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Abstract

This paper introduces a test for zero correlation in situations where

the correlation matrix is large compared to the sample size. The test

statistic is the sum of the squared correlation coefficients in the sample.

We derive its limiting null distribution as the number of variables as

well as the sample size converge to infinity. A Monte Carlo simulation

finds both size and power for finite samples to be suitable. We apply

the test to the vector of default rates, a risk factor in portfolio credit

risk, in different sectors of the German economy.
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1 Introduction

Many applications of multivariate analysis involve a large number of vari-

ables. However, the associated statistical procedures are often derived from

large sample asymptotics. In practice, it may occur that the sample size is

smaller than the number of variables, a situation which is often ruled out in

testing for correlation, for instance for the likelihood ratio test (see Muirhead

(1982), p. 527 or Anderson (1958), p. 233).

When the number of variables is of the same order of magnitude as the

sample size, the finite performance of such procedures is doubtful. Therefore,

one should rather use procedures that are based on an asymptotic theory in

which both sample size and the number of variables converge to infinity.

Examples of such procedures can be found in Dempster (1958), Ledoit and

Wolf (2002) or Schott (2005).

In this paper, we consider a correlation test for p normally distributed

random variables. We analyse a test statistic which works when the dimen-

sionality is large: the sum of squared correlation coefficients in the sample.

This statistic is also considered by Schott (2005), who shows that its distrib-

ution is asymptotically normal as sample size and number of variables both

tend to infinity. We analyse the null distribution of this statistic in three as-

ymptotic situations. Using results about the asymptotic joint distribution of

sample correlation coefficients by Browne and Shapiro (1986) and Neudecker

and Wesselmann (1990), we show that the distribution of the test statistic

converges to a χ2-distribution as the sample size converges to infinity. Start-

ing from that basis, we approximate the distribution for a fixed sample size

as the dimension increases. Finally, we consider the asymptotic distribution

for the case in which both the sample size and the dimension converge to

infinity. It turns out that this n-p-asymptotic result is the same as for the

fixed dimension. Simulations show that our test has sufficient power and

keeps the nominal size for reasonable sample sizes.

We apply the test to a high-dimensional risk factor for a credit portfolio
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model. Typically, few current data are available to estimate the distribution

of the risk factor, and this is specially critical for the correlation matrix

due to the “curse of dimensionality”. The specific example is the vector of

default rates in different sectors of the economy. It serves as a risk factor

in e.g. the model CreditRisk+ (Credit Suisse First Boston (CSFB) (1997)).

The correlations between the default rates enter into the credit value-at-risk

of a loan portfolio (Bürgisser et al. (1999)). For our data, the null hypothesis

of no intersectional correlation is clearly rejected.

Moreover, we apply the test to a data set containing 8 blood serum mea-

surements for a group of 12 individuals, made up of 4 alcoholics and 8 con-

trols. For each of the two subgroups, we test whether the different blood

serum measurements are correlated or not. The data exhibit very strong

evidence of correlation for the control group, whereas for the alcoholic group

there is less evidence for correlation.

2 Model and main results

A frequent assumption in multivariate statistics is that of an i.i.d. sample of

normally distributed p-dimensional random vectors X1, . . . , Xn ∼ Np(µ, Σ),

in which µ ∈ Rp denotes the mean vector and Σ ∈ Rp×p a positive semi-

definite covariance matrix. The corresponding correlation matrix is P =

Σ
− 1

2
0 ΣΣ

− 1
2

0 , where Σ0 is a diagonal matrix with the same diagonal elements

as Σ. The usual estimator for P is the sample correlation matrix R with

typical entries

rij =

∑n
k=1(Xik − X̄i)(Xjk − X̄j)√∑n

k=1(Xik − X̄i)2
∑n

k=1(Xjk − X̄j)2
.

Here Xik is the ith element of the variable Xk, X̄i is the mean. We consider

the following hypothesis

H0 : P = I vs. H1 : P 6= I,
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where I denotes the p× p unit matrix. H0 corresponds to the independence

of the coordinates. The coordinates’ variances are nuisance parameters, as

their expectations.

