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Abstract

We consider the problem of testing for a parametric form of the variance function in a
partial linear regression model. A new test is derived, which can detect local alternatives
converging to the null hypothesis at a rate n−1/2 and is based on a stochastic process of the
integrated variance function. We establish weak convergence to a Gaussian process under the
null hypothesis, fixed and local alternatives. In the special case of testing for homoscedasticity
the limiting process is a scaled Brownian bridge. We also compare the finite sample properties
with a test based on an L2-distance, which was recently proposed by You and Chen (2005).

1 Introduction

Partial linear regression models have found considerable interest in the recent literature, because
they combine the attractive features of linear models (such as interpretability of the parameter
estimates or well established theoretical properties) with the more flexible concept of nonparametric
regression [see e.g. Green and Silverman (1994), Yatchew (1997), Härdle, Liang and Gao (2000)
among many others]. Typically the model is defined as

Yi = xT
i β + m(ti) + σ(ti)εi, i = 1, . . . , n,(1.1)

where the Yi are the responses, β = (β1, . . . , βp)
T is a vector of unknown parameters and m and

σ are smooth functions. The vectors xT
i = (xi1, . . . , xip) and the real numbers ti (i = 1, . . . , n)

are fixed design points and ε1, . . . , εn denote random variables with mean 0 and variance 1. Much
effort has been spent on the problem of testing hypotheses regarding β or m [see e.g. Gao (1997),
Fan and Huang (2001), González-Manteiga and Aneiros-Pérez (2003), Aneiros-Pérez, González-
Manteiga and Vieu (2004), Bianco, Boente and Mart́ınez (2006) among many others] but less
literature is available on the problem of testing hypotheses regarding the variance function σ.
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In the purely nonparametric model Yi = m(ti) + σ(ti)εi several authors have emphasized the
importance of detecting heteroscedasticity and have proposed various tests for heteroscedasticity
[see e.g. Koenker and Basset (1981), Cook and Weisberg (1983), Diblasi and Bowman (1997), Dette
and Munk (1998a), Liero (2003) among many others]. Recently, You and Chen (2005) proposed a
test for homoscedasticity in the partial linear regression model (1.1), which is based on an estimate
of the L2-distance between the variance function σ2(·) and its best constant approximation. This
test is - to the knowledge of the authors - the only procedure which has been proposed for testing
the hypothesis of homoscedasticity in a partial linear regression model of the form (1.1). It can
detect local hypotheses, which converge to the null hypothesis of homoscedasticity at a rate n−1/4,
where n denotes the sample size.

The present paper has two purposes. On the one hand we are interested in a test for a homoscedastic
error structure which is more efficient with respect to Pitman alternatives, on the other hand we
will also consider the more general problem of testing for a parametric form of the variance function,
that is

H0 : σ2(t) = σ2(t, θ) ∀ t ∈ [0, 1],(1.2)

where σ2(t, θ) is a known function, θ = (θ1, . . . , θd)
T ∈ Θ ⊂ Rd an unknown vector of parameters

and the set Θ is assumed to be compact. Note that the hypothesis of homoscedasticity is obtained
for d = 1 and σ2(t, θ) = θ, but many other hypotheses are of interest in practical applications.
In Section 2 we introduce two stochastic processes, which will be used as the basis for constructing
test statistics for the hypothesis (1.2). The basic idea is to compare estimates of the integrated
variance

∫ t

0
σ2(u)du under the null hypothesis and the alternative. Weak convergence of this

process to a centered Gaussian process and the corresponding statistical applications are discussed
in Section 3. In particular Kolmogorov-Smirnov and Cramér-von-Mises type tests are proposed
and it is demonstrated that the new tests can detect local alternatives converging to the null
hypothesis at a rate n−1/2. We also discuss the asymptotic properties of the test in the case of
a random design, which differ from the results obtained under the fixed design assumption. In
Section 4 we present a small simulation study and compare the new tests with a test which has
recently been suggested by You and Chen (2005). We also illustrate the application of the test by
means of a data example. Finally, some technical details are given in an Appendix in Section 5.

2 Two new tests for the variance function in partial linear

regression models

Recall the definition of the partial linear regression model (1.1). We consider a triangular array
of random variables without mentioning this in our notation (that is - we write Yi, ti, xi and εi

instead of Yi,n, ti,n, xi,n and εi,n, respectively). For the explanatory variables we consider a fixed
design satisfying

i

n + 1
=

∫ ti

0

f(t) dt, i = 1, . . . , n,(2.1)

for some positive density f on the interval [0, 1] [see Sacks and Ylvisacker (1970)] and

‖ xi ‖≤ c, i = 1, . . . , n,(2.2)
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for some constant c ∈ R+ (here and throughout this paper ‖ · ‖ denotes the euclidean norm). The
case of a random design will briefly be discussed in Section 3.2. If mj(t) = E[εj

i ] (j = 3, 4) denotes
the third and fourth moment of the error (which may depend on t) we further assume

f, σ, m, m3, m4 ∈ Hölγ[0, 1](2.3)

for some γ > 1
2
, where Hölγ[0, 1] denotes the class of all Hölder continuous functions of order γ

defined on the interval [0, 1]. The basic idea for the construction of the testing procedure for the
hypothesis (1.2) is to eliminate the effect of the linear regression component in the partial linear
regression model (1.1) and for this purpose two methods are considered.

