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A MEASURE OF MUTUAL COMPLETE
DEPENDENCE

By Karl Friedrich Siburg and Pavel A. Stoimenov

University of Dortmund, Germany

Two random variables X and Y are mutually completely
dependent (m.c.d.) if there is a measurable bijection f with
P (Y = f(X)) = 1. For continuous X and Y , a natural approach
to constructing a measure of dependence is via the distance
between the copula of X and Y and the independence copula.
We show that this approach depends crucially on the choice of
the distance function. For example, the Lp-distances, suggested
by Schweizer and Wolff, cannot generate a measure of (mutual
complete) dependence, since every copula is the uniform limit
of copulas linking m.c.d. variables.

Instead, we propose to use a modified Sobolev norm, with
respect to which, mutual complete dependence cannot approx-
imate any other kind of dependence. This Sobolev norm yields
the first nonparametric measure of dependence capturing pre-
cisely the two extremes of dependence, i.e., it equals 0 if and
only if X and Y are independent, and 1 if and only if X and Y
are m.c.d.

1. Introduction. Let X and Y be two random variables. Y is
defined (see [5]) to be completely dependent on X if there exists a
Borel measurable function f such that

(1.1) P (Y = f(X)) = 1.

X and Y are called mutually completely dependent (m.c.d.) if Y is
completely dependent on X, and X is completely dependent on Y .
In other words, X and Y are m.c.d. if, and only if, there is a Borel
measurable bijection f satisfying (1.1).

Stochastic independence and mutual complete dependence are ex-
actly opposite in character. The former case entails complete unpre-
dictability of either random variable from the other, whereas the latter
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2 K. F. SIBURG AND P. A. STOIMENOV

corresponds to complete predictability. Consequently, it is a natural
desideratum for a measure of dependence between X and Y to mea-
sure the strength of mutual complete dependence, with extreme values
of 0 if and only if X and Y are independent, and 1 if and only if X
and Y are m.c.d.

However, even the maximal correlation, introduced by Gebelein [3]
and considered by Rényi [8] in many respects superior to other measures
of dependence, fails to capture the extremes of stochastic dependence.
The maximal correlation is defined by

(1.2) ρ̃(X,Y ) = sup
g,h

ρ(g(X), h(Y )),

where the supremum is taken over all Borel measurable functions g, h
such that Var g(X), Var h(Y ) ∈ (0,∞), and ρ denotes Pearson’s corre-
lation coefficient. In fact, besides computational difficulties, ρ̃ equals 1
too often since two random variables which are m.c.d. have maximum
correlation 1, but the converse is not true.

The lack of quantities which measure mutual complete dependence
could be attributed to the fact that mutual complete dependence seems
incompatible with the concept of weak convergence of bivariate distri-
bution functions. In particular, it has been shown in [4] that it is possi-
ble to construct a sequence of pairs of m.c.d. random variables, all hav-
ing uniform margins, which converges in law to a pair of independent
random variables. This disturbing and counterintuitive phenomenon
has led to the concept of monotone dependence, which corresponds
to mutual complete dependence when in (1.1) the class of Borel mea-
surable functions f is restricted to a.s. monotone ones. Kimeldorf and
Sampson [4] argue that monotone dependence could be interpreted as
the opposite of stochastic independence because the property of mono-
tone dependence is preserved under weak convergence. They introduce
the monotone correlation, given by

(1.3) ρ∗(X, Y ) = sup
g,h

ρ(g(X), h(Y )),

where the supremum is taken only over monotone functions. As noted
in [4], however, two random variables which are monotone dependent
have monotone correlation 1 but, again, the converse implication fails.

Restricting attention to continuous random variables, Schweizer and
Wolff (see [9]) defined several nonparametric measures of monotone
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dependence using copulas. By Sklar’s theorem (see [10]), for any X
and Y with continuous distribution functions FX and FY , respectively,
and joint distribution function FX,Y , there exists a unique copula C
such that

(1.4) FX,Y (x, y) = C(FX(x), FY (y)).

