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TESTING EQUALITY OF SPECTRAL DENSITIES

HOLGER DETTE AND EFSTATHIOS PAPARODITIS

Abstract. We develop a test of the hypothesis that the spectral densities of a
number m, m ≥ 2, not necessarily independent time series are equal. The test
proposed is based on an appropriate L2-distance measure between the nonpara-
metrically estimated individual spectral densities and an overall, ’pooled’ spectral
density, the later being obtained using the whole set of m time series considered.
The limiting distribution of the test statistic under the null hypothesis of equal
spectral densities is derived and a novel frequency domain bootstrap method is
presented in order to approximate more accurately this distribution. The as-
ymptotic distribution of the test and its power properties for fixed alternatives
are investigated. Some simulations are presented and a real-life data example is
discussed.

1. Introduction

A problem that commonly arises in many situations is that of comparing the en-

tire autocovariance structure of several, commonly not independent, time series.

Related problems arise in many disciplines like economics, biology, chemistry, etc.

Comparison of the entire autocovariance structure of a number of time series can be

effectively done in the frequency domain by comparing their spectral characteristics.

In this context frequency domain methods are appealing and related procedures have

been proposed by some authors.

Jenkins (1961) was one of the early attempts, De Souza and Thomson (1982) use an

autoregressive model-fitting approach, Shumway (1982) considers similar problems

related to discriminant analysis of time series. Coates and Diggle (1986) compare

the spectral densities of two independent time series using periodogram based test

statistics while Swanepoel and van Wyk (1986) consider two independent stationary
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2 H. DETTE AND E. PAPARODITIS

autoregressive processes and use different test statistics and a parametric, autore-

gressive bootstrap approach to obtain critical values. Diggle and Fisher (1991)

use graphical devices to compare periodograms and apply Kolmogorov-Smirnov or

Cramer-von Mises type test statistics based on empirical spectral distributions. Guo

(1999) considers first order autoregressions, Timmer et al. (1999) concentrate on

spectral peaks and Maharaj (2002) compares evolutionary spectra of non-stationary

processes using randomization tests. A test for homogeneity of autoregressive pro-

cesses has been also considered by Gómez and Drouiche (2002). However, all ap-

proaches proposed so far, suffer from at least one of the following three drawbacks:

They assume that the time series considered are uncorrelated respectively inde-

pendent, they impose some parametric, commonly autoregressive structure on the

underlying process class and the analysis is restricted to bivariate processes using

test statistics generalizations of which to more than two time series are not straight-

forward.

In this paper a novel procedure is proposed to test the hypothesis that the second

order structure of m, m ≥ 2, time series is identical which overcomes the aforemen-

tioned drawbacks of the methods proposed so far. Our approach uses an appropriate

L2-type distance measure to evaluate over all frequencies the distance between the

nonparametrically estimated spectral density of each individual time series and an

estimated, pooled spectral density, the later being obtained using the whole set of

m time series at hand. In contrast to common practice in the literature, our testing

methodology does not rely on parametric assumptions on the underlying process

class nor it assumes that the m time series are uncorrelated respectively indepen-

dent. Although the later assumption seems to be convenient from a technical point

of view, it largely restricts the applicability of the methods proposed, since in many

situations independence of the time series considered can be hardly justified. Under

quite general assumptions on the underlying process class, we show that if the null

hypothesis of equal spectral densities is true, then the basic test statistic proposed

converges weakly to a Gaussian distribution the parameters of which depend in a

complicated way on the entire cross-correlation structure of the m dimensional pro-

cess. As a special case of our analysis we obtain the limiting distribution of the

same test statistic when the time series considered are uncorrelated. In order to

improve upon the large sample Gaussian approximation of the distribution of the

test statistic under the null, a nonparametric frequency domain bootstrap approach

is proposed and its asymptotic validity is established. Furthermore, the power be-

havior of the test is investigated and its limiting distribution under fixed alternatives

is derived.

The paper is organized as follows. Section 2 states the main assumptions imposed on

the m-dimensional process considered and introduces the basic test statistic used to

test the null hypothesis of equal spectral densities. Section 3 deals with the behavior
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of the test statistic under the null. Its asymptotic distribution is derived and the

frequency domain bootstrap method is presented and theoretically justified. Section

4 deals with the power properties of the test and derives its asymptotic distribution

under fixed alternatives. In Section 5 a small simulation study is presented which

investigates the behavior of our testing procedure in final sample situations. Fur-

thermore, a real-life data set is analyzed which demonstrates the capability of our

testing methodology to detect differences between spectral densities. All proofs are

deferred to Section 6.

2. Basic Assumptions and Statistics

Consider a m-dimensional, zero mean second order stationary stochastic process

{Xt = (X1,t, X2,t, . . . , Xm,t)
′
, t ∈ Z} where m ≥ 2 and assume that

Assumption 1: The random vectors Xt have real components and are generated

by the equation

Xt =
∞∑

j=−∞
Ψjεt−j,

where {Ψj = (ψj(r, s))r,s=1,2,...,m, j ∈ Z} is a sequence of matrices the components

of which satisfy
∑

j

|j|1/2|ψj(r, s)| < ∞, r, s = 1, 2, . . . , m

and {εt = (ε1,t, ε2,t, . . . , εm,t)
′
, t ∈ Z} is a m-dimensional i.i.d. process with mean

zero, covariance matrix Σ = (σk,l)k,l=1,...,m > 0 and E[ε8
r,t] < ∞, r = 1, 2, . . . , m.

Under Assumption 1, the sequence of covariance matrices {Γ(k), k ∈ Z}, Γ(k) =

E(XtX
′
t+k), has absolutely summable components and the spectral density matrix

f(λ) = (fr,s(λ))r,s=1,2,...,m, λ ∈ [−π, π], of {Xt, t ∈ Z} exists and is given by

f(λ) =
1

2π

∑

k

Γ(k)e−iλk.

Denote by fr(λ) the spectral density of the r-th component of the m-dimensional

process, that is the r-th element fr,r(λ) on the main diagonal of the matrix f(λ).

For the spectral densities fr(λ) of the component series we assume that they fulfill

the following condition.

Assumption 2: min1≤r≤m inf−π≤λ≤π fr(λ) > 0.

Suppose that we have n, n ∈ N, observations of every component of the underlying

process, i.e., suppose that we observe Xr,1, Xr,2, . . . , Xr,n for every r ∈ {1, 2, . . . , m}.
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The problem considered is this paper is that of testing

H0 : f1 = f2 = · · · = fm, a.e. in [−π, π],

vs.(2.1)

H1 : fr 6= fs for at least one pair (r, s), r 6= s, and on a set of

frequencies Λ ⊂ [−π, π] with positive Lebesque measure.

To derive the statistic for testing hypotheses (2.1) we consider the periodogram

matrix In(λ) = (In,r,s(λ))r,s=1,2,...,m where

In(λ) = Jn(λ)Jn(λ), and Jn(λ) =
1√
2πn

n∑
t=1

Xte
−iλt.

Here and in the sequel, denotes transposition combined with complex conjugation.

In(λ) is usually calculated at the Fourier frequencies λj = 2πj/n, j = −[(n −
1)/2], . . . , [n/2]. Write Ir(λ) for the r-th element Ir,r(λ) on the main diagonal of In(λ)

which corresponds to the periodogram of the r-th time series Xr,t, t = 1, 2, . . . , n.

For λ ∈ [−π, π] consider the kernel estimator f̂r(λ) of the spectral density fr(λ)

defined by

(2.2) f̂r(λ) =
1

n

∑

j∈Z
Kh(λ− λj)Ir(λj),

where Kh(·) = h−1K(·/h), K is the smoothing kernel and h the smoothing band-

width.

Assumption 3: K is a real-valued, 2π-periodic and symmetric kernel satisfying∫
K2(x)dx < ∞ and

∫
K(x)dx = 1. We assume that K has a bounded first de-

rivative and that for all ω ∈ [−π, π], K(ω) = (2π)−1
∫∞
−∞ k(u)e−iωudu, where the

continuous function k(·) satisfies k(0) = 1 and k(u) = 0 for |u| > 1.

Assumption 4: h → 0 as n →∞ such that h ∼ n−ν for some 0 < ν < 2/7.

Let N = mn and consider the pooled kernel estimator ŵ(λ) defined for λ ∈ [−π, π],

by

ŵ(λ) =
1

N

m∑
r=1

∑

j∈Z
Kh(λ− λj)Ir(λj).(2.3)
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Standard calculations yield under Assumptions 1, 3 and 4 that

E[ŵ(λ)] =
1

N

m∑
r=1

∑

j∈Z
Kh(λ− λj)(fr(λj) + O(log(n)n−1))

=
1

m

m∑
r=1

fr(λ) + O(h2 + log(n)n−1)

→ w(λ) ≡ 1

m

m∑
r=1

fr(λ)

and

Var[ŵ(λ)] =
1

m2n2

∑
r1,r2

∑
j1,j2

Kh(λ− λj1)Kh(λ− λj2)Cov(Ir1(λj1), Ir2(λj2))

= O(n−1h−1) → 0.