For the related testing problem H
′
0 : Σ = I, John (1971) suggested the

statistic

tr(S − I)2 =

p∑
i=1

p∑

j=1,j 6=i

s2
ij +

p∑
i=1

(sii − 1)2, (1)

where tr(·) denotes the trace and S is the usual unbiased estimator for Σ. If

Σ = I, σii = 1 and σij = 0 for i 6= j, then (1) is clearly a reasonable statistic.

It can also be used when n < p.

Similarly, we use the statistic tr(R− I)2 for the correlation test. Because

R is symmetric, the statistic equals twice the sum of the squared correlation

coefficients in the sample:

tr(R− I)2 = tr

(
diag

(
p∑

i=2

r2
1i,

p∑

i=1,i 6=2

r2
2i, . . . ,

p−1∑
i=1

r2
pi

))

=

p∑
i=1

p∑

j=1,j 6=i

r2
ij

= 2

p−1∑
i=1

p∑
j=i+1

r2
ij. (2)

Under H0, the rij’s should be close to zero. We will reject H0 if (2) is

too large and determine the distribution under H0 with the aid of an as-

ymptotic approximation. Since asymptotics for a fixed p and n → ∞ (n-

asymptotics) contradicts the situation considered here, an asymptotic ap-

proximation where both n → ∞ and p → ∞ is used. This will be done in

three stages. First, we derive the asymptotic distribution for large samples

when the dimension is fixed. Next, the sample size is fixed and the dimen-

sion increases. Finally, we combine the results of the previous steps to derive

the asymptotic distribution when the sample size and the dimension both

converge to infinity.
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Lemma 2.1 gives the joint asymptotic distribution of the correlation co-

efficients under H0, for n →∞.

Lemma 2.1 Let X1, . . . , Xn be i.i.d. ∼ Np (µ, Σ) with Σ = diag(σ2
1, . . . , σ

2
p).

Then for n →∞,

√
n− 1 (r12, r13, . . . , rp−1,p)

t D−→ Np(p−1)/2

(
0, Ip(p−1)/2

)
.

Proof. Browne and Shapiro (1986) show that for arbitrary p,

√
n− 1(r11, r12, . . . , rp−1,p, rp,p)

t

approaches a p2-variate normal distribution with expectation

√
n− 1(ρ11, ρ12, . . . , ρp−1,p, ρp,p)

t.

The asymptotic covariance matrix is given by

2Ms(P ⊗ P )− ABt −BAt + AGAt. (3)

Here, ⊗ denotes the Kronecker symbol. In the following, double subscripts

are used to denote rows of a matrix with p2 rows, or columns of a matrix

with p2 columns. Thus, Cij,kl represents the element in row (j − 1)p + i and

column (l− 1)p+k of a matrix C. The matrices in (3) have typical elements

(2Ms(P ⊗ P ))ij,kl = ρikρjl + ρilρjk, (B)ij,k = 2ρikρjk and (G)ij = 2ρ2
ij. A is

defined as A = Ms(I ⊗P )Kd where the only nonzero elements of Ms and Kd

are

(Ms)ij,ij = (Ms)ij,ji =

{
1 if i = j
1
2

if i 6= j

and (Kd)ii,i = 1. Now, the three-dimensional case is considered first. Accord-
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ingly, P = I3, and

2Ms(P ⊗ P ) =




2 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 2




, A =




1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1




,

B = 2A and G =




2 0 0

0 2 0

0 0 2


 so that

2Ms(P ⊗ P )−ABt −BAt + AGAt =




0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0




.

With respect to rows and columns 2, 3 and 6 only, the asymptotic covariance

matrix of
√

n− 1(r12, r13, r23)
t turns out to be I3.

