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Abbreviated title Robust designs for 3D shape analysis

Abstract Spherical harmonic descriptors are frequently used for describing three-dimensional shapes in
terms of Fourier coe¢ cients corresponding to an expansion of a function de�ned on the unit sphere. In
a recent paper Dette, Melas and Pepelyshe¤ (2005) determined optimal designs with respect to Kiefer�s
�p-criteria for regression models derived from a truncated Fourier series. In particular it was shown that
the uniform distribution on the sphere is �p-optimal for spherical harmonic descriptors, for all p > �1.
These designs minimize a function of the variance-covariance matrix of the least squares estimate but do
not take into account the bias resulting from the truncation of the series.
In the present paper we demonstrate that the uniform distribution is also optimal with respect to a

minimax criterion based on the mean square error, and as a consequence these designs are robust with
respect to the truncation error. Moreover, we also consider heteroscedasticity and possible correlations in
the construction of the optimal designs. These features appear naturally in 3D shape analysis, and the
uniform design again turns out to be minimax robust against erroneous assumptions of homoscedasticity
and independence.

Key words and phrases Shape analysis; spherical harmonic descriptors; optimal designs; mean square
error; 3D-image data; minimax optimal designs; robust designs; dependent data

AMS 2000 Subject Classi�cation: Primary 62K05, 62D32; secondary 62J05.

1. Introduction

Spherical harmonic shape descriptors are widely used to visualize 3D data in many �elds including
medicine, chemistry, architecture, agriculture and biology because of their ability to describe and compare
shapes of various structures in terms of a relatively small number of parameters [see e.g. Brechbühler,
Gerig and Kübler (1995), Novotni and Klein (2003), Székely, Kelemen, Brechbühler and Gerig (1996),
Ding, Nesumi, Takano and Ukai (2000), Funkhouser, Min, Kahzdan, Chen, Halderman and Dobkin
(2003), Kazhdan, Funkhouser and Rusinkiewicz (2003) among many others]. In many cases 3D data
appears in the form fYigni=1 = fr( i) + errorigni=1, where

 i = (�i; �i) 2 S = f(�; �) j � 2 [0; �]; � 2 (��; �]g ; (1.1)

and where �i and �i denote the polar angle and azimuthal angle of the ith observation [in other words
the corresponding point of the shape has spherical coordinates (Yi sin �i cos�i; Yi sin �i sin�i; Yi cos �i)T ].
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Let
fY ml ( ) j m 2 f�l;�l + 1; : : : ; lg; l 2 N0g

denote a complete orthonormal basis with respect to the uniform distribution

� ( ) d =
sin �

4�
d�d� (1.2)

on the unit sphere. If r : S ! R denotes a (square integrable) function representing the radius at direction
 ; the coe¢ cients

cml =
1

4�

Z �

0

Z �

��
r( )Y ml ( )�( )d 

of a spherical harmonic expansion

r( ) =
1X
l=0

lX
m=�l

cml Y
m
l ( ) (1.3)

are estimated from the 3D data. Because n data points do not allow one to determine all coe¢ cients
in the expansion (1.3), the series is truncated at a speci�c level, say d; and the coe¢ cients cml in this
approximation of r are estimated. In this paper we concentrate on the (weighted) least squares criterion

min
cml

n nX
i=1

�
Yi �

dX
l=0

lX
m=�l

cml Y
m
l ( i)

�2
w( i)

o
(1.4)

with an appropriate non-negative weight function w on S: The resulting estimates of the coe¢ cients
(appropriately normalized) are �nally used for describing and analyzing the 3D shapes [see Ding et al.
(2000), Kazhdan, Funkhouser and Rusinkiewicz (2003), Kelemen, Szekely and Gerig (1999) among many
others].
In a recent paper Dette, Melas and Pepelyshe¤ (2005) considered the optimal design problem for

estimating the coe¢ cients in the truncated Fourier expansion. They demonstrated that the commonly
used designs [either a uniform distribution on S realized by a grid or a uniform design taking observations
on several circles with equal distances on the z-axis - see e.g. Ding et al. (2000)] are rather ine¢ cient,
if the emphasis of the design of the experiment is the minimization of the variances of the least squares
estimates. In particular it is shown that the uniform distribution on the sphere (1.2) is optimal with
respect to all �p-criteria proposed by Kiefer (1974). The �p-optimal designs minimize a p-norm of the
eigenvalues of the variance-covariance matrix but do not take into account the bias, which is incurred by
the truncation of (1.3). However in 3D-shape analysis the bias has a serious impact on the quality of the
estimates [see e.g. Pawlak and Liao (2002)].
In the present paper we consider the optimal design problem for statistical analysis with spherical

harmonic descriptors taking a variety of possible model speci�cation errors into account. It is demon-
strated that the uniform distribution on the sphere remains optimal with respect to a minimax mean
square error criterion, which takes into account bias, heteroscedasticity and as well correlations in the
data. As a consequence this design is robust with respect to the bias arising from the truncation of the
Fourier series and with respect to the standard assumptions of homoscedastic and uncorrelated data.
In Section 2 we introduce the model and some of its basic properties. Section 3 deals with the

construction of continuous optimal designs with respect to the minimax criterion based on the integrated
mean square error calculated over the full set S: Optimal design problems with respect to the integrated
mean square error calculated over a �nite subset of S are considered in Section 4 and some numerical
comparisons with commonly used designs are given in Section 5. The more technical details are given
in the Appendix.

2. Some basic facts about spherical harmonic descriptors
We suppose that the random variables Yi are observed, with additive error, i.e.

