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On the Robust Detection of Edges
in Time Series Filtering

Roland Fried

Department of Statistics, University of Dortmund, 44221 Dortmund,

Germany

Abstract: Abrupt shifts in the level of a time series represent important infor-

mation and should be preserved in statistical signal extraction. We investigate

rules for detecting level shifts that are resistant to outliers and which work with

only a short time delay. The properties of robustified versions of the t-test for

two independent samples and its non-parametric alternatives are elaborated

under different types of noise. Trimmed t-tests, median comparisons, robusti-

fied rank and ANOVA tests based on robust scale estimators are compared.

Keywords: Time series filtering, Jumps, Outliers, Test resistance

1 Introduction

An important task in statistical signal extraction is the detection of abrupt

shifts (also called step changes, edges or jumps). This task is complicated by the

presence of outliers, since these can easily be confused with shifts, particularly

in an online analysis, when only a short time delay is permitted. An abundance

of rules for level-shift detection has been suggested in the literature, but many

rules are unable to distinguish between outliers and shifts. This distinction is

the goal here.

We use a components model for the observed time series (yt):

yt = µt + ut + vt, t ∈ Z. (1)

The level µt of the time series (the underlying signal) is assumed to vary

smoothly over time with a few abrupt shifts. The noise is assumed to con-

sist of an ordinary random disturbance ut, which is distributed symmetrically

with a zero mean and a variance σ2
t (which may be time-varying), together

with an intermittent outlier component vt, which is of an impulsive (spiky)

nature. The spiky noise is zero most of the time, but, occasionally, it takes

large absolute values.

1



We investigate rules for shift detection which are straightforward when using

a moving-window approach for signal extraction. Moving averages approximate

µt efficiently in case where ut is a Gaussian noise, but they are sensitive to

impulsive noise and they blur level shifts. Standard median filters (also called

running medians) perform better in these respects (Tukey, 1977, Nieminem,

Neuvo and Mitra, 1989). They approximate the signal µt in the centre of a time

window (yt−k, . . . , yt+k) of width n = 2k +1 by the median of the observations,

StM(yt) = µ̃t = med(yt−k, . . . , yt+k), t ∈ Z.

As a compromise between the mean and the median, we can calculate an α-

trimmed mean, which is the mean of the remaining observations after deleting

the largest and the smallest �αn� values in the window, where �αn� denotes

the integer part of αn. In general, every location estimator is a candidate for

an approximation of the level at the centre of the window. Rules for level-shift

detection arise from the many filtering procedures based on moving windows.

In this paper, we compare new and existing rules for automatic level-shift

detection, which are based on moving-window operations and which do not

need a global parametric model of the data. Robustified exponentially-weighted

moving average (EWMA, Cypra, 1992) or CUSUM charts (Zeileis, 2005) are not

considered here, since they are more difficult to handle than moving-window

techniques if we require the procedure to resist a predetermined number of

outliers (Imhoff et al., 2002). Also, they react to other changes such as drifts,

whereas we aim at a procedure that indicates only level shifts.

The paper is organised as follows. Section 2 presents rules for robust shift

detection in time series. Section 3 compares the rules analytically and via

simulations. Section 4 presents an application, after which we summarise the

results.

2 Shift detection

We assume that an ideal shift of height δ ∈ R occurs between time points t

and t + 1, and that it may be accompanied by a simultaneous change of the
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variance of the ordinary noise component ut:

yt+j =

{
µ + ut+j + vt+j , j = . . . ,−1, 0,

µ + δ + ut+j + vt+j , j = 1, 2, . . . ,
(2)

ut+j ∼
{

N(0, σ2), j = . . . ,−1, 0,

N(0, κσ2), j = 1, 2, . . . .

To detect a positive (negative) shift immediately after time t, we test H0 : δ = 0

versus H+
1 : δ > 0 (H−

1 : δ < 0). The variance of the noise may be unaffected,

with κ = 1, or it may change, with κ > 0 taking some arbitrary positive value.

In what follows, some detection schemes are presented for testing H0 versus

H+
1 and / or H−

1 . These schemes assume that the noise constitutes a serially

independent sequence, but the simulations reported below show that moderate

autocorrelations do not have large effects.

2.1 Gradient detection schemes

Gradient schemes for detecting whether a level shift has occurred immediately

after time t compare two level estimates ŷt− and ŷt+ calculated from windows

(yt−h+1, . . . , yt) and (yt+1, . . . , yt+k) of widths h and k, which may differ. In

general, a shift is detected if

|ŷt+ − ŷt−|
τ̂t

> q ,

where τ̂t is a standardisation specified below and q is an appropriate threshold.