The copula fully characterizes the dependence between X and Y , and
provides a convenient tool for measuring stochastic dependence. For
example, since X and Y are independent if and only if their connecting
copula is the product copula P (x, y) = xy, it has been argued in [9]
that any suitably normalized distance between C and P , in particular,
any Lp-distance, should yield a symmetric nonparametric measure of
dependence. Specifically, Schweizer and Wolff studied the L1-distance
given by

(1.5) σ(X,Y ) = 12
∫

I2
|C − P | dλ

where I = [0, 1] denotes the closed unit interval and λ the two-dimensional
Lebesgue measure.

Strictly speaking, however, σ(X,Y ) is a measure of monotone de-
pendence because it attains its maximum of 1 if and only if X and
Y are monotone dependent. This is easily seen since any copula lies
(pointwise) between the lower and upper Fréchet-Hoeffding bounds,
which are copulas themselves and correspond precisely to monotone
decreasing and increasing dependence, respectively (see [9]). Moreover,
if X and Y are m.c.d., σ(X, Y ) can attain any value in (0, 1]. This fol-
lows from the fact that the set of copulas linking m.c.d. random vari-
ables is dense in the set of all copulas with respect to the L∞-distance
(see [6]), and, since copulas are continuous functions, with respect to
any Lp-distance, p ≥ 1. In fact, since copulas themselves are multi-
variate distribution functions with uniform margins, for which, due to
uniform continuity, pointwise and uniform convergence coincide, this is
equivalent to the above mentioned phenomenon that mutual complete
dependence is not preserved under convergence in law.

In other words, none of the Lp-distances is capable of detecting mu-
tual complete dependence except for the two extreme cases of mono-
tone dependence. Therefore, the choice of the metrical distance function



4 K. F. SIBURG AND P. A. STOIMENOV

used in the construction of a measure of dependence is crucial for its
resulting properties.

In this paper, we argue that the inconsistency between mutual com-
plete dependence and the Lp-distance neither weakens the concept of
mutual complete dependence as the opposite of independence, nor does
it imply that a measure of dependence should be restricted to mono-
tone dependence. It rather suggests that convergence in law, or, al-
ternatively, uniform convergence of the corresponding copulas, is an
inappropriate concept for the construction of measures of dependence.

Instead of the Lp-norm, we propose to measure the distance between
two copulas by a modified Sobolev norm given by

(1.6) ‖C‖ =
( ∫

I2
|∇C|2 dλ

)1/2

where ∇ denotes the gradient of the copula. This norm derives from
a scalar product which, among other things, allows a straightforward
representation via the ∗-product for copulas, introduced by Darsow et
al. in [1]. Furthermore, this Sobolev norm turns out extremely advanta-
geous since the degree of dependence between two continuous random
variables X and Y , and, in particular, mutual complete dependence,
can be determined by analytical properties of their copula. It follows
that, in contrast to the Lp-distance, with respect to the Sobolev norm,
a sequence of copulas corresponding to mutual complete dependence
can only converge to a copula which itself links m.c.d. variables. Thus,
mutual complete dependence cannot approximate any other kind of
stochastic dependence.

Using this Sobolev norm we define a new nonparametric measure of
dependence for two continuous random variables X and Y with copula
C, given by

(1.7) ω(X, Y ) =
(
3‖C‖2 − 2

)1/2
=
√

3‖C − P‖ ,

which represents the (normalized) Sobolev distance between C and the
independence copula P . We show that the quantity ω(X,Y ) satisfies
the following:

(i) ω(X, Y ) is defined for any X and Y .
(ii) ω(X, Y ) = ω(Y,X).
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(iii) 0 ≤ ω(X,Y ) ≤ 1.
(iv) ω(X, Y ) = 0 if, and only if, X and Y are independent.
(v) ω(X, Y ) = 1 if, and only if, X and Y are m.c.d.
(vi) ω(X, Y ) ∈ [1/2, 1] if Y is completely dependent on X (or vice

versa).
(vii) If f and g are a.s. strictly monotone functions on Range(X) and

Range(Y ), respectively, then ω(f(X), g(Y )) = ω(X, Y ).
(viii) If {(Xn, Yn)} is a sequence of pairs of continuous random variables

with copulas Cn, and if lim
n→∞ ‖Cn−C‖ = 0, then lim

n→∞ω(Xn, Yn) =

ω(X, Y ).
(ix) If X and Y are jointly normal with correlation coefficient ρ, then

ω(X, Y ) is a strictly increasing function of |ρ|.
These properties show that ω(X,Y ) is a nonparametric measure of

dependence, with extremes precisely at independence and mutual com-
plete dependence.