The first approach is based on an estimate for the parameter β, which was essentially suggested
in a paper by Speckman (1988). This author proposed the estimate

β̂n = (X̂T X̂)−1X̂T Ŷ ,(2.4)

where

X̂ = (In − K̂)X,

Ŷ = (In − K̂)Y,

X = (x1, . . . , xn)T , Y = (Y1, . . . , Yn)T ,

K̂ = (Wi(tj, h))1≤i,j≤n ,

and Wi(tj, h) denote the weights of the local linear estimator at the points ti, that is

Wi(tj, h) =
ŝ2(tj, h)− ŝ1(tj, h)(ti − tj)

ŝ2(tj, h)ŝ0(tj, h)− ŝ2
1(tj, h)

K

(
ti − tj

h

)
,(2.5)

where

ŝl(tj, h) =
n∑

k=1

K

(
tk − tj

h

)
(tk − tj)

l,

with a kernel K and a bandwidth h converging to 0 with increasing sample size.
Note that Speckman (1988) considered simpler weights and the homoscedastic partial linear re-
gression models, but it can be shown by similar arguments that the statistic β̂n is

√
n-consistent,

if the limit

lim
n→∞

1

n
X̂T X̂(2.6)

exists. We now define modified data by

Y ∗
i = Yi − xT

i β̂n, i = 1, . . . , n,(2.7)

and consider the pseudo residuals

R∗
j =

r∑
i=0

diY
∗
j−i, j = r + 1, . . . , n,(2.8)
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where (d0, . . . , dr) is a difference sequence satisfying

r∑
i=0

di = 0,
r∑

i=0

d2
i = 1(2.9)

[see Gasser, Sroka and Jennen-Steinmetz (1986) or Hall, Kay and Titterington (1990)]. Note that
by the consistency of the estimate β̂n and by (2.3) and (2.9) it is intuitively clear that

R∗
j ≈

r∑
i=0

di(Yj−i − xT
j−iβ) =

r∑
i=0

dim(tj−i) +
r∑

i=0

diσ(tj−i)εj−i ≈
r∑

i=0

diσ(tj−i)εj−i ,(2.10)

which implies

E[R∗2
j ] ≈

r∑
i=0

d2
i σ

2(tj−i) ≈ σ2(tj) .(2.11)

Consequently analysis of the variance function can be based on the pseudo residuals R∗
j . For this

we define

θ̂∗ = arg min
θ∈Θ

n∑
i=r+1

(
R∗2

i − σ2(ti, θ)
)2

(2.12)

as the least squares estimate of the value θ0, which is defined as

θ0 = arg min
θ∈Θ

∫ 1

0

(
σ2(t)− σ2(t, θ)

)2
f(t)dt.(2.13)

Throughout this paper it is assumed that θ0 exists, is unique and an interior point of the compact
set Θ. We also assume that all partial derivatives up to order three of σ2(t, θ) with respect to the
components of θ exist and are continuous in t and θ. We now define for t ∈ [0, 1] the stochastic
process

Ŝ∗t =
1

n− r

n∑
i=r+1

1{ti≤t}R
∗2
i − 1

n

n∑
i=1

1{ti≤t}σ
2(ti, θ̂

∗).(2.14)

It is heuristically clear that Ŝ∗t is an estimate of the (deterministic) process

St =

∫ t

0

(
σ2(u)− σ2(u, θ)

)
f(u)du ,(2.15)

which vanishes (a.e.) for all t ∈ [0, 1] if and only if the null hypothesis (1.2) is valid. Consequently,
the hypothesis can be rejected for large values of the Cramér-von-Mises or Kolmogorov-Smirnov
type statistics

C∗
n = n

∫ 1

0

|Ŝ∗t |2Fn(dt), K∗
n =

√
n sup

t∈[0,1]

|Ŝ∗t |.(2.16)

The asymptotic properties of these statistics will be discussed in Section 3.
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Our second method for constructing test statistics for the hypothesis (1.2) in the partial linear
regression model is based on the observation that

Y̌i := Yi+1 − Yi ≈ (xT
i+1 − xT

i )β + ε̌i,(2.17)

where ε̌i = σ(ti+1)εi+1 − σ(ti)εi, and the approximation is motivated by the Hölder continuity of
the function m. We introduce the notation x̌i = xi+1 − xi (i = 1, . . . , n− 1), Y̌ = (Y̌1, . . . , Y̌n−1)

T ,
X̌ = (x̌1, . . . , x̌n−1)

T , then the estimate

β̌n = (X̌T X̌)−1X̌T Y̌(2.18)

is
√

n consistent, if the limit

lim
n→∞

1

n
X̌T X̌(2.19)

exists and is non-singular. In the same way as in the previous paragraph we now define pseudo
residuals as

R∗∗
j =

r∑
i=0

diY
∗∗
j−i, j = r + 1, . . . , n,(2.20)

where

Y ∗∗
i = Yi − xT

i β̌n, i = 1, . . . , n.(2.21)

This yields to the alternative stochastic process given by

Ŝ∗∗t =
1

n− r

n∑
j=r+1

1{tj,n≤t}R
∗∗2
j − 1

n

n∑
i=1

1{ti≤t}σ
2(ti, θ̂

∗∗),(2.22)

t ∈ [0, 1], where the value θ̂∗∗ is given by

θ̂∗∗ = arg min
θ∈Θ

n∑
i=r+1

(R∗∗2
i − σ2(ti, θ))

2.(2.23)

Again, by
√

n-consistency of the estimate β̌n, it is intuitively clear that {Ŝ∗∗t }t∈[0,1] is a consistent
estimate of the stochastic process {St}t∈[0,1] defined in (2.1). The asymptotic properties of the

processes {Ŝ∗t }t∈[0,1] and {Ŝ∗∗t }t∈[0,1] will be investigated in the following section.

3 Asymptotic properties

In this section we present several results on the weak convergence of the stochastic processes
{Ŝ∗t }t∈[0,1] and {Ŝ∗∗t }t∈[0,1] in the partial linear regression model and in several extensions of this
model.
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3.1 The partial linear regression model with fixed predictors

Our first result specifies the asymptotic properties in the situation described in Section 2. Before
we give the precise result, we note that by the assumptions made in Section 2 we have

0 =
∂

∂θj

∫ 1

0

(
σ2(x)− σ2(x, θ)

)2
f(x)dx

∣∣∣
θ=θ0

= −2

∫ 1

0

σ2
j (x)

(
σ2(x)− σ2(x, θ0)

)
f(x)dx,(3.1)

where

σ2
j (u) =

∂

∂θj

σ2(u, θ)
∣∣∣
θ=θ0

, j = 1, . . . , d,(3.2)

denote the partial derivatives of the variance function with respect to the parameters (at the point
θ0).

Theorem 3.1. Assume that the assumptions (2.1) - (2.3), (2.6) or (2.19) are satisfied, and
define the process {Ŝt}t∈[0,1] either as {Ŝ∗t }t∈[0,1] [see (2.14)] or as {Ŝ∗∗t }t∈[0,1] [see (2.22)], then the

stochastic process {√n(Ŝt − St)}t∈[0,1] converges weakly in D[0, 1] to a centered Gaussian process
G with covariance kernel

k(t1, t2) = (0, 1)V2Σt1,t2V
T
2 (1, 0)T(3.3)

where the matrices Σt1,t2 ∈ R(d+2)×(d+2) and V2 ∈ R2×(d+2) are defined by

Σt1,t2 =




v11 v12 w11 · · · w1d

v21 v22 w21 · · · w2d

w11 w21 z11 · · · z1d

...
...

