ECONSTOR

A Service of 2Bய

Rebitschek, Felix G.; Gigerenzer, Gerd; Wagner, Gert G.

Article - Published Version
 People underestimate the errors made by algorithms for credit scoring and recidivism prediction but accept even fewer errors

Scientific Reports

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

[^0]This Version is available at:
https://hdl.handle.net/10419/250060

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Supplementary Information for

People underestimate the errors made by algorithms for credit scoring and recidivism prediction but accept even fewer errors

Felix G. Rebitschek ${ }^{\mathrm{a}, \mathrm{b}, 1}$
Gerd Gigerenzer ${ }^{\text {a, }}$ b
Gert G. Wagnera,b,c
aHarding Center for Risk Literacy, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam
${ }^{\text {b }}$ Max Planck Institute for Human Development, Berlin
${ }^{\text {c German Socio-Economic Panel Study (SOEP), Berlin }}$
${ }^{1}$ Felix G. Rebitschek, Email: rebitschek@mpib-berlin.mpg.de

This PDF file includes:
Figures S1a-d to S3
Tables S1 to S8

Figures S1a-d: Relationships between sample characteristics and error estimations and acceptance in predicting credit defaulting. Error bars show the standard error of the mean.

Figure S2. Median acceptance of algorithm and expert errors depending on risk preference.
Sample is weighted. Error bars show the standard error of the mean.

Figure S3: The scatterplot shows each respondent's estimates and acceptance of errors. Each point corresponds to one respondent (gray for expert condition, black for the algorithm condition).

The lines show local regressions. The gray shadings show the standard error of the mean.

Table S1. Percentage of respondents who assessed the corresponding system to be error-free in terms of predictions (illusion of certainty).

	N	Algorithms Error-free $[\%]$	N	Experts Error-free $[\%]$
Mistakenly suitable applicant (false positive)	1,380	2.3%	1,318	3.6%
Mistakenly unsuitable applicant (false negative)	1,374	3.1%	1,324	1.5%
Mistakenly not at risk of recidivism (false	1,361	2.6%	1,291	1.6%
negative)				
Mistakenly at risk of recidivism (false positive)	1,348	2.1%	1,275	1.7%
Mistakenly behaving healthily (false positive)	1,333	4.7%	1,298	3.2%
Mistakenly behaving unhealthily (false	1,343	4.6%	1,299	4.3%
negative)		4.0%		
Mistakenly not creditworthy (false positive)	2,733	4.9%		
Mistakenly creditworthy (false negative)	2,728	5.9		

Table S2. Distribution of characteristics according to estimation (respondents grouped by five percent of scale value around the ground truth) and acceptance of credit scoring errors (presented as accuracy; grouped around AUC = .90, distinguishing highly critical respondents and less critical respondents along a lay-comprehensible border [1 error per 10 assignments]).

Occupation status[\%]	Full time employment	35.3	40.4	40.5	<. 001	28.2	40.4	<. 001	
	Part-time employment	11.3	14.4	15.4		11.8	14.1		
	Training/apprenticeship	3.1	2.7	1.7		4.0	2.0		
	Marginally employed	4.8	6.7	5.8		6.0	5.6		
	Partial retirement	0.0	0.4	0.1		0.0	0.0		
	Voluntary service	0.2	0.0	0.0		0.5	0.0		
	Workshop for the disabled	0.4	0.0	0.1		0.0	0.1		
	Not employed (anymore)	45.0	35.4	36.3		49.5	37.6		
Unemployment	Yes	31.5	22.0	24.0	. 001	35.1	25.0	. 001	
phases in the past ten years	No	68.5	78.0	76.0		64.9	75.0		
[\%] ${ }^{2}$ 退									
Body Mass Index (BMI) [M (SD)]		27.1 (10.4)	26.4 (7.5)	25.9 (4.8)	. 005	$\begin{array}{r} 27.7 \\ (16.4) \end{array}$	26.2 (4.9)	. 001	
Self-reported health state [\%] ${ }^{2}$		Very good	10,4	14,0	12,8	<. 001	10,9	12,5	. 001
	Good	35,9	40,2	45,1		32,7	42,4		
	Satisfactory	35,8	30,8	29,4		40,8	30,3		
	Not so good	14,1	12,8	10,5		13,1	12,0		
	Poor	3,8	2,1	2,2		2,5	2,9		
Health insurance	Statutory health insurance	90.5	88.5	84.7	<. 001	94.7	86.5	<. 001	
status [\%] ${ }^{2}$	Private health insurance	9.5	11.5	15.3		5.3	13.5		
Risk preference [M (SD)] from 0 (avoidance) to 10 (preference)		4.6 (2.5)	4.2 (2.2.)	4.5 (2.4)	. 014	4.5 (2.6)	4.4 (2.3)	. 540	
1 Variance analys	s and Chi ${ }^{2}$-tests, respectiv								
2 Subsamples wer	presented with the items								