The ordinary two-sample t-test is obtained by setting ŷt+ and ŷt− equal to

the averages yt+ and yt− of the data in the two windows (Stein and Fowlow,

1985) and by assuming that the variance σ2
t+j is constant within {t − h + 1, . . . , t + k}.

Thus

T =
yt+ − yt−

ŝt

√
1/h + 1/k

, (3)

ŝ2
t =

1

n − 2

[
h−1∑
i=0

(yt−i − yt−)2 +
k∑

j=1

(yt+j − yt+)2

]
,

where n = h+k is the total number of observations in the two windows. If the

noise is assumed to be Gaussian, then the threshold value q is a quantile of the

t-distribution with n − 2 degrees of freedom.
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As alternatives to the ordinary means, we can use the α-trimmed means

ŷt+ = y
(α)
t+ and ŷt− = y

(α)
t− . This enhances the robustness at the cost of a

small loss of efficiency in the case of Gaussian noise (Yuen, 1974, Bovik and

Munson, 1986, Hou and Koh, 2003, Fried, 2007). A trimmed t-test can be

constructed by standardising |y(α)
t+ − y

(α)
t− | using the α-winsorised variance of

the residuals yt−h+1 − y
(α)
t− , . . . , yt − y

(α)
t− , yt+1 − y

(α)
t+ , . . . , yt+k − y

(α)
t+ . This is the

empirical variance of a modified set of residuals obtained by replacing the �αn�
largest residuals by the next largest residual and by replacing the �αn� smallest

residuals by the next smallest one. A winsorised variance is a robust estimator

in the presence of outliers.

The median, which is the 50%-trimmed mean, has been suggested for edge

detection in images with heavy-tailed noise (Bovik and Munson, 1986, Hwang

and Haddad, 1994). In image analysis, the noise variance is often regarded

as globally constant, in which case very good estimates of it are available.

However, we are concerned with time series and we wish to make minimal

assumptions. If the noise distribution possesses a density f with a zero median,

then the median of k independent observations is approximated, with increasing

accuracy as k → ∞, by a normal distribution with variance 1/(4kf 2(0)) (e.g.

Stigler, 1973). Assuming that the noise is Gaussian with variances of σ2 and

κσ2 in the left and the right-hand windows, respectively, then the difference

of the corresponding medians ỹt− and ỹt+ has a zero mean and an asymptotic

variance of 0.5π(σ2/h + κσ2/k) under the null hypothesis of no shift. The

following test statistics are asymptotically standard normal under the null:

ỹt+ − ỹt−√
0.5πσ̂2

t (1/h + 1/k))
, (4)

where we assume that κ = 1, i.e. identical variances in both windows, and

ỹt+ − ỹt−√
0.5π(σ̂2

t−/h + σ̂2
t+/k)

, (5)

where we assume that κ �= 1 and where σ̂2
t , σ̂2

t− and σ̂2
t+ are consistent robust

variance estimators obtained from the whole window, and from the left and the

right windows, respectively.

The α-winsorised variance can be applied for standardising α-trimmed means

only if α is substantially less than 50%, but it is not appropriate for the median.
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Instead, we can use a highly robust scale estimator such as the median absolute

deviation about the median (MAD). Assuming a constant noise variance σ2,

we can combine the differences obtained in both windows to form

σ̂
(M)
t = c(M)

n med(|yt−h+1− ỹt−|, . . . , |yt− ỹt−|, |yt+1− ỹt+|, . . . , |yt+k − ỹt+|). (6)

Here, c
(M)
n is a finite-sample correction factor, which becomes 1.4826 for very

large n. Otherwise, if the noise variances differ, we can use two MADs calcu-

lated from the left and the right windows,

σ̂
(M)
t− = c

(M)
h med(|yt−h+1 − ỹt−|, . . . , |yt − ỹt−|) , (7)

σ̂
(M)
t+ = c

(M)
k med(|yt+1 − ỹt+|, . . . , |yt+k − ỹt+|) .

Some alternatives to the MAD have been introduced. Scale estimators mea-

suring the variability via the differences between the observations do not need

an estimator of central location. This can be an advantage, since location esti-

mators become biased in the vicinity of a level shift. The estimators described

in the remainder of this section possess an asymptotic explosion breakdown

point of 50% like the MAD, meaning that the increase of the estimate caused

by replacing less than half of the data in a given sample by arbitrary values is

always bounded.