Yi = Y ( i) = r( i) + �( i) ; i = 1; : : : ; n (2.1)
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at �locations� i = (�i; �i) 2 S, where the �( i) denote centered random variables with constant variance,
say �2� > 0; and the the polar angle and azimuthal angle satisfy �i 2 [0; �]; �i 2 (��; �]; respectively.
It is assumed that the function r( ) has an L2-expansion of the form (1.3), where the Y mn denote the
spherical harmonic descriptors de�ned by

Y mn ( ) =

8>><>>:
p
2n+ 1P 0n (cos �) ; m = 0; n � 0;q

2 (2n+ 1) (n�m)!(n+m)!P
m
n (cos �) cos (m�) ; m = 1; :::; n; n > 0;q

2 (2n+ 1) (n+m)!(n�m)!P
�m
n (cos �) sin (m�) ; m = �n; :::;�1; n > 0:

Here Pmn is the mth associated Legendre function of degree n satisfying the di¤erential equation

(1� x2)P 00(x)� 2xP 0(x) +
n
n(n+ 1)� m2

1� x2
o
P (x) = 0:

[See Andrews, Askey and Roy (1999) for more details]. Note that the functions Pmn can be calculated
recursively, because they are related to orthogonal polynomials.
For the estimation of the 3D shape the expansion in (1.3) is truncated at a given resolution d and the

linear regression model
E[Y j ] = zT ( ) c; Var[Y j ] = �2 > 0

is �tted to the data [see e.g. Brechbühler, Gerig and Kübler (1995)]; here the vector of regressors is given
by

z ( ) =
�
Y 00 ( ) ; Y

�1
1 ( ) ; Y 01 ( ) ; Y

1
1 ( ) ; � � �; Y �dd ( ) ; � � �; Y dd ( )

�T 2 R(d+1)2 :
We note for future reference that the spherical harmonic descriptors form a complete orthonormal basis
with respect to the uniform distribution on the sphere de�ned by (1.2), that isZ

S
z ( ) zT ( )� ( ) d = I; (2.2)

where the set S is de�ned at (1.1) and I denotes the identity matrix of order (d+ 1)2. Moreover it was
shown in Dette, Melas, and Pepelyshev (2005) that

kz ( )k = d+ 1; (2.3)

where k � k denotes the Euclidean norm.
An approximate design is a probability measure, say �; on the set S: For a probability measure with

�nite support the support points, say  i = (�i; �i); determine the points on the sphere, where the radius
of the 3D shape is observed and the corresponding weights, say ki; give the relative proportion of total
observations, which are taken in a particular direction. Recently Dette, Melas and Pepelyshev (2005)
determined optimal designs for statistical analysis with spherical harmonic descriptors, which minimize
an appropriate function of the covariance matrix of the least squares estimate for the vector c [see Silvey
(1980) or Pukelsheim (1993)], where the observations in (2.1) are assumed to be homoscedastic and
uncorrelated. In the present paper we investigate the problem of design of experiments, for 3D shape
analysis with spherical harmonic descriptors, from several di¤erent perspectives.

1. First we note that, due to the truncation of the expansion (1.3), there appears a bias, say f( ), i.e.

r ( ) = zT ( ) c+ f ( ) ; (2.4)

which somehow has to be addressed in the design of the experiment. In particular in 3D data the
bias is often not negligible compared to the variance [see Pawlak and Liao (2002)]. Note that the
function f refers to the remainder in the expansion (1.3) in an L2-sense, that is

f( ) =
1X

l=d+1

lX
m=�l

cml Y
m
l ( ): (2.5)
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2. Secondly, the assumptions of homoscedastic and uncorrelated errors � ( i) may be not realistic in
some applications of shape analysis. For this reason we assume that the random error in (2.1) can
be further decomposed as

�( ) = " ( ) + U ( ) ;

where the random variables " ( ) are centered and uncorrelated with each other, but with possibly
heterogeneous variances, say �2"g ( ) for some function g : S ! R+; and U ( ) is a random process,
uncorrelated with " ( ), with mean 0 and covariance function

Cov
�
U ( ) ; U

�
 0
��
= h

�
 ; 0

�
:

As a consequence of these assumptions the model (2.1) can be written as

Yi = z
T ( i) c+ f ( i) + " ( i) + U ( i) ; i = 1; : : : ; n; (2.6)

and in particular we have
E [Y ( )] = r( ) = zT ( ) c+ f ( ) :

Moreover, it follows from (2.4) and (2.5) thatZ
S
z ( ) f ( )� ( ) d = 0; (2.7)

and that the vector c is obtained as

c = argmin
t

Z
S

�
E [r ( )]� zT ( ) t

�2
� ( ) d ;

and given by the vector of the �rst (d+1)2 Fourier coe¢ cients of the function r. Let ĉ denote the estimate
obtained from the least squares criterion (1.4) and de�ne Ŷ ( ) = zT ( ) ĉ as the predicted response.
In order to address possible bias, heteroscedasticity and correlation in the design of the experiment, we
consider two integrated mean square error criteria:

IMSE1;f;g;h(�) =

Z
S
E

�n
Ŷ ( )� E [Y ( )]

o2�
� ( ) d ;

IMSE2;f;g;h(�) =

Z
S
E

�n
Ŷ ( )� Y ( )

o2�
� ( ) d ;

where � is the given experimental design. The criterion IMSE2;f;g;h measures the di¤erence between the
value of a �new�observation r, observed at location  , and its predicted value r̂ ( ), while IMSE1;f;g;h
compares the prediction with the expectation of a new observation. Note also that both criteria depend
on the bias f , variance function g and the correlation structure h of the errors �: For the case f � 0,
h � 0 and g � 1 Dette, Melas and Pepelyshev (2005) determined �p-optimal designs in the sense of
Kiefer (1974) minimizing a p-mean of the eigenvalues of the covariance matrix of the (unweighted) least
squares estimate, but it is not clear if these designs are e¢ cient or robust if any of these assumptions is
violated. In order to obtain robust designs we propose a minimax approach, which seeks designs which
minimize the worst IMSE calculated over a certain class of functions. To be precise let �2f and �

2
g denote

positive constants and consider the classes of functions

F =
n
f
��� Z

S
f2 ( )� ( ) d � �2f

o
(2.8)

G =
n
g
��� sup
 2S

jg ( )� g0 ( )j � �2g
o
: (2.9)

For j = 1; 2 a design ��j is called minimax-optimal if it minimizes the maximum IMSEj;f;g;h over the
classes F , G and H, i.e.

��j = argmin�max
n
IMSEj;f;g;h(�)

��� f 2 F ; g 2 G; h 2 Ho; (2.10)
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where the class H will be speci�ed in Section 3.1 and 3.2 corresponding to the cases of uncorrelated and
correlated data, respectively. In the following two sections we will determine minimax-optimal designs
with respect to the criterion (2.10). Section 4 is devoted to minimax optimal designs over a �nite subset
S0 of S.
The need for robustness of design against a misspeci�ed regression response was �rst elucidated in

the seminal paper Box and Draper (1959). A minimax approach over a broad class of departures from
the �tted response was subsequently formulated in Huber (1975). In a series of papers these notions
were extended to multiple linear regression [Pesotchinksy (1982); Wiens (1992)] and to robustness against
heteroscedasticity [Wiens (1998)]. A feature of this current article is that the continuous uniform design
on the sphere is simultaneously optimal, and robust, in a variety of situations. The more �standard�
uniform distribution, i.e. with constant density, was previously shown to possess attractive robustness
properties with respect to lack of �t testing in Wiens (1991); this work was subsequently extended by
Biedermann and Dette (1992) and more recently by Bischo¤ and Miller (2006).