Table S3. Distribution of characteristics according to estimation (respondents grouped by five percent of scale value around the ground truth) and acceptance of algorithm errors in recidivism prediction (presented as accuracy; grouped around AUC = .90, distinguishing highly critical respondents and less critical respondents along a lay-comprehensible border [1 error per 10

Occupation status[\%]	Full time employment	38.7	29.2	44.1	<. 001	34.0	41.1	<. 001
	Part-time employment	9.3	18.8	12.0		9.3	13.2	
	Training/apprenticeship	4.4	1.8	2.3		5.9	2.4	
	Marginally employed	4.4	5.7	7.7		6.0	6.3	
	Partial retirement	0.2	0.0	0.2		1.6	0.0	
	Voluntary service	0.0	0.0	0.0		0.0	0.0	
	Workshop for the disabled	0.4	0.2	0.0		0.8	0.0	
	Not employed (anymore)	42.7	44.3	33.6		42.5	36.9	
Unemployment	Yes	34.4	23.3	28.3	. 098	40.4	26.3	. 003
phases in past 10 years [\%] ${ }^{2}$	No	65.6	76.7	71.7		59.6	73.7	
Body Mass Index (BMI) [M (SD)]		26.4 (5.0)	27.1 (5.2)	26.1 (6.9)	. 137	26.6 (8.2)	25.9 (5.3)	. 401
Self-reported	Very good	8.6	9.0	15.4	<. 001	10.8	13.2	. 003
health state [\%] ${ }^{2}$	Good	35.0	37.1	42.0		30.5	40.6	
	Satisfactory	40.2	34.5	30.9		47.4	31.3	
	Not so good	12.7	15.8	9.9		9.9	12.3	
	Poor	3.5	3.6	1.8		1.4	2.6	
Health insurance	Statutory health insurance	89.3	87.3	87.7	. 669	90.9	87.8	. 290
status [\%] ${ }^{2}$	Private health insurance	10.7	12.7	12.3		9.1	12.2	
Risk preference [M (SD)] from 0 (avoidance) to 10 (preference)		4.8 (2.5)	4.4 (2.2)	4.4 (2.4)	. 089	4.1 (2.6)	4.5 (2.4)	. 050
1 Variance analys 2 Subsamples we	s and Chi²-tests, respect presented with the item							

Table S4. Overview of domain-specific comparisons of respondents' error estimations and acceptance of algorithms and experts (u-Tests, adjusted alpha/(k-1 = .01); effect size is Cohen's d).

| | Estimated errors of algorithms over experts | Accepted errors of algorithms over experts | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | d | p | d | p |
| Mistakenly suitable applicant (false positive) | - | .013 | -0.01 | $<.001$ |
| Mistakenly unsuitable applicant (false negative) | -0.11 | -.001 | -0.08 | $<.001$ |
| Mistakenly predicted recidivism (false positive) | - | .766 | -0.01 | $<.001$ |
| Mistakenly predicted no recidivism (false negative) | - | .107 | - | .017 |
| Mistakenly behaving healthily (false positive) | - | .119 | - | .458 |
| Mistakenly behaving unhealthily (false negative) | 0.09 | $<.001$ | - | .019 |

