
Davies, P. Laurie; Gather, Ursula; Nordman, Daniel; Weinert, Henrike

Working Paper

Constructing a regular histogram : a comparison of
methods

Technical Report, No. 2007,14

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB
475), University of Dortmund

Suggested Citation: Davies, P. Laurie; Gather, Ursula; Nordman, Daniel; Weinert, Henrike
(2007) : Constructing a regular histogram : a comparison of methods, Technical Report, No.
2007,14, Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in
Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/24999

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/24999
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Constructing a regular histogram
- a comparison of methods

April 26, 2007

P. L. Davies1, U. Gather2, D. Nordman3 and H. Weinert2

Abstract

Even for a well-trained statistician the construction of a histogram for a given
real-valued data set is a difficult problem. It is even more difficult to construct
a fully automatic procedure which specifies the number and widths of the bins in
a satisfactory manner for a wide range of data sets. In this paper we compare
several histogram construction methods by means of a simulation study. The study
includes plug-in methods, cross-validation, penalized maximum likelihood and the
taut string procedure. Their performance on different test beds is measured by the
Hellinger distance and the ability to identify the modes of the underlying density.

Key Words: Regular histogram, model selection, penalized likelihood, taut-string

1 Introduction

Let xn = {x(1), . . . , x(n)} be an ordered sample of real data points of size n. Using the
data xn, the goal is to find a piecewise constant function that provides a “good simple
approximation” of the data xn on the sample range [x(1), x(n)] in the sense that integrating
the function over each interval within [x(1), x(n)] approximates the relative frequency of
data points within this interval with sufficient accuracy. This is known as the problem of
histogram construction.

1Department of Mathematics, University Duisburg-Essen; Department of Mathematics, Technical
University Eindhoven.

2Department of Statistics, University of Dortmund.
3Department of Statistics, Iowa State University.
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We may classify existing procedures into two distinct categories, regular and adaptive his-
togram construction procedures. Regular histogram procedures produce only histograms
with equal length intervals, while adaptive procedures may result in histograms with bins
of varying lengths. The number of regular histogram procedures is amazingly large; in
contrast, the number of available adaptive procedures is small. This may be due to a
reliance on classical statistical decision theory to drive model selection. In particular, it
seems to be very difficult both to choose the number and widths of the bins, if the latter
are allowed to be different, in an automatic manner. Even if the aim is just to produce a
regular histogram, the choice of the proper bin length has no generally accepted automatic
solution.
The construction of regular histograms is an excellent problem for comparing the differ-
ent paradigms of model choice. For regular histograms, the number of free parameters
is the number of bins, one for this number m itself and m − 1 for the bin occupancy
numbers. In this paper we restrict attention to regular histograms, mainly because of the
computational problems many methods have when the lengths of the bins are allowed to
vary (Kanazawa (1988, 1993); Rissanen, Speed and Yu (1992); Barron, Birgé, and Mas-
sart (1999)). Furthermore, regular histogram methods are often attractive because they
are typically fast and automatic, but in contrast not all adaptive procedures are automatic
as some depend on tuning parameters without default values (Engel 1997, Kanazawa 1993
and Barron, Birgé and Massart 1999). One exception is the taut string method of Davies
and Kovac (2004) which first produces an irregular histogram at a computational cost
of O(n log n). This can then be easily converted into a regular histogram by choosing a
larger number of equal bins so that the shape of the histogram is not altered. For this
reason, it competes with the other regular histogram methods on an equal footing, and
we include it in the comparison.

2 Histogram procedures

Almost all regular histogram procedures involve optimality considerations based on sta-
tistical decision theory, where the performance of any data-based histogram procedure
f̂(x) ≡ f̂(x | xn) is quantified through its risk

Rn(f, f̂ , �) = Ef

[
�(f, f̂)

]
(1)

with respect to a given, nonnegative loss function � and an assumed density, denoted by f ,
that generates the data xn. One usually seeks the histogram procedure f̂ that minimizes
(1), which is then deemed optimal.
The choice of a loss � is important for judging histograms. There are many possibilities
which include Lr-metrics

�(f, g) =

(∫
R

|f(x) − g(x)|rdx

)1/r

, 1 ≤ r < ∞; sup
x

|f(x) − g(x)|, r = ∞,
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squared Hellinger distance

�2(f, g) =
1

2

∫
R

(√
f(x) −

√
g(x)

)2

dx

and Kullback-Leibler discrepancy

�(f, g) =

∫
R

log

(
f(y)

g(y)

)
f(y)dy ∈ [0,∞].