3. Minimax optimal designs on S
In this section we suppose that any point  2 S = [0; �] � (��; �] is a possible design point. We will
demonstrate that for uncorrelated data the uniform distribution on the sphere remains optimal with
respect to the minimax criterion (2.10), and that this conclusion remains valid if robustness against a
broad class of correlation structures is required as well.
We will consider the uncorrelated and correlated cases separately. Before doing this we present the

loss functions for �xed functions f , g and h, and then the maxima, over F and G, of these loss functions.
It follows from Lemma 1 of Wiens (1992) that we may assume that the optimal design ��j is absolutely
continuous with respect to Lebesgue measure, since otherwise the maximum loss (over F) would be
in�nite. For a design � with density k( ) de�ne

m ( ) = k ( )w ( ) ;

and assume that the average weight is one, so thatZ
S
w ( ) d� ( ) =

Z
S
m ( ) d = 1

and m (�) is a probability density on S. If the vector c is estimated by weighted least squares (with
weight function w), then a straightforward calculation shows that the resulting estimate can be expressed
in terms of the design measure � (or equivalently m) as follows:

ĉ = c+B�1m

Z
S
z ( )m ( )Y ( ) d ;

where Y ( ) denotes the (continuous) data and the matrix Bm is de�ned by

Bm =

Z
S
z ( ) zT ( )m ( ) d :

The corresponding bias and covariance of this estimate are given by

E [ĉ]� c = B�1m bf;m;

Cov [ĉ] = B�1m

�
�2"
n
Cw;g;m +Dh;m

�
B�1m ;
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with

bf;m =

Z
S
z ( ) f ( )m ( ) d ;

Cw;g;m =

Z
S
z ( )w ( ) g ( ) zT ( )m ( ) d ;

Dh;m =

Z
S

Z
S
z ( )h

�
 ; 0

�
zT
�
 0
�
m ( )m

�
 0
�
d d 0:

Standard calculations now yield, for the integrated mean square errors,

IMSE1;f;g;h(�) = b
T
f;mB

�2
m bf;m + tr

�
B�1m

�
�2"
n
Cw;g;m +Dh;m

�
B�1m

�
+

Z
S
f2 ( )� ( ) d ;

IMSE2;f;g;h(�) = b
T
f;mB

�2
m bf;m + tr

�
B�1m

�
�2"
n
Cw;g;m +Dh;m

�
B�1m

�
+

Z
S
f2 ( )� ( ) d 

� 2trB�1m Eh;m + �
2
"cg + ch;

where

Eh;m =

Z
S

Z
S
z
�
 0
�
h
�
 ; 0

�
zT ( )m

�
 0
�
� ( ) d 0d ;

cg =

Z
S
g ( )� ( ) d ;

ch =

Z
S
h ( ; )� ( ) d :

We now seek to maximize the integrated mean square error with respect to f 2 F and g 2 G: This is
straightforward for the function g and was carried out for the function f in general regression models
with � (�) � 1 by Wiens (1992). The further generalization is straightforward and yields:

Proposition 1

(1) The maximum of bTf;mB
�2
m bf;m with respect to f 2 F satisfying (2.7) is given by

�2f
�
chmax

�
B�1m KmB

�1
m

�
� 1
�
; (3.1)

where chmax [A] denotes the maximum eigenvalue of the matrix A and Km is de�ned by

Km =

Z
S
z ( ) zT ( )

m2 ( )

� ( )
d :

The maximum value (3.1) is attained by any function f� of the form

f� ( ) = �f�
T
m

�
m ( )

� ( )
I�Bm

�
z ( ) ;

where �m is any solution of the equation
�
Km �B2m

�1=2
�m = �m and �m is any eigenvector of the

matrix B�1m
�
Km �B2m

�
B�1m , corresponding to the maximum eigenvalue, normalized so that k�mk = 1.

Moreover,

max
f2F

IMSEj;f;g;h(�) =

8>><>>:
�2fchmax

�
B�1m KmB

�1
m

�
+ tr

n
B�1m

h
�2"
n Cw;g;m +Dh;m

i
B�1m

o
; if j = 1,

�2fchmax
�
B�1m KmB

�1
m

�
+ tr

n
B�1m

h
�2"
n Cw;g;m +Dh;m

i
B�1m

o
�2trB�1m Eh;m + �

2
"cg + ch;

if j = 2.
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(2) The functions trB�1m Cw;g;mB
�1
m and cg are maximized, with respect to g 2 G, by g� ( ) = g0 ( )+�2g .

Moreover,

max
f2F;g2G

IMSEj;f;g;h(�) =

8>><>>:
tr
n
B�1m

h
�2"
n Cw;g�;m +Dh;m

i
B�1m

o
+ �2fchmax

�
B�1m KmB

�1
m

�
; if j = 1,

tr
n
B�1m

h
�2"
n Cw;g�;m +Dh;m

i
B�1m

o
+ �2fchmax

�
B�1m KmB

�1
m

�
�2trB�1m Eh;m + �

2
"cg� + ch;

if j = 2.

3.1 Uncorrelated data

Throughout this subsection we assume that robustness with respect to the correlation structure of the
errors does not have to be addressed in the optimality criterion (2.10), and so we take h(�; �) � 0 in the
expressions of Proposition 1. We begin our derivation with the case of classical least squares estimation
based on uncorrelated and homoscedastic data, as considered in Dette, Melas, and Pepelyshev (2005)
for Kiefer�s (1974) �p-optimality criteria. These authors however did not take the bias or possible
heteroscedasticity into account (in other words they put �2f = 0, g0( ) = 1, �2g = 0 in our notation)
and showed that the uniform distribution on the sphere de�ned by (1.2) is optimal with respect to
all of Kiefer�s �p-criteria. The following result shows that this design is also optimal with respect to
both IMSE-criteria considered in the present paper, if the errors in model (2.1) are homoscedastic and
uncorrelated.