Table S5. Characteristics of the household sample (unweighted data) and split according to the experimental manipulation (algorithm, expert).

| Characteristic | | All | Algorithm
 condition | Expert condition
 population
 Germany |
| :--- | :--- | ---: | ---: | ---: | ---: |
| | | | | |

Occupation status	Full time employment	32.5	32.6	32.5	32.4
[\%]	Part-time employment	12.2	11.2	13.2	13.1
	Training/apprenticeship	1.7	1.8	1.6	1.6
	Marginally employed	5.5	5.7	5.3	$5.8{ }^{3}$
	Partial retirement	0.2	0.2	0.1	0.3^{4}
	Voluntary service	0.2	0.1	0.2	$0 .{ }^{5}$
	Workshop for the disabled	0.3	0.3	0.3	0.3^{6}
	Not employed (anymore)	47.5	48.1	46.9	46.5
Unemployment	Yes	24.8	25.0	24.7	$20.9{ }^{7}$
phases in past 10 years [\%]*	No	75.2	75.0	75.3	79.1
Body Mass Index (BMI) [M (SD), Median]		26.6 (6.6), 25.7	26.6 (6.8), 25.7	26.6 (6.5), 25.8	
Self-reported health	Very good	9.5	9.9	9.1	-
state [\%]*	Good	38.9	38.1	39.8	
	Satisfactory	33.4	33.9	32.9	
	Not so good	14.4	14.8	14.0	
	Poor	3.7	3.3	4.2	
Health insurance	Statutory health insurance	87.0	87.0	87.0	89.3
status [\%]*	Private health insurance	13.0	13.0	13.0	10.7
Risk preference [M (SD), Median] from 0 (avoidance) to 10 (preference)		4.3 (2.3), 4	4.3 (2.4), 4	4.2 (2.3), 4	-
* Subsamples were presented with the items					
${ }^{1}$ Data source (if not specified else): Federal Statistal Office Germany, Destatis.de					
${ }^{2}$ Data source: Eurostat-Database, https://ec.europa.eu/eurostat/de/					
${ }^{3}$ Data source: Federal Employment Agency					
${ }^{4}$ Data source: German Pension Insurance					
${ }^{5}$ Data source: Federal Office for Family and Civil Society Tasks					
Data source: Employer's Liability Insurance Association for Health Services and Welfare Care, Data from 2017${ }^{7}$ Data from 2014					

Section	Algorithm condition group Expert condition group
Introduction	In the following, we would like to talk about the errors that can happen in the assessment of human behavior. It is important to know: every assessment, every test, can always make two kinds of errors! Take as an example the detectors or scanners in the security area at the airport, which check whether someone is carrying a weapon. Go through them, and then the detector beeps even though you are not carrying anything - then the detector has made an error - it has given a false alarm. The other errors the detector can make would be if a terrorist passes through and there is no beeping despite the weapon. Then the detector would have missed the weapon.
Credit scoring	These two types of errors - false alarm and miss - occur in every assessment, every test. You have probably heard of the Schufa. The Schufa estimates the solvency of all persons in Germany. This helps entrepreneurs and landlords to decide whether someone gets a mobile phone contract, an apartment or a loan, for example.
	Now please imagine a group of 100 people who are actually insolvent: How many of them do you think are mistakenly assessed by the Schufa as being solvent? \qquad person(s)
	What would be acceptable to you: At most, how many of these 100 people could be mistakenly assessed by the Schufa as being solvent? \qquad person(s)
	Now please imagine a group of 100 people who are actually solvent: How many of them do you think are mistakenly assessed by the Schufa as being insolvent? \qquad person(s)
	What would you find acceptable: At most, how many of these 100 people could be mistakenly assessed by the Schufa as insolvent? \qquad person(s)

Employers in Germany obtain information about applicants from various sources in order to make a preliminary selection. There are computer programs that use certain criteria such as grades or work experience to assess whether an applicant is suitable and will be considered.