...
...

w1d w2d zd1 · · · zdd




,(3.4)

V2 = (I2 | U), U = −(BT
t1
A−1, BT

t2
A−1)T ,(3.5)

A = (aij)1≤i,j≤d, BT
t = (B1

t , . . . , B
d
t )(3.6)

and

Bi
t =

∫ t

0

σ2
i (s)f(s)ds, 1 ≤ i ≤ d

aij =

∫ 1

0

σ2
i (s)σ

2
j (s)f(s)ds, 1 ≤ i, j ≤ d

vij =

∫ 1

0

τr(s)σ
4(s)1[0,ti∧tj)(s)f(s)ds, 1 ≤ i, j ≤ 2

wij =

∫ 1

0

τr(s)σ
4(s)σ2

j (s)1[0,ti)(s)f(s)ds, 1 ≤ i ≤ 2, 1 ≤ j ≤ d

zij =

∫ 1

0

τr(s)σ
4(s)σ2

i (s)σ
2
j (s)f(s)ds, 1 ≤ i, j ≤ d

τr(s) = m4(s)− 1 + 4δr, δr =
r∑

m=1

(
r−m∑
j=0

djdj+m

)2

.
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We note that the processes Ŝ∗t and Ŝ∗∗t exhibit the same asymptotic behaviour as the corresponding
process considered by Dette and Hetzler (2006) in the classical nonparametric regression model.
Consequently, we obtain from Corollary 2.7 in this reference:

Corollary 3.2. Assume that the hypothesis of homoscedasticity H0 : σ2(t) = θ1 has to be tested
(i.e. d = 1, σ2

1(t) = 1), that the assumptions of Theorem 3.1 are satisfied and that additionally
m4(t) ≡ m4 is constant. Let {Ŝt}t∈[0,1] denote either the process {Ŝ∗t }t∈[0,1] defined in (2.14) or the

process {Ŝ∗∗t }t∈[0,1] defined in (2.22), then under the null hypothesis of homoscedasticity the process

{√n(Ŝt − St)}t∈[0,1] converges weakly in D[0, 1] to a scaled Brownian bridge in time F, where F is
the distribution function of the design density, i.e.

{√n(Ŝt − St)}t∈[0,1] ⇒
√

(m4 − 1 + 4δr)θ2
1{B ◦ F}t∈[0,1].

Remark 3.3. The test based on the process {√n(Ŝt − St)}t∈[0,1], with Ŝt either Ŝ∗t or Ŝ∗∗t , can
detect alternatives of the form

σ2(t) = σ2(t, θ0) + n−1/2h(t),

whenever

h /∈ span

{
∂

∂θ1

σ2(·, θ)
∣∣∣
θ=θ0

, . . . ,
∂

∂θd

σ2(·, θ)
∣∣∣
θ=θ0

}
.(3.7)

Here h : [0, 1] → R denotes a fixed function, such that the variance function σ2(t) is nonnegative for
all t ∈ [0, 1]. Condition (3.7) results from the weak convergence of the process {√n(Ŝt − St)}t∈[0,1]

to the process

{
G(t) +

∫ t

0

(
h(x)−

d∑
j=1

ϕj
∂

∂θj

σ2(x, θ)
∣∣∣
θ=θ0

)
f(x)dx

}

t∈[0,1]

,

where {G(t)}t∈[0,1] denotes the limiting process defined in Theorem 3.1 and the coefficients ϕj are
defined by

(ϕ1, . . . , ϕd)
T = arg min

φ∈Rd

∫ 1

0

(
h(x)−

d∑
j=1

φj
∂

∂θj

σ2(x, θ)
∣∣∣
θ=θ0

)2

f(x)dx.

3.2 Random predictors

As observed in Dette and Munk (1998b) the limit distribution of test statistics for goodness of fit
tests in nonparametric regression models may be different for fixed and random predictors. For
this reason we demonstrate in this subsection the effect of random predictors on the asymptotic
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properties of the stochastic processes {Ŝ∗t }t∈[0,1] and {Ŝ∗∗t }t∈[0,1]. We have to distinguish several
cases, corresponding to random and nonrandom xi and ti. We concentrate on the case, where
the points ti are random and xi are fixed design points. The other cases are briefly discussed in
Remark 3.6.
To be precise we consider the partial linear regression model

Yi = xT
i β + m(Ti) + σ(Ti)εi, i = 1, . . . , n,(3.8)

where x1, . . . , xn are fixed explanatory variables satisfying assumption (2.2) and T1, . . . , Tn are i.i.d.
with positive density f on the interval [0, 1]. We denote by mj(t) = E[εj|T = t] the jth conditional
moment of the errors and assume that m6(t) is bounded by some constant, say m6. We consider
the processes {Ŝ∗t }t∈[0,1] and {Ŝ∗∗t }t∈[0,1] defined in Section 2 and 3 where the fixed design points ti
have been replaced by the random variables T(i), and T(1) ≤ . . . ≤ T(n) denotes the order statistic
of T1, . . . , Tn. The pseudo residuals are defined by

R̂j =
r∑

i=0

diŶAj−i
, j = r + 1, . . . , n,(3.9)

with A1, . . . , An denoting the antiranks of T1, . . . , Tn and Ŷj is either Y ∗
j or Y ∗∗

j corresponding to
the two cases considered in Section 2.
The following result shows that in the case of the random design the stochastic processes {Ŝ∗t }t∈[0,1]

and {Ŝ∗∗t }t∈[0,1] have a different asymptotic behaviour. The proof follows from the fact that the
random design assumption regarding the explanatory variables T1, . . . , Tn does not change the
asymptotic properties of the estimates β̂n and β̌n defined in Section 2. As a consequence the
same arguments as given in Section 3.1 show that the asymptotic behaviour of the processes is
the same as that of the corresponding processes obtained in the nonparametric regression model
Yi = m(Ti) + σ(Ti)εi ,which was established in Dette und Hetzler (2006).