The LSH (length of the shortest half) estimator of variability (Grübel, 1988,

Rousseeuw and Leroy, 1988) is represented, in our notation, by

σ̂
(L)
t = c(L)

n min(z(n) − z(n−m), . . . , z(m+1) − z(1)) . (8)

Here, m = �(n + 1)/2�, and the z(i) are the differences yt−h+1 − ỹt−, . . . , yt −
ỹt−, yt+1 − ỹt+, . . . , yt+k − ỹt+ ordered according to their size. Again, c

(L)
n is a

correction factor, designed to achieve unbiasedness in a Gaussian sample of size

n.

The Sn statistic of Rousseeuw and Croux (1993) is another means of estimating

the variability, which is represented, in our notation, by

σ̂
(S)
t = c(S)

n medimedj �=i|zi − zj | . (9)

Finally, we can use the Qn statistic, also suggested by Rousseeuw and Croux

(1993). On the assumption of a constant variance, it is calculated from the full
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Figure 1: Finite-sample correction factors (left) and efficiencies (right) of the

MAD (solid line), LSH (dashed), Sn (dash-dot) and Qn (dotted) for different

sample sizes.

window via the formula

σ̂
(Q)
t = c(Q)

n (|zi − zj |, 1 ≤ i < j ≤ n)((�n/2�+1
2 )) , (10)

using the
(�n/2�+1

2

)
-th smallest of the

(
n
2

)
absolute pairwise differences |zi − zj |,

i.e. approximately the first quartile of all pairwise differences. Of course, we

can also estimate the variability in the two windows separately. For more

information on these estimators see Gather and Fried (2003).

Fig. 1 shows the finite-sample correction factors for the different scale

estimators as a function of the underlying sample size as well as the finite-

sample efficiencies relatively to the empirical standard deviation as measured

by the percentage of the mean square error (MSE) under Gaussian noise.

2.2 Tests based on estimates of the local variability

Comparison of the levels of two time windows can be treated within the frame-

work of analysis of variance (ANOVA). The ANOVA F-test compares the vari-

ability between the groups to that within the groups. In the case of two groups,
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it is just the square of the ordinary two-sample t-test presented in Section 2.1,

F =
(n − 2)[h(yt− − yt)

2 + k(yt+ − yt)
2]

hσ̂2
t− + kσ̂2

t+

=
(n − 2)(nσ̂2

t − hσ̂2
t− − kσ̂2

t+)

hσ̂2
t− + kσ̂2

t+

,

(11)

where σ̂2
t , σ̂2

t− and σ̂2
t+ are the empirical variances calculated from the whole

window and from the left and the right-hand windows, respectively, with de-

nominators n, h and k.

The empirical variance in the previous formulae can be replaced by any of

the robust scale estimators MAD, LSH, Sn and Qn introduced in Section 2.1.

By these means, we expect to achieve more robust ANOVA-type rules, for shift

detection, in particular, and for the comparison of several groups in general.

Appropriate critical values for any sample size can be derived by simulation,

assuming the noise to possess a known distribution, such as the Gaussian.

2.3 Robustified rank tests

Another approach to shift detection is via tests based on linear rank statistics.

Prominent amongst these are the Wilcoxon test and the median test (Bovik,

Huang and Munson, 1986). Let yt(1) ≤ . . . ≤ yt(n) denote the ordered observa-

tions in the full window located at time t and let rt,1−h, . . . , rt,k be the resulting

ranks of yt−h+1, . . . , yt+k, which are the positions of these elements in the or-

dered sequence. For shift detection, a linear rank statistic of the most recent k

observations,

Lt =
k∑

j=1

a(rt,j) , (12)

can be used, where a(1), . . . , a(n) are given scores. Under H0 the distribution

of Lt is the same for all symmetric noise distributions, i.e. it is distribution-free.

In case of bindings, we assign the average rank to identical measurements.

The Wilcoxon test uses the scores a(i) = i, i = 1, . . . , n, so that Lt =∑k
j=1 rt,j . For the median test, we set a(i) = 1, i = �n/2�+1, . . . , n, and a(i) =

0 otherwise, so that Lt corresponds to the number of values in yt+1, . . . , yt+k

larger than the overall median ỹt from both windows; and it takes values be-

tween zero and k.

Fried and Gather (2007) exploit the suggestion of Bovik et al. (1986) to

apply a linear rank test after subtraction of a threshold δ̃ from yt+1, . . . , yt+k

7



to detect only large shifts. Since the chosen δ̃ should be large compared to the

noise standard deviation σt, Fried and Gather choose δ̃ = δ̃t as a fixed multiple

dσ̂t− of a robust estimate of σt, thereby allowing for a time-varying variability.