Now please imagine a group of 100 applicants who are actually unsuitable:
How many of them do you think are mistakenly assessed as suitable by computer programs?

Applicants
What would you personally find acceptable: At most, how many of these 100 applicants could be mistakenly assessed as suitable by computer programs?
\qquad Applicants
Now please imagine a group of 100 applicants who are actually suitable:
How many of them do you think are mistakenly assessed as unsuitable by computer programs?
_Applicants
What would you personally find acceptable: At most, how many of these 100 applicants could be mistakenly assessed as unsuitable by computer programs?
\qquad Applicants

Employers in Germany obtain information about applicants from various sources in order to make a preliminary selection. An expert, e.g. a personnel manager, uses certain criteria such as grades or work experience to assess whether an applicant is suitable and will be considered.

Now please imagine a group of 100 applicants who are actually unsuitable:
How many of them do you think are mistakenly assessed as suitable by a personnel manager?
\qquad Applicants

What would you personally find acceptable: At most, how many of these 100 applicants could be mistakenly assessed as suitable by a personnel manager?
\qquad Applicants
Now please imagine a group of 100 applicants who are actually suitable:
How many of them do you think are mistakenly assessed as unsuitable by a personnel manager?
Applicants
What would you personally find acceptable: At most, how many of these 100 applicants could be mistakenly assessed as unsuitable by a personnel manager?
\qquad Applicants

Recidivism prediction

In the US judiciary, offenders are regularly reviewed for early release. The computer program COMPAS assesses whether an offender will recidivize and commit another crime within the next 2 years.

Now please imagine a group of 100 offenders who are actually at risk of recidivism:
How many of them do you think the computer program mistakenly assesses as not being at risk of recidivism?
\qquad offenders

What would you personally find acceptable: At most, how many of these 100 offenders could be mistakenly assessed as not being at risk of recidivism due to the computer program?
\qquad offenders

Now please imagine a group of 100 offenders who are actually not at risk of recidivism:
How many of them do you think the computer program mistakenly assesses as being at risk of recidivism?
\qquad offenders

What would you personally find acceptable: At most, how many of these 100 offenders could be mistakenly assessed as being at risk of recidivism due to the computer program? offenders

In the US judiciary, offenders are regularly reviewed for early release. An expert, e.g. a legal expert, assesses whether an offender will recidivize and commit another crime within the next 2 years.

Now please imagine a group of 100 offenders who are actually at risk of recidivism:
How many of them do you think the legal expert mistakenly assesses as not being at risk of recidivism?
\qquad offenders
What would you personally find acceptable: At most, how many of these 100 offenders could be mistakenly assessed as not being at risk of recidivism due to the legal expert?
\qquad offenders

Now please imagine a group of 100 offenders who are actually not at risk of recidivism:
How many of them do you think the legal expert mistakenly assesses to be at risk of recidivism?
\qquad offenders
What would you personally find acceptable: At most, how many of these 100 offenders could be mistakenly assessed as being at risk of recidivism due to the legal expert?
\qquad offenders