Thus, the pooled kernel estimator ŵ(λ) is a mean square consistent estimator of the

pooled spectral density w(λ) = m−1
∑m

r=1 fr(λ).

Based on the above considerations, the statistic we propose to test the null hypoth-

esis of interest is given by

(2.4) Tn =
1

m

m∑
r=1

∫ π

−π

( f̂r(λ)

ŵ(λ)
− 1

)2

dλ.

Tn is an average of the L2-distances between the estimated individual spectral den-

sities f̂r(·) and the pooled spectral density ŵ(·). Furthermore, and since w = fr,

a.e. in [−π, π] and for all r = 1, 2 . . . ,m, is equivalent to f1 = f2 = · · · = fm, a.e.

in [−π, π], it can be easily shown that under the assumptions made and as n →∞,

Tn
P→ 1

m

m∑
r=1

∫ π

−π

(fr(λ)

w(λ)
− 1

)2

dλ





= 0 if H0 is true

> 0 if H1 is true.

This behavior of Tn justifies its use for testing hypotheses (2.1) which will be rejected

for large values of this statistic.

In certain situations it might be of interest to test whether instead of the autoco-

variance structure, the autocorrelation structure of the m individual processes is the

same, i.e., to test instead of (2.1) the modified null hypothesis

(2.5) H0 : f1 = c2f2 = · · · = cmfm, a.e. in [−π, π],

where the (unknown) positive real constants cr, r = 2, 3, . . . ,m are not all identical.

The above hypothesis allows for the stationary variances of the m component pro-

cess to be different, requires however, that all component processes have the same

autocorrelation structure.
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To test hypothesis (2.5) we can proceed as in the construction of the test statistic Tn

but our considerations are now based on the rescaled time series X̃t = Ĉ−1/2Xt where

Ĉ−1/2 is the diagonal matrix Ĉ−1/2 = diag(γ̂1(0)−1/2, γ̂2(0)−1/2, . . . , γ̂m(0)−1/2), γ̂r(0) =

n−1
∑n

t=1(Xr,t − Xr)
2 and Xr = n−1

∑n
t=1 Xr,t. Rescaling by Ĉ−1/2 forces all time

series to have the same sample variance so that possible differences between the

corresponding individual spectral densities are attributed to differences in the auto-

correlation structure of the component processes.

Let Ĩr(λ) be the periodogram of the rth rescaled series X̃r,t, t = 1, 2, . . . , n and denote

by ĝr(λ) the kernel estimator ĝr(λ) = n−1
∑

j Kh(λ−λj)Ĩr(λj). Notice that ĝr(λ) is a

consistent estimator of the rescaled individual spectral density gr(λ) = fr(λ)/γr(0).

Furthermore, let v̂(λ) = m−1
∑m

r=1 ĝr(λ) which is a kernel estimator of the pooled

rescaled spectral density v(λ) = m−1
∑m

r=1 gr(λ). Analogously to (2.4), a useful

statistic to test hypothesis (2.5) is then given by

(2.6) Sn =
1

m

m∑
r=1

∫ π

−π

( ĝr(λ)

v̂(λ)
− 1

)2

dλ.

3. Asymptotic Distribution under the Null hypothesis

3.1. Limiting distributions. We first derive the limiting distribution of Tn under

the assumption that the null hypothesis of equal spectral densities is true. The

following theorem summarizes the limiting behavior of Tn in this case.

Theorem 3.1. Let Assumptions 1-4 be satisfied and suppose that the null hypothesis

H0 in (2.1) is true. Then, as n →∞,

N
√

hTn − µn ⇒ N(0, τ 2
0 ),

where

µn =
1

2π
√

h

∫
K2(x)dx

m∑
r=1

m∑
s1=1

m∑
s2=1

gr,s1gr,s2

∫ π

−π

κ2
s1,s2

(λ)dλ,

τ 2
0 =

1

2π2

∫ ( ∫
K(x)K(x+y)dx

)2

dy
m∑

r1=1

m∑
r2=1

∫ π

−π

( m∑
s1=1

m∑
s2=1

gr1,s1gr2,s2κ
2
s1,s2

(λ)
)2

dλ,

gr,s = (δr,s − m−1) with δr,s Kronecker’s delta, i.e., δr,s = 1 if r = s and δr,s = 0

otherwise, and

κ2
s1,s2

(λ) = |fs1,s2(λ)|2/(fs1(λ)fs2(λ))

the squared coherency between the component processes {Xs1,t} and {Xs2,t} respec-

tively.

As the above theorem shows, the limiting distribution of Tn under the null hy-

pothesis depends on the entire cross-correlation structure between the individual
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components of the m-dimensional stochastic process {Xt, t ∈ Z} expressed by the

squared coherencies κ2
s1,s2

(λ) appearing in the centering sequence µn and the vari-

ance τ 2
0 of the limiting Gaussian distribution. Note that this distribution is not

affected by the intra-individual autocorrelation structure of each component series;

see also Corollary 3.1 below.

By Theorem 3.1, an asymptotically α-level test, α ∈ (0, 1), of the hypothesis of

equal spectral densities is obtained by rejecting H0 if

(3.1) Tn ≥ µ̂n + τ̂0zα,

where zα is the upper α-percentage point of the standard Gaussian distribution

and µ̂n and τ̂ 2
0 are estimators of µn and τ 2

0 obtained by replacing κ2
s1,s2

(λ) by the

consistent estimator,

κ̂2
s1,s2

(λ) =
∣∣∣n−1

∑
j

Kh(λ− λj)Is1,s2(λj)
∣∣∣
2(

f̂s1(λ)f̂s2(λ)
)−1

.

Since κ̂2
s1,s2

(λ) = κ2
s1,s2

(λ)+OP ((nh)−1/2 +h2) we get (Tn− µ̂n)/τ̂0 ⇒ N(0, 1) which

implies that the test based on (3.1) achieves asymptotically the desired α-level.

Notice that in applications it might be computationally more convenient to use

instead of Tn the discretized version

TD,n =
2π

N

m∑
r=1

ν∑
j=−ν

( f̂r(λj)

ŵ(λj)
− 1

)2

.

It is easily seen that under the assumptions made

N
√

hTn − µn = N
√

hTD,n − µn + OP (
√

h) ,

which implies that the discretized statistic TD,n has asymptotically the same distri-

bution as the statistic Tn.

An interesting special case of the testing problem (2.1) appears if the m time series

considered are uncorrelated. Recall that κ2
s,s(·) ≡ 1, while for s1 6= s2 and {Xs1,t} and

{Xs2,t} uncorrelated processes, κ2
s1,s2

(·) = 0. Furthermore, straightforward algebra

yields

m∑
r=1

m∑
s=1

g2
r,s = m− 1 and

m∑
r1=1

m∑
r2=1

( m∑
s=1

gr1,sgr2,s

)2

= m− 1.

These observations lead to the following useful corollary of Theorem 3.1.

Corollary 3.1. Under the conditions of Theorem 3.1 and if {Xt} consists of m

uncorrelated processes, then as n →∞,

N
√

hTn − µ̃n ⇒ N(0, τ̃ 2
0 ),
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where

µ̃n =
m− 1√

h

∫
K2(x)dx,

and

τ̃ 2
0 =

m− 1

π

∫ ( ∫
K(x)K(x + y)dx

)2

dy.

Consider now the case where hypothesis (2.5) is of interest and the test statistic Sn is

used instead. Let g̃r(λ) be the same kernel estimator as ĝr but based on the rescaled

series Xr,t/
√

γr(0), where γr(0) = Var(Xr,t). Since γ̂r(0) = γr(0) + OP (n−1/2),

cf. Brockwell and Davis (1991), Proposition 7.3.1, we get f̂r(λ) = fr(λ)/γr(0) +

OP (n−1/2) which yields

N
√

h Sn − µn = n
√

h

m∑
r=1

∫ π

−π

( g̃r(λ)

ṽ(λ)
− 1

)2

dλ− µn + OP (
√

h)(3.2)

with ṽ(λ) = m−1
∑m

r=1 g̃r(λ). By equation (3.2) and the fact that the process

{C−1/2Xt, t ∈ Z} with C−1/2 = diag(γ
−1/2
1 (0), γ

−1/2
2 (0), . . . , γ

−1/2
m (0)) has the same

cross-correlation structure as {Xt, t ∈ Z}, we immediately get the following result.

Corollary 3.2. Let Assumptions 1-4 be satisfied and suppose that H0 in (2.5) is

true. Then, as n → ∞, N
√

hSn − µn ⇒ N(0, τ 2
0 ) where µn and τ 2

0 are given in

Theorem 3.1.