To prevent a few outliers from unduly influencing the test decision, the critical

values for Lt are chosen as large as possible under the restriction that we require

a shift to be detected if the largest or smallest �(k + 1)/2� observations are in

the right-hand window. This makes it possible to identify a level shift even

in the presence of �(k − 1)/2� large outliers. Choosing h = k = 5 e.g. allows

to distinguish pairs of outliers from level shifts when using the critical values

1+2+8+9+10 = 30 and 3 for the Wilcoxon and the median test, respectively,

obtained by summing the �(k + 1)/2� largest and the k − �(k + 1)/2� smallest

scores. A small false detection rate of e.g. 0.1% in case of Gaussian noise

and a constant level can be achieved by preliminary subtraction or addition of

a sufficiently large multiple δ̃t = dσ̂t− from yt+1, . . . , yt+k when testing for an

upward or downward shift, respectively. Suitable values of d are determined in

simulations.

Fried and Gather (2006) find that, in the presence of outliers the ordinary

linear rank tests are outperformed by the robustified versions. They also find

that Wilcoxon scores have higher power than median scores. From the robust

scale estimators introduced in Section 2.1, the Sn and the Qn statistics yield

the highest powers in case of small and large window widths, respectively. The

tests employing the Qn are better at distinguishing between outlier patches

and shifts than tests employing one of the other robust scale estimators.

3 Comparisons

In the following section, we compare the basic attributes of the detection rules

described above. After employing analytic means to investigate the resistances

to outliers, a simulation study is performed for comparing the performance of

the statistics in small samples. The appropriate choice of the widths h and k,

and therefore of n = h + k, depends on the circumstances in which a filtering

procedure is applied. To mitigate the misleading effects of patches of outliers

and of outliers that occur in the vicinity of a level shift, we should choose large

values for h and k. However, upper limits are imposed on the length of the
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windows by the limitation of periods in which the level µt can be regarded as

virtually constant. Also, the effect of increasing the value of k is to increase

delay between the occurrence of a level shift and its detection. We concentrate

on circumstances where the windows are small and of equal lengths, h = k.

This corresponds to the assumption that µt is virtually constant only in short

windows. In the simulations, the perpetual noise ut is Gaussian N(0, 1) if not

stated otherwise.

3.1 Test resistances

Median filters are popular on account of their robustness in circumstances

where a large proportion of the sample is affected by outliers. Breakdown

points are analytic measures of the robustness of an estimator. The finite-

sample replacement breakdown point of the median is 0.5 asymptotically, which

means that modifying less than half of the data cannot drive the estimate

beyond all limits.

Resistances are a related concept for measuring the robustness of tests

(Ylvisaker, 1977). Let y = (y1, . . . , yn) be the vector of all observations in-

cluded in the test, and let φ be the decision function of the test with φ(y) = 1

and φ(y) = 0 meaning rejection and non-rejection of the null hypothesis, re-

spectively. The idea of the resistance to rejection εR is to measure the minimal

fraction of contaminated observations which can force the test to reject the null

hypothesis regardless of the other, ’clean’ data. Denote by Um(y) a neighbour-

hood of the (clean) data vector y consisting of all contaminated data vectors

z = (z1, . . . , zn) with zi �= yi for at most 0 ≤ m ≤ n positions. The resistances

to rejection and to acceptance can be defined to be, respectively,

εR =
1

n
min{m ≥ 0 : inf

y∈Rn
sup

z∈Um(y)

φ(z) = 1} ,

εA =
1

n
min{m ≥ 0 : sup

y∈Rn

inf
z∈Um(y)

φ(z) = 0} .

The interpretation of the resistance to acceptance εA is analogous to that of

εR: irrespective of what the clean data y are, we can always find a way to

avoid rejection of the null hypothesis by replacing εR · n of the elements of y.

Note that we differ from Ylvisaker in allowing changes to occur at arbitrary
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positions, since this is more appropriate to the structured data considered here,

whereas it makes no difference for unstructured data.

It is appropriate to consider resistances, since outliers should neither prevent

detection nor cause false detection of level shifts. The resistance to acceptance

of the ordinary two-sample t-test is 1/n. Irrespective of the data, changing one

observation can always reduce the difference of the averages to zero; that is

to say, within the context of a t-test, a single outlier can mask a shift of any

size. The resistance to rejection of the two-sample t-test is more difficult to

calculate. To increase the squared test statistic by an arbitrary amount, so that

the p-value goes to zero and thus becomes smaller than any significance level,

requires the modification of at least min{h, k} out of the total of n observations.