Theorem 1 If the errors in model (2.1) are homoscedastic (i.e. �2g = 0; g0 (�) � 1) and uncorrelated
(i.e. h(�; �) � 0) and the weight function in the least squares criterion (1.4) is constant, then the uniform
design on the sphere de�ned by (1.2) minimizes maxf2F IMSEj;f;1;0(�) for j = 1; 2.

If heteroscedasticity is a concern the experimenter will consider the use of weighted least squares.
From (2) of Proposition 1 it follows that the maximum loss can be minimized with respect to the weight
function w by minimizing

trB�1m Cw;g�;mB
�1
m =

Z
S
w ( ) g� ( ) z

T ( )B�2m z ( )m ( ) d (3.2)

over all non-negative functions w (�) subject to the requirement that the function k ( ) = m ( ) =w ( )
be a density, that is Z

S

m ( )

w ( )
d = 1: (3.3)

(Here we note that the weight function w occurs only in the expression Cw;g�;m of IMSEj , j = 1; 2). In
(3.3) the integrand and w ( ) are de�ned to be zero o¤ of the support of m (�). The following Proposition
gives the solution to this minimization problem.

Proposition 2 The quantity (3.2) is minimized over non-negative weights, subject to the normalizing
condition (3.3), by

w� ( ) =

m

B�1m z ( )


pg� ( )

on the support of m (�), where g� ( ) = g0 ( ) + �2g and 
m =
R
S


B�1m z ( )



pg� ( )m ( ) d . More-
over, the minimum value of (3.2) is given by

trB�1m Cw�;g�;mB
�1
m = 
2m:
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Note that the optimal weights depend on the given design m: As a consequence of Proposition 2 we
obtain minimax-optimal designs for weighted least squares estimation with �optimal�weights, which are
robust against bias and heteroscedasticity. We assume here that the experimenter �ts a homoscedastic
model, i.e. takes g0( ) � 1.

Theorem 2 If the errors in model (2.1) are uncorrelated (i.e. h(�; �) � 0) and the function g0 in (2.9)
satis�es g0( ) � 1, then the uniform design de�ned by (1.2) minimizes

min
w

max
f2F;g2G

IMSEj;f;g;0(�) (3.4)

for j = 1; 2. In other words k� ( ) = � (�) is the minimax robust design density, and constant regression
weights are minimax in the presence of heteroscedastic (but uncorrelated) errors.

Remark 1 Note that the optimality of the uniform design � (�), or the uniform design/weights combina-
tion has been established using only two properties of the spherical harmonic basis functions:

(i) the norm kz ( )k is constant on S;

(ii) the regressors z ( ) are orthonormal with respect to some measure � (�).

In fact the crucial requirement is that the function

zT ( )

�Z
S
z ( ) zT ( )� ( ) d 

��1
z ( )

be constant on S, since the transformed regressors

~z ( ) =

�Z
S
z ( ) zT ( )� ( ) d 

��1=2
z ( )

then satisfy conditions (i) and (ii) stated above. These properties, and hence the associated optimality of
the design m (�) = � (�), hold in several other regression models. Examples are Haar wavelet regression
- see Herzberg and Traves (1994) and Oyet and Wiens (2000), and trigonometric regression - see Karlin
and Studden (1966).

3.2 Correlated data
In the previous subsection we have shown that for uncorrelated data the uniform distribution on the
sphere de�ned by (1.2) is robust in a minimax sense with respect to the bias in the expansion (2.4) and to
heteroscedasticity in the data. We have not yet discussed robustness issues with respect to assumptions
regarding the correlation structure of the data. Here we will demonstrate that the uniform distribution
on the sphere is also optimally robust against a broad class of correlation structures. We consider, for a
given constant �2h > 0, the neighbourhood

H =
n
h
��� 0 � Z

S

Z
S
h
�
 ; 0

�
f ( ) f

�
 0
�
�( )�( 0)d d 0 � �2h

Z
S
f2 ( )�( )d 8f 2 L2� (S)

o
: (3.5)

Note that we then have, for any vector of functions a ( ) with kak 2 L2� (S),

0 �
Z
S

Z
S
h
�
 ; 0

�
aT ( )a

�
 0
�
� ( )�

�
 0
�
d d 0 � �2h

Z
S
ka ( )k2 � ( ) d : (3.6)

From (2) of Proposition 1 we see that the terms in maxf2F;g2G IMSEj;f;g;h(�) which contain h do
not involve either w or g�. The design m = �, already seen to be minimax robust in F and G, thus
continues to be so in H if it minimizes

max
h2H

trB�1m Dh;mB
�1
m = max

h

Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
B�2m z ( )m ( )m

�
 0
�
d d 0 (3.7)
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in the case of IMSE1;f;g;h, and

max
h2H

�
trB�1m Dh;mB

�1
m � 2trB�1m Eh;m + ch

	
= max

h2H

nZ
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
B�2m z ( )m ( )m

�
 0
�
d d 0

� 2
Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
B�1m z ( )� ( )m

�
 0
�
d d 0 +

Z
S
h ( ; )� ( ) d 

o
(3.8)

in the case of IMSE2;f;g;h.

Theorem 3 If the sets F , G and H are given by (2.8), (2.9) (with g0 ( ) � 1) and (3.5), respectively,
then the uniform design on the unit sphere de�ned by (1.2) minimizes

min
w

max
f2F;g2G;h2H

IMSEj;f;g;h(�)

for j = 1; 2. In other words k� ( ) = � (�) is the minimax robust design density, and constant regression
weights are minimax, in the presence of heteroscedastic and correlated errors as well as bias.