Health behavior	Private health insurers in Germany can take into account the personal responsibility of their insured customers to decide how much they have to pay. A computer program can assess whether an insured person is behaving in a healthy manner.	Private health insurers in Germany can take into account the personal responsibility of their insured customers to decide how much they have to pay. An expert, e.g. a doctor, can assess whether an insured person is behaving in a healthy manner.
	Now please imagine a group of 100 insured people who actually behave in an unhealthy way: How many of them do you think are mistakenly assessed by a computer program as behaving in a healthy manner? \qquad Insured	Now please imagine a group of 100 insured people who actually behave in an unhealthy way: How many of them do you think are mistakenly assessed by a doctor as behaving in a healthy manner? \qquad Insured
	What would you personally find acceptable: a maximum of how many of these 100 insured persons could be mistakenly assessed by a computer program as behaving in a healthy manner? \qquad Insured	What would you personally find acceptable: a maximum of how many of these 100 insured persons could be mistakenly assessed by a doctor as behaving in a healthy manner? \qquad Insured
	Now please imagine a group of 100 insured people who actually behave in a healthy manner: How many of them do you think are mistakenly assessed by a computer program as behaving in an unhealthy manner? \qquad Insured	Now please imagine a group of 100 insured people who are actually behave in a healthy manner: How many of them do you think are mistakenly assessed by a doctor as behaving in an unhealthy manner? \qquad Insured
	What would you personally find acceptable: a maximum of how many of these 100 insured persons could be mistakenly assessed by a computer program as behaving in an unhealthy manner? Insured	What would you personally find acceptable: a maximum of how many of these 100 insured persons could be mistakenly assessed by a doctor as behaving in an unhealthy manner? \qquad Insured

Table S7. Distribution of characteristics according to estimation (respondents grouped by quantiles) and acceptance of algorithm errors in predicting suitability of an applicant (presented as accuracy; grouped around AUC $=.90$, distinguishing highly critical respondents and less critical respondents along a lay-comprehensible border [1 error per 10 assignments]).

Suitability prediction of applicants		Quantile ${ }_{3}$: Est.	Quantile67-	Quantile 100 -	p^{1}	Accepting	Accepting	p^{1}
Characteristic		$\mathrm{n}=472$	$\mathrm{n}=420$	$\mathrm{n}=404$		$\mathrm{n}=212$	$\mathrm{n}=1,097$	
Gender [\%]	Female	52.0	53.2	50.2	. 692	50.2	53.1	. 453
	Male	48.0	46.8	49.8		49.8	46.9	
Age [M (SD)] in years		49.1 (17.9)	49.3 (17.9)	48.0 (18.7)	. 549	47.8 (18.9)	49.3	. 260
							(18.0)	
Household net		2,835 (1,641)	3,176 (1,900)	3,038 (1,882)	. 086	2,501	3,105	<. 001
income [M (SD)] in EUR						$(1,330)$	$(1,872)$	
Education	Sec. Gen. School Leaving Certificate	25.3	16.2	20.0	. 025	23.3	20.2	<. 001
Diplomas/degrees	Intermediate School Degree	32.3	28.5	25.8		31.7	28.5	
from	Leaving Certificate From Voc HS	5.9	9.1	7.6		6.6	7.6	
secondary/tertiary	College Entrance Exam	24.9	29.4	31.8		17.2	30.4	
school [\%]	Other	8.9	12.4	10.9		13.0	10.6	
	Dropout, No School Certificate	1.7	2.5	2.1		6.2	1.3	
	Currently In School	1.1	1.9	1.8		2.0	1.4	
Vocational degree attained [\%]	Apprenticeship	40.6	34.4	40.5	. 022	34.0	39.5	. 131
	Vocational School	9.7	8.1	8.2		10.3	8.9	
	Health Care School	0.1	0.0	0.0		0.1	0.0	
	Technical School	4.1	8.3	3.4		0.0	4.9	
	Civil Servant Training	1.6	3.5	1.1		1.2	2.2	
	Other Degree	0.6	2.2	1.9		2.5	1.3	
	Completed Voc. Training/Education	4.3	3.1	4.9		7.7	3.4	
	Not applicable (e.g. college degree)	39.0	40.3	40.1		38.9	39.8	
Completed college education [\%]	FH (Univ. of Applied Sciences)	5.3	10.0	4.7	. 016	7.1	6.6	. 479
	University, Technical College	11.4	12.0	12.4		11.0	12.2	
	College Not In Germany	0.0	0.1	0.5		0.0	0.2	
	Engineering, Technical School	1.3	2.0	1.1		0.4	1.6	
	University (East)	1.4	1.8	1.4		0.8	1.7	
	Graduation, state doctorate	3.4	4.9	1.7		2.0	3.7	
	Not applicable	77.2	69.3	78.1		78.8	73.9	