3.2. Bootstrap approximations. Although Theorem 3.1 gives useful insights about

the limiting behavior of the test statistics proposed, its usefulness as an advice to ob-

tain critical values for Tn respectively Sn in finite sample situations is rather limited

due to the experienced very slow convergence of the L2-type statistics considered

to their limiting Gaussian distribution. In this section we propose an alternative,

frequency domain bootstrap procedure, to approximate the distribution of these

statistics under the null. The idea is to generate pseudo-periodogram matrices that

satisfy the null hypothesis and to approximate the distribution of the test statistic

by the corresponding distribution of the bootstrap statistic based on the pseudo-

periodogram matrices. In what follows we focus on the test statistic Tn. Bootstrap

approximations for the statistic Sn can be obtained along the same lines after some

obvious modifications.

The basic relation used in the sequel, is that for a m-dimensional process {Xt}
satisfying Assumption 1, the periodogram matrix can be expressed as

(3.3) In(λj) = Ψ(λj)In,ε(λj)Ψ(λj) + Rn(λj),
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where Ψ(λ) =
∑∞

k=−∞ Ψk exp{−iλk},

In,ε(λ) = Jn,ε(λ)Jn,ε(λ), Jn,ε(λ) =
1√
2πn

n∑
t=1

εt exp{−iλt},

and the components Rn,r,s(λ) of the remainder matrix Rn(λ), satisfy

sup
λ

E|Rn,r,s(λ)|2 = O(n−1) ;

cf. Brockwell and Davis (1991), Prop. 11.7.4. Now, let

f 1/2(λ) = (2π)−1/2Ψ(λ)Σ1/2

and notice that by ignoring Rn(λ) the periodogram matrix can be approximately

written as

(3.4) In(λj) ≈ f 1/2(λj)Un(λj)f
1/2

(λj),

where Un(λ) = 2πΣ−1/2In,ε(λ)Σ−1/2 is 2π-times the periodogram matrix of the i.i.d.

process {et = Σ−1/2εt, t ∈ Z} which has mean zero and as covariance matrix the

m × m unit matrix Im. It is well-known that for any number k, k ∈ N, of fixed

frequencies 0 ≤ λ1 < λ2 < . . . λk ≤ π, the corresponding set of complex val-

ued random matrices {Un(λ1), Un(λ2), . . . , Un(λk)} are asymptotically independent,

complex Wishart WC
m(1, Im) distributed if λ 6= 0(modπ) and real Wishart WR

m(1, Im)

distributed if λ = 0(modπ); cf. Brockwell and Davis (1991), Prop. 11.7.3. In the

univariate case (m = 1), the aforementioned properties of the white noise peri-

odogram together with the corresponding approximative multiplicative expression

(3.4) have been used by Hurvich and Zeger (1987), Franke and Härdle (1992) and

Dahlhaus and Janas (1996) to develop frequency domain bootstrap procedures for

time series; cf. also Paparoditis (2000) for a discussion. Following such an ap-

proach in our multivariate context, pseudo-periodogram matrices can in principle

be generated by replacing f(λj) by the nonparametric (kernel) estimator

f̂(λ) = n−1
∑

j

Kh(λ− λj)In(λj) ,

and Un(λj) by independent draws from an appropriate m-dimensional Wishart dis-

tribution.

However, such a procedure to generate pseudo-periodogram matrices is not appro-

priate for our purpose. This is so because for the bootstrap to be successful in a

testing set-up, it should be able to approximate correctly the distribution of the test

statistic Tn under the null even if the null hypothesis is wrong. This is important for

a good power behavior of the test. This requirement implies that the nonparametric

estimator of the spectral density matrix used to generate the pseudo-periodogram

matrices, should satisfy the null hypothesis, i.e., the components on its main diago-

nal should all be equal. This, however, is not fulfilled if the nonparametric estimator

f̂(λ) is used, since the elements f̂r(λ) on the main diagonal of f̂(λ) converge to fr(λ)
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which are not all equal if H1 is true. Notice further, that the desired property of

the spectral density estimator to be used in (3.4) can not be achieved by simple

replacing the elements on the main diagonal of f̂(λ) by the pooled estimator ŵ(λ),

since the resulting matrix is not necessarily non-negative definite, a property which

characterizes a spectral density matrix.

The idea to obtain a nonparametric estimator of the spectral density matrix satis-

fying the requirements of the null hypothesis lies in the following, easily verifiable

result. Let f(λ) = (fr,s(λ))r,s=1,2,...,m be a spectral density matrix satisfying As-

sumption 2 and D(λ) the diagonal matrix defined by

D(λ) = diag(w(λ)f−1
1 (λ), w(λ)f−1

2 (λ), . . . , w(λ)f−1
m (λ)) .

Then the matrix fT (λ) = (fT,r,s(λ))r,s=1,2,...,m defined by

(3.5) fT (λ) = D1/2(λ)f(λ)D1/2(λ),

is also a spectral density matrix, i.e., it is Hermitian and nonnegative-definite and

has the following properties:

(i) The elements on the main diagonal of fT (λ) are all equal and equal to

w(λ) = m−1
∑m

r=1 fr(λ),

(ii) κ̃2
r,s(λ) = κ2

r,s(λ) where κ̃2
r,s(λ) = |fT,r,s(λ)|2/(fT,r(λ)fT,s(λ)).

Transformation (3.5) produces, therefore, a spectral density matrix which has iden-

tical elements on its main diagonal and it preserves at the same time the cross-

correlation structure of the underlying m-dimensional process, i.e., the coherencies

corresponding to the transformed spectral density matrix fT (λ) are identical to those

of the original spectral density matrix f(λ). This property of transformation (3.5)

is important in order for the bootstrap test statistic to mimic correctly the behavior

of Tn under the null; cf. Theorem 3.2 below.

Based on the previous considerations, the bootstrap procedure proposed to approxi-

mate the distribution of Tn under the null, can be summarized by the following four

steps.

Step 1: Let

f̂(λ) = (f̂r,s(λ))r,s=1,2,...,m = n−1
∑

j

Kh(λ− λj)In(λj)

be a kernel estimator of the spectral density matrix f(λ) and define

D̂(λ) = diag(ŵ(λ)f̂−1
1 (λ), ŵ(λ)f̂−1

2 (λ), . . . , ŵ(λ)f̂−1
m (λ)),

where ŵ(λ) = m−1
∑m

r=1 f̂r(λ).
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Step 2: Set f̂T (λ) = D̂1/2(λ)f̂(λ)D̂1/2(λ) and let I∗n(λj) be independent random

matrices where

I∗n(λj) ∼ WC
m(1, f̂T (λj)),

if 1 ≤ j < n/2,

I∗n(λj) ∼ WR
m(1, f̂T (λj)),

if j ∈ {0, n/2} and I∗n(λ−j) = I∗n(λj) for j = 1, 2, ..., n/2.

Step 3: Calculate

T ∗
n =

1

m

m∑
r=1

∫ π

−π

( f̂ ∗r (λ)

ŵ∗(λ)
− 1

)2

dλ,

where

f̂ ∗r (λ) =
1

n

∑
j

Kh(λ− λj)I
∗
r (λj),

ŵ∗(λ) = m−1
∑m

r=1 f̂ ∗r (λ) and I∗r (λj) is the r-th element on the main diagonal

of the pseudo-periodogram matrix I∗n(λj).

Step 4: Approximate the distribution of Zn = (N
√

hTn − µn)/τ0 under the null

by the conditional distribution of Z∗
n = (N

√
hT ∗

n − µ̂n)/τ̂0 given the sample

Xt, t = 1, 2, . . . , n. Recall that µ̂n and τ̂0 are obtained by replacing κ2
s1,s2

(λ)

in µn and in τ0 =
√

τ 2
0 by the nonparametric estimator

κ̂2
s1,s2

(λ) =
∣∣∣n−1

∑
j

Kh(λ− λj)Is1,s2(λj)
∣∣∣
2(

f̂s1(λ)f̂s2(λ)
)−1

.

Note that the distribution of T ∗
n resp. Z∗

n can be evaluated by Monte Carlo. The

following theorem establishes asymptotic validity of the above bootstrap procedure,

i.e., it shows that Kolmogorov’s distance between the distribution of Zn under the

null hypothesis and the distribution of Z∗
n given the sample X1, X2, . . . , Xn, con-

verges to zero in probability as n →∞. As a careful read of the proof of this theorem

shows, the essential assumption needed to establish consistency of the bootstrap is

the uniform consistency of the nonparametric estimator f̂(λ) used in Step 1.

Theorem 3.2. Suppose that Assumptions 1-4 are satisfied. Then, as n →∞,

sup
x∈R

∣∣∣PH0(Zn ≤ x)− P (Z∗
n ≤ x|X1, X2, . . . , Xn)

∣∣∣ → 0,

in probability, where PH0(Zn ≤ ·) denotes the distribution function of Zn when the

null hypothesis is true.
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4. Asymptotic Distribution under Fixed Alternatives

In deriving the power properties of the test statistic proposed, it is important to

investigate its behavior under fixed alternatives, that is for the case where the spec-

tral densities of the underlying m time series are not equal. The following theorem

gives the limiting distribution of Tn in this case.