Remark 2 If the class H is instead de�ned by

~H =
n
h
��� 0 � Z

S

Z
S
h
�
 ; 0

�
f ( ) f

�
 0
�
d d 0 � �2h

Z
S
f2 ( ) d ; 8f 2 L2 (S)

o
(3.9)

we obtain by a similar argument as given in the proof of Theorem 3 that

min
w

max
f2F;g2G;h2 ~H

IMSE1;f;g;h = �
2
fchmax

�
B�1m KmB

�1
m

�
+
�2"
n

�
1 + �2g

� Z
S



B�1m z ( )


m ( ) d 

+ �2h

Z
S

�

B�1m z ( )


m ( )�2 d : (3.10)

Note that the �rst and second term in this expression are minimized by the uniform distribution on the
sphere. However, this design does not minimize the second integral at (3.10). This can be seen even in
the simplest case d = 0, where z ( ) = 1 and Bm =

R
S m ( ) d = 1. In this case the second integral is

minimized by minimizing Z
S

�

B�1m z ( )


m ( )�2 d = Z

S
m2 ( ) d 

among probability densities m ( ). The minimizer is easily seen to be the conventional uniform density
on S, i.e. m ( ) �

�R
S d 

��1
= 1=

�
2�2
�
. As a consequence the uniform distribution on the sphere is in

general not minimax optimal, if the class (3.9) is used to address for possible correlations in the data.

4. Minimax optimal designs on discrete subsets
The experimenter faces obvious di¢ culties in implementing a continuous design such as � ( ), for which
there are no atoms at which to place the design points. In this section we address this problem in the
following way. We restrict attention to a subset S0 = f ig

N
i=1 � [0; �] � (��; �] of the design space

S, which is �nite but su¢ ciently large as to contain all points at which one might contemplate making
observations. We continue to analyze designs for the model (2.6), and assume that the experimenter
takes ni = n ( i) � 0 observations Yij = Yj ( i) (j = 1; : : : ni) at the location  i, i = 1; :::; N . Then
n =

PN
i=1 ni denotes the total sample size. The weighted least squares estimate is given by

ĉ =

"
NX
i=1

niz( i)w ( i) z
T ( i)

#�1 NX
i=1

z( i)w ( i)

niX
j=1

Yij ( i) ;
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where w ( ) is again a non-negative weight function. We endow S0 with a probability measure, say �,
where � f ig = �i > 0. Note that we again use the notation of approximate designs in the sense of
Kiefer (1974) and call any probability measure with �nite support S0 a design. If a design has masses
k1; : : : ; kN at the points  1; : : : ; N the experimenter takes approximately n ( i) = nki observations
at  i (i = 1; : : : ; N). As in Section 3 we consider, for a given design, the normalized probabilities
mi = kiw ( i). We assume that the average weight is one, i.e.

NX
i=1

wiki =
NX
i=1

mi = 1;

so that fmigNi=1 is a probability distribution on S0: The analogues of (2.7), (2.8) and (2.9) are

NX
i=1

�iz( i)f ( i) = 0; (4.1)

F0 =
n
f
��� NX
i=1

�if
2 ( i) � �2f

o
; (4.2)

G0 = fg j sup
S0
jg( )� g0( )j � �2gg;

respectively. In analogy with the approach taken in Section 3.2 we consider the following class of
covariance structures:

H0 =
n
h
��� 0 � NX

i=1

NX
j=1

h
�
 i; j

�
f ( i) f

�
 j
�
�i�j � �2h

NX
i=1

f2 ( i)�i

o
;

for all functions f(�) bounded on S0.
As in the previous sections we discuss the integrated mean square error criteria, but now evaluate the

mean square error only at those points in S0, that is

IMSE1;f;g;h(�) =
NX
i=1

�iE

�n
Ŷ ( i)� E [Y ( i)]

o2�
;

IMSE2f;g;h(�) =
NX
i=1

�iE

�n
Ŷ ( i)� Y ( i)

o2�
:

Our aim is to obtain optimal (minimax) weights fwig and design probabilities fkig, where the maxima
will be taken over the classes F0, G0 and H0. We use the following de�nitions:

f = (f( 1); :::; f( N ))
T
; g = (g( 1); :::; g( N ))

T
;

P = diag (�1; :::; �N ) ; � = (�1; :::; �N )
T
= P1N ;

Z = (z( 1); :::; z( N ))
T
; A = ZTPZ;

M = diag (m1; :::;mN ) ; Bm = Z
TMZ;

Q = Z
�
ZTMZ

��1
ZT ; W = diag (w1; :::; wN ) ;

H =
�
h
�
 i; j

��
i;j=1;:::;n

; r = [diag(QPQMW)]1N :
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A straightforward calculation yields, for the integrated mean square errors,

IMSE1;f;g;h(�) =
�
fTMQPQMf + fTPf

�
+
�2"
n
rTg + trQPQMHM;

IMSE2;f;g;h(�) =
�
fTMQPQMf + fTPf

�
+ �2"

�
�+

1

n
r

�T
g + tr [(QM� I)H (MQ� I)P] :

As in Section 3 we begin with the calculation of the maximum loss over the di¤erent classes. The
maximum over the class F0 is given by the following result.

Theorem 4 Let ~Z be an N �
�
N � (d+ 1)2

�
matrix whose columns are orthonormal and form a basis

for the orthogonal complement to the column space of the matrix Z. Then the maximum of the function

L (f) = fTMQPQMf + fTPf

over the set the set F0 de�ned in (4.2) subject to condition (4.1) is

max
f2F0

L (f) = �2f (1 + �m) ;

where

�m = chmax

��
~ZTP�1~Z

��1=2
~ZTP�1MQPQMP�1~Z

�
~ZTP�1~Z

��1=2�
: (4.3)

If e denotes an eigenvector of unit norm corresponding to this maximum eigenvalue, then the maximum
of the function L is attained at fmax = �fP�1~Z(~ZTP�1~Z)�1=2e.

Remark 3 Since Q = Z
�
ZTMZ

��1
ZT , the

�
N � (d+ 1)2

�
�
�
N � (d+ 1)2

�
matrix in (4.3) factors as�

~ZTP�1~Z
��1=2

~ZTP�1MZ
�
ZTMZ

��1
A
�
ZTMZ

��1
ZTMP�1~Z

�
~ZTP�1~Z

��1=2
= CTC;

where the (d+ 1)2 �
�
N � (d+ 1)2

�
matrix C is de�ned by

C = A1=2
�
ZTMZ

��1
ZTMP�1~Z

�
~ZTP�1~Z

��1=2
:

Thus there are at most only (d+ 1)2 nonzero eigenvalues. Note that chmax
�
CTC

�
= chmax

h
CCT

i
, and

consequently, if N � (d+ 1)2 > (d+ 1)2 , then it is more convenient to compute instead

�m = chmax

h
CCT

i
= chmax

�
A1=2

�
ZTMZ

��1
ZTMP�1~Z

�
~ZTP�1~Z

��1
~ZTP�1MZ

�
ZTMZ

��1
A1=2

�
:

The matrix ~Z is computed by starting with the spectral decomposition of the projector IN�Z
�
ZTZ

��1
ZT ,

whose columns are orthogonal to those of Z. The eigenvectors of this projector, associated with the
N � (d+ 1)2 unit eigenvalues, are the columns of ~Z.