Occupation status	Full time employment	39.0	41.8	41.7	. 430	35.4	41.0	. 029
[\%]	Part-time employment	14.3	11.5	12.1		11.3	13.7	
	Training/apprenticeship	3.8	2.4	2.2		6.1	2.2	
	Marginally employed	4.6	7.8	6.1		5.6	6.4	
	Partial retirement	0.1	0.0	0.5		0.0	0.2	
	Voluntary service	0.0	0.0	0.0		0.0	0.0	
	Workshop for the disabled	0.2	0.0	0.1		0.0	0.1	
	Not employed (anymore)	37.9	36.6	37.3		41.6	36.3	
Unemployment	Yes	32.3	29.5	23.1	. 044	39.0	26.5	. 004
phases in past 10 years [\%] ${ }^{2}$	No	67.7	70.5	76.9		61.0	73.5	
Body Mass Index (BMI) [M (SD)]		26.6 (8.2)	26.3 (4.8)	25.7 (4.8)	. 110	26.3 (10.7)	26.2 (5.0)	. 786
Self-reported	Very good	8.8	10.2	18.4	. 001	10.7	12.8	. 002
health state [\%] ${ }^{2}$	Good	39.0	42.4	38.6		33.7	41.2	
	Satisfactory	38.2	31.5	31.2		44.7	31.1	
	Not so good	11.2	13.5	10.1		10.3	12.1	
	Poor	2.8	2.5	1.8		0.6	2.8	
Health insurance	Statutory health insurance	89.1	86.9	88.7	. 539	94.9	87.0	. 001
status [\%] ${ }^{2}$	Private health insurance	10.9	13.1	11.3		5.1	13.0	
Risk preference [M (SD)] from 0 (avoidance) to 10 (preference)		4.6 (2.5)	4.4 (2.4)	4.5 (2.4)	. 449	4.6 (2.7)	4.4 (2.4)	. 486
1 Variance 2 Subsamp	nalyses and Chi²-tests, res s were presented with the							

Table S8. Distribution of characteristics according to estimation (respondents grouped by quantiles) and acceptance of algorithm errors in predicting healthy behavior (presented as accuracy; grouped around AUC = .90, distinguishing highly critical respondents and less critical respondents along a lay-comprehensible border [1 error per 10 assignments]).

Suitability predictio	f applicants	Quantile 33 : Estimating AUC <= . 725 $n=431$	Quantile67- Quantile ${ }_{33}$: Estimating $\begin{gathered} A U C<= \\ .900 \\ n=543 \end{gathered}$	Quantile 100 Quantile67: Estimating AUC > . 900 $\mathrm{n}=289$	p^{1}	Accepting AUC<. 90 $n=190$	Accepting AUC $\geq .90$ $n=1,086$	p^{1}
Gender [\%]	Female	51.4	50.7	53.1	. 819	49.7	52.0	. 583
	Male	48.6	49.3	46.9		50.3	48.0	
Age [M (SD)] in years		50.0 (18.2)	48.7 (18.3)	46.4 (18.0)	. 030	48.2	49.0	. 562
						(19.2)	(18.1)	
Household net income [M (SD)]		2,854 (1,642)	2,940	3,491	. 001	2,848	3,059	. 230
			$(1,730)$	$(2,159)$		$(1,803)$	$(1,817)$	
in EUR								
Education	Sec. Gen. School Leaving Cert.	24.2	20.6	13.9	<. 001	23.2	19.9	<. 001
Diplomas/degrees from	Intermediate School Degree	33.2	28.0	23.8		31.9	28.4	
	Leaving Cert. From Voc HS	6.9	9.2	6.8		7.1	7.9	
secondary/tertiary school [\%]	College Entrance Exam	22.0	29.7	36.8		19.4	30.2	
	Other	9.4	8.2	17.6		9.2	11.0	
	Dropout, No School Certificate	2.9	2.3	0.0		6.1	1.2	
	Currently In School	1.4	2.0	1.1		3.0	1.3	
Vocational degree attained [\%]	Apprenticeship	39.6	36.5	40.0	. 126	36.1	39.1	. 062
	Vocational School	10.7	9.0	5.8		7.8	9.1	
	Health Care School	0.0	0.0	0.0		0.0	0.0	
	Technical School	5.1	6.0	5.3		7.0	5.2	
	Civil Servant Training	1.7	2.7	2.1		1.4	2.3	
	Other Degree	1.8	1.7	0.8		2.4	1.4	
	Completed Voc. Training/Edu.	5.5	4.7	1.6		8.0	3.4	
	NA (e.g. college degree)	35.6	39.5	44.3		37.3	39.4	
Completed college education [\%]	FH (Univ. of Applied Sciences)	4.9	8.0	7.2	. 129	6.5	6.7	. 217
	University, Technical College	13.1	9.3	14.4		7.5	12.6	
	College Not In Germany	0.1	0.3	0.0		0.8	0.1	
	Engineering, Technical School	1.5	1.9	0.2		0.9	1.4	
	University (East)	1.6	1.1	2.3		0.7	1.6	
	Graduation, state doctorate	2.8	3.3	4.3		2.5	3.5	