Theorem 3.4. Consider the partial linear regression model (3.8), assume that the assumptions
(2.1) - (2.3), (2.6) or (2.19) are satisfied, and define the process Ŝt either as Ŝ∗t or as Ŝ∗∗t (with
the obvious modification for the random design assumption), then the stochastic process {√n(Ŝt−
St)}t∈[0,1] converges weakly in D[0, 1] to a centered Gaussian process G with covariance kernel
k̄t1,t2 = (0, 1)V2Σ̄t1,t2V

T
2 (1, 0)T ∈ R2×2, where Σ̄t1,t2 = Σt1,t2 + Φt1,t2 , the matrix Σt1,t2 is given in

(3.4),

Φt1,t2 =




v̄11 v̄12 w̄11 · · · w̄1d

v̄21 v̄22 w̄21 · · · w̄2d

w̄11 w̄21 z̄11 · · · z̄1d

...
...

...
. . .

...

w̄1d w̄1d z̄d1 · · · z̄dd.




(3.10)

and the elements of the matrix Φt1,t2 are defined by

v̄ij =

∫ ti∧tj

0

σ4 (s) f (s) ds−
∫ ti

0

σ2 (s) f (s) ds

∫ tj

0

σ2 (s) f (s) ds,(3.11)
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w̄ij =

∫ ti

0

σ4 (s) σ2
j (s) f (s) ds−

∫ ti

0

σ2 (s) f (s) ds

∫ 1

0

σ2 (s) σ2
j (s) f (s) ds,

z̄ij =

∫ 1

0

σ4 (s) σ2
i (s) σ2

j (s) f (s) ds−
∫ 1

0

σ2 (s) σ2
i (s) f (s) ds

∫ 1

0

σ2 (s) σ2
j (s) f (s) ds.

Note that it follows from Theorem 3.1 and 3.4 that the weak limit of the process {Ŝt}t∈[0,1] is
different for the random and fixed design assumption for the explanatory variables ti, which was
also observed by Dette and Munk (1998b), who considered an L2-type test for the parametric
form of the regression function. However, in the case considered by these authors there is no
difference between the two cases in the limit distribution under the null hypothesis. Only under
the fixed alternative different distributions are observable. For the processes considered here the
limit distributions are even different under the null hypothesis. Consider for example the problem
of testing for homoscedasticity H0 : σ2(t) = θ1. For the fixed design the limit distribution is
specified in Corollary 3.2, while Theorem 3.4 gives the following result for random predictors.

Corollary 3.5. Assume that the hypothesis of homoscedasticity H0 : σ2(t) = θ1 has to be tested
(i.e. d = 1, σ2

1(t) = 1), that the assumptions of Theorem 3.4. are satisfied and that additionally
m4(t) ≡ m4 is constant. Let {Ŝt}t∈[0,1] denote either the process {Ŝ∗t }t∈[0,1] defined in (2.14)

or the process {Ŝ∗∗t }t∈[0,1] defined in (2.22) (with the obvious modification for the random design

assumption), then under the null hypothesis of homoscedasticity the process {√n(Ŝt − St)}t∈[0,1]

converges weakly in D[0, 1] to a scaled Brownian bridge in time F, where F is the distribution
function of the design density, i.e.

{√n(Ŝt − St)}t∈[0,1] ⇒
√

(m4 + 4δr)θ2
1{B ◦ F}t∈[0,1].

Remark 3.6. The case of random predictors Xi can be considered in a similar manner and it can
be shown that the assumption regarding the randomness of the parametric part has no effect on
the asymptotic distribution of the stochastic processes {Ŝ∗t }t∈[0,1] and {Ŝ∗∗t }t∈[0,1]. More precisely
consider the model

Yi = XT
i β + m(Ti) + σ(Ti)εi, i = 1, . . . , n,

where Ti, . . . , Tn are i.i.d. with positive density f on the interval [0, 1] and Xi, . . . , Xn are i.i.d with
density g having compact support such that the analogs of (2.6) and (2.19) hold in probability. In
this case Theorem 3.4 remains valid without any changes. Similarly, if the Xi are random variables
but the Ti are fixed design points satisfying (2.1) the corresponding stochastic processes exhibit
exactly the same asymptotic behaviour as described in Theorem 3.1.

4 Finite sample properties

In this section we investigate the finite sample properties of two Cramér-von-Mises tests derived
from the two stochastic processes {S∗n}t∈[0,1] and {S∗∗n }t∈[0,1] and perform a comparison with the
test based on the L2-distance, which has recently been proposed by You and Chen (2005). We
also analyse a data example to illustrate the application of the new procedure.
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4.1 Testing the hypothesis of homoscedasticity

We first concentrate on the problem of testing for homoscedasticity, where it follows from Corollary
3.2 and the continuous mapping theorem that under the null hypothesis H0 : σ2(t) = θ1 (for some
θ1 ∈ R+) the Cramér-von-Mises statistic converges weakly, i.e.

Ĉn = n

∫ 1

0

Ŝ2
t dFn(t)

D−→ τrθ
2
1

∫ 1

0

B2(F (t))dF (t) = (m4 − 1 + 4δr)θ
2
1

∫ 1

0

B2(t)dt,

where Ĉn is either the statistic Ĉ∗
n or Ĉ∗∗

n corresponding to the cases Ŝt = Ŝ∗t or Ŝt = Ŝ∗∗t ,
respectively. Consequently the hypothesis of homoscedasticity is rejected if

Ĉn ≥ ω1−α(m̂4 − 1 + 4δr)θ̂
2.