The paper is organized as follows. Section 2 sets up the notation and
briefly reviews some fundamental properties of copulas. Section 3 in-
troduces the Sobolev scalar product for copulas and its corresponding
norm and distance. We show that the scalar product allows a represen-
tation via the ∗-product. In Section 4 we turn to the statistical inter-
pretation of the Sobolev norm for copulas, which leads naturally to a
new nonparametric measure of dependence for two continuous random
variables. Examples and comparisons are presented in Section 5.

2. Basic properties of copulas. Let I = [0, 1] be the closed unit
interval and I2 = [0, 1]× [0, 1] the closed unit square.

Definition 2.1. A two-dimensional copula (or briefly, a copula)
is a function C : I2 → I satisfying the conditions:

(i) C(x, 0) = C(0, y) = 0 for all x, y ∈ I.
(ii) C(x, 1) = x and C(1, y) = y for all x, y ∈ I.
(iii) C(x2, y2)−C(x2, y1)−C(x1, y2)+C(x1, y1) ≥ 0 for all rectangles

[x1, x2]× [y1, y2] ⊂ I2.

Let C denote the set of all (two-dimensional) copulas. Denote by
∂iC the partial derivative of C ∈ C with respect to the i-th variable.
The conditions in Definition 2.1 imply the following key properties of
copulas; for a proof see, e.g., [7].
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Proposition 2.2. (i) C is increasing in each argument.
(ii) C is Lipschitz (and hence uniformly) continuous.
(iii) For i ∈ {1, 2}, ∂iC exists a.e. on I2 with 0 ≤ ∂iC(x, y) ≤ 1.
(iv) The functions t 7→ ∂1C(x, t) and t 7→ ∂2C(t, y) are defined and

increasing a.e. on I.

There are three distinguished copulas, namely

C−(x, y) = max(x + y − 1, 0),

C+(x, y) = min(x, y),

P (x, y) = xy .

C+ and C− are called the Fréchet-Hoeffding upper and lower bound,
respectively, since for any copula C and any (x, y) ∈ I2 we have

(2.1) C−(x, y) ≤ C(x, y) ≤ C+(x, y) .

The set C can be equipped with the ∗-multiplication (see [1]), defined
by

(2.2) (A ∗B)(x, y) =
∫ 1

0
∂2A(x, t) ∂1B(t, y) dt.

C+ and P are the unit and null element respectively, i.e., for any copula
C we have

C+ ∗ C = C ∗ C+ = C,(2.3)

P ∗ C = C ∗ P = P.(2.4)

Denote by C> the transposed copula of C given by

(2.5) C>(x, y) = C(y, x).

C is called symmetric if C = C>. It is easy to see that for any A,B ∈ C

(2.6) (A ∗B)> = B> ∗ A>.

A copula C is left invertible if there is a copula A, called a left inverse,
such that A∗C = C+. It is right invertible if there is a copula A, called
a right inverse, such that C∗A = C+. Left and right inverses are unique
and correspond to the transposed copula C>, see [1, Theorem 7.1]. A
copula is invertible if it is both left and right invertible and, in this
case, C> is called the inverse of C.
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3. The Sobolev scalar product for copulas. We denote by ·
the Euclidean scalar product, by | | the Euclidean norm on R2, and by
λ the 2-dimensional Lebesgue measure.

It follows immediately from Proposition 2.2 (iii), and has been no-
ticed in [2], that

C ⊂ W 1,p(I2,R)

for every p ∈ [1,∞] where W 1,p(I2,R) is the standard Sobolev space.
However, it has not been exploited in this context that W 1,2(I2,R) is
a Hilbert space with respect to the usual W 1,2-scalar product

(3.1) 〈f, g〉W 1,2 =
∫

I2
fg dλ +

∫

I2
∇f · ∇g dλ

so that the set of copulas, C, comes equipped with a scalar product
structure.