The choice of a loss function is also quite arbitrary. For judging histogram quality, Birgé
and Rozenholc (2006) argue that Kullback-Leibler divergence is inappropriate because
�(f, f̂) = ∞ whenever a histogram f̂ has an empty bin. However, there are histogram
methods based on AIC, Akaike (1973), or cross-validation rules by Hall (1990), which
are derived from risk minimization with this type of loss. The L2 loss is popularly used
because the asymptotic risk from (1) can then often be expanded and analyzed [c.f.
Wand (1997) and references therein]. Barron, Birgé and Massart (1999) and Birgé and
Rozenholc (2006) rely on squared Hellinger loss for determining histograms.
Construction of a histogram on the data range [x(1), x(n)] is essentially the same for all
regular histogram procedures. A general histogram is of the form

fm(x) ≡ fm,pm,tm(x) =
p1

t1 − t0
I{t0 ≤ x ≤ t1} +

m∑
j=2

pj

tj − tj−1

I{tj−1 < x ≤ tj}, (2)

with the histogram parameters

• the number m ∈ N of bins in the histogram,

• the bin positions as a sequence of m+1 knots tm = (t0, t1, . . . , tm) ∈ R
m+1, tj < tj+1,

• the corresponding bin probabilities pm = (p1, . . . , pm) ∈ [0, 1]m,
∑m

j=1 pj = 1.

The restriction to histograms with equal bins yields:

tm = t0 +
(tm − t0)

m
(0, 1, . . . , m) ∈ R

m+1, t0 < tm ∈ R, (3)

and a regular histogram f̂ reg
m (x), x ∈ [x(1), x(n)], with m bins is determined by the following

knots t̂m and probabilities p̂m:

t̂j = x(1)+
j(x(n) − x(1))

m
, p̂j =

Nj,m

n
, Nj,m =

{ ∣∣{i : x(i) ∈ [t̂0, t̂1]}
∣∣ j = 1,∣∣{i : x(i) ∈ (t̂j−1, t̂j]}

∣∣ j = 2, . . . , m.

(4)
The bin probabilities are usually estimated by the bin relative frequencies p̂j, correspond-
ing to the maximum likelihood estimates given m and t̂m.
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Regular histogram procedures reduce to rules for determining an optimal number mopt of
bins that minimizes some type of risk in selecting a histogram from (4):

Rn(f, f̂ reg
mopt , �) = inf

m∈N

Rn(f, f̂ reg
m , �).

With the exception of the taut-string, there are three broad categories of regular histogram
procedures which differ by the methods used for determining mopt in (4). We summarize
these in Sections 2.1 - 2.3 and describe the taut-string method in Section 2.4.

2.1 Plug-in methods

Assuming a sufficiently smooth underlying density f , the asymptotic risk (1) of a his-
togram f̂ reg

m from (4) can often be expanded and minimized to obtain an asymptotically
optimal bin number mopt. For example, a bin number mopt = C(f)n1/3 is asymptoti-
cally optimal for minimizing the Lr risk for 1 ≤ r < ∞ as well as the squared Hellinger
distance, while mopt = C(f)[n/ log(n)]1/3 is asymptotically optimal with the L∞ risk
[c.f. Scott (1979), Freedman and Diaconis (1981), Wand (1997) for L2; Devroye and
Györfi (1985), Hall and Wand (1988) for L1; Kanazawa (1993) for Hellinger distance;
Silverman (1978) for L∞]. The estimation of unknown quantities in C(f) yields a plug-in
estimate m̂ of mopt. Additionally, expressions for C(f) and estimates of m̂ are often sim-
plified by assuming an underlying normal density f [c.f. Scott (1979)]. We will consider in
greater detail a more sophisticated kernel method proposed by Wand (1997) for estimat-
ing m̂. As in Birgé and Rozenholc (2006), the WAND procedure is defined here using the
one-stage bin width estimator h̃1 with M = 400 given in formula (4.1) of Wand (1997).