However, the effect of fewer modifications can be large enough to make the test

statistic exceed certain significance levels.

We assume k ≤ h from now on. Two-sample t-tests based on α-trimmed

means and α-winsorized variances resist outliers better than ordinary two-

sample t-tests. The resistance to acceptance becomes (	+1)/n with 	 = k�αk�.
If the observations in each window are close to each other in value and differ

largely from those in the other window, then at least 	 observations in the

right-hand window need to be moved to change the value of the test statistic,

which can be reduced to zero. Trimming can reduce the resistance to rejection,

since modifying k − 	 observations in the right-hand window can always drive

the p-value to zero.

The resistance to acceptance of the robustified rank tests is at least min{�(k+

1)/2�, hε∗−}/n if we tune the tests in the manner described above (Fried and

Gather, 2006). Here, ε∗− is the explosion breakdown point of the scale estimator

σ̂− derived from the left-hand window, with explosion meaning breakdown to

infinity. The resistance to rejection is at least �(k + 1)/2�/n.

The resistance to acceptance of a median comparison is at least min{�(k +

1)/2�/n, ε∗}, where ε∗ is the explosion breakdown point of the scale estimator.

The explanation is the same as for the two-sample t-tests based on α-trimmed

means, taking into account that a second possible cause of acceptance is that

the scale estimate used for standardization becomes very large. To drive the

p-value to zero, we need to modify at least min{�(k+1)/2�, nε∗} of the values in

both windows. Here, ε∗ is the implosion breakdown point of the scale estimator
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for data with all values being different. Whereas explosion means breakdown to

infinity, implosion means breakdown to zero. This occurs if the scale estimate

for a sample can be made arbitrarily small (i.e. close to zero) by replacing some

of the observations. If none of the observations is repeated, then we need to

modify at least �(k+1)/2�/n values in the right-hand window to make the test

statistic arbitrarily large, or to reduce the scale estimate to zero. For the median

comparisons based on a joint scale estimate obtained from both windows, both

resistances equal �(k+1)/2�/n if we use a highly robust scale estimator. When

estimating the variability in the windows separately, however, the resistance to

acceptance can be determined by the explosion breakdown point of the scale

estimator as it is kε∗−/n (only one of the two estimates needs to become too

large).

Driving the p-value of ANOVA tests to unity needs a fraction of min{kε∗+/n, ε∗}
modifications. For the p-value to go to zero the fraction is at least min{(hε∗− +

kε∗+)/n, ε∗}, where ε∗− and ε∗+ is the implosion breakdown point of the scale

estimator from the left and the right-hand windows, respectively.

The number of outliers which a test for shift detection can resist without

becoming unreliable depends not only on the window widths h and k, but

also on the significance level. Here, we tune all tests to obtain a significance

level of 0.1% under Gaussian noise, so that we expect to detect a level shift

incorrectly only once in 1000 observations. We set both window widths to the

same value h = k for simplicity. This also provides some protection against

unequal variances in the two windows (see Staudte and Sheather, 1990).

3.2 Power under different types of noise

Now we compare the power of the tests for different heights of the shift δ. 10000

windows were generated, in each case, for δ = 0, 0.5, 1, . . . , 10, and the power

is derived as the percentage of cases in which a shift is detected. We present

the results for the ordinary and for the 30%-trimmed two-sample t-test, the

median comparison with joint scale estimation by the MAD or Qn according

to (4), the median comparison with separate scale estimation by Sn or Qn (5),

the ANOVA test employing Sn or Qn (11), and the robustified Wilcoxon tests

(12).
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Fig. 2 shows the results for h = k = 9 and for a standard Gaussian

white noise. As was expected, the ordinary two-sample t-test is the most

powerful method of shift detection followed by the median comparisons with

joint scale estimators and then by those with separate scales. All of these

tests are more powerful than the 30%-trimmed t-test. The ANOVA and the

robustified Wilcoxon tests are less powerful. The ANOVA based on Qn misses

even huge shifts, because Qn is not sensitive to shifts.

Identical measurements due to rounding, for example, pose a problem for

robust scale estimators. A simple remedy is ‘wobbling’ by a preliminary ad-

dition of random noise with the same magnitude as the rounding error. To

analyse such effects, we generated shifts of different heights within unit Gaus-

sian noise, as before, and we rounded all observations to the nearest 0.5. In

the absence of a shift, more than 95% of the probability is concentrated on the

nine values −2,−1.5, . . . , 1.5, 2 then. We added uniform U(−0.25, 0.25) noise

to all values to recover the full range. The results were almost identical to those

presented above.