Here ω1−α is the (1 − α) quantile of the distribution of the random variable
∫ 1

0
B2(t)dt and θ̂ is

either θ̂∗ or θ̂∗∗ corresponding to the least squares estimate

θ̂ = arg min
θ∈Θ

n∑
i=r+1

(
R̂2

i − σ2 (ti, θ)
)2

obtained from the pseudo residuals R̂i = R∗
i or R̂i = R∗∗

i , respectively. The estimate m̂4 for the
fourth moment depends on the used difference sequence and in order to reduce the bias we used
r = 2 and the sequence

d0 = d2 = 1/
√

6, d1 = −2/
√

6(4.1)

[see Gasser et al. (1986) or Dette, Munk and Wagner (1998)]. For this sequence a consistent
estimate of m4 is given by

m̂4 =

(
1

18(n− 2)

n∑
j=3

R̂4
j − 3

1

36(n− 5)

n−3∑

k=3

R̂2
kR̂

2
k+3

)(
1

6(n− 2)

n∑
j=3

R̂2
j

)−2

,(4.2)

which can be proved by similar arguments as in Dette and Munk (1998a).
The design considered in our study is a uniform design on the interval [0, 1] given by ti = (i−0.5)/n,
i = 1, . . . , n and two models are investigated. The first model is given by

Yi = 3.5xi + cos(2πti) + σ(ti)εi with xi = 5t2i + 0.5ηi,(4.3)

while the second model is defined by

Yi = xi + ti/(t
2
i + 1) + σ(ti)εi with xi = t3i (1− ti)

3 +
√

0.1ηi,(4.4)

where in all models the random variable ηi are i.i.d. ∼ U(−√3,
√

3) and the errors εi are also i.i.d.
∼ U(−√3,

√
3). For the variance function three cases are considered, namely

(I) σ(t) = σ exp(ct)

(II) σ(t) = σ [1 + c sin(10t)]2(4.5)

(III) σ(t) = σ (1 + ct)2

10



where the choice c = 0 always corresponds to the null hypothesis of homoscedasticity and σ = 0.5
[see Dette and Munk (1998a)]. For the calculation of the statistics Ĉ∗

n we use Speckman’s (1988)
estimate with local linear weights, which requires the specification of a bandwidth and a kernel
K. For the latter we used the Epanechnikov kernel, while the bandwidth was chosen according to
the rule of Fan and Gijbels (1995). In Table 4.1 and 4.2 we display the corresponding rejection
probabilities for sample size n = 50, 100 and 200 based on 1000 simulation runs. The corresponding
results for the Cramér-von-Mises test obtained from the process {Ŝ∗∗i }t∈[0,1] are presented in Table
4.3 and 4.4 corresponding to example (4.3) and (4.4), respectively. A comparison of the tests based
on Ĉ∗

n and Ĉ∗∗
n shows that there are only minor differences between the two tests. For sample size

n = 50 the test based on the statistic Ĉ∗∗
n yields to a better approximation of the nominal level,

while usually the test based on the statistic Ĉ∗
n yields slightly larger rejection probabilities under

the alternative.
The results are also directly comparable with simulated rejection probabilities in You and Chen
(2005) [see Table 1 and 2 in this reference]. We observe that for the variance functions (I) and
(III) in (4.5) the new tests yield substantially larger rejection probabilities. However, for the
variance function (II) the test proposed by You and Chen (2005) is more powerful. Note that
on a first glance this contradicts asymptotic theory because the test of You and Chen can only
detect local alternatives converging to the null hypothesis at a rate n−1/4, while the rate for the
new procedures is n−1/2. The reason for the difference between the asymptotic theory and the
empirical results for small sample sizes in model (II) can be explained by the specific form of the

function St =
∫ t

0
(σ2(x)− θ0)dx =

∫ t

0
σ2(x)dx− t

∫ 1

0
σ2(x)dx which has a maximal absolute value of

0.0924102 in the case c = 0.5 and 0.283507 in the case c = 1. Therefore it is difficult to distinguish
these functions from the line S̄t ≡ 0 and the asymptotic advantages of the new tests will only
become visible for very large sample sizes. For example, in model (4.4) with variance structure
(II) and n = 1500 observations the rejection probabilities of the test based on the statistic Ĉ∗

n for
c = 0.1 are 0.525, 0.750 and 0.918, while they are 0.441, 0.532 and 0.647 for the test proposed by
You and Chen (2005), which reflect the asymptotic superiority of the new procedure with respect
to Pitman alternatives.

4.2 Bootstrap and testing for a parametric hypothesis

The purpose of this paragraph is twofold. First we explain how the bootstrap can be used in
order to improve the finite sample properties of the test procedure. Secondly we investigate the
performance of the new procedure for testing for the parametric form of the variance function.
For the sake of brevity we restrict ourselves to the process {Ŝ∗t }t∈[0,1]. For the application of the
bootstrap we calculated the residuals

ε̂i =
(Yi − xT

i β̂n − m̂(ti))

σ̂(ti)
, i = 1, . . . , n.(4.6)

Here β̂n is the estimate of Speckman (1988) (with local linear weights) and m̂(t) and σ̂2(t) are
nonparametric estimates of the variance function defined by

m̂(ti) =
n∑

j=1

Wj(ti, h)(Yj − xjβ̂n),

11



n = 50 n = 100 n = 200

c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.053 0.080 0.128 0.029 0.044 0.090 0.029 0.053 0.102

I 0.5 0.172 0.261 0.372 0.312 0.418 0.553 0.562 0.666 0.760

1 0.430 0.572 0.720 0.795 0.864 0.928 0.983 0.995 0.997

0 0.042 0.066 0.120 0.027 0.050 0.106 0.018 0.036 0.086

II 0.5 0.140 0.198 0.277 0.173 0.268 0.441 0.466 0.658 0.860

1 0.149 0.198 0.270 0.253 0.354 0.523 0.585 0.766 0.923

0 0.046 0.070 0.127 0.035 0.063 0.103 0.033 0.062 0.115

III 0.5 0.296 0.409 0.568 0.591 0.711 0.831 0.900 0.935 0.970

1 0.574 0.719 0.839 0.929 0.968 0.989 1.000 1.000 1.000

Table 4.1: Rejection probabilities of the test (4.1) with Ĉn = Ĉ∗
n in model (4.3) with a difference

sequence of order r = 2. The null hypothesis of homoscedasticity corresponds to the case c = 0.