2.2 Cross-validation

Cross-validation (CV) attempts to directly estimate the risk Rn(f, f̂ reg
m , �) in approximat-

ing f by f̂ reg
m . This empirical risk can then be minimized by an estimate m̂. In particular,

the data xn are repeatedly divided into two parts, one of which is used to fit the model
f̂ reg

m and the other to evaluate an empirical loss (e.g., delete-1 CV). These repeated loss
evaluations can be averaged to estimate the risk Rn(f, f̂ reg

m , �). Based on loss functions
evoked by their names, L2 cross-validation (L2CV) and Kullback-Leibler (KLCV) proce-
dures require maximization of

m(n + 1)

n2

m∑
j=1

N2
j,m − 2m and

m∑
j=1

Nj,m log(Nj,m − 1) + n log(m),

respectively [c.f. Rudemo (1982), L2CV; Hall (1990), KLCV].
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2.3 Penalized-maximum likelihood

Many regular histogram procedures determine a histogram f̂ reg
m̂ from (4) based on a bin

number m̂ that maximizes a penalized log-likelihood:

Ln(m) =
m∑

j=1

Nj,m log(mNj,m) − pen(m). (5)

Apart from an irrelevant constant, the first sum above corresponds to the log-likelihood of
the observed data

∑n
j=1 log(f̂ reg

m (x(j))). The value Ln(m) is viewed as a single numerical
index that weighs a regular histogram’s fit to the data, as measured by the likelihood,
against its complexity measured by the penalty term. The final histogram f̂ reg

m̂ is judged
to achieve the best balance between model fit and model complexity.
The penalty in (5) heavily influences the histogram f̂ reg

m̂ and numerous choices have been
proposed:

pen(m) :=

⎧⎪⎪⎨⎪⎪⎩
m AIC,

m + {log(m)}2.5 BR,
m log(n)/2 BIC,
log(Cm,n) NML.

Akaike’s Information Criterion (AIC), Akaike (1973), is based on minimizing estimated
Kullback-Leibler divergence. Birgé and Rozenholc (2006) propose a modified AIC penalty
(BR above) to improve the small-sample performance of the AIC procedure. The Bayes
Information Criterion (BIC) follows from a Bayesian selection approach introduced by
Schwartz (1978). The Normalized Maximum Likelihood (NML) criterion uses an asymp-
totic ideal code length expansion [c.f. Rissanen (1996)], derived by Szpankowski (1998),
as a penalty:

log(Cm,n) =
m − 1

2
log

(n

2

)
+ log

( √
π

(Γ(m
2
))

)
+

√
2mΓ(m

2
)

3
√

nΓ(m−1
2

)

+
1

n

(
3 + m(m − 2)(2m + 1)

36
− m2Γ2(m

2
)

9Γ2(m−1
2

)

)
,

where Γ(·) denotes the gamma function. We discuss NML further along with similar
coding-based selection rules below.
Rissanen (1983, 1987, 1989) proposes several model selection techniques based on the
principle of minimum description length (MDL). Information theory is applied to char-
acterize the best model, with respect to a given model class, as the one providing the
shortest encoding of the data xn. Hall and Hannan (1988) apply different coding for-
mulations to derive two further selection rules for regular histograms f̂ reg

m̂ . To choose a
bin number m̂, the stochastic complexity (SC) and minimum description length (MDL)
procedures require maximization of

mn(m − 1)!

(m + n − 1)!

m∏
j=1

Nj,m! or

m∑
j=1

N∗
j,m log(N∗

j,m)−
(
n − m

2

)
log

(
n − m

2

)
n log(m)−m

2
log(n),
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with N∗
j,m = Nj,m − 1/2.

2.4 Taut-string (TS) histogram procedure

The taut-string method is presented in Davies and Kovac (2004). It assumes no true
density and hence there is no loss or risk function. Instead it defines what is meant by
an adequate approximation of the data and then attempts to find an adequate histogram
with the minimum number of peaks. This second step constitutes a kind of regularization.
As mentioned above the taut-string histogram is not regular but it can yield a regular
histogram by choosing a sufficiently large number of bins so that the regular and non-
regular histograms differ only slightly.
We now give a brief description of the taut-string method.
Let En denote the empirical distribution function of the data xn. Write the so called
Kolmogorov tube of radius ε > 0 centered at En as

T (En, ε) =
{
G; G : R → [0, 1], sup

x
|En(x) − G(x)| ≤ ε

}
.