This special case of p = 3 can easily be generalized to an arbitrary p: since

the asymptotic variance of each rij is clearly the same, it remains to show

that rij and rkl are asymptotically uncorrelated, provided at least one of the

indices is different. If both indices are different, rij and rkl are independent,

even for a finite n. If only one index is different, they are asymptotically
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independent, because the covariance between rij and rik for j 6= k is the

same as the covariance between r12 and r13, which has been shown to be

asymptotically negligible. ¤

Lemma 2.1 immediately yields the n-asymptotic null-distribution of the

test statistic expressed in Theorem 2.2.

Theorem 2.2 Let X1, . . . , Xn be i.i.d. ∼ Np (µ, Σ) with Σ = diag(σ2
1, . . . ,

σ2
p). Then for n →∞,

n− 1

2
tr(R− I)2 D−→ χ2

p(p−1)/2. (4)

Proof. The proposition follows directly from (2), Lemma 2.1 and the defini-

tion of the χ2-distribution. ¤

The test procedure using the n-asymptotic approximation is

φn(X1, . . . , Xn) = 1nn−1
2

tr(R−I)2>χ2
p(p−1)/2,1−α

o

where 1{} denotes the indicator function and χ2
p(p−1)/2,1−α is the (1 − α)-

quantile of the χ2-distribution with p(p− 1)/2 degrees of freedom.

Our next result gives the asymptotic approximation for a fixed sample

size n, as the dimension p converges to infinity. In this situation, the number

of squared correlation coefficients contained in tr(R− I)2 increases. Because

each r2
ij follows a beta distribution with parameters 1/2 and (n − 2)/2 (see

Muirhead (1982), p. 147), for i 6= j, we have

E(r2
ij) =

1

n− 1
, Var(r2

ij) =
2(n− 2)

(n− 1)2(n + 1)
. (5)

Two different squared correlation coefficients r2
ij and r2

kl are now examined.

If all indices are different, these are independent for all n. If one index is the

same, they are dependent, but uncorrelated for a fixed n. For a very large

n, they tend to be independent, because of the asymptotic normality of rij
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and rkl. A proof of the lack of correlation of the corresponding covariance

estimators sij is set out in Lemma A.1 in the appendix. Lemma 2.3 gives

the asymptotic distribution of a sum of independent random variables, each

of which follows a beta distribution.

Lemma 2.3 Let Y12, Y13 . . . , Yp−1,p be i.i.d ∼ Beta(1/2, (n−2)/2). Then for

p →∞,

(n−1)

p−1∑
i=1

p∑
j=i+1

Yij

√
n + 1

p(p− 1)(n− 2)
−

√
p(p− 1)(n + 1)

4(n− 2)

D−→ N(0, 1). (6)

Proof. The proposition follows from (5) and the central limit theorem. ¤

Since Lemma 2.3 requires that the random variables be independent, it is

applicable to the sum of squared correlation coefficients for an infinite sample

size. We combine the preceding asymptotic approximations with Lemma 2.3,

in order to derive the distribution of (n− 1)tr(R− I)2/2, when n and p both

converge to infinity.

Theorem 2.4 Let X1, . . . , Xn be i.i.d. ∼ Np (µ, Σ) with Σ = diag(σ2
1, . . . ,

σ2
p). Then for n, p →∞,

n− 1

2
tr(R− I)2

√
n + 1

n− 2
− p(p− 1)

2

(√
n + 1

n− 2
− 1

)
D−→ χ2

p(p−1)/2. (7)

Proof. For n →∞,
∑p−1

i=1

∑p
j=i+1 Yij in (6) can be replaced by tr(R− I)2/2,

because the r2
ij’s are independent in this case. This expression approaches

to N(0, 1). Note that a sum of p(p− 1)/2 independent random variables Yk,

each of which follows a χ2
1-distribution, has a χ2

p(p−1)/2-distribution. Thus,

with E(Yk) = 1, Var(Yk) = 2, the central limit theorem yields

1√
p(p− 1)

χ2
p(p−1)/2 −

√
p(p− 1)

4

p→∞−→ N(0, 1). (8)
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Since the left hand sides of (6) and (8) both tend towards the same limiting

distribution, the left hand side of (6) is distributed according to the left hand

side of (8), so that

n−1
2

tr(R− I)2

√
n + 1

p(p− 1)(n− 2)
−

√
p(p− 1)(n + 1)

4(n− 2)

n,p→∞−→ 1√
p(p− 1)

χ2
p(p−1)/2 −

√
p(p− 1)

4
.