σ̂2(ti) =
n∑

j=1

Wj(ti, h)(Yj − xjβ̂n − m̂(tj))
2,

where the weights Wj(ti, h) are given in (2.5). The bandwidth h has again been chosen according

to the rule of Fan and Gijbels (1995). If F̂ε̂ denotes the empirical distribution function of the
residuals ε̂i we generated i.i.d. data ε̃1, . . . , ε̃n ∼ F̂ε̂ and the bootstrap sample

Ỹi = m̂(ti) + σ(ti, θ̂
∗)ε̃i , i = 1, . . . , n.

where θ̂∗ is defined in (2.12). Finally, the corresponding Cramér-von-Mises statistic, say Ĉ∗
n,

is calculated from the bootstrap data. If B bootstrap replications have been performed and
C̃

(1)
n < . . . < C̃

(B)
n denote the order statistics of the calculated bootstrap sample, the null hypothesis

is rejected if
Ĉ∗

n > C̃(bB(1−α)c)
n .(4.7)

B = 100 bootstrap replications were performed to calculate the rejection probabilities and 1000
simulation runs were used for each scenario. In Table 4.5 we display the rejection probabilities of
this bootstrap procedure for the problem of testing for homoscedasticity in model (4.3). The results
are comparable with Table 4.1. It is remarkable that by the bootstrap procedure the approximation
of the nominal level is improved substantially, even for sample size n = 50. Moreover, for the
variance function (II) the bootstrap procedure yields distinctly larger rejection probabilities under
the alternative. A comparison with the results of You and Chen (2005) shows that the bootstrap
version of the new tests performs better than the test based on the L2-distance in nearly all cases.
Only for the variance functions (II) the test of You and Chen (2005) yields a substantially larger
power, provided that the sample size is small.
Finally, we consider the problem of testing a nonlinear parametric structure for the variance func-
tion, that is

H0 : σ2(t) = exp(θt) ,(4.8)
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n = 50 n = 100 n = 200

r=2 c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.042 0.068 0.118 0.036 0.066 0.122 0.027 0.053 0.105

I 0.5 0.165 0.238 0.356 0.273 0.365 0.503 0.542 0.640 0.745

1 0.413 0.529 0.696 0.785 0.875 0.942 0.990 0.996 0.999

0 0.043 0.069 0.121 0.035 0.055 0.111 0.022 0.051 0.111

II 0.5 0.137 0.193 0.273 0.217 0.307 0.465 0.449 0.649 0.876

1 0.114 0.172 0.272 0.256 0.382 0.547 0.563 0.754 0.925

0 0.054 0.078 0.130 0.031 0.055 0.102 0.029 0.043 0.086

III 0.5 0.310 0.418 0.556 0.602 0.721 0.827 0.931 0.957 0.985

1 0.577 0.721 0.856 0.931 0.972 0.989 1.000 1.000 1.000

Table 4.2: Rejection probabilities of the test (4.1) with Ĉn = Ĉ∗
n in model (4.4) with a difference

sequence of order r = 2. The null hypothesis of homoscedasticity corresponds to the case c = 0.

n = 50 n = 100 n = 200

c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.036 0.066 0.123 0.025 0.042 0.093 0.026 0.051 0.092

I 0.5 0.169 0.245 0.349 0.285 0.284 0.508 0.558 0.675 0.773

1 0.421 0.531 0.686 0.783 0.862 0.932 0.985 0.992 0.999

0 0.036 0.063 0.108 0.024 0.049 0.094 0.036 0.061 0.117

II 0.5 0.108 0.151 0.249 0.191 0.285 0.448 0.429 0.628 0.850

1 0.124 0.183 0.282 0.245 0.345 0.541 0.540 0.726 0.907

0 0.036 0.060 0.111 0.024 0.057 0.116 0.031 0.055 0.101

III 0.5 0.292 0.409 0.548 0.599 0.718 0.829 0.905 0.958 0.977

1 0.558 0.724 0.845 0.936 0.972 0.986 0.999 1.000 1.000

Table 4.3: Rejection probabilities of the test (4.1) with Ĉn = Ĉ∗∗
n in model (4.3) with a difference

sequence of order r = 2. The null hypothesis of homoscedasticity corresponds to the case c = 0.

13



n = 50 n = 100 n = 200

c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.033 0.056 0.099 0.034 0.057 0.106 0.028 0.057 0.101

I 0.5 0.189 0.274 0.393 0.270 0.367 0.486 0.537 0.661 0.767

1 0.427 0.534 0.699 0.735 0.836 0.909 0.981 0.992 1.000

0 0.042 0.062 0.111 0.027 0.057 0.113 0.025 0.053 0.105

II 0.5 0.116 0.178 0.268 0.185 0.295 0.440 0.427 0.629 0.867

1 0.134 0.185 0.300 0.247 0.348 0.508 0.568 0.756 0.914

0 0.048 0.079 0.138 0.035 0.059 0.103 0.028 0.057 0.110

III 0.5 0.288 0.400 0.542 0.569 0.694 0.808 0.903 0.952 0.979

1 0.566 0.698 0.820 0.913 0.956 0.984 1.000 1.000 1.000

Table 4.4: Rejection probabilities of the test (4.1) with Ĉn = Ĉ∗∗
n in model (4.4) with a difference

sequence of order r = 2. The null hypothesis of homoscedasticity corresponds to the case c = 0.

n = 50 n = 100 n = 200

c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.024 0.054 0.106 0.020 0.044 0.103 0.017 0.045 0.094

I 0.5 0.158 0.269 0.376 0.287 0.414 0.545 0.574 0.699 0.812

1 0.512 0.667 0.780 0.812 0.901 0.957 0.994 0.997 1.000

0 0.021 0.057 0.121 0.028 0.053 0.098 0.019 0.055 0.114

II 0.5 0.214 0.324 0.491 0.456 0.655 0.863 0.926 0.994 0.999

1 0.364 0.529 0.731 0.820 0.957 0.993 0.998 1.000 1.000

0 0.017 0.048 0.111 0.021 0.052 0.105 0.030 0.069 0.123

III 0.5 0.353 0.535 0.653 0.633 0.757 0.852 0.920 0.959 0.980

1 0.709 0.819 0.904 0.963 0.989 0.996 1.000 1.000 1.000

Table 4.5: Rejection probabilities of the bootstrap test (4.7) with Ĉn = Ĉ∗
n in model (4.3) with a

difference sequence of order r = 2. The null hypothesis of homoscedasticity corresponds to the case
c = 0.
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where the regression model is given by (4.3) and

σ2(t) = (1 + c sin(2πt)) exp(t),(4.9)

with the case c = 0 corresponding to the null hypothesis. The errors εi are standard normal
distributed and the design is uniform. The corresponding rejection probabilities of the bootstrap
test are depicted in Table 4.6 for a difference sequence of order r = 1 and the second order
sequence defined in (4.1). In most cases we observe a reasonable approximation of the nominal
level for sample sizes larger than 100 and alternatives are detected with rather large power.