The taut string function T (En, ε) is best understood by imagining a string constrained to
lie within the tube and tied down at (x(1), 0) and (x(n), 1) which is then pulled until it is
taut. There are several equivalent analytic ways of defining this. The taut string defines
a spline function Sn on [x(1), x(n)] that is piecewise linear between knots {x(1)} ∪ {x(i) :
1 < i < n, |Sn(x(i)) − En(x(i))| = ε}∪{x(n)}, corresponding to points xn where Sn touches
the upper or lower boundary of the tube T (En, ε). The right derivative of Sn provides a
histogram sn on [x(1), x(n)), which automatically determines the histogram bin number,
bin locations and bin probabilities in (2). The taut-string sn histogram is additionally
known to have the fewest peaks or modes with an integral lying in Tn(En, ε).
The size of the tube radius ε is important for the shape of the taut-string histogram
sn. Davies and Kovac (2004) prescribe a tube squeezing factor εn that determines the
tube T (En, εn) and sn as part of the TS histogram procedure. This is done using a data
approximation concept involving weak metrics applied to a continuous distribution E
and the empirical distribution En based on a sample from E. On these distributions, the
κ-order Kuiper metric, κ ∈ N, is given by

dku,κ(E, En) = sup

{
κ∑

j=1

∣∣(E(bj) − E(aj)
) − (

En(bj) − En(aj)
)∣∣ : aj ≤ bj ∈ R, bj ≤ aj+1

}
.

We define the difference between successive Kuiper metrics as ρ1(E, En) = dku,1(E, En)
and ρi(E, En) = dku,i(E, En) − dku,i−1(E, En) for i > 1. The distribution of ρi(E, En),
i ∈ N, does not depend on E for continuous E; let qi denote the 0.999-quantile of ρi(E, En).
A definition can now be given for a taut-string to be consistent with the data xn. We say a
taut-string distribution Sn from a tube T (En, ε) provides an adequate data approximation
if ρi(Sn, En) ≤ qi for each i = 1, . . . , 19.
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In the taut-string (TS) procedure, we reduce the tube radius ε of T (En, ε) until the
approximation standard is first met; this provides the squeezing factor εn to determine a
final taut-string histogram sn. Further squeezing beyond εn would create additional peaks
or modes in a taut-string histogram.

3 Real data examples

We illustrate histogram construction with three data sets: eruptions of the Old Faithful
geyser, the duration of treatment of patients in a suicide study, and the percentages of
silica in meteorites. The first two sets of data are found in Silverman (1985) and the last
one in Good and Gaskins (1980). Extensive analyses by other authors have produced
histograms with two modes for the Old Faithful data, right skewed histograms for the
suicide study data [cf. Silverman (1985), Scott (1992)] and three modes of increasing size
for the meteorite data [cf. Good and Gaskins (1980), Scott (1992)].
Figures 1-3 provide histograms with methods from Section 2. The point made visually
is the degree to which histogram constructions disagree in their shapes, largely when
it comes to the number and position of modes. We explore this aspect further in our
numerical studies.

4 Simulation Study

Our simulation study focuses on the regular histogram procedures which were found to
perform well by Birgé and Rozenholc (2006) as well as the taut-string method (TS).
To limit the size of the study, we exclude several histogram procedures involving plug-
in estimates, such as Sturges’s rule of 1 + log2(n) bins [cf. Sturges (1926)], as well as
methods from Daly (1988) and He and Meeden (1997). Numerical studies in Birgé and
Rozenholc (2006) indicate that these are not competitive with the other methods that we
consider.
We outline a new performance criterion in Section 4.1, motivated by the data examples
in Figures 1-3. Section 4.2 describes the design of a simulation study to compare perfor-
mances of histogram construction procedures and the simulation results are summarized
in Section 4.3.

4.1 Performance criterion: Peak identification loss

We define a mode or peak of a density f as the midpoint of an interval (x1, x2) ⊂ I ⊂
[x1, x2] which satisfies the following: f(x) = c > 0 is constant on x ∈ I and, for some
δ > 0, it holds that c > f(x) if x ∈ Iδ\I for the enlargement Iδ = ∪y∈I{x ∈ R : |x−y| ≤ δ}
of I.
Identifying the locations of peaks in a reference density f is known to be a difficult
problem for many histograms; see the discussion in Scott (1992) for the normal density.
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Figure 1: Histogram constructions from Old Faithful geyser data, n = 107 data points
denoted by ◦.
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To illustrate this, Figure 4 provides histograms for a sample from the claw density, which
is a normal mixture with five peaks taken from Marron and Wand (1992). Two main
errors in identifying peaks of the claw density f become evident in Figure 4. Histogram
constructions can miss peaks of f (e.g., BIC, MDL) or they can produce unnecessary peaks
(e.g., AIC). With these observations in mind, we propose the following loss to measure a
histogram’s performance in identifying peaks of a density f .