	Not applicable	76.0	76.1	71.6		81.0	74.1	
Occupation status [\%]	Full time employment	37.4	42.5	43.3	. 177	33.4	41.4	. 108
	Part-time employment	13.8	11.1	14.9		12.1	13.2	
	Training/apprenticeship	3.2	3.5	1.0		5.2	2.4	
	Marginally employed	5.3	6.8	6.6		5.8	6.5	
	Partial retirement	0.0	0.5	0.0		0.0	0.2	
	Voluntary service	0.0	0.0	0.0		0.0	0.0	
	Workshop for the disabled	0.3	0.1	0.0		0.1	0.1	
	Not employed (anymore)	40.0	35.6	34.4		43.5	36.1	
Unemployment	Yes	31.3	23.1	29.3	. 050	38.0	25.7	. 006
phases in past 10 years [\%] ${ }^{2}$	No	68.7	76.9	70.7		62.0	74.3	
Body Mass Index (BMI) [M (SD)]		26.3 (5.0)	26.5 (7.6)	25.7 (4.9)	. 226	25.4 (5.1)	26.4 (6.4)	. 035
Self-reported	Very good	9.0	12.8	18.2	. 024	11.0	12.9	. 042
health state [\%] ${ }^{2}$	Good	39.8	41.4	39.7		34.8	41.2	
	Satisfactory	35.8	31.3	31.5		42.7	31.1	
	Not so good	12.4	11.9	9.8		9.8	12.2	
	Poor	3.0	2.7	0.9		1.7	2.6	
Health insurance	Statutory health insurance	90.0	87.6	86.4	. 323	90.2	87.9	. 465
status [\%] ${ }^{2}$	Private health insurance	10.0	12.4	13.6		9.8	12.1	
Risk preference [M (SD)] from 0 (avoidance) to 10 (preference)		4.6 (2.5)	4.4 (2.4)	4.4 (2.4)	. 569	4.5 (2.6)	4.5 (2.4)	. 962
1 Variance analyses and Chi²-tests, respectively								
2 Subsamples wer	presented with the items							

[^0]: Suggested Citation: Rebitschek, Felix G.; Gigerenzer, Gerd; Wagner, Gert G. (2021) : People underestimate the errors made by algorithms for credit scoring and recidivism prediction but accept even fewer errors, Scientific Reports, ISSN 2045-2322, Springer, Berlin, Vol. 11, pp. 1-11,
 https://doi.org/10.1038/s41598-021-99802-y ,
 https://www.nature.com/articles/s41598-021-99802-y\#article-info