There is, however, an even simpler way to define a scalar product
for copulas. Since copulas satisfy C(0, 0) = 0 we can actually forgo the
first term. Indeed,

(3.2) 〈f, g〉 =
∫

I2
∇f · ∇g dλ

defines a scalar product on the subspace

W 1,2
0 (I2,R) = {f ∈ W 1,2(I2,R) | f(0, 0) = 0}

which contains C. The restriction of 〈 , 〉 to C will be called the Sobolev
scalar product for copulas. As usual, we define the corresponding Sobolev
norm on C by

(3.3) ‖C‖ =
( ∫

I2
|∇C|2 dλ

)1/2

and the Sobolev distance function on C× C by

(3.4) d(A,B) =
( ∫

I2
|∇A−∇B|2 dλ

)1/2

.

Remark 3.1. (i) Although the scalar products 〈 , 〉 and 〈 , 〉W 1,2

are different, the resulting norms are equivalent on W 1,2
0 (I2,R)

(where the nontrivial estimate is implied by Poincaré’s inequal-
ity).
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(ii) (C, d) is a complete metric space, and the ∗-product is (jointly)
continuous with respect to ‖ ‖; see [2].

(iii) Besides, the Sobolev norm ‖ ‖ is reminiscent of the classical en-
ergy functional, which is well known in PDE’s and differential
geometry. In fact, one might call

E(C) =
1

2
‖C‖2 =

1

2

∫

In
|∇C|2 dλ

the energy of a copula C.

We have seen that the Sobolev scalar product for copulas appears
very naturally from analytical point of view. However, it also allows a
representation via the ∗-product, defined in (2.2).

Theorem 3.2. For all A,B ∈ C we have the identity

〈A,B〉 =
∫ 1

0
(A> ∗B + A ∗B>)(t, t) dt

=
∫ 1

0
(A> ∗B + B ∗ A>)(t, t) dt.

Proof. It follows from (2.5) that

∂1A
>(x, y) = ∂2A(y, x)

∂2A
>(x, y) = ∂1A(y, x)

(3.5)

Using (2.2) and (3.5) we can write

∫ 1

0

∫ 1

0
∂1A(x, y) ∂1B(x, y) dx dy =

∫ 1

0

( ∫ 1

0
∂2A

>(y, x) ∂1B(x, y) dx
)
dy

=
∫ 1

0
(A> ∗B)(y, y) dy

∫ 1

0

∫ 1

0
∂2A(x, y) ∂2B(x, y) dx dy =

∫ 1

0

( ∫ 1

0
∂2A(x, y) ∂1B

>(y, x) dy
)
dx

=
∫ 1

0
(A ∗B>)(x, x) dx.

Adding up both terms we obtain the first identity.
The second equation in Theorem 3.2 is equivalent to

∫ 1

0
(A ∗B>)(t, t) dt =

∫ 1

0
(B ∗ A>)(t, t) dt
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which follows from (A ∗ B>)(t, t) = (A ∗ B>)>(t, t) = (B ∗ A>)(t, t),
where we have used (2.6).

The representation in Theorem 3.2 becomes particularly simple for
symmetric copulas.

Corollary 3.3. If A,B ∈ C are symmetric, then

〈A,B〉 = 2
∫ 1

0
(A ∗B)(t, t) dt.

Theorem 3.2 yields upper and lower bounds for the scalar product
of two copulas. More precisely, we have the following result.

Theorem 3.4. Let A,B ∈ C. Then

1

2
≤ 〈A,B〉 ≤ 1,

where both bounds are sharp.

Proof. Theorem 3.2, in connection with the bounds for copulas
given in (2.1), implies that

2
∫ 1

0
C−(t, t) dt ≤ 〈A,B〉 ≤ 2

∫ 1

0
C+(t, t) dt.

Simple calculations yield
∫ 1
0 C−(t, t) dt = 1/4 and

∫ 1
0 C+(t, t) dt = 1/2.

Finally, one easily computes that

〈C−, C−〉 = 〈C+, C+〉 = 1

〈C−, C+〉 =
1

2
.

(3.6)

This shows that the bounds in the statement are sharp, and the proof
is complete.