Theorem 4.1. Let Assumptions 1-4 be satisfied and suppose that the alternative H1

in (2.1) is true. Then, as n →∞,
√

N{TN −M2 − bh} ⇒ N(0, τ 2
1 ),

where

M2 =
1

m

m∑
r=1

∫ π

−π

(fr(λ)

w(λ)
− 1

)2

dλ(4.1)

bh =
2√
m

m∑
r=1

∫ π

−π

hr(λ)

w(λ)

[ 1

2π

∫
Kh(λ− x)fr(x)dx− fr(λ)

]
dλ

τ 2
1 =

16π

m

∫ π

−π

{ m∑
r=1

fr(x)

w(x)

(fr(x)

w(x)
− 1

)}2

dx,

and hr(λ) = fr(λ)/w(λ)− 1.

The result of Theorem 4.1 can be used for several purposes, which we briefly discuss

in the following.

1) By Theorem 3.1 an asymptotic level α test for the hypothesis of equal spectral

densities is obtained by rejecting the null hypothesis if the inequality (3.1)

is satisfied. It now follows from Theorem 4.1 that the power of this test can

be approximated by

(4.2) P (H0 rejected | H1 is true) ≈ 1− Φ

(
−
√

N(M2 + bn)

τ1

+
µn + τ0zα

τ1

√
Nh

)
.

2) Note that the quantity M2 defined in (4.1) can be interpreted as a measure of

equality of the second order properties between the m time series considered.

From Theorem 4.1 we obtain

TN − bh +
τ̂1z1−α√

N

as an upper (asymptotic) (1 − α) confidence bound for the parameter M2,

where τ̂ 2
1 is an appropriate (consistent) estimator of the asymptotic variance

given in Theorem 4.1. Such an estimator is obtained, for instance, if fr(x)

and w(x) are replaced by their kernel estimators f̂r(x) and ŵ(x) respectively.
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3) A further important application of Theorem 4.1 arises from the fact that in

practice the second order behavior of the m time series will usually never be

precisely identical. The more realistic question in this context is, if the differ-

ent time series show approximately the same second order behaviour. There-

fore we propose to investigate the so called precise hypotheses [see Berger and

Delampady (1987)]

(4.3) H0 : M2 > ε versus H1 : M2 ≤ ε ,

where M2 is the measure defined by (4.1) and ε > 0 is a prespecified constant

for which die statistician agrees to analyse the data under the additional

assumption of equal spectral densities. An asymptotic α-level test for the

hypothesis (4.3) is obtained by rejecting the null hypothesis, whenever
√

N(TN − ε− bh) < τ̂1z1−α .

Equation (4.2) is important also because it demonstrates how the correlation struc-

ture between the individual series considered, affects the power behavior of the test.

In particular, the cross-correlation structure of the m-dimensional process enters the

(approximative) power function of the test through the term (µn + τ0zα)/(τ1

√
Nh)

only, which given the level α of the test and the smoothing quantities h and K, it

is determined by the coherencies κ2
s1,s2

(·). Now, this term, although asymptotically

negligible because it is of order n−1/2h−1, it may affect the power of the test in finite

sample situations depending on the values of κ2
s1,s2

(·) and the resulting values of µn

and τ0. In particular, given the quantities fr(·)/w(·)− 1, r = 1, 2, . . . , m, i.e., given

the deviations between the individual spectral densities fr and the overall spectral

density w, the power of the test is the larger (smaller) the smaller (larger) is the

quantity (µn + τ0zα)/(τ1

√
Nh); see Section 5.1 for an illustration of this point.

5. Numerical Examples

5.1. Simulations. To investigate the behavior of our testing procedure in finite

sample situations we have conducted a small Monte Carlo experiment where the

test statistic TD,n proposed as well as the bootstrap procedure used to obtain critical

values have been studied empirically. In this context, observations X1, X2, . . . , Xn

have been generated from the simple bivariate process {Xt = (X1,t, X2,t)
′
, t ∈ Z},

where

X1,t = φX1,t−1 + δX1,t−2 + ε1,t(5.1)

X2,t = φX2,t−1 + ε2,t,

φ = 0.8 and εt = (ε1,t, ε2,t)
′ ∼ N((0, 0)

′
, Σ), with Σ = (σr,s)r,s=1,2, σ1,1 = σ2,2 = 1

and σ1,2 = ρ ∈ (−1, 1). Different values of δ and ρ have been considered. Notice that

ρ controls the degree of dependence between the two processes (ρ = 0 corresponds
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to the case where the two processes are independent) while δ controls the degree of

deviation between the spectral densities of the individual series X1,t and X2,t. In

particular, for δ = 0 the null hypothesis of equal spectral densities is true while for

δ 6= 0 we are in the case where the alternative is true. Recall that causality of X1,t

requires that δ ∈ (−1, 0.2).

To investigate empirically the size and power behavior of the test TD,n, 500 repli-

cations of the bivariate process (5.1) have been generated for different sample sizes

n and different values of the dependence parameter ρ and the deviation parameter

δ. The nonparametric estimators involved in our testing procedure have been calcu-

lated using Parzen’s kernel (see Priestley (1981), p. 448) and different values of the

smoothing bandwidth h. Furthermore, to obtain the critical points of the test using

the bootstrap procedure proposed, 1000 bootstrap replications have been generated.

The results obtained for α = 0.05 are reported in Table 1.

Please insert Table 1 here

As Table 1 shows, although the test leads to some over rejection for the smallest

sample size considered, the situation improves rapidly as the time series length n

increases with the test achieving the desired size behavior. This behavior is not

surprising since due to the allowed dependence between the individual time series,

implementation of the test requires nonparametric, frequency domain estimation

of the entire cross-correlation structure of the underlying m-dimensional process

which is a difficult task. Concerning the power behavior of the test, we observe

that the test leads to high rejection rates even for small differences between the two

spectral densities, like those considered in the Monte Carlo experiment (δ = ±0.1).

Interestingly detecting differences between the spectral densities under independence

(ρ = 0) appears to be more difficult that under dependence (ρ 6= 0). The explanation

for this is given by formula (4.2) of the power function. Notice that for the particular

bivariate process (5.1) considered, it is easily seen that κ2
s1,s2

(λ) = ρ2 for all λ ∈ [0, π],

which by straightforward calculations yields

µn = (1− ρ2)
1√
h

∫
K2(x)dx, and τ 2

0 = (1− ρ2)2 1

π

∫ ( ∫
K(x)K(x + y)dx

)2

dy.

Now, other things being equal, if ρ2 = κ2
s1,s2

(·) = 0, i.e., if the two processes are in-

dependent, then µn and τ 2
0 achieve their maximal value leading to a large value

of (µn + τ0zα)/(τ1

√
Nh) and, consequently, to a drop of power. On the other

hand as ρ2 = κ2
s1,s2

(·) increases, i.e. as the cross-correlation between the two

processes becomes stronger, then µn and τ 2
0 decrease, leading to a lower value of

(µn + τ0zα)/(τ1

√
Nh) and, therefore, to an increase of power.

5.2. Analysis of grain price data. The data set considered consists of monthly

averages of grain prices for corn, wheat and rye in the United States of America for
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the period January 1961 to October 1972. It has been discussed in Ahn and Reinsel

(1988) and a complete description is given in Reinsel (2003). The original three-

variate series is shown in Figure 1. We test the hypothesis that all three spectral

densities are equal using the discretized statistic TD,n. For this Parzen’s smoothing

kernel is used with a value h = 0.1 for the bandwidth obtained by means of a cross-

validation criterion [Beltrão and Bloomfield (1987)] applied to the pooled spectral

density estimator ŵ(λ). For this choice of the smoothing parameters the value of the

test statistic is equal to TD,n = 2.005, which compared with the upper 5% critical

point 0.5057 obtained using B = 1000 bootstrap replications, leads to a rejection of

the null hypothesis that the autocovariance structure of the three series is identical.

Figure 2a) shows on a log scale, the estimated individual spectral densities together

with the estimated pooled spectral density ŵ(λ).

To get a deeper insight into the reasons leading to the above rejection of the

hypothesis of equal spectral densities, and to investigate more closely were the

differences between the individual spectral densities lie, we consider the statistic

Q2
r,n(λj) = (f̂r(λj)/ŵ(λj) − 1)2 calculated for λj = 2πj/n, j = 0, 1, . . . , [n/2].