n = 50 n = 100 n = 200

c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.054 0.082 0.151 0.038 0.077 0.144 0.020 0.054 0.106

r = 1 0.5 0.255 0.323 0.407 0.333 0.433 0.523 0.481 0.571 0.654

1 0.614 0.675 0.726 0.838 0.884 0.921 0.968 0.977 0.990

0 0.045 0.077 0.139 0.035 0.061 0.136 0.038 0.066 0.120

r = 2 0.5 0.205 0.269 0.336 0.270 0.358 0.430 0.390 0.491 0.595

1 0.520 0.596 0.658 0.718 0.768 0.822 0.924 0.952 0.972

Table 4.6: Rejection probabilities of the bootstrap test (4.7) in model (4.3) with a nonlinear variance
function of the form (4.9) and two difference sequences. The null hypothesis (4.8) corresponds to
the case c = 0.

4.3 Data example

Daniel and Wood (1999) and Bianco et al. (2006) studied a data set of 82 observations obtained
in a process variable study of a refinery unit. The response variable Y , which is depicted in the
upper left panel of Figure 4.1, is the octane number of the final product. The first three covariates
represent the feed compositions and the fourth the logarithm of a combination of process conditions.
For this data we have performed the test for the hypothesis of homoscedasticity, i.e. H0 : σ2(t) = θ,
where we have used Speckman’s estimate (1988) with local linear weights to estimate the parameter
β, which is defined in (2.4). We have used the Epanechnikov kernel with bandwidth h = 0.1, which
was chosen according to the rule of Fan and Gijbels (1995). Daniel and Wood (1999) and Bianco
et al. (2006) both discussed the presence of three observations (75− 77), which extend the range
of the variables Y and x1. The data is depicted in the upper left panel of Figure 4.1. While the
proposed test for homoscedasticity is robust against these three outliers we found that observation
39 has a strong influence on the result of the test. This observation corresponds to an outlier
in the data {Yi − xT

i β̂n}82
i=1 and yields to a very large pseudo residual. Therefore we did not use

this point in our data analysis. The corresponding plots of the residuals with and without the
39th observation are given in the upper right and lower left panel of Figure 4.1, while the process
{Ŝ∗t }t is shown in the lower right panel. The resulting value of the Cramér-von-Mises statistic
Ĉ∗

n is 0.0877812, which yields to a p-value of 0.065. Therefore the test rejects the hypothesis of
homoscedasticity at level 0.1.

15



20 40 60 80

90

92

94

96

98

20 40 60 80

20

40

60

80

20 40 60 80

100.5

101

101.5

102

102.5

103

0.2 0.4 0.6 0.8 1

-0.05

-0.04

-0.03

-0.02

-0.01

Figure 4.1: The refinery data discussed in Daniel and Wood (1999) and Bianco et al. (2006) (left
upper panel), the residuals {Yi − xT

i β̂n}82
i=1 (right upper panel). The left lower panel shows the

corresponding residuals after deleting the 39th observation and the right lower panel the empirical
process {Ŝ∗t }t based on this data.

5 Appendix

5.1 Proof of Theorem 3.1.

The proof of the theorem has to be given separately for the two processes {S∗t }t∈[0,1] and {Ŝ∗∗t }t∈[0,1]

considered in the theorem.

(a) Weak convergence of {√n(Ŝ∗t − St)}t∈[0,1]

Recall the definition of the first term B̂0∗
t := 1

n−r

∑n
i=r+1 1{ti≤t}R∗2

i in (2.14). At the end of this
proof we will show the approximation

Dn := B̂0∗
t − B̃0

t =
1

n− r

n∑
i=r+1

1{ti≤t}(R
∗2
i − L2

i ) = op(n
−1/2),(5.1)
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where

B̃0
t =

1

n− r

n∑
i=r+1

1{ti≤t}L
2
i ,(5.2)

Lj =
r∑

i=0

diσ(tj−i)εj−i, j = r + 1, . . . , n.(5.3)

This result and a Taylor expansion now yield

Ŝ∗t =
1

n− r

n∑
i=r+1

1{ti≤t}

(
Hi − ∂

∂θ
σ2(ti, θ)

∣∣∣
θ=θ0

(θ̂∗ − θ0)

)
+ op(

1√
n

) ,

where the random variables Hj are defined by

Hj =

(
r∑

i=0

diσ(tj−n)εj−n

)2

− σ2(tj, θ0), j = r + 1, . . . , n.(5.4)

The Hölder continuity of the function σ therefore implies

√
n(Ŝ∗t − St) =

√
n

n− r

n∑
i=r+1

1{ti≤t}

(
Zi −

d∑
j=1

σ2
j (ti)ϑ

∗
j

)
+ op(1) ,(5.5)

where the random variables Zi are defined by Zi = Hi −E[Hi] and ϑ∗j denotes the jth component

of the vector θ̂∗− θ0. Recall the definition (3.2) and define Σ = (σ2
j (ti))

j=1,...,d
i=1,...,n−r ∈ R(n−r)×d, then it

follows from standard results about nonlinear regression [see Seber and Wild (1989), p. 572-574]
that

θ̂∗ − θ0 = (ΣT Σ)−1ΣT R∗ − θ0 + Op(
1

n
) = (ΣT Σ)−1ΣT H + Op(

1

nγ
),(5.6)

where R∗ = ((R∗
r+1)

2, . . . , (R∗
n)2)T , H = (Hr+1, . . . , Hn)T and we use the fact that θ0 corresponds

to the best approximation of the function σ2(·) by functions of the form σ2(·, θ); θ ∈ Θ. Observing
(3.1) and the definition of the matrix Σ it therefore follows that

1

n
ΣT Σ− Â = O(n−1),

1

n
ΣT H − 1

n

(
n∑

i=r+1

σ2
j (ti) (Hi − E[Hi])

)d

j=1

= Op(n
−1),

where

Â = (âij)1≤i,j≤d, âij =
1

n

n∑

k=1

σ2
i (tk)σ

2
j (tk).
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With the notation Z = (Zr+1, . . . , Zn)T and