Remark 3.5. The diameter of (C, d) is 1. To prove this, consider
the identity

d(A, B)2 = ‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2 〈A,B〉.
It follows from Theorem 3.4 and (3.6) that d(A,B) ≤ 1 = d(C−, C+),
which proves our claim.
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Theorem 3.6. For all C ∈ C, the following hold:

(i) 〈C, P 〉 = 2/3.
(ii) ‖C − P‖2 = ‖C‖2 − 2/3.
(iii) 2/3 ≤ ‖C‖2 ≤ 1.

Proof. For (i), we remark that P = P>, so Theorem 3.2 and (2.4)
imply

〈P,C〉 =
∫ 1

0
(P ∗ C + C ∗ P )(t, t) dt = 2

∫ 1

0
P (t, t) dt =

2

3
.

This, in turn, proves (ii) because

‖C − P‖2 = ‖C‖2 − 2〈C,P 〉+ ‖P‖2 = ‖C‖2 − 2

3
.

Finally, (iii) is a consequence of (ii) and Theorem 3.4.

4. A nonparametric measure of dependence. We now turn to
the statistical interpretation of the Sobolev norm for copulas and the
construction of a new nonparametric measure of dependence.

For the remaining part of the paper, let X and Y be continuous, real-
valued random variables (on the same probability space) with copula
C.

Lemma 4.1 ([1]). The following statements are equivalent:

(i) Y is completely dependent on X.
(ii) C is left invertible.
(iii) ∂1C ∈ {0, 1} a.e.

Consequently, the following are also equivalent:

(i) X and Y are mutually completely dependent.
(ii) C is invertible.
(iii) ∂1C, ∂2C ∈ {0, 1} a.e.

Proof. Darsow et al. prove in [1, Theorem 11.1] that Y is com-
pletely dependent on X if and only if C is left invertible. Moreover,
[1, Theorem 7.1] states that C has a left inverse if and only if for each
y ∈ I one has ∂1C(·, y) ∈ {0, 1} a.e. Actually, the proof shows that this
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is tantamount to assuming that ∂1C(x, y) ∈ {0, 1} a.e. This proves the
first part.

Analogous statements hold for right invertible copulas, from which
the second part of the lemma follows.

The next theorem describes the main results of this paper.

Theorem 4.2. The Sobolev norm for copulas satisfies ‖C‖2 ∈ [2/3, 1]
for all C ∈ C. Moreover, the following assertions hold:

(i) ‖C‖2 = 2/3 if, and only if, X and Y are independent.
(ii) ‖C‖2 ∈ [3/4, 1] if Y is completely dependent on X (or vice versa).
(iii) ‖C‖2 = 1 if, and only if, X and Y are m.c.d.

In terms of algebraic properties of C, these properties read as follows:

(i) ‖C‖2 = 2/3 if, and only if, C = P .
(ii) ‖C‖2 ∈ [3/4, 1] if C is left (or right) invertible.
(iii) ‖C‖2 = 1 if, and only if, C is invertible.

This result, together with the identity ‖C − P‖2 = ‖C‖2 − 2/3,
expresses the astonishing fact that the Sobolev norm itself measures
stochastic dependence, with extremes exactly at independence and mu-
tual complete dependence. In addition, the Sobolev norm is able to
detect that two random variables are not completely dependent.

Proof. The foremost statement is contained in Theorem 3.6(iii).
The first assertion is an immediate consequence of Theorem 3.6(ii).

It follows from (3.3) that

(4.1) ‖C‖2 =
∫ 1

0

∫ 1

0
(∂1C(x, y))2 dx dy +

∫ 1

0

∫ 1

0
(∂2C(x, y))2 dx dy.

If Y is completely dependent on X we know from Lemma 4.1 that
(∂1C)2 = ∂1C a.e., so the first summand in (4.1) is equal to

∫ 1

0

∫ 1

0
∂1C(x, y) dx dy =

∫ 1

0
y dy =

1

2
.

The proof of Theorem 3.2 shows that the second term in (4.1) satisfies

∫ 1

0

∫ 1

0
(∂2C(x, y))2 dx dy =

∫ 1

0
(C ∗ C>)(t, t) dt
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which, since (2.1) implies C ∗ C> ≥ C−, can be estimated by

∫ 1

0

∫ 1

0
(∂2C(x, y))2 dx dy ≥

∫ 1

0
C−(t, t) dt =

1

4
.

