|−a2dxde = O(j−a1

1 j−a2
2 ) = O(j−

a1+a2
2 ) = o(j−2),
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where f(Xt,εt) is the density of the pair (Xt, εt). This shows that the series in (28) is

finite, and therefore log N[ ](λ,F , Lr(P )) ≤ kλ−r and
∫

log N[ ](λ,F , Lr(P ))dλ < ∞.

As explained above, this implies the weak convergence of the process. The covariance

structure of the limit process follows directly from Theorem 5.2 (central limit theorem for

stationary sequences) in Dedecker and Louhichi (2002). �

Proof of Corollary 4. The Continuous Mapping Theorem ensures the convergence of

the statistic TKS. For TCM , we will show that dF̂ε(y) can be replaced by dFε(y) in the

integral. Given that the processes Ŵ (y) and T 1/2(F̂ε(y) − Fε(y)) are weakly convergent

(the weak convergence of the second process can be obtained in a similar way as the weak

convergence of Ŵ (y) in Theorem 3), the Skorohod construction (see Serfling, 1980, page

23) implies

sup
y
|Ŵ (y)−W (y)| →a.s. 0 (29)

and

sup
y
|F̂ε(y)− Fε(y)| →a.s. 0. (30)

Now write ∣∣∣∣∫ Ŵ 2(y)dF̂ε(y)−
∫

W 2(y)dFε(y)

∣∣∣∣
≤
∣∣∣∣∫ (Ŵ 2(y)−W 2(y))dF̂ε(y)

∣∣∣∣+ ∣∣∣∣∫ W 2(y)d(F̂ε(y)− Fε(y))

∣∣∣∣ .
Both terms on the right hand side of the above inequality are negligible a.s. The first

one is o(1) a.s. due to (29). The second one is also o(1) a.s. because of (30) and the

application of the Helly-Bray Theorem (see page page 97 in Rao, 1965) to each of the

trajectories of the corresponding limit process, which are bounded and continuous almost

surely. This concludes the proof. �

Proof of Theorem 5 and 6. For the sake of brevity we restrict ourselves to a derivation

of the stochastic expansion for the moment estimate ĉmom. The corresponding result for

the least squares estimate can be obtained by similar arguments [see Wieczorek (2007)].

Write

ĉ−2
mom − c−2 =

c2 − ĉ2
mom

c2ĉ2
mom

= −c + ĉmom

c2ĉ2
mom

(ĉmom − c) = − 2

c3
(ĉmom − c) + OP (|ĉmom − c|2).
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Hence, it is sufficient to consider

ĉ−2
mom − c−2 =

1

T

T∑
t=1

[
η̂2

t − η2
t

]
+
[ 1

T

T∑
t=1

η2
t − c−2

]
,

where ηt = Yt

m(Xt)
− 1 = c−1εt and η̂t = Yt

m̂(Xt)
− 1. For the first term above, consider

η̂2
t − η2

t = Y 2
t

m2(Xt)− m̂2(Xt)

m̂2(Xt)m2(Xt)
+ 2Yt

m̂(Xt)−m(Xt)

m̂(Xt)m(Xt)

= − 2Ytηt

m2(Xt)
(m̂(Xt)−m(Xt)) + oP (T−1/2),

uniformly in t, which follows from (20). Let v(x, y) = − 2y
m2(x)

(
y

m(x)
− 1
)
. Then,

1

T

T∑
t=1

[
η̂2

t − η2
t

]
=

∫
v(x, y)(m̂(x)−m(x)) d(F̂ (x, y)− F (x, y))

+

∫
v(x, y)(m̂(x)−m(x)) dF (x, y) + oP (T−1/2), (31)

where F̂ (x, y) = T−1
∑T

t=1 I(Xt ≤ x, Yt ≤ y). The second term of (31) equals∫
v(x, y)f−1

X (x)
1

T

T∑
t=1

Kh(x−Xt)σ(Xt)εt dF (x, y) + oP (T−1/2)

= − 2

Tc3

T∑
t=1

εt + oP (T−1/2),

since E(v(Xt, Yt)|Xt) = −2/[c2m(Xt)] under H0. The first term of (31) can be written as

cT

∫
v(x, y)dT (x) d(F̂ (x, y)− F (x, y)), (32)

where cT → 0, and dT (x) = c−1
T (m̂(x)−m(x)). We will show that this term is oP (T−1/2)

by making use of techniques from empirical processes. Let C1+α
1 (RX), α > 0, be the class

of all differentiable functions d defined on the domain RX of Xt such that ‖d‖1+α ≤ 1,

where

‖d‖1+α = max{sup
x
|d(x)|, sup

x
|d′(x)|}+ sup

x,x′

|d′(x)− d′(x′)|
|x− x′|α

.

Note that by (20) and (22), we have that P (dT ∈ C1+α
1 (RX)) → 1 as T → ∞, if cT and

α > 0 are chosen such that c−1
T h−α = O(h−δ). Next, note that the class

F =
{

(x, y) → v(x, y)d(x) : d ∈ C1+α
1 (RX)

}
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is P -Donsker, where P is the joint probability measure of (Xt, Yt). This is because the

bracketing number N[ ](λ, C1+α
1 (RX), Lr) of the class C1+α

1 (RX) satisfies (λ > 0)

log N[ ](λ, C1+α
1 (RX), Lr) ≤ Kλ−1/(1+α)

[see Corollary 2.7.2 in Van der Vaart and Wellner (1996)], and hence∫ ∞

0

log N[ ](λ,F , Lr) dλ < ∞

for r > 2β/(β − 1). See page 146 in Dedecker and Louhichi (2002) and the proof of

Theorem 3 for more details. It now follows that

sup
d∈C1+α

1 (RX)

∣∣∣ 1
T

T∑
t=1

v(Xt, Yt)d(Xt)− E
{

v(Xt, Yt)d(Xt)
}∣∣∣

= sup
d∈C1+α

1 (RX)

∣∣∣ ∫ v(x, y)d(x) d(F̂ (x, y)− F (x, y))
∣∣∣

= OP (T−1/2),

and hence (32) is OP (cT T−1/2) = oP (T−1/2). �
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