Suppose f is a density with p = p(f) ∈ N peaks at z1, . . . , zp satisfying (zi − δi, zi +
δi) ∩ (zj − δj , zj + δj) = ∅, i �= j, for some positive vector δ = δ(f) ≡ (δ1, . . . , δp) ∈ R

p.

Assume next that a histogram f̂ has p̂ = p̂(f̂) peaks at y1, . . . , yp̂. We say a peak of f̂

at yj matches a peak of f at zi if min1≤j′≤p̂ |zi − yj′| = |zi − yj| < δi. An f̂ -peak that
matches no peak of f is spurious for f while an f -peak that has no matches is said to be
unidentified by f̂ . We can then define a peak identification loss as a count:

�i.d.(f, f̂ , δ) = # of unidentified peaks of f + # of spurious peaks of f̂

= (p − Ci.d.) + (p̂ − Ci.d.) (6)

using the number Ci.d. =
∑p

i=1 I{min1≤j≤p̂ |zi − yj| < δi} of correctly identified f -peaks.

That is, the nonnegative loss �i.d.(f, f̂ , δ) ≥ 0 measures the two possible errors incurred
by identifying modes of f with the modes of f̂ . The vector δ represents the tolerances
demanded in identifying each peak. Using �i.d. in (1), we obtain a risk for identifying peaks
of a density f with a histogram procedure f̂ , which is a meaningful and interpretable
measure of model quality.

4.2 Simulation study design

As test beds we selected sixteen reference densities f of differing degrees of smoothness,
tail behavior, support and modality. The collection of reference densities included: uni-
modal densities, such as the Uniform U(0, 1), standard Normal N(0, 1), and standard
Cauchy distributions; eight mixture distributions from Marron and Wand (1992) as well
as the claw density; a ten normal mixture in Figure 5 used by Loader (1999); and four
remaining densities, which were chosen to have roughly the same shapes as the test-case
densities appearing in Birgé and Rozenholc (2006) and have nearly all probability mass
concentrated on (0, 1).

The test densities are depicted in Figures 5 and 6.

We used these densities for evaluating the performance of eleven histogram procedures:
AIC, BIC, BR, KLCV, L2CV, MDL, NML, SC, TS, WAND. To measure the quality
of histograms, we considered risks based on two different losses: squared Hellinger and
the peak identification loss from (6). The peak identification loss has an immediate
interpretation, while the Hellinger loss seems appropriate for likelihood-based histograms.
For each reference density f and sample size n = (100, 250, 500), we used 1000 independent
size n samples xj,n ≡ xj,n(f), j = 1, . . . , 1000, to approximate the risk of each histogram
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Figure 6: Data-generating densities used in the simulation study.
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procedure f̂ :

R̂n(f, f̂ , �) =
1

1000

1000∑
j=1

�(f, f̂j,n),

with loss evaluations �(f, f̂j,n) from histograms f̂j,n at each simulation run xj,n.

4.3 Simulation results

Tables 1 and 2 provide the peak identification and Hellinger risks, respectively, for sample
sizes n = 100, 250, 500.
In Figures 7 - 10 the average ranks of the ten methods are given. In Figures 7 and 9
the ranks are built over all test densities and all sample sizes of the simulation study, in
Figures 8 and 10 the ranks are only taken over the unimodal or multimodal densities,
respectively.
Sometimes care is needed in interpreting the results. An example is given by the results
for the bimodel density. Here BIC performs best with a peak identification risk of only
0.09 for samples of size n = 500. This compares to 1.02 for the taut string. Moreover
BIC performs better on the bimodal density than it does on the normal density where its
risk is 0.19. The explanation is that most methods, including BIC for this density, find
too many peaks and consequently tend to find some when there are none. If we look at
the nearest unimodal density to the bimodal, shown in Figure 5, the performance of BIC
deteriorates and its risk is now 0.78 as against 0.03 for the taut string. The explanation
is that the two peaks of the bimodal are not very pronounced and are difficult to find
reliably. BIC seems to find them simply because it always tends to put two peaks there
whether they are present in the density or not. The taut string cannot detect such weak
peaks and has an error of 1. In fact no method can detect these peaks reliably, BIC only
gives the illusion of doing so.
We can now summarize the results of the simulation study as follows:

• The plug-in method (WAND) and L2-cross-validation (L2CV) consistently were the
worst performers in both peak identification and Hellinger distance.

• Out of the information theory-based hisograms, based on work of Rissanen (1987,
1989), the NML and SC performed similarly and were typically better than MDL.
Agreement between NML and SC also appeared in the data examples (Figures 1-3).