Multiplying both sides by
√

p(p− 1) and adding p(p − 1)/2 completes the

proof. ¤

Using the n-p-asymptotic approximation (7), we obtain our final test

procedure

φnp(X1, . . . , Xn) = 1nn−1
2

tr(R−I)2
q

n+1
n−2

− p(p−1)
2

�q
n+1
n−2

−1
�
>χ2

p(p−1)/2,1−α

o.

Remark 2.5 For large n,
√

(n + 1)/(n− 2) is near to one, so that the n-

p-asymptotic approximation (7) finally corresponds to the n-asymptotic ap-

proximation (4). Calculating expectation and variance of (n−1)tr(R−I)2/2

as

E

(
n− 1

2
tr(R− I)2

)
= (n− 1)

p−1∑
i=1

p∑
j=i+1

1

n− 1
=

p(p− 1)

2
,

Var

(
n− 1

2
tr(R− I)2

)
= (n− 1)2

p−1∑
i=1

p∑
j=i+1

2(n− 2)

(n− 1)2(n + 1)

= p(p− 1)
n− 2

n + 1
,

we see that (7) provides a finite adjustment for (4). The expectation of

(n − 1)tr(R − I)2/2 conforms to the χ2
p(p−1)/2-distribution, but the variance

is smaller than p(p − 1) for a finite n. Therefore, the statistic is multiplied

by a constant greater than one. Thus the expectation becomes too large.

Therefore, as an adjustment, a second constant must be subtracted.

9



Table 1: Actual size of the test (nominal size α = 0.05)

p\n 5 10 20 40 100

5 φn 0.02 0.03 0.04 0.04 0.05

φnp 0.05 0.05 0.05 0.05 0.05

10 φn 0.02 0.03 0.04 0.04 0.05

φnp 0.06 0.05 0.05 0.05 0.05

20 φn 0.02 0.04 0.04 0.05 0.05

φnp 0.06 0.05 0.05 0.05 0.05

40 φn 0.02 0.04 0.04 0.05 0.05

φnp 0.07 0.06 0.05 0.05 0.05

100 φn 0.03 0.04 0.04 0.05 0.05

φnp 0.07 0.06 0.05 0.05 0.05

3 Some Monte Carlo simulations

We draw n-sized samples from a p-variate normal distribution with expec-

tation 0 ∈ Rp and covariance matrix Σ. We choose Σ = I for the size

simulations and

Σ =




1 0.2 . . . 0.2

0.2
. . . . . .

...
...

. . . . . . 0.2

0.2 . . . 0.2 1




for the power simulations. Because correlation coefficients are invariant

with respect to transformations of location and scale, this approach is reliable

enough as far as the size is concerned. With respect to the power, we restrict

ourselves to the case of equicorrelation with ρ = 0.2. For each combination

of n and p in 5, 10, 20, 40 and 100, we use 10,000 repetitions. Critical values

correspond to a nominal size of 0.05. Tables 1 and 2 show the empirical
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Table 2: Power of the test (nominal size α = 0.05)

p\n 5 10 20 40 100

5 φn 0.04 0.14 0.33 0.67 0.98

φnp 0.09 0.19 0.37 0.68 0.98

10 φn 0.08 0.30 0.66 0.95 1.00

φnp 0.17 0.35 0.67 0.95 1.00

20 φn 0.19 0.54 0.90 1.00 1.00

φnp 0.29 0.60 0.91 1.00 1.00

40 φn 0.35 0.77 0.99 1.00 1.00

φnp 0.43 0.80 0.99 1.00 1.00

100 φn 0.59 0.94 1.00 1.00 1.00

φnp 0.66 0.95 1.00 1.00 1.00

rejection frequencies.