Fig. 2 compares the power of the rules under noise generated from a t-

distribution with three degrees of freedom, which possesses heavier tails than

the Gaussian distribution. All procedures loose some power compared to the

Gaussian case. The ordering of the rules remains almost the same except for

the ordinary t-test, which looses its superiority and is outperformed by the

median comparison with joint MAD. The median tests with separate Sn and

with joint Qn are very close to each other and, again, they outperform the

30%-trimmed t-test.

We performed the same experiments as before for other window widths. As

expected, the power of all the methods increases with increasing windows, while

the differences between the robust approaches are less that they would be with

shorter windows. Generally, the orderings of the methods with respect to their

power were very similar to those reported before both for Gaussian and for t3

noise. Therefore, we report only the differences. For h = k = 7, the power of

the 30%-trimmed t-test dropped down below that of the robustified Wilcoxon

test with Sn. For widths larger than h = k = 9, the robustified Wilcoxon tests

gained power relatively to the other methods.
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Figure 2: Power for different shift heights, Gaussian (left) and t3-noise (right):

t-test (dotted), 30%-trimmed t-test (bold dotted), median comparison with

joint MAD (solid) or Qn (bold solid), with separate Sn (dashed) or Qn (bold

dashed), ANOVA on Sn (dash-dot) or Qn (bold dash-dot), Wilcoxon with Sn

(wide-dashed) or Qn (bold wide-dashed).

3.3 The case of a single outlier

Next we check the sensitivity of the methods in respect of an outlier of various

sizes s = 1, 2, . . . , 20 added to one of the observations.

Fig. 3 shows the error probability of a Type I error caused by an outlier

in the right-hand window for h = k = 9, estimated from the fraction of cases

in which a shift was detected within 50000 simulation runs. The size of the

ordinary t-test decays to zero since the test statistic tends to 1 as the outlier

size goes to infinity. The median comparisons with separate scale estimates

or with joint Qn show a slightly decreasing size, while the ANOVA tests, the

30%-trimmed t-test and the median comparison with joint MAD are almost

unaffected. In case of the robustified Wilcoxon tests, we observe a small increase

of the error rate, while their size seems to be slightly reduced when the outlier is

in the left-hand window (not shown here; note the asymmetry of the robustified

Wilcoxon tests due to estimating the scale from the left-hand window and

subtracting a multiple of it from the right-hand observations).
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We also investigated the power in case of a positive shift of height δ = 8σ

and a single positive outlier of size s = 1, . . . , 20 in the left-hand window,

or a negative outlier in the right-hand window. Fig. 3 shows the powers

obtained from 10000 simulations runs each. The power of the two-sample t-

test approaches zero as the outlier size increases, while the 30%-trimmed t-test

and the median comparisons are not affected at all. ANOVA tests are affected

if the outlier is of the same size as the shift. Robustified Wilcoxon tests are

unaffected if the outlier is in the right-hand window, and slightly affected if it

is in the left-hand window, with the effect remaining constant as the outlier

size exceeds 4σ.

The same results were obtained for windows of width six or seven, while,

for h = k = 15, only the ordinary two-sample t-test was affected, with both its

size and its power going to zero with increasing outlier size.
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Figure 3: Test size (left) and power for a shift of size 8σ (right) in case of

a single outlier of increasing size in the right window: t-test (dotted), 30%-

trimmed t-test (bold dotted), median comparison with joint MAD (solid) or

Qn (bold solid), with separate Sn (dashed) or Qn (bold dashed), ANOVA with

Sn (dash-dot) or Qn (bold dash-dot), Wilcoxon with Sn (wide-dashed) or Qn

(bold wide-dashed).
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3.4 The case of multiple outliers

For an examination of the rules in case of multiple outliers, we replaced an

increasing number of observations in one window by outliers of the same size s.

Fig. 4 shows the percentage cases in which a shift was detected within 10000

simulations runs each in case of s = 8 and h = k = 9. We found analogous

results for the widths h = k = 7 and h = k = 15.

The t-tests only detect a shift with high probability if at least seven out

of nine observations are shifted. This is not desirable since a shift is likely to

be missed, even when two thirds of the observations deviate from the previous

level, a situation pointing more at a shift in combination with a few outliers

than at a constant signal overlaid by many outliers. Similar remarks apply to

ANOVA tests. Median comparisons with joint scale estimation show a consis-

tent behaviour, since they indicate a shift if more than half of the observations

in one window deviate from those in the other window. The median comparison

with separate Qn also performs consistently, while six deviating observations

are needed when using a separate Sn. All robustified Wilcoxon tests are con-

sistent if the outliers are in the right-hand window, but only the one with Qn

performs rather consistently if the outliers are in the left-hand window. We

obtained similar findings for the size s = 12, with the robustified Wilcoxon

test based on Qn giving much better results. Note that the problems of the

t-tests and the median comparisons with separate scales were expected given

the resistances reported in Section 3.1.