• For Hellinger risk, the BR method did perform well in our simulations, but did not
greatly outperform other histogram methods. In fact, on multimodal densities, there
is not much difference indicated in Figure 10 among methods in terms of Hellinger
risk.

• The taut-string procedure (TS) emerged as superior in terms of identifying the
modes of a density. In this sense the TS histogram more accurately reflects the

15



shape of a density than the other methods. The TS was also comparable in terms
of Hellinger distance.

As had to be expected, there is no overall optimal procedure that delivers the best his-
togram for every data-generating density. However, relative to any other single histogram
method, the taut-string histogram provides good histogram approximations for a wide
range of data-generating densities over a variety of sample sizes.
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Table 1: Peak identification risk for histograms by density and sample size n.
density n AIC BIC BR KLCV L2CV MDL NML SC TS WAND

100 1.20 0.47 0.49 0.58 1.33 2.24 0.65 0.82 0.18 0.52
N(0, 1) 250 1.17 0.34 0.37 0.43 1.38 1.61 0.40 0.44 0.03 0.37

500 1.47 0.19 0.34 0.39 1.71 1.07 0.31 0.29 0 0.38
100 0.72 0.02 0.07 0.41 0.57 6.11 0.03 0.03 0.58 1.25

U(0, 1) 250 0.60 0.01 0.07 0.50 0.57 6.97 0.01 0 0.30 1.40
500 0.55 0.01 0.06 0.52 0.53 2.45 0 0 0.32 1.54
100 3.59 2.80 2.88 1.75 4.66 1.62 3.62 3.17 0.01 5.74

cauchy 250 5.85 4.37 4.65 1.89 8.25 1.89 5.76 5.10 0 11.56
500 8.53 6.22 6.71 1.96 12.46 2.00 8.66 7.44 0 18.34
100 3.75 2.68 2.84 2.48 5.30 3.11 3.28 3.25 0.81 2.00

strongly skewed 250 4.98 2.53 2.89 2.28 10.13 3.31 3.19 3.13 0.44 2.00
500 8.55 2.46 4.07 2.05 13.65 3.64 3.78 3.79 0.23 1.97
100 3.64 2.08 2.41 1.39 5.03 1.14 3.45 2.46 0 4.98

outlier 250 7.17 3.15 5.36 1.27 10.82 1.38 6.12 4.06 0 10.57
500 10.72 4.87 9.04 1.25 17.44 1.71 9.03 6.72 0 18.00
100 1.36 0.07 0.10 0.40 1.36 3.78 0.27 0.76 0.12 0.90

three-uniform 250 0.93 0 0.02 0.49 1.15 3.61 0.03 0.08 0.06 1.09
500 0.67 0 0.01 0.47 0.94 0.90 0.01 0.01 0.08 1.54
100 0.98 1.52 1.17 0.64 1.01 3.04 1.38 2.09 1.71 1.43

bimodal 250 0.80 0.25 0.22 0.32 0.85 2.16 0.21 0.32 1.53 0.59
500 1.04 0.09 0.16 0.34 1.04 0.87 0.13 0.18 1.02 0.16
100 1.4 0.42 0.56 0.88 1.32 0.95 0.64 0.74 0.09 0.06

nearest 250 1.64 0.79 0.94 1.15 1.62 1.06 0.96 1.07 0.04 0.2
unimodal 500 2.21 0.78 1.04 1.43 2.11 1.11 0.97 1.08 0.03 0.36

100 1.24 0.94 0.91 0.83 1.33 2.27 1.06 1.24 1.08 1.06
skewed bimodal 250 1.41 0.67 0.64 0.69 1.49 1.77 0.70 0.71 1.01 0.95

500 1.86 0.50 0.62 0.63 1.92 1.17 0.52 0.59 0.99 0.64
100 1.62 1.94 1.77 1.42 1.59 3.34 1.80 2.23 2.21 2.13

trimodal 250 1.22 1.18 1.05 0.95 1.25 2.89 1.02 1.07 1.89 1.62
500 1.22 0.91 0.73 0.75 1.20 1.26 0.77 0.72 1.48 1.25
100 1.82 1.55 1.33 3.14 3.36 1.51 1.78 1.42 0.60 3.94

exp mixture 250 2.60 0.59 0.89 0.73 5.21 1.55 1.02 1.17 0.05 0.27
500 3.32 0.37 1.17 0.82 6.69 3.03 0.81 1.13 0 0.06
100 4.90 3.94 4.05 4.24 5.21 4.50 4.57 5.10 3.36 3.74