The maximizations over the classes G0 and H0 are more straightforward.

Proposition 3 Let g�( ) be as in Proposition 1 and let the vector g� have elements g�( i). Then
maximum loss over f 2 F0; g 2 G0; h 2 H0 is

max
f2F0;g2G0;h2H0

IMSEj;f;g;h =

�2f (1 + �m) +

(
�2"
n r

Tg� + �
2
htr
�
QPQMP�1M

�
; if j = 1,

�2"
�
�+ 1

nr
�T
g� + �

2
htr
�
(QM� I)P�1 (MQ� I)P

�
; if j = 2.
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If heteroscedasticity in the data cannot be excluded, weighted least squares estimation is a reasonable
procedure and we now exhibit the optimal weights with respect to the minimax criterion. By virtue of
Proposition 3, these are obtained by minimizing rTg� subject to the constraint

NX
i=1

ki =
NX
i=1

mi

wi
= 1: (4.4)

For notational convenience we write rTg� = sTw for w = (w1; :::; wN )
T , s = (s1; :::; sN )

T and si =

A1=2B�1m z ( i)


2mig�;i. The proof of the following result is analogous to that of Proposition 2 and is

therefore omitted.

Proposition 4 The quantity sTw is minimized over non-negative weights w, subject to the normalizing
condition (4.4) by

w�;i =

m

A1=2B�1m z ( i)



pg�;i ; (4.5)

where


m =
NX
i=1

mi




A1=2B�1m z ( i)



pg�;i:

The minimum value of sTw is given by sTw� = 
2m: Thus

min
w

max
f2F0;g2G0;h2H0

IMSEj;f;g;h =

�2f (1 + �m) +

(
�2"
n 


2
m + �

2
htr
�
QPQMP�1M

�
; if j = 1,

�2"
n 


2
m + �

2
"�

Tg� + �
2
htr
�
(QM� I)P�1 (MQ� I)P

�
; if j = 2.

(4.6)

Recall that the matrix

A =
NX
i=1

�iz( i)z
T ( i) = Z

TPZ

is the discrete analogue of the matrix
R
z( )zT ( )� ( ) d = I(d+1)2 : It was shown by Dette, Melas,

and Pepelyshev (2005) using properties of quadrature formulas, that for su¢ ciently large N one can �nd
points f ig

N
i=1 and probabilities f�ig

N
i=1 such that

A = I(d+1)2 : (4.7)

For the rest of this section we assume that S0 = f ig
N
i=1 has been constructed in this manner and we

denote the corresponding design by �. As in Theorems 1 and 2 we shall also take g0 ( ) � 1. Then
(4.6) becomes

min
w

max
f2F0;g2G0;h2H0

IMSEj;f;g;h = �
2
f (1 + �m) +

�2"
n

�
1 + �2g

� NX
i=1

mi



B�1m z ( i)


!2

+

�
�2htr

�
QPQMP�1M

�
; if j = 1,

�2"
�
1 + �2g

�
+ �2htr

�
(QM� I)P�1 (MQ� I)P

�
; if j = 2.

The following result shows that the design � is the minimax robust design against any combination of
bias, heteroscedasticity and dependence.

Theorem 5 If condition (4.7) is satis�ed and g0 ( ) � 1 then the design k�i = �i (i = 1; : : : ; N) together
with constant weights (implying that m = �) minimizes

max
f2F0;g2G0;h2H0

IMSEj;f;g;h

for j = 1; 2 and any combination of �2f > 0, �
2
g > 0; �

2
h > 0.
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5. Numerical comparisons
In this section we construct discrete designs as described in §4, and compute, for these and some competing
designs,

max
f2F0;g2G0;h2H0

IMSEj;f;g;h

for a range of values of parameter values. Using g0 ( ) � 1 and unit regression weights in all cases, this
is (from Proposition 3) given by

max
f2F0;g2G0;h2H0

IMSEj;f;g;h

= �2f (1 + �m) +

(
�2"
n r

Tg� + �
2
htr
�
QPQMP�1M

�
; if j = 1,

�2"
�
�+ 1

nr
�T
g� + �

2
htr
�
(QM� I)P�1 (MQ� I)P

�
; if j = 2.

(5.1)

By de�ning

� =
�2f

�2f +
�2"
n

�
1 + �2g

�
+ �2h

; � =

�2"
n

�
1 + �2g

�
�2f +

�2"
n

�
1 + �2g

�
+ �2h

; 
 = 1� �� �;

we can write (5.1) as
�
�2f +

�2"
n

�
1 + �2g

�
+ �2h

�
� L (m;�; �), for

L (m;�; �) = � (1 + �m)

+

8<: �tr
�
B�1m A

�
+ 
tr

h�
B�1m ZTM

�T
A
�
B�1m ZTM

�
P�1

i
; if j = 1,

�
�
tr
�
B�1m A

�
+ n

	
+ 


n
tr
h�
B�1m ZTM

�T
A
�
B�1m ZTM

�
P�1

i
+N � 2 (d+ 1)2

o
; if j = 2.

Here �; �, and 
 may be interpreted as representing the relative importance of errors due to bias, variance,
and dependence in the mind of the experimenter. For our designs with m = � we attain

min
m
L (m;�; �) = �+

(
(1� �) (d+ 1)2 ; if j = 1,

(1� �) (d+ 1)2 + n� + 

n
N � 2 (d+ 1)2

o
; if j = 2.