3.5 The case of increasing variance

A phenomenon which should not be confused with a level shift is an increase of

the variability. Therefore, we analyse the test sizes when the standard deviation

σt+j in the right hand window becomes 100%, 120%, . . . , 400% of that in the

left hand window. A decrease of σt+j is less interesting, since it reduces the

test size.

Fig. 5 depicts the results for h = k = 9. All methods indicate a shift more

often than in the homoskedastic case. The size of the median comparison with
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Figure 4: Detection rate in case of an increasing number of outliers of size

8σ in the left or the right window: t-test (dotted), 30%-trimmed t-test (bold

dotted), median comparison with joint MAD (solid) or Qn (bold solid), with

separate Sn (dashed) or Qn (bold dashed), ANOVA with Sn (dash-dot) or Qn

(bold dash-dot), Wilcoxon with Sn (wide-dashed) or Qn (bold wide-dashed).
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Figure 5: Test size (left) and power for a shift of size 6σ (right) in case of an

increase of σ to x% in the right window: t-test (dotted), 30%-trimmed t-test

(bold dotted), median comparison with joint MAD (solid) or Qn (bold solid),

with separate Sn (dashed) or Qn (bold dashed), ANOVA with Sn (dash-dot)

or Qn (bold dash-dot), Wilcoxon with Sn (wide-dashed) or Qn (bold wide-

dashed).

joint MAD goes up to 10%, while for Qn it stays below 2%. As expected,

separate scale estimation protects against different variabilities: the increase is

only up to about 0.4%, as it is in the case of the ordinary t-test. For ANOVA

tests it is even smaller. For robustified Wilcoxon tests we observe an increase to

over 2%, which is the larger the more powerful the rule is according to Section

3.2.

We have also investigated the power in case of a shift of size 6σ and a simul-

taneous increase of σt+j to 100%, 120%, 140%, . . . , 400%, see also Fig. 5. Those

methods which almost keep their size loose a lot of power, namely the ordinary

two-sample t-test, the median comparisons with separate scale estimates and

particularly the ANOVA tests. Median comparisons with joint scales and ro-

bustified Wilcoxon tests keep their power but not their size, as we have seen

before. Almost identical results were obtained for other window widths.
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3.6 The case of autocorrelations

In many applications measurements are autocorrelated. Fried and Gather

(2005) find it better not to modify median filters in the presence of positive

autocorrelations, so we continue to use the standard filtering procedures. To

investigate the performance of the detection rules in these circumstances, the

observational noise was generated from an AR(1) model, ut = φut−1 +εt, where

the innovations εt constitute a Gaussian white-noise sequence with mean zero

and variance σ2 = 1. In that case, the noise variance is σ2
u = σ2/(1−φ2) where

φ = −0.9, . . . , 0.9 is the lag-one correlation.

Fig. 6 shows the results for h = k = 9. Generally, the increase of the test

size seems to be directly related to the power under Gaussian noise, which is

reported in Section 3.2. More powerful methods show a larger increase of the

size in the case of positive correlations, particularly the t-tests and the median

comparisons, while robustified Wilcoxon tests are least affected. The test sizes

of the robustified Wilcoxon and the median comparisons using a separate scale

remain small as φ increases until φ = 0.5 is reached.

An investigation of the power in the case of a shift of height 6σu and

for different values of φ shows that there is a substantial loss of power under

negative correlations, whereas the loss is small for positive φ. The ordering of

the methods differs little from the ordering in the case of independent errors,

φ = 0. Amongst the median comparisons with separate scales, Qn has the

highest power for negative φ, and the power of the Wilcoxon test with Qn

increases in case of large negative φ. When investigating the powers in case

of a shift of increasing height for fixed positive φ = 0.6, we found the same

ordering of the methods as in the case of independent disturbances. Again, we

obtained very similar results for other window widths.