Notice that Q2
r,n(λj) describes for every frequency λj, the squared difference be-

tween the estimated rth individual spectral density f̂r(λj) and the pooled spec-

tral density ŵ(λj) and that the test statistic Tn can be approximately written as

Tn ≈ 2πm−1n−1
∑m

r=1

∑ν
j=−ν Q2

r,n(λj), ν = [(n − 1)/2]. Large values of Q2
r,n pin-

point, therefore, to frequencies where the spectral density of the rth series devi-

ates from the pooled spectral density. A plot of the statistic Q2
r,n(λj) for differ-

ent frequencies and for each of the three price series considered is given in Figure

2b). To better evaluate the plots shown we include in the same figure an esti-

mate of the upper 5%-percentage point of the distribution of the maximum statistic

Mn = max1≤r≤m max0≤λj≤π Q2
r,n(λj), under the hypothesis that all spectral densities

are equal. To estimate the upper 5% percentage-point of this distribution we use

the bootstrap procedure described in Section 3 to generate B = 1000 replications

of M∗
n = max1≤r≤m max0≤λj≤π Q∗2

r,n(λj), where Q∗2
r,n(λj) = (f̂ ∗r (λj)/ŵ

∗(λj)− 1)2 and

f̂ ∗r (λ) and ŵ∗(λ) are defined in Step 3 of the aforementioned bootstrap algorithm.

Please insert Figure 1 and Figure 2 about here

As Figure 2 shows, the autocovariance structure of corn and ray prices seem to

be very similar and different to that of wheat prices. The differences lie not only

in the fact that wheat prices have a larger variance compared to the other two

prices, but also that the spectral density of wheat prices show a moderate peak at

frequency λ = 0.796 which corresponds to a cyclical component of approximately 8

months and which is not apparent in corn and rye prices; cf. Figure 2b). It is worth

mentioning here, that these findings are in contrast to what could be expected by

a simple inspection of the time series plots of the three series shown in Figure 1.
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Such an inspection suggests namely that corn and wheat prices behave similar and

differently to ray prices.

6. Proofs

Proof of Theorem 3.1: Note first that

N
√

h

m

m∑
r=1

∫ ( f̂r(λ)

ŵ(λ)
−1

)2

dλ =
N
√

h

m

m∑
r=1

∫ ( f̂r(λ)− ŵ(λ)

w(λ)

)2

dλ+OP (sup
λ
|ŵ(λ)−w(λ)|

)
,

where the second term is oP (1) because max1≤r≤m supλ∈[−π,π] |f̂r(λ)− fr(λ)| → 0, in

probability, as n →∞. Let

(6.1) T̃n =
N
√

h

m

m∑
r=1

∫
(f̂r(λ)− ŵ(λ))2 1

w2(λ)
dλ,

and observe that

f̂r(λ)− ŵ(λ) =
1

n

∑
j

Kh(λ− λj)V
(r)
j,n , where V

(r)
j,n =

m∑
s=1

gr,sIs(λj)

and gr,s = (δr,s −m−1). Verify by straightforward calculations that

(6.2) E[V
(r)
j,n ] = O(log(n)/n)

and that

(6.3)

Cov(V
(r1)
j1,n , V

(r2)
j2,n ) =





∑m
s1=1

∑m
s2=1 gr1,s1gr2,s2|fs1,s2(λj)|2 + O(n−1) if j1 = j2

O(n−1) if j1 6= j2.

We then get

E[T̃n] =

√
h

n

m∑
r=1

∫ ∑
j1

∑
j2

Kh(λ− λj1)Kh(λ− λj2)dλ

× 1

w2(λ)
Cov(V

(r)
j1,n, V

(r)
j2,n) + O(

√
h log(n))

=

√
h

n

m∑
r=1

∫ ∑
j

K2
h(λ− λj)Var(V

(r)
j,n )

1

w2(λ)
dλ + O(

√
h) + O(

√
h log(n))

= h−1/2 1

2π

∫
K2(x)dx

m∑
r=1

m∑
s1=1

m∑
s2=1

gr,s1gr,s2

∫
κ2

s1,s2
(λ)dλ + o(1),
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where the equality before the last one follows using (6.3) and the last one because

under the hypothesis H0 we have κ2
s1,s2

(λ) = |fs1,s2(λ)|2/w2(λ). Furthermore,

Var[T̃n] =
h

n2

m∑
r1=1

m∑
r2=1

∫ ∫ ∑
j1,j2

∑

l1,l2

Kh(λ1 − λj1)Kh(λ1 − λj2)Kh(λ2 − λl1)

×Kh(λ2 − λl2)
1

w2(λ1)w2(λ2)
)dλ1dλ2

{
Cov(V

(r1)
j1,n , V

(r2)
l1,n )Cov(V

(r1)
j2,n , V

(r2)
l2,n )

+ Cov(V
(r1)
j1,n , V

(r2)
l2,n )Cov(V

(r1)
j2,n , V

(r2)
l1,n ) + cum(V

(r1)
j1,n , V

(r1)
j2,n , V

(r2)
l1,n , V

(r2)
l2,n )

}

= C1,n + C2,n + C3,n,

with an obvious notation for the quantities Ci,n, i = 1, 2, 3. We have

C1,n =
N2h

m2

m∑
r1=1

m∑
r2=1

∫ ∫ [ 1

n2

∑
j

∑

l

Kh(λ1 − λj)Kh(λ2 − λl)

× 1

w(λ1)w(λ2)
Cov(V

(r1)
j,n , V

(r2)
l,n )

]2

dλ1dλ2

=
N2h

m2

m∑
r1=1

m∑
r2=1

∫ ∫ [ 1

n2

∑
j

Kh(λ1 − λj)Kh(λ2 − λj)

× 1

w(λ1)w(λ2)

m∑
s1=1

m∑
s2=1

gr1,s1gr2,s2|fs1,s2(λj)|2 + O(n−1)
]2

dλ1dλ2

= h

m∑
r1=1

m∑
r2=1

∫ ∫ [ 1

2π

∫
Kh(λ1 − x)Kh(λ2 − x)

1

w(λ1)w(λ2)

m∑
s1=1

m∑
s2=1

gr1,s1gr2,s2|fs1,s2(x)|2dx
]2

dλ1dλ2 + o(1).

For the quadratic term above we get by straightforward but tedious calculations

that it is equal to

1

4π2h

m∑
r1=1

m∑
r2=1

∫ ∫ ∫
K(u1)K(u1 +

x1 − x2

h
)

∫
K(u2)K(u2 +

x2 − x1

h
)

×
m∑

s1=1

m∑
s2=1

gr1,s1gr2,s2

|fs1,s2(x1)|2
w2(x1 + u1h)

m∑

l1=1

m∑

l2=1

gr1,l1gr2,l2

|fl1,l2(x2)|2
w2(x2 + u2h)

du1du2dx1dx2 ,

which converges to

C1 =
1

4π2

∫ ( ∫
K(x)K(x + y)dx

)2

dy

∫ m∑
r1=1

m∑
r2=1

( m∑
s1=1

m∑
s2=1

gr1,s1gr2,s2κ
2
s1,s2

(λ)
)2

dλ,
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as n →∞. The term C2,n is of the same structure as C1,n and converges, therefore,

to the same limit C1 as n →∞. Finally,

C3,n =
N2h

m2

m∑
r1=1

m∑
r2=1

∫ ∫
1

w2(λ1)w2(λ2)

m∑
s1,s2,s3,s4=1

gr1,s1gr1,s2gr2,s3gr2,s2

× cum(f̂s1(λ1), f̂s2(λ1), f̂s3(λ2), f̂s4(λ2))dλ1dλ2

= O(n−1h−2),

using cum(f̂s1(λ1), f̂s2(λ1), f̂s3(λ2), f̂s4(λ2)) = O(n−3h−3); cf. Brillinger (1981), p.

437. Thus, Var(T̃n) → 2C1 = τ 2
0 as n →∞.

To proceed with the proof that T̃n − µn ⇒ N(0, τ 2
0 ), notice that by replacing w(λ)

by w(λj) we get because

n
√

h

m∑
r=1

∫ ( 1

n

∑
j

Kh(λ− λj)
V

(r)
j,n

w(λj)

)( 1

n

∑
j

Kh(λ− λj)
V

(r)
j,n

w(λ)

w(λj)− w(λ)

w(λj)

)
dλ

= OP (
√

h),

that

T̃n − µn = n
√

h

m∑
r=1

∫ ( 1

n

∑
j

Kh(λ− λj)
m∑

s=1

gr,s
Is(λj)

w(λj)

)2

− µn + OP (
√

h).