eight-uniform 250 4.83 3.86 3.99 4.08 5.26 4.70 4.06 4.34 2.35 4.52
500 4.17 3.54 3.67 3.65 4.65 4.76 3.66 3.70 1.61 3.79
100 4.88 4.37 4.33 4.31 5.06 4.40 4.97 5.26 4.06 5.36

smooth comb 250 5.88 3.98 3.84 4.01 5.81 3.73 4.42 4.81 3.10 5.52
500 7.25 3.09 4.63 3.20 6.98 4.02 4.55 4.90 2.37 4.12
100 4.41 3.52 3.64 3.27 4.41 3.69 4.37 4.66 2.92 5.65

discrete comb 250 4.45 3.87 3.74 3.86 4.76 3.78 3.96 4.14 2.09 5.66
500 4.30 3.67 2.69 3.57 4.83 2.81 2.74 2.83 1.30 3.93
100 5.18 5.46 5.49 5.40 5.01 4.99 5.39 5.33 4.25 5.28

claw 250 4.86 5.40 5.15 5.25 5.49 4.64 5.00 4.88 2.17 5.54
500 5.51 5.35 4.12 5.02 7.03 4.24 4.23 4.16 0.36 5.57
100 4.89 10.90 10.16 10.94 5.01 6.07 7.37 6.60 6.20 10.48

ten-normal 250 3.84 9.37 3.49 3.85 3.37 3.44 3.81 4.46 2.47 10.65
500 3.09 4.11 2.19 2.44 2.68 2.64 2.26 2.70 1.06 11.44
100 41.68 24.96 25.05 25.76 41.63 29.75 41.52 41.65 8.67 25.39

24-normal 250 23.48 33.78 39.88 30.43 24.14 30.70 23.66 23.49 2.41 25.80
500 1.29 10.18 34.52 30.72 1.85 32.58 1.08 1.29 0.56 26.32
100 1.89 0.79 0.9 1.39 1.73 1.33 0.95 1.16 0.68 2.16

triangle 250 1.85 0.89 1 1.55 1.78 1.15 1 1.18 0.46 2.29
500 2.02 0.92 1.09 1.76 1.85 1.11 1.04 1.12 0.31 2.52
100 1.73 0.52 0.63 0.62 3.04 0.67 0.94 0.81 0 1.9

exponential 250 2.3 0.7 1.07 0.63 4.15 0.75 1.17 0.96 0.02 3.82
500 2.91 0.89 1.45 0.67 5.54 0.8 1.31 1.11 0.02 6.2
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Table 2: Hellinger risk (×100) for histograms by density and sample size n.
density n AIC BIC BR KLCV L2CV MDL NML SC TS WAND

100 3.02 2.92 2.83 2.75 3.25 3.10 2.82 3.09 3.15 2.80
N(0, 1) 250 1.47 1.63 1.48 1.48 1.55 1.47 1.49 1.45 1.93 1.43

500 0.89 1.05 0.90 0.99 0.91 0.84 0.94 0.91 1.38 0.90
100 1.72 1.05 1.11 1.38 1.55 4.10 1.00 1.04 1.40 1.32

U(0, 1) 250 0.64 0.41 0.44 0.60 0.62 1.99 0.40 0.40 0.46 0.59
500 0.31 0.21 0.22 0.30 0.30 0.47 0.21 0.20 0.25 0.34
100 13.29 13.11 14.65 40.40 14.27 30.85 13.60 12.79 10.63 14.25

cauchy 250 11.17 11.82 13.73 50.33 12.10 40.77 11.02 10.79 8.62 12.09
500 9.54 10.86 12.82 58.20 10.41 49.02 9.41 9.26 7.71 11.23
100 4.44 3.98 3.93 3.95 5.31 3.60 4.26 4.01 3.80 10.37

strongly skewed 250 2.81 2.77 2.58 3.02 3.68 2.64 2.61 2.56 2.65 7.22
500 2.06 2.38 2.00 2.93 2.31 2.23 2.03 2.01 1.66 5.98
100 6.33 6.69 6.54 24.53 6.35 14.14 6.33 6.48 3.92 6.10

outlier 250 4.18 4.93 4.43 19.18 4.55 10.01 4.29 4.63 2.13 4.39
500 2.91 3.79 2.94 16.10 3.46 8.00 2.95 3.30 1.46 3.45
100 2.77 1.82 1.84 2.02 2.65 3.32 2.05 2.37 2.17 3.54