(5.2)

Minimax designs satisfying our criteria may be constructed, for certain values of N , by the methods
of Dette, Melas and Pepelyshe¤ (2005). For the sake of completeness we brie�y describe the method
used here. Let Pd+1(x) (= P 0d+1(x), in the notation of §2) be the Legendre polynomial of degree d+ 1.
Let x1 < � � � < xd+1 be the zeros, all of which lie in (�1; 1), of this polynomial. For j = 1; :::; d + 1
compute probabilities

vj =
1

2

Z 1

�1

d+1Y
k=1;k 6=j

x� xk
xj � xk

dx:

For N = n0 � (d+ 1) and n0 � 2d+ 1, let � be the product measure � = �1 
 �2, where �1 places mass
vj on each of the points �j = arccos (xj), and �2 places mass n

�1
0 on each of n0 equally spaced points

�k = �+(2�k=n0) 2 (��; �] (k = 1; :::; n0). Here � is any value in (� (n0 + 1)�=n0;��]; in our examples
we use � = ��. Then (4.7) holds and the design � on the set

�
 j;k = (�j ; �k)

	
is minimax. Note that

N > (d+ 1)2; this is of course desirable from a robustness standpoint.
We compare the minimax design (denoted by �M�) constructed as above with three more conventional

uniform designs. The �rst (denoted by �U1�) places mass N�1 on each of the same support points as
M. The second (denoted by �U2�) is given by �0 = �01 
 �2, where �01 places mass (d + 1)�1 on each of
d + 1 equally spaced points �j = �j=(d + 1) (j = 1; :::; d + 1). The third (denoted by �U3�) is given by
�00 = �001 
 �2, where �001 places mass (d+1)�1 on each of �j = arccos (1� (2j=(d+ 1))) (j = 1; :::; d+1).
The design U3 was used by Ding et al. (2000) for a principal component analysis of data from a spherical
harmonic regression analysis, and takes observations on several circles, equally spaced on the z-axis.
Note that all of M , U2 and U3 satisfy Bm= A and M = P; these properties ensure that (5.2) holds for
all three designs; i.e. all are minimax with respect to their underlying measures �; �0; �00. However, of
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Table 1. Values of L (m;�; �) for the minimax design M
and conventional uniform design U1 from Example 5.1 (d = 2).

L (U1;�; �)
� L (M ;�; �) � = 0 � = :2 � = :4 � = :6 � = :8 � = 1:0
0 9:00 9:19 9:22 9:24 9:27 9:29 9:31
:2 7:40 7:57 7:59 7:61 7:64 7:66 �
:4 5:80 5:94 5:96 5:99 6:01 � �
:6 4:20 4:31 4:33 4:36 � � �
:8 2:60 2:68 2:71 � � � �
1:0 1:00 1:06 � � � � �

Table 2. Values of L (m;�; �) for the minimax design M
and conventional uniform design U1 from Example 5.2 (d = 6).

L (U1;�; �)
� L (M ;�; �) � = 0 � = :2 � = :4 � = :6 � = :8 � = 1:0
0 49:00 50:42 51:38 52:34 53:30 54:26 55:22
:2 39:40 40:59 41:55 42:51 43:47 44:43 �
:4 29:80 30:75 31:71 32:68 33:64 � �
:6 20:20 20:92 21:88 22:84 � � �
:8 10:60 11:09 12:05 � � � �
1:0 1:00 1:26 � � � � �

the three, only the design M also satis�es (4.7). For the numerical comparison 3 levels of resolution -
d = 2; 6; 13 - are considered.

Example 5.1. d = 2. In this case the support points of �1, and corresponding probabilities, are

�: arccos
�p

3=5
�
; �=2; arccos

�
�
p
3=5
�
;

v: 5=18; 4=9; 5=18:

Example 5.2. d = 6. Here the support points of �1, and corresponding probabilities, are

�: 0:320; 0:735; 1:153; 1:571; 1:989; 2:406; 2:821;
v: :065; :140; :191; :209; :191; :140; :065:

Example 5.3. d = 13. The support points of �1, and corresponding probabilities, are

�: 0:166; 0:381; 0:597; 0:813; 1:030; 1:246; 1:463;
1:679; 1:896; 2:112; 2:329; 2:545; 2:761; 2:976;

v: :018; :040; :061; :079; :093; :103; :108;
:108; :103; :093; :079; :061; :040; :018:

Table 3. Values of L (m;�; �) for the minimax design M
and conventional uniform design U1 from Example 5.3 (d = 13).

L (U1;�; �)
� L (M ;�; �) � = 0 � = :2 � = :4 � = :6 � = :8 � = 1:0
0 196:00 200:22 206:30 212:38 218:46 224:54 230:62
:2 157:00 160:50 166:58 172:66 178:74 184:82 �
:4 118:00 120:78 126:86 132:94 139:02 � �
:6 79:00 81:06 87:14 93:22 � � �
:8 40:00 41:34 47:42 � � � �
1:0 1:00 1:62 � � � � �
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Table 4. Values of the e¢ ciencies of M
relative to Uj when �f = �g = �h = 0.

p
Uk d 0 1 2 1
U1 1:017 1:035 1:107 1:333
U2 2 1:216 1:400 2:493 3:238
U3 1:319 1:858 7:104 7:074

U1 1:072 1:127 1:364 1:463
U2 6 1:167 1:269 1:888 4:113
U3 1:440 16:33 8999:2 661:5

U1 1:108 1:177 1:495 1:507
U2 13 1:154 1:239 1:716 4:813
U3 1:596 31; 630 1:80� 1011 5:94� 106

Tables 1 - 3 contain the values of L (m;�; �) for M (or U2 or U3); U1 and a range of values of � and �.
We present only the results for j = 1 since the di¤erence L (U1;�; �)� L (M ;�; �) is the same for both
values of j. We observe that with respect to the minimax criterion the design U1 is rather e¢ cient if the
dimension is small. For example, the loss of e¢ ciency in the case d = 2 when using U1 instead of M is
usually less than 5%. As d increases, the di¤erence between M and U1 is more substantial. For example
in the cases d = 6 and d = 13 the losses in e¢ ciency are about 12% and 17%, respectively.
In view of the fact that each of M , U2 and U3 is a minimax design (with respect to their underlying

measures), one might choose between them on the basis of their e¢ ciency in the ideal model, with
�f = �g = �h = 0. The natural measure is then Kiefer�s �p criterion, de�ned in terms of the eigenvalues

f�i (C)g(d+1)
2

i=1 of the covariance matrix C of a design � by �p(�) = ((d+1)�2
P(d+1)2

i=1 �pi )
1=p; (1 � p <1)

with �0 (�) = (det (C))
1=(d+1)2 and �1 (�) = max (�i (C)). In Table 4 we give the relative e¢ ciencies

e¤(k) =
�p (Uk)

�p (M)
= �p (Uk)

for the uniform designs U1, U2 and U3 and a range of values of d and p. Clearly, by this criterion the
design M performs substantially better. However, the design U1, which takes 1 observation at each of
the same design points as M , yields reasonable e¢ ciencies and is substantially easier to implement.