Using the expression

Is(λj) =
m∑

k=1

m∑

l=1

ψs,k(λj)ψs,l(−λj)Iεk,εl
(λj) + Rn,s(λj),

where ψs,k(λ) =
∑

l ψl(s, k) exp{−ilλ}, E(Rs(λj))
2 = O(n−1) uniformly in λj, and

Iεk,εl
(λ) is the cross-periodogram of the i.i.d. series (εk,1, εl,1), (εk,2, ε1,2), . . . , (εk,n, εl,n)

(Brockwell and Davis (1991), Prop. 11.7.4), we obtain

T̃n − µn =

√
h

n

m∑
r=1

∫ ( ∑
j

Kh(λ− λj)
m∑

s=1

m∑

k=1

m∑

l=1

gr,s
ψs,k(λj)ψs,l(−λj)

w(λj)
Iεk,εl

(λj)
)2

dλ− µn

+
2
√

h

n

m∑
r=1

∫ ∑
j1

∑
j2

Kh(λ− λj1)Kh(λ− λj2)dλ

m∑
s2=1

gr,s2

Rn,s2(λj2)

w(λj)

×
m∑

s1=1

m∑

k=1

m∑

l=1

gr,s1

ψs1,k(λj)ψs1,l(−λj)

w(λj)
Iεk,εl

(λj) + OP (
√

h)

=

√
h

n

m∑
r=1

∫ ( ∑
j

Kh(λ− λj)W
(r)
j,n

)2

dλ− µn + Yn + OP (
√

h),

with

W
(r)
j,n =

m∑
s=1

m∑

k=1

m∑

l=1

gr,s
ψs,k(λj)ψs,l(−λj)

w(λj)
Iεk,εl

(λj)
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and an obvious notation for Yn. We show that

(6.4) Yn = oP (1)

and that

(6.5)

√
h

n

m∑
r=1

∫ ( ∑
j

Kh(λ− λj)W
(r)
j,n

)2

dλ− µn ⇒ N(0, τ 2
0 ).

Since (6.4) follows after tedious but straightforward manipulations, we stress only

the essentials. Using E(W
(r)
j,n ) = 0, the notation R̃n,s(λ) = Rn,s(λ)/w(λ) and stan-

dard properties of cumulants, cf. Brillinger (1981), p. 19, we get that E(Y 2
n ) can be

decomposed in a sum of several terms, two dominating of which are

E2
1,n =

4h

n2

m∑
r1,r2=1

∫ ∫ ∑
j1,j2

∑

l1,l2

Kh(λ1 − λj1)Kh(λ1 − λj2)Kh(λ2 − λl1)Kh(λ2 − λl2)dλ1dλ2

×
m∑

s1,s2=1

gr1,s1gr2,s2cum(W
(r1)
j1,n , R̃n,s1(λj2)) cum(W

(r2)
l1,n , R̃n,s2(λl2))

and

E2
2,n =

4h

n2

m∑
r1,r2=1

∫ ∫ ∑
j1,j2

∑

l1,l2

Kh(λ1 − λj1)Kh(λ1 − λj2)Kh(λ2 − λl1)Kh(λ2 − λl2)dλ1dλ2

×
m∑

s1,s2=1

gr1,s1gr2,s2cum(R̃n,s1(λj2)) cum(R̃n,s2(λl2)) cum(W
(r1)
j1,n ,W

(r2)
l1,n )

Now, cum(Rn,s(λl)) = O(n−1/2) uniformly in λl, while for different Fourier fre-

quencies λj 6= λl we have cum(W
(r2)
j,n , Rn,s2(λl)) = O(n−1) and cum(W

(r1)
j,n ,W

(r2)
l,n ) =

O(n−1). Using these properties, it is easily seen that E2
1,n = O(h) and E2

2,n = O(h)

both going to zero as n →∞.

To show (6.5) note first that by Assumption 3 and Theorem 5.9.1 of Brillinger (1981),

we have that

| n−1
∑

j

Kh(λ− λj)W
(r)
j,n − (2π)−1

∫
Kh(λ− x)W (r)

n (x)dx | = OP (n−1h−2),

where W
(r)
n (x) =

∑m
s=1

∑m
k=1

∑m
l=1 gr,sψs,k(x)ψs,l(−x)Iεk,εl

(x)/w(x). Now, recall

that Iεk,εl
(λ) = (2π)−1

∑
|τ |<n γ̂k,l(τ) exp{−iτλ} where γ̂k,l(τ) = n−1

∑n−τ
t=1 εl,tεk,t.

Using k(τ) = (2π)−1
∫

K(ω)eiτωdω and the notation M = b1/hc verify then us-

ing Assumption 4, that instead of the left hand side of (6.5) we can consider the

asymptotically equivalent quantity

nM−1/2

m∑
r=1

∫ ( 1

n

n∑
t=1

Z
(r)
t,n (λ)

)2

dλ− µn,
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where

Z
(r)
t,n (λ) =

M∑
τ=−M

k(τ/M)e−iλτ

m∑
s=1

m∑

k=1

m∑

l=1

gr,s
ψs,k(λ)ψs,l(−λ)

w(λ)
εk,tεl,t+τ .

Since
∑m

s=1 gr,s = 0 we get E(Z
(r)
t,n (λ)) = 0, while straightforward calculations yield

using the notation σk,l = E(ε1,kε1,l), that

Cov(Z
(r1)
t1,n(λ1), Z

(r2)
t2,n(λ2)) =

m∑
s1,s2=1

gr1,s1gr2,s2

m∑

k1,l1,k2,l2=1

ψs1,k1(λ1)ψs1,11(−λ1)

w(λ1)

(6.6)

×ψs2,k2(−λ2)ψs2,l2(λ2)

w(λ2)

{
k2((t1 − t2)/M)ei(λ1+λ2)(t1−t2)σk1,l2σl1,k2

+ δt1,t2

( M∑
t=−M

k2(τ/M)e−i(λ1−λ2)τσk1,k2σl1,l2 + cum4(εk1,1, εl1,1, εk2,1, εl2,1)
)}

.

Now, let N =
√

nM , Ñ = bn/Nc and define

Y
(r)
j,n (λ) =

N−M∑
ν=1

Z
(r)
(j−1)N+M+ν,n(λ), for j = 1, 2, . . . , Ñ .

Notice that the Y
(r)
j,n (λ), j = 1, 2, . . . , Ñ , are zero mean, independent random vari-

ables and that using (6.6) we obtain

Cov(Y
(r1)
j,n (λ1),Y

(r2)
j,n (λ2)) = (N −M)

M∑
τ=−M

k2(τ/M)e−i(λ1−λ2)τ

m∑
s1,s2=1

gr1,s1gr2,s2

(6.7)

×
m∑

k1,l1,k2,l2=1

ψs1,k1(λ1)ψs1,11(−λ1)ψs2,k2(−λ2)ψs2,l2(λ2)

w(λ1)w(λ2)
σk1,k2σl1,l2

+ O(N −M) + O(M).

For L the set L = {1, 2, . . . , n} \ {(j − 1)N + M + 1, . . . , jN : j = 1, 2, . . . , Ñ}, we

can then write

nM−1/2

m∑
r=1

∫ ( 1

n

n∑
t=1

Z
(r)
t,n (λ)

)2

dλ = nM−1/2

m∑
r=1

∫ ( 1

n

eN∑
j=1

Y
(r)
j,n (λ) +

1

n

∑
j∈L

Z
(r)
j,n(λ)

)2

= nM−1/2

m∑
r=1

∫ ( 1

n

eN∑
j=1

Y
(r)
j,n (λ)

)2

+ R1,n + R2,n,

where

(6.8) R1,n = nM−1/2

m∑
r=1

∫ ( 1

n

∑
j∈L

Z
(r)
j,n(λ)

)2

→ 0,
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in probability, and

(6.9) R2,n = 2nM−1/2

m∑
r=1

∫ ( 1

n

∑
j∈L

Z
(r)
j,n(λ)

)( 1

n

eN∑
j=1

Y
(r)
j,n (λ)

)
→ 0,

in probability. To see (6.8) substitute expression (6.6) and verify by straightforward

calculations that

E|R1,n| = O
(
Ñn−1M−1/2

m∑
r=1

∫ M∑
t1,t2=1

Cov(Z
(r)
t1,n(λ), Z

(r)
t2,n(λ))dλ

)
= O(Mn−1/2).

Furthermore, since n−1
∑

j∈L Z
(r)
j,n(λ) = OP (M1/2|L|1/2n−1) and n−1

∑ eN
j=1 Y

(r)
j,n (λ) =

OP (M1/2(N −M)1/2Ñ1/2n−1) we get using |L| = O(ÑM) that

R2,n = OP (M1/2(N −M)1/2n−1/2) = OP (M3/2n−1/2) → 0,

by Assumption 4, which gives assertion (6.9). To conclude the proof of the theorem,

we show that

(6.10) n−1M−1/2

m∑
r=1

∫ eN∑
j=1

(Y
(r)
j,n (λ))2dλ− µn → 0,

in probability, and that

(6.11)

eN∑
j1,j2=1
j1 6=j2

Wn(Yj1 , Yj2) ⇒ N(0, τ 2).

where Wn(Yj1 , Yj2) = n−1M−1/2
∑m

r=1

∫
Y

(r)
j1,n(λ)Y

(r)
j2,n(λ)dλ. Assertion (6.10) follows

by straightforward calculations using expression (6.6) for the covariance of the ran-

dom variables Z
(r)
t,n (λ). To establish (6.11) and because the Y

(r)
j,n (λ) are independent,

we use Theorem 2.1 of deJong (1987). According to this theorem it suffices to show

that

a)
(

max1≤j1≤ eN
∑ eN

j2=1 τ 2
j1,j2

)
/σ2

n → 0, and

b) E
( ∑ eN

j1,j2=1
j1 6=j2

Wn(Yj1 , Yj2)
)4

/σ4
n → 3,

as n → ∞, where τ 2
j1,j2

= E(Wj1,j2)
2, Wj1,j2 = Wn(Yj1 , Yj2) + Wn(Yj2 , Yj1), and

σ2
n = V ar(

∑ eN
j1,j2=1
j1 6=j2

Wn(Yj1 , Yj2)).