4 Application

Finally, we have analysed a time series of length N = 500, see Fig. 7. The

underlying signal µt resembles the blocks function (Donoho and Johnstone,

1994), which is a benchmark example for edge-preserving smoothing. The
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Figure 6: Test size (left) and power for a shift of size 6σu in case of autocor-

relations of different size: t-test (dotted), 30%-trimmed t-test (bold dotted),

median comparison with joint MAD (solid) or Qn (bold solid), with separate

Sn (dashed) or Qn (bold dashed), ANOVA with Sn (dash-dot) or Qn (bold

dash-dot), Wilcoxon with Sn (wide-dashed) or Qn (bold wide-dashed).

signal was overlaid by independent Gaussian noise with a time-varying, signal-

dependent standard deviation of σt = 1 + |µt|/20. We replaced 40 observations

by outliers, adding the same constant s = 12 to the observations. Of these, ten

were isolated outliers. Another ten outliers came in five pairs, a further twelve

came in four triplets, and the remaining eight came in two clusters of four.

A running median with window width n = 19 was used for filtering. For

detection of a shift at a time point t ∈ N with a small delay and for the

avoidance of unnecessary alarms we compared the subwindows yt−9, . . . , yt−1

and yt+1, . . . , yt+9. The insertion of a gap between the windows improves the

detection of shifts consisting of subsequent steps. Note that we need windows

of widths of at least nine points to resist patches of four outliers.

Detection of a shift allows us to take an appropriate action. We apply the

method of Fried and Gather (2007) for estimating the time of the level shift: if

a shift is detected at time point t but not at t−1, the likely time of the shift is

immediately before the first t + j, j > 0, for which yt+j is closer to the median
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µ̃t+ of yt+1, . . . , yt+9 than to the median µ̃t− of yt−9, . . . , yt−1. Instead of the

median of the full window, we then use the median of the observations in the

left window as filter output until time point t + j − 1. From t + j on, we use

the median of the right window, and return to the median of the full window

at time t + j + 5.

Fig. 7 also shows various filter outputs. The ordinary running median

smoothes the signal edges to some extent. The filter applying the trimmed t-

test shows some additional spikes e.g. at time t=112, and it also smoothes the

shifts, since these are often detected quite late. Wilcoxon and most ANOVA

tests (not shown here) perform better, but they do not overcome the problems

completely. Only the median comparison with joint MAD detects the shift at

t = 380 in a timely fashion. Overall, the median comparisons with joint scale

estimate perform best, with the MAD-based version confirming its good power.

5 Conclusions

We have investigated rules for detecting shifts in the presence of outliers. From

the results of our experiments we have derived some recommendations on how

to proceed when choosing windows as short as those treated here: We have

shown that the new ANOVA-type procedures are outperformed by suitably

designed median comparisons. In case of homoskedastic noise, the median

comparison with a joint MAD scale is recommended if high robustness and

detection power are crucial. If the variability varies over time, then joint Qn

or separate Sn estimation might be preferred. Unless the windows are very

short, we prefer Qn over Sn since its increasing efficiency leads to higher power.

Further experiments show that the powers of robustified Wilcoxon tests increase

strongly with the width of the window used for the scale estimation, becoming

comparable to those of the median comparisons.

These results have been derived for white noise. They remain valid in case

of small to moderate autocorrelations. High positive autocorrelations lead to

monotonic patterns, which can be confused with level shifts. The corresponding

increase of the size of the detection rules can be reduced by estimating the

autocorrelations robustly and adapting the thresholds for detection.
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Figure 7: Time series generated from the blocks function (top left) and different

time periods with extracted signals: running median (bold dotted) and running

median with trimmed t-test (dotted), median comparison with joint Qn (bold

solid) or MAD (bold dashed, often coincides with Qn), and Wilcoxon test with

Sn (wide-dashed). 21



We also tried other rules that have been suggested in the literature. t-tests

based on ranks (Conover and Iman, 1981) turned out to be almost as powerful

as ordinary t-tests, whereas the 20%-trimmed t-test was only slightly worse

in this respect. However, the 20%-trimmed t-test protects at most against

a single outlier in case of the window widths considered here, and t-test on

ranks had little robustness against outliers at all. Among tests based on local

variabilities such as those based on quasi-ranges (Restrepo and Bovik, 1988,

Sun and Venetsanopoulos, 1988, Kundu and Wu, 1989, Lee and Tantaratana,

1990, Sun, Gabbouj and Neuvo, 1994), only the empirical variance gave good

power, but for the price of a strong increase of the test size already in case of a

single outlier or a change of the variance. Similar problems were observed with

linear hybrid edge detectors (Neuvo, Heinonen and Defee, 1987).

The tests investigated here can be combined with robust regression meth-

ods applied recursively to the incoming data. This allows to robustify recursive

least-squares techniques for studying the stability of regression relationships

over time (Brown, Durbin and Evans, 1975). First experiments show the suit-

ability of Wilcoxon-type tests for the detection of abrupt shifts within trends.
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