three-uniform 250 1.02 0.73 0.74 0.88 1.03 1.55 0.72 0.74 1.00 2.14
500 0.46 0.36 0.36 0.43 0.48 0.47 0.37 0.36 0.53 1.52
100 3.03 3.25 3.01 2.68 2.98 3.70 3.15 3.73 3.26 3.70

bimodal 250 1.50 1.66 1.52 1.44 1.57 1.71 1.53 1.51 1.82 2.05
500 0.89 1.10 0.93 0.91 0.92 0.90 0.96 0.93 1.19 1.12
100 2.93 3.17 2.92 2.6 2.95 2.89 3.04 3.56 3.35 3.42

nearest 250 1.43 1.55 1.43 1.38 1.49 1.38 1.44 1.41 1.88 2.27
unimodal 500 0.85 1.07 0.9 0.87 0.91 0.88 0.94 0.9 1.3 1.56

100 3.26 3.27 3.10 2.91 3.22 3.36 3.20 3.52 3.24 3.76
skewed bimodal 250 1.65 1.77 1.63 1.68 1.69 1.61 1.64 1.61 1.98 2.48

500 1.01 1.22 1.05 1.17 1.03 0.96 1.08 1.06 1.35 1.53
100 5.76 5.96 5.76 5.42 5.70 6.50 5.90 6.34 5.91 6.40

trimodal 250 4.21 4.41 4.25 4.15 4.23 4.50 4.26 4.26 4.52 5.13
500 3.62 3.84 3.66 3.61 3.64 3.62 3.69 3.65 3.79 4.36
100 5.35 4.61 4.60 4.18 5.86 3.70 5.16 5.24 4.05 5.96

exp mixture 250 2.45 2.38 2.20 2.00 2.71 2.05 2.24 2.24 1.71 2.58
500 1.36 1.49 1.30 1.20 1.47 1.38 1.30 1.29 0.96 1.41
100 5.55 4.88 4.89 4.80 5.76 4.55 5.27 5.75 3.87 6.70

eight-uniform 250 2.32 3.25 2.36 2.71 2.39 2.17 2.30 2.21 1.71 4.53
500 1.07 1.22 1.01 1.07 1.12 1.11 1.01 1.00 0.97 3.16
100 6.73 6.90 6.54 6.77 6.71 5.87 6.94 7.01 6.82 10.44

smooth comb 250 3.92 4.39 3.89 4.36 3.93 3.65 3.87 3.80 3.69 8.16
500 2.60 3.11 2.52 3.12 2.56 2.53 2.53 2.50 2.31 5.07
100 7.13 7.38 7.03 7.10 7.19 6.37 7.29 7.63 6.57 11.16

discrete comb 250 4.22 4.50 4.17 4.63 4.25 3.94 4.19 4.17 3.68 8.88
500 2.46 3.40 2.47 3.31 2.49 2.75 2.48 2.40 2.44 5.46
100 5.14 4.22 4.17 4.32 5.51 4.00 4.68 4.98 4.51 5.47

claw 250 2.99 2.96 2.85 3.09 3.16 2.52 2.84 2.81 2.72 3.75
500 1.91 2.33 1.79 2.49 2.03 1.85 1.85 1.82 1.60 2.90
100 8.65 7.05 7.13 7.40 8.26 6.50 8.80 9.39 8.74 7.19

ten-normal 250 4.60 6.04 4.39 4.08 4.36 3.66 4.51 4.84 4.62 6.54
500 2.76 3.55 2.68 2.67 2.64 2.33 2.71 2.69 2.77 6.41
100 49.66 62.16 62.18 62.20 49.58 61.54 49.65 49.61 31.55 62.23

24-normal 250 21.66 30.15 51.86 60.57 21.99 60.58 21.66 21.67 15.25 61.82
500 8.59 14.58 35.94 60.23 8.06 60.08 8.29 8.56 8.43 61.59
100 2.61 2.6 2.43 2.27 2.6 2.55 2.58 3.42 2.87 2.05

triangle 250 1.29 1.4 1.29 1.2 1.31 1.28 1.31 1.28 1.51 1.04
500 0.76 0.9 0.8 0.73 0.78 0.8 0.83 0.79 1.05 0.63
100 3.29 3.02 2.99 4.74 3.8 2.93 3.05 2.98 4.13 2.83

exponential 250 1.68 1.68 1.61 3.76 1.96 1.85 1.61 1.61 2.65 1.69
500 1.02 1.11 1 3.31 1.17 1.38 1.01 1.04 2.06 1.12
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