22 H. DETTE AND E. PAPARODITIS

Consider a) and notice that by the independence of the random variables Y
(r)
j,n (λ),

we have using (6.7) and the fact that
∑m

k,l=1 ψs1,k(λ)ψs2,l(−λ)σk,l = fs1,s2(λ), that

τ 2
j1,j2

= 4n−2M−1

m∑
r1,r2=1

∫ ∫
Cov(Y

(r1)
j1,n (λ1)Y

(r2)
j1,n (λ2))Cov(Y

(r1)
j2,n (λ1)Y

(r2)
j2,n (λ2))dλ1dλ2

= 4(N −M)2n−2

∫
k4(x)dx

m∑
r1,r2=1

∫ ( m∑
s1,s2=1

gr1,s1gr2,s2κ
2
s1,s2

(λ)
)2

dλ + o((N −M)2n−2).

Furthermore, using the fact that for j1 < j2 and ν1 < ν2, E(Wj1,j2Wν1,ν2) =

δj1,ν1δ2,ν2E(Wj1,j2)
2, we get

σ2
n =

∑

1≤j1<j2≤ eN
E(Wj1,j2)

2

= 4n−2M−1
∑

1≤j1<j2≤ eN

m∑
r1,r2=1

∫ ∫
Cov(Y

(r1)
j1,n (λ1)Y

(r2)
j1,n (λ2))Cov(Y

(r1)
j2,n (λ1)Y

(r2)
j2,n (λ2))dλ1dλ2

→ 2

∫
k4(x)dx

m∑
r1,r2=1

∫ ( m∑
s1,s2=1

gr1,s1gr2,s2κ
2
s1,s2

(λ)
)2

dλ

Thus

(
max

1≤j1≤ eN

eN∑
j2=1

τ 2
j1,j2

)
/σ2

n = O(M1/2n−1/2) → 0,

as n →∞.

To establish b) notice that by ignoring the asymptotically vanishing fourth order

cumulant term and using E(Wj1,j2Wν1,ν2) = δj1,ν1δ2,ν2E(Wj1,j2)
2 for j1 < j2 and

ν1 < ν2, that the fourth moment of
∑

1≤j1<j2≤ eN Wj1,j2 equals

E(
∑

1≤j1<j2≤ eN
Wj1,j2)

4 = 3
∑

1≤j1<j2≤ eN

∑

1≤ν1<ν2≤ eN
E(Wj1,j2)

2E(Wν1,ν2)
2 + o(1)

= 3(σ2
n)2 + o(1),

which leads to the desired assertion.

Proof of Theorem 3.2: Using Zn ⇒ N(0, 1) and the triangular inequality, it

suffices to show that conditionally on X1, X2, . . . , Xn, Z∗
n ⇒ N(0, 1) in probability,

as n → ∞. For this let es = (0, . . . , 0, 1, 0, . . . 0)
′
be the m dimensional unit vector

where the unit appears in the s-th position, notice that I∗r (λj) = e
′
rI
∗
n(λj)er and let

V ∗(r)

j,n =
m∑

s=1

gr,se
′
sI
∗
n(λj)es =

m∑
s=1

gr,sĉ
′
s(λj)U

∗
j ĉs(−λj),
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where ĉs(λ) = (f̂
1/2
T (λ))

′
es ∈ Cm. It is easily seen that E∗[V ∗(r)

j,n ] = 0 while

Cov∗(V ∗(r1)

j1,n , V ∗(r2)

j2,n ) =





∑m
s1=1

∑m
s2=1 gr1,s1gr2,s2ŵ

2(λj)κ̂
2
s1,s2

(λj) if j1 = j2

0 if j1 6= j2.

We then have

N
√

hT ∗
n =

√
h

n

m∑
r=1

∑
j1

∑
j2

∫
Kh(λ− λj1)Kh(λ− λj2)

1

ŵ2(λ)
V ∗(r)

j1,n V ∗(r)

j2,n dλ

+ OP (sup
λ
|ŵ∗(λ)− ŵ(λ)|)

= T̃ ∗
n + oP (1),

where the random variables {V ∗(r)

j,n , j = 0, 1, . . . , [(n − 1)/2]} appearing in T̃ ∗
n are

(conditionally on X1, X2, . . . , Xn) independent but not identically distributed. Now,

T̃ ∗
n − µ̂n =

√
h

n

m∑
r=1

∑
j

∫
K2

h(λ− λj)
1

ŵ2(λ)
(V ∗(r)

j,n )2dλ− µ̂n

+

√
h

n

m∑
r=1

∑
j1,j2
j1 6=j2

∫
Kh(λ− λj1)Kh(λ− λj2)

1

ŵ2(λ)
V ∗(r)

j1,n V ∗(r)

j2,n dλ

= M∗
n − µ̂n + L∗n

with an obvious notation for M∗
n and L∗n. Using

E∗(V ∗(r)

j,n )2 =
m∑

s1=1

m∑
s2=1

gr,s1gr,s2ŵ
2(λj)κ̂

2
s1,s2

(λj)

and the independence of the W ∗(r)

j,n , it easily follows that |M∗
n−µ̂n| → 0 in probability.

Thus the assertion of the theorem is established if we show that L∗n/τ̂0 ⇒ N(0, 1) in

probability. Now, τ̂ 2
0 → τ 2

0 in probability, E∗[L∗n] = 0 while

Var∗(L∗n) =
h

n2

m∑
r1=1

m∑
r2=1

∫ ∫ ∑
j1,j2

∑

l1,l2

Kh(λ1 − λj1)Kh(λ1 − λj2)Kh(λ2 − λl1)

×Kh(λ2 − λl2)
1

ŵ2(λ1)ŵ2(λ2)
)dλ1dλ2

{
Cov∗(V ∗(r1)

j1,n , V ∗(r2)

l1,n )

× Cov∗(V ∗(r1)

j2,n , V ∗(r2)

l2,n ) + Cov∗(V ∗(r1)

j1,n , V ∗(r2)

l2,n )Cov∗(V ∗(r1)

j2,n , V ∗(r2)

l1,n )

+ cum∗(V ∗(r1)

j1,n , V ∗(r1)

j2,n , V ∗(r2)

l1,n , V ∗(r2)

l2,n )
}

→ τ 2
0 ,
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in probability, by the same arguments as in the proof that Var[T̃n] → τ 2
0 in Theo-

rem 3.1 and the uniform weak convergence of f̂(λ) to f(λ). Let

an(j1, j2) =





n−1
√

h
∫

Kh(λ− λj1)Kh(λ− λj2)ŵ
−2(λ)dλ if j1 6= j2

0 if j1 = j2,

and note using the symmetry of V ∗(r)

j,n that we can write L∗n as

L∗n =
m∑

r=1

ν∑
j1=1

ν∑
j2=1

bn(j1, j2)V
∗(r)

j1
V ∗(r)

j2
+ 2

m∑
r=1

ν∑
j=−ν

a(0, j)V ∗(r)

0 V ∗(r)

j2
,

where

bn(j1, j2) =
∑

k1∈J1

∑

k2∈J2

an(k1, k2)

and Jk = {j−k, jk} for k ∈ N. Since

2
m∑

r=1

ν∑
j=−ν

a(0, j)E∗|V ∗(r)

0 V ∗(r)

j2
| ≤ OP (1)

√
h

n

ν∑
j=−ν

∫
Kh(λ− λj)Kh(λ)

1

ŵ2(λ)
dλ

≤ OP (
√

h) → 0,

it suffices to show that

L̃∗n =
∑

1≤j1<j2≤ν

W ∗
n(j1, j2) ⇒ N(0, τ 2

0 ),(6.12)

where

W ∗
n(j1, j2) = 2bn(j1, j2)

m∑
r=1

V ∗(r)

j1,n V ∗(r)

j2,n .

Assertion (6.12) follows then by verifying that conditions a) and b) of Theorem 2.1 of

deJong (1987) are satisfied. Since this follows using similar arguments as those used

to establish assertion (6.11) in the proof of Theorem 3.1, the details are omitted.