B̂t = (B̂1
t , . . . , B̂

d
t ), B̂k

t =
1

n

n∑
j=1

1{tj≤t}σ
2
k(tj),

C̄ = (c̄1, . . . , c̄d)
T , c̄i =

1

n− r

n∑
j=r+1

Zjσ
2
i (tj) and

B̄0
t =

1

n− r

n∑
j=r+1

1{tj≤t}Zj,

we obtain the stochastic expansion
√

n(Ŝ∗t − St) =
√

n(B̄0
t − B̂tÂ

−1C̄) + op(1) .(5.7)

The weak convergence of the stochastic process defined on the right hand side of (5.7) has been
established by Dette and Hetzler (2006) and the assertion of the theorem follows if the estimate
(5.1) can be shown.
For this we introduce the notation

∆mj =
r∑

i=0

dim(tj−i), ∆xj =
r∑

i=0

dix
T
j−i(5.8)

and obtain the decomposition,

R∗
j = Lj + ∆mj + ∆xj(β − β̂n),

which yields
Dn = Dn1 + . . . + Dn5(5.9)

where

Dn1 =
2

n− r

n∑
j=r+1

1{tj≤t}Lj∆mj,(5.10)

Dn2 =
2

n− r

n∑
j=r+1

1{tj≤t}Lj∆xj(β − β̂n),(5.11)

Dn3 =
1

n− r

n∑
j=r+1

1{tj≤t}(∆mj)
2,(5.12)

Dn4 =
2

n− r

n∑
j=r+1

1{tj≤t}∆mj∆xj(β − β̂n),(5.13)

Dn5 =
1

n− r

n∑
j=r+1

1{tj≤t}(∆xj(β − β̂n))2.(5.14)

The Hölder continuity of the regression function implies

Dn3 =
1

n− r

n∑
j=r+1

1{tj≤t}(∆mj)
2 ≤ (maxj ∆mj)

2

n− r

n∑
j=r+1

1{tj≤t} = o(n−1/2).(5.15)

18



Because β̂n is a
√

n-consistent estimate of the parameter β we have from the Cauchy-Schwarz
inequality

Dn5 =
1

n− r

n∑
j=r+1

1{tj≤t}
( r∑

i=0

dix
T
j−i(β − β̂n)

)2

(5.16)

≤ 1

n− r

n∑
j=r+1

1{tj≤t}
( r∑

i=0

d2
i ·

r∑
i=0

(xT
j−i(β − β̂n))2

)

≤ 1

n− r

n∑
j=r+1

1{tj≤t}
( r∑

i=0

‖ xj−i ‖2‖ β − β̂n ‖2
)

= op(n
−1/2),

and by a similar argument

Dn4 =
2

n− r

n∑
j=r+1

1{tj≤t}

(
r∑

i=0

dix
T
j−i(β − β̂n)

) (
r∑

i=0

dim(tj−i)

)
= op(n

−1/2).(5.17)

For a treatment of the term Dn1 we note that a standard calculation (using again the Hölder
continuity of the regression function) shows that Var (Dn1) = o(n−1), and Markov’s inequality
gives

Dn1 = op(n
−1/2).(5.18)

The term Dn2 is treated exactly in the same way and it follows from (5.15) - (5.17) that Dn =
op(n

−1/2), which establishes (5.1) and completes the proof of Theorem 3.1 in the case Ŝt = Ŝ∗t .

(b) Weak convergence of {√n(Ŝ∗∗t − St)}t∈[0,1]}

We begin the proof showing that the statistic β̌n is in fact a
√

n-consistent estimate for the
parameter β. For this we note that the Hölder continuity of the regression function yields

E[β̌n] = β + O(n−1).

Similarly, it follows from the fact that the random variables ε̌i are 1-dependent and assumption
(2.19) that

Var(β̌n) = O(n−1),

which implies β̌n − β = Op(n
−1/2) by Markov’s inequality. For the remaining part of the proof we

establish the estimate

Ŝ∗∗t =
1

n− r

n∑
i=r+1

1{ti≤t}

(
Hi − ∂

∂θ
σ2(ti, θ)

∣∣∣
θ=θ0

(θ̂∗∗ − θ0)

)
+ op(

1√
n

).(5.19)

The assertion then follows along the lines of the proof given in part (a). For a proof of (5.19) we
note that it is again sufficient to show

Ďn :=
1

n− r

n∑
j=r+1

1{tj≤t}(R
∗∗2
j − L2

j) = op(n
−1/2).(5.20)
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With the notation (5.8) we obtain the decomposition

R∗∗
j = Lj + ∆mj + ∆xj(β − β̌n).(5.21)

This yields the representation

Ďn := Dn1 + Ďn2 + Dn3 + Ďn4 + Ďn5,(5.22)

where Ďn2, Ďn4 and Ďn5 are defined as Dn2, Dn4 and Dn5 in (5.11), (5.13) and (5.14) with β̂n

replacing β̌n, and Dn1 and Dn3 are given in (5.10) and (5.12).
Using the Cauchy-Schwarz inequality, the boundedness of the vectors xj and the

√
n-consistency

of the estimate of the parameter yields

Ďn5 =
1

n− r

n∑
j=r+1

1{tj≤t}

(
r∑

i=0

dix
T
j−i(β − β̌n)

)2

(5.23)

≤ 1

n− r

n∑
j=r+1

1{tj≤t}

(
r∑

i=0

d2
i ·

r∑
i=0

(xT
j−i(β − β̌n))2

)

≤ 1

n− r

n∑
j=r+1

1{tj≤t}

(
r∑

i=0

‖ xj−i ‖2‖ β − β̌n ‖2

)
= op(n

−1/2).

By a similar argument it follows from the Hölder continuity of the regression function that

Ďn4 =
2

n− r

n∑
j=r+1

1{tj≤t}∆mj∆xj(β − β̌n) = op(n
−1/2).(5.24)

Markov’s inequality gives

Ďn2 =
1

n− r

n∑
j=r+1

1{tj≤t}2Lj∆xj(β − β̌n) = op(n
−1/2).(5.25)

and it follows from (5.15), (5.18) and (5.23)-(5.25) that Ďn = op(n
−1/2). This establishes (5.20)

and completes the proof of Theorem 3.1 in the case Ŝt = Ŝ∗∗t .
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