In Table 1, we see that the actual size of the tests is close to the nominal

size of 0.05 for all combinations of n and p. As expected, the n-asymptotic

approximation φn exhibits downward size distortion for a small n. The actual

size of φnp is closer to the nominal one. Upward distortions of φnp for small

n and large p seem to be minimal. These empirical findings are in line with

analytic results.

The simulated power in Table 2 shows that both tests are n-consistent

and n-p-consistent. Even for a fixed sample size, a larger dimension leads to

rapidly increasing power. The power of the two tests does not differ much,

and the differences seem to be caused by the varying actual sizes. This is due

to the fact that both test procedures rely on the same statistic tr(R − I)2,

only the standardizations differ.

Consequently, we recommend φnp because its approximation appears more

accurate than that of φn.
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Figure 1: Empirical rejection probabilities of φnp for the case of equicorrela-

tion

Figure 1 displays empirical rejection probabilities of the test φnp for the

case of equicorrelation with different values of ρ. The case where ρ is equal

to 0 stands for the null hypothesis, whereas positive values of ρ represent

different points of the alternative.

The combination of n equal to 7 and p equal to 20 refers to the situation

of our data set containing default rates. As expected, the solid line shows

that rejection probabilities rise if ρ gets larger. Figure 1 also exhibits how

the power increases if the number of variables (dotted line) or the sample size

(dashed line) is doubled. The effect of a rising sample size is more distinct

than the effect of a growing number of variables.
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4 Empirical examples

We apply our test procedure φnp to two data sets. The first one contains

default rates in different sectors of the German economy. The data covers

20 sectors over a period of 7 years. The data set is a typical example of

large-dimensionality: on the one hand, there should be a substantial number

of sectors included because e.g. banks use very detailed sector classifications

for credit customers. On the other hand, the data should not be too old,

because the amount of information contained in the data tends to decrease

over time.

Using φnp to test for correlation between the default rates in different

sectors, we calculate (7) and obtain a value for the test statistic of 1190,

corresponding to a p-value of virtually zero. The null hypothesis of no inter-

sectional correlation is clearly rejected.

This result agrees with a priori expectations: after all, different sectors

of the economy depend on the same macroeconomic variables.

The second data are part of a larger data set in Beerstecher Jr. et al.

(1950). It consists of 8 blood serum measurements for a group of 12 individ-

uals, made up of 4 alcoholics and 8 controls. For each of the two subgroups,

we test whether the different blood serum measurements are correlated or

not. Again we use φnp and calculate the value of the test statistic as 62.0

for the control group and 39.7 for the group of alcoholics, corresponding to

p-values of 0.0002 and 0.0696, respectively. Thus the data exhibit very strong

evidence of correlation for the control group, whereas for the alcoholic group

there is less evidence for correlation.
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A Correlation between correlation coefficients

Lemma A.1 Let X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn be independently distri-

buted with expectation µX , µY , µZ and variances σ2
X , σ2

Y , σ2
Z, respectively. Then,

the covariance estimators

sXY :=
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
1

n− 1

(
n∑

i=1

XiYi − nX̄Ȳ

)
,

sXZ and sY Z satisfy

Cov(sXY , sXZ) = Cov(sXY , sY Z) = Cov(sXZ , sY Z) = 0.

Proof. Let 1n be the n-dimensional vector with all elements equal to one

and H = I − 1/n1n1t
n. With X = (X1, . . . , Xn)t, Y = (Y1, . . . , Yn)t and

Z = (Z1, . . . , Zn)t,

sXY =
1

n− 1
X tHY, sXZ =

1

n− 1
X tHZ, sY Z =

1

n− 1
Y tHZ.

It follows that apart from the constant factor 1/(n− 1)2,

Cov(sXY , sXZ) = E(sXY · sXZ)− E(sXY ) · E(sXZ)

= E(X tHY X tHZ)− E(X tHY ) · E(X tHZ)

=
[
E(X tHY XT )HE(Z)− E(X t)HE(Y )E(X t)HE(Z)

]

=
[
E(X tHY X t)HµZ1n − E(X t)HµY 1nE(X t)HµZ1n

]

= 0,

since H1n = 0. ¤
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