Proof of Theorem 4.1: Define

(6.13) hr(λ) =
fr(λ)

w(λ)
− 1; h̃r(λ) =

f̂r(λ)

w(λ)
− 1,
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then we obtain from the proof of Theorem 3.1

√
N

(
TN − 1

m

m∑
r=1

∫
h2

r(λ)dλ
)

=

√
n

m

m∑
r=1

{∫
h̃2

r(λ)dλ−
∫

h2
r(λ)dλ

}
(6.14)

×(1 + op(1))

=

√
n

m

m∑
r=1

{∫ ( f̂r(λ)− fr(λ)

w(λ)

)2

dλ

+2

∫
hr(λ)

f̂r(λ)− fr(λ)

w(λ)
dλ

}
(1 + op(1))

= (An1 + An2)(1 + op(1))

with an obvious definition of the quantities An1, An2. The term An1 can be treated

by similar methods as used in the proof of Theorem 3.1, which yield

(6.15) An1 = Op

( 1√
nh

)
= op(1).

The analysis of the term An2 is more difficult and we obtain
√

m

2
An2 =

√
n

m∑
r=1

∫
hr(λ)

w(λ)

(
f̂r(λ)− fr(λ)

)
dλ = B1n + B2n,(6.16)

where

B1n =
1√
n

∑
j

∫
Kh(λ− λj)

m∑
r=1

hr(λ)

w(λ)

(
Ir(λj)− fr(λj)

)
dλ,(6.17)

B2n =
√

n
{ 1

n

∑
j

∫
Kh(λ− λj)

m∑
r=1

hr(λ)

w(λ)
fr(λj)dλ−

m∑
r=1

∫
hr(λ)

w(λ)
fr(λ)dλ

}

(6.18)

=
√

n
{ 1

2π

∫ ∫
Kh(λ− x)

m∑
r=1

hr(λ)

w(λ)
fr(x)dxdλ−

m∑
r=1

∫
hr(λ)

w(λ)
fr(λ)dλ

}

+o(1)

=
√

n

m∑
r=1

{∫
hr(λ)

w(λ)

[ 1

2π

∫
Kh(λ− x)fr(x)dx− fr(λ)

]
dλ

}
+ o(1)

=
√

nb̃h + o(1)

with an obvious definition of b̃h. From (6.14), (6.15), (6.16), (6.17), (6.18) and the

notation bh = 2b̃h/sqrtm we therefore obtain

√
N

(
Tn − 1

m

m∑
r=1

∫
h2

r(λ)dλ− bh

)
=

2√
m

B1n + op(1) ,(6.19)
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and it remains to consider the asymptotic distribution of the statistic B1n. For this

recall that by (3.3), In(λj) = f 1/2(λj)Un(λj)f 1/2(λj)+Rn,j , where the remainder is of

order Op(1/
√

n) uniformly with respect to j. Recall that Un(λj) has asymptotically

a complex Wc(1, Im) Wishart distribution, and consequently

In(λj) = Wn(λj) + Rnj ,(6.20)

where the random variables Wn(λj) are asymptotically Wc(1, f(λj)) distributed and

independent [see Brockwell and Davis (1991), Proposition 11.7.3]. From Muirhead

(1982) p. 90 and a similar argument as given in the Proof of Proposition 10.3.2 in

Brockwell and Davis (1991) we have

E[eT
r Wn(λj)er] = fr(λj)(1 + o(1)) = fr(λj)(1 + o(1)) ,

(6.21)

Cov[eT
r Wn(λi)er, e

T
s Wn(λj)es] = 2δijfr(λj)fs(λj)(1 + o(1)) ,

where δij = 1 if i = j and δi,j = 0 for i 6= j. For the moment we ignore the remainder

and obtain with the notation Wr(λj) = eT
r Wn(λj)er,

B̃1n =
1√
n

∑
j

∫
Kh(λ− λj)

m∑
r=1

hr(λ)

w(λ)

(
Wr(λj)− fr(λj)

)
(6.22)

the estimates

E[B̃1n] = o(1)

E[B̃2
1n] =

1

n
E

[∑
j

∫ ∫
Kh(λ− λj)Kh(µ− λj)

m∑
r,s=1

[
Wr(λj)− fr(λj)

][
Ws(λj)− fr(λj)

]hr(λ)hs(µ)

w(λ)w(µ)
dµdλ

]
· (1 + o(1))

=
1

2π

m∑
r,s=1

∫ ∫ ∫
Kh(λ− x)Kh(µ− x)

hr(λ)hs(µ)

w(λ)w(µ)
2fr(x)fs(x)dxdµdλ · (1 + o(1))

= 4π

∫
1

w2(x)

( m∑
r=1

hr(x)fr(x)
)2

dx · (1 + o(1))

= 4π

∫ [ m∑
r=1

fr(x)

w(x)

(fr(x)

w(x)
− 1

)]2

dx · (1 + o(1))

= α2 · (1 + o(1))

with an obvious definition of α2. The asymptotic normality of B̃1n now follows along

the lines given in the proof of Proposition 10.3.2 and 11.7.3 in Brockwell and Davis

(1991), that is

(6.23) B̃1n ⇒ N(0, α2)
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We finally show that B1n and B̃1n are asymptotically equivalent, that is

(6.24) B1n − B̃1n = op(1).

For this we note that Lemma 3 in Dette and Spreckelsen (2003) holds also in the

multivariate case considered here (this follows by the same arguments given by these

authors observing that the assumption of normally distributed innovations is in fact

not needed to establish the result). More precisely, if Rn,r,j = eT
r Rn,jer, then we

have

E[Rn,r,j] = o(n−1)(6.25)

Cov(Rn,r,i, Rn,r,j) =

{
O(n−1) if λj = ∓λi

o(n−1) if λj 6= ∓λi

Observing (6.26) we obtain

E[(Bn1 − B̃n1)
2] =

1

n
E

[(∑
j

∫
Kh(λ− λj)

m∑
r=1

hr(λ)

w(λ)
Rn,r,j

)2]

=
∣∣∣ 1
n

∑
i,j

m∑
r,s=1

∫ ∫
Kh(λ− λj)Kh(µ− λi)

hr(λ)hs(µ)

w(λ)w(µ)
E[Rn,r,iRn,s,j]dλdµ

∣∣∣

≤ 1

n

∑
i

m∑
r,s=1

∫
Kh(λ− λi)Kh(µ− λi)

∣∣∣hr(λ)hs(µ)

w(λ)w(µ)

∣∣∣dλdµ ·O(
1

n
)

+
1

n2

∑
i,j

m∑
r,s=1

∫
Kh(λ− λi)Kh(λ− λj)

hr(λ)hs(µ)

w(λ)w(µ)
dλdµ · o(1)

= O
( 1

nh

)
+ o(1) = o(1),

and (6.24) is a consequence of Markov’s inequality. Consequently, the assertion of

the theorem follows from (6.19), (6.23) and (6.24).
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.

n = 128 n = 256 n = 512 n = 1024
h= 0.15 h=0.20 h=0.14 h=0.18 h=0.10 h=0.14 h=0.10 h= 0.12

ρ δ

0.9 0.0 0.065 0.078 0.062 0.063 0.052 0.056 0.055 0.055
0.1 0.674 0.702 0.940 0.952 0.996 0.998 1.000 1.000

-0.1 0.496 0.512 0.844 0.838 0.990 0.991 1.000 1.000

0.5 0.0 0.092 0.098 0.068 0.071 0.055 0.058 0.055 0.058
0.1 0.302 0.364 0.567 0.618 0.766 0.890 0.966 0.970

-0.1 0.201 0.216 0.295 0.318 0.546 0.583 0.888 0.894

0.0 0.0 0.093 0.094 0.069 0.070 0.058 0.065 0.054 0.055
0.1 0.274 0.320 0.486 0.530 0.648 0.724 0.912 0.928

-0.1 0.191 0.188 0.242 0.628 0.422 0.446 0.760 0.782

-0.5 0.0 0.094 0.093 0.072 0.081 0.058 0.062 0.056 0.057
0.1 0.298 0.366 0.550 0.598 0.754 0.806 0.972 0.973

-0.1 0.226 0.221 0.302 0.306 0.560 0.588 0.880 0.896

-0.9 0.0 0.079 0.081 0.056 0.061 0.046 0.048 0.054 0.054
0.1 0.686 0.722 0.956 0.964 0.998 0.999 1.000 1.000

-0.1 0.504 0.508 0.858 0.852 0.982 0.985 1.000 1.000

Table 1: Empirical rejection probabilities (α = 0.05) of the test TD,n over 500

replications of the bivariate process (5.1) for different sample sizes n, values of the

bandwidth h and of the process parameters ρ and δ.
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Figure 1. Plot of US grain price data: (a) corn prices, (b) wheat
prices, (c) ray prices.
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Figure 2. (a) Plot of estimated spectral densities (log-scale) for the
grain price data set and (b) plot of the statistic Q2

r,n(λj). The dashed
and dotted line refers to corn prices, the dashed line to wheat prices
and the dotted line to ray prices. The solid line in part (a) refers to
the estimated pooled spectral density and in part (b) to the bootstrap
estimate of the upper 5%-percentage point of the distribution of the
statistic Mn = max1≤r≤m max0≤λj≤π Q2

r,n(λj).