This proves the second statement.
Finally, in view of Proposition 2.2 (iii), we have (∂iC)2 ≤ ∂iC with

equality if, and only if, ∂iC ∈ {0, 1}. Consequently, (4.1) implies that

‖C‖2 ≤
∫ 1

0

∫ 1

0
∂1C(x, y) dx dy +

∫ 1

0

∫ 1

0
∂2C(x, y) dx dy =

1

2
+

1

2
= 1

with equality if and only if ∂iC ∈ {0, 1} a.e. By Lemma 4.1, the latter
is equivalent to X and Y being m.c.d.

Corollary 4.3. The following are equivalent:

(i) X and Y are m.c.d.
(ii) ‖C‖ = 1.
(iii) ∂1C, ∂2C ∈ {0, 1} a.e.
(iv) C is invertible, i.e., C ∗ C> = C> ∗ C = C+.
(v)

∫ 1
0 (C ∗ C> + C> ∗ C)(t, t) dt = 1.

Proof. This follows immediately from Lemma 4.1, Theorem 4.2
and Theorem 3.2.

Corollary 4.4. Let {(Xn, Yn)} be a sequence of pairs of contin-
uous random variables with copulas Cn. Then the following assertions
hold:

(i) If, for almost all n, Xn and Yn are m.c.d. and lim
n→∞ ‖Cn−C‖ = 0,

then X and Y are m.c.d.
(ii) If, for almost all n, Xn is completely dependent on Yn, or Yn on

Xn, and lim
n→∞ ‖Cn − C‖ = 0, then X and Y are not independent,

i.e., C 6= P .

Proof. Part (i) is an immediate consequence of Theorem 4.2 since
‖Cn‖ = 1 and lim

n→∞ ‖Cn − C‖ = 0 implies ‖C‖ = 1. An analogous

argument proves (ii).
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Corollary 4.4 emphasizes the advantage of the Sobolev distance over
the Lp-distances, as mentioned in the Introduction. While, in the uni-
form sense, any copula, in particular, the independence copula P , can
be approximated by copulas of m.c.d. random variables, the Sobolev
convergence preserves the property of mutual complete dependence.
Hence, with respect to the Sobolev distance, mutual complete depen-
dence cannot approximate any other kind of stochastic dependence. In
fact, independence cannot even be approximated by completely depen-
dent random variables.

Therefore, measuring the distance between copulas with the Sobolev
norm resolves the disturbing phenomenon observed in [4, 6].

These remarkable statistical properties of the Sobolev norm lead im-
mediately to the following definition.

Definition 4.5. Given two continuous random variables X,Y with
copula C, we define

ω(X, Y ) =
(
3‖C‖2 − 2

)1/2
.

In view of Theorem 3.6, the quantity ω(X,Y ) represents a normalized
Sobolev distance of C from the independence copula P :

(4.2) ω(X,Y ) =
√

3 ‖C − P‖ =
‖C − P‖
‖Ĉ − P‖ ,

where Ĉ is any copula of m.c.d. variables. The normalization guarantees
that ω(X,Y ) ∈ [0, 1]. Definition 4.5, however, makes clear that the
Sobolev norm of C itself serves as a measure of dependence.

For symmetric C we may use Corollary 3.3 to write

(4.3) ω(X, Y ) =
(
6

∫ 1

0
(C ∗ C)(t, t) dt− 2

)1/2

.

Theorem 4.6. The quantity ω(X,Y ) has the following properties:

(i) ω(X, Y ) is defined for any X and Y .
(ii) ω(X, Y ) = ω(Y,X).
(iii) 0 ≤ ω(X,Y ) ≤ 1.
(iv) ω(X, Y ) = 0 if, and only if, X and Y are independent.
(v) ω(X, Y ) = 1 if, and only if, X and Y are m.c.d.
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(vi) ω(X, Y ) ∈ [1/2, 1] if Y is completely dependent on X (or vice
versa).

(vii) If f and g are a.s. strictly monotone functions on Range(X) and
Range(Y ), respectively, then ω(f(X), g(Y )) = ω(X, Y ).

(viii) If {(Xn, Yn)} is a sequence of pairs of continuous random vari-
ables with copulas Cn, and if lim

n→∞ ‖Cn−C‖ = 0, then lim
n→∞ω(Xn, Yn) =

ω(X, Y ).

Proof. Everything is obvious by definition, or follows from Theo-
rem 4.2, except for (vi). Here we distinguish four different cases. For
the sake of clarity, let CX,Y denote the copula of X and Y .

If both f and g are increasing it is well known [7, Theorem 2.4.3]
that Cf(X),g(Y ) = CX,Y which implies ω(f(X), g(Y )) =

√
3 ‖Cf(X),g(Y )−

P‖ =
√

3 ‖CX,Y − P‖ = ω(X, Y ).
If f is increasing and g is decreasing then Cf(X),g(Y )(x, y) = x −

CX,Y (x, 1−y); see [7, Theorem 2.4.4]. Therefore (Cf(X),g(Y )−P )(x, y) =
(P − CX,Y )(x, 1 − y) which, by the transformation formula for the
Lebesgue measure, again implies ω(f(X), g(Y )) = ω(X,Y ). If f is
decreasing and g is increasing, the result follows from interchanging f
and g in the previous case.

The case when f and g are both decreasing can be shown similarly.

Remark 4.7. If X and Y are jointly normal with correlation co-
efficient ρ, then ω(X,Y ) is a strictly increasing function of |ρ| whose
graph is shown in Figure 1.

5. Examples and comparisons. We conclude the paper with
some examples clarifying the relationship between the measure of de-
pendence ω(X, Y ) and the quantity σ(X,Y ), as defined in (1.5). We
assume that the reader is familiar with the concept of singular copulas;
for details we refer to [7].

Example 5.1. Let θ ∈ [0, 1], and consider the singular copula C
whose support consists of two line segments in I2, one joining (0, 0)
and (θ, 1), and the other joining (θ, 1) and (1, 0) (see [7, Example 3.3]).
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Fig 1. ω(X, Y ) as a function of ρ for jointly normal X, Y
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Fig 2. The gradient ∇C of the copula C in Example 5.1
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It follows that

C(x, y) =





x if x ≤ θy

θy if θy < x < 1− (1− θ)y

x + y − 1 if 1− (1− θ)y ≤ x.

Clearly, Y is completely dependent on X, but not vice versa. Since
probability mass θ and 1 − θ is uniformly distributed on the first and
second line segments, respectively, it is heuristically clear that the value
θ = 1/2 describes the least dependent situation, whereas the limiting
cases θ = 0 and θ = 1, when C = C− and C = C+, respectively,
correspond to mutual complete dependence.

This is perfectly reflected in the behavior of ω(X,Y ). Indeed, a
straightforward calculation (compare Fig. 2) shows that

‖C‖2 =
1

2

(
θ − 1

2

)2

+
7

8
∈

[
7

8
, 1

]

with the lowest and highest values attained precisely for θ = 1/2 and
θ ∈ {0, 1}, respectively. Consequently, ω(X,Y ) takes on its smallest
value

√
10/4 ≈ .79 for θ = 1/2.

The quantity σ(X, Y ) shows the same qualitative behavior, however,
its minimal value is .5.

Example 5.2. Let θ ∈ [0, 1], and consider the singular copula C
whose support consists of the two segments {(x, 1−x) | x ∈ [0, θ]∪ [1−
θ, 1]} and the segment {(x, x) | x ∈ [θ, 1 − θ]} (see [7, Exercise 3.15]).
It follows that

C(x, y) =





C+(x, y)− θ if (x, y) ∈ [θ, 1− θ]2

C−(x, y) otherwise

Now X and Y are mutually completely dependent so ω(X,Y ) = 1,
regardless of the value of θ.

In contrast, σ(X, Y ) varies between 1 (for θ ∈ {0, 1}) and values
around .46 (for θ ≈ .12), indicating a definite degree of independence
when, actually, there is none. Note that the copula from Example 5.1
with θ = 1/2 yields almost the same value for σ.
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