6. Summary and conclusions

We have exhibited designs, appropriate for the analysis of spherical harmonic shape descriptors. These
designs are minimax robust against a variety of model misspeci�cations - errors in the speci�cation of the
response function, in the assumption of homoscedasticity, and in the assumption of independence of the
errors across observations. The examples of §5 have demonstrated that these designs enjoy a considerable
advantage over more conventional uniform designs, especially for large values of d. There is as well a
computational bene�t to the minimax design satisfying (4.7) - since the corresponding information matrix
is a multiple of the identity, the regression coe¢ cients can be computed without matrix inversions: we
have ĉ =

PN
i=1 z ( i)mi

�Yi�, where �Yi� is the average of the observations at  i. Especially for the large
values of d often used in practice, this confers a considerable advantage to these designs [see Brechbühler,
Gerig and Kübler (1995)].
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Appendix: Derivations
Proof of Theorem 1. If w � 1, �2g = 0; g0 = 1 h(�; �) � 0 we have k (�) = m (�) and as a consequence
Cw;g;m = Bm. Therefore we obtain for the maximal integrated mean square errors

max
f2F

IMSEj;f;1;0(�) =

(
�2fchmax

�
B�1m KmB

�1
m

�
+

�2"
n tr

�
B�1m

�
; if j = 1,

�2fchmax
�
B�1m KmB

�1
m

�
+

�2"
n tr

�
B�1m

�
+ �2" ; if j = 2.

We now shows that both terms in this expression are minimized by the uniform distribution (1.2) on the
unit sphere. For this �rst note that tr

�
B�1m

�
corresponds to Kiefer�s A-optimality criterion, which was

considered in Dette, Melas and Pepelyshev (2005) and is minimal for the uniform distribution (1.2) on the
unit sphere. Secondly, note that chmax

�
B�1m KmB

�1
m

�
� 1 = chmax

�
B�1m

�
Km �B2m

�
B�1m

�
. Moreover,

for any vector a we have

aT
�
Km �B2m

�
a =

Z
S

�
aT
�
m ( )

� ( )
I�Bm

�
z ( )

�2
� ( ) d � 0;

and consequently the matrix Km �B2m is non-negative de�nite, which implies chmax
�
B�1m KmB

�1
m

�
� 1.

But this minimum value of 1 is attained by m (�) = � (�), for which Km = Bm = I . �
Proof of Proposition 2: For weight functions w0 ( ) and w1 ( ) and t 2 [0; 1] de�ne wt ( ) =
(1� t)w0 ( ) + tw1 ( ). In order that the function w0 ( ) minimize (3.2) subject to the normalizing
conditions (3.3) it is su¢ cient that the function

� (t;�) =

Z
S
wt ( ) g� ( ) z

T ( )B�2m z ( )m ( ) d + �
hZ
S

m ( )

wt ( )
d � 1

i
(� � 0)

be minimal at t = 0 for any w1 (�), and that w0 (�) satis�es (3.3). For this, since � (t;�) is a convex
function of t, the �rst order condition is necessary and su¢ cient, i.e.

�0 (0;�) =

Z
S
[w1 ( )� w0 ( )]

�
g� ( ) z

T ( )B�2m z ( )m ( )� � m ( )
w20 ( )

�
d � 0

for all w1 (�). This condition is satis�ed if

w0 ( ) =
�

B�1m z ( )


pg� ( )

(on the support of m (�) - we can de�ne w0 ( ) arbitrarily elsewhere), and it remains only to determine
the constant � to satisfy (3.3). �
Proof of Theorem 2. From Proposition 2 we obtain

min
w
max
f;g

IMSEj;f;g;0(�) =

(
�2fchmax

�
B�1m KmB

�1
m

�
+

�2"
n 


2
m; if j = 1,

�2fchmax
�
B�1m KmB

�1
m

�
+

�2"
n 


2
m + �

2
" ; if j = 2.

Because g0 ( ) � 1, it follows that


m =
q
1 + �2g

Z
S



B�1m z ( )


m ( ) d : (A.1)

It was shown in the proof of Theorem 1 that the maximum eigenvalue chmax
�
B�1m KmB

�1
m

�
is minimized

by the uniform distribution on the sphere � (�), for which the corresponding minimax weights are, by
Proposition 2, proportional to kz ( )k�1, hence by (2.3) are constant. If this choice of design can be
shown to minimize (A.1) as well, then the assertion of the Proposition follows, i.e. � (�) minimizes (3.4).
Showing this requires proving the inequalityZ

S



B�1m z ( )


m ( ) d � Z

S



B�1� z ( )


� ( ) d = d+ 1; (A.2)
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where we have used (2.3) and (2.2) for the last equality. However, the inequality in (A.2) is a direct
consequence of the Cauchy-Schwarz inequality:



B�1m z ( )


 � zT ( )B�1m z ( )

kz ( )k =
zT ( )B�1m z ( )

d+ 1
;

this gives Z
S



B�1m z ( )


m ( ) d � 1

d+ 1

Z
S
zT ( )B�1m z ( )m ( ) d 

=
1

d+ 1
trB�1m

Z
S
z ( ) zT ( )m ( ) d 

=
1

d+ 1
trI(d+1)2 = d+ 1:

�

Proof of Theorem 3: First take j = 1. From (3.7) and (3.6) we are to show that

max
h

Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
B�2m z ( )m ( )m

�
 0
�
d d 0

= �2h

Z
S
zT ( )B�2m z ( )

m2 ( )

� ( )
d 

= �2h

Z
S





B�1m z ( )
m ( )

� ( )





2 � ( ) d 
is minimized by m (�) = � (�). By the Cauchy-Schwarz inequality and (A.2),

Z
S





B�1m z ( )
m ( )

� ( )





2 � ( ) d � �Z
S





B�1m z ( )
m ( )

� ( )





� ( ) d �2
=

�Z
S



B�1m z ( )


m ( ) d �2

� (d+ 1)
2
: (A.3)

But this lower bound (d+ 1)2 is attained by m (�) = � (�); this establishes Theorem 3 in the case j = 1.
For a proof of the result in the case j = 2 we recall (3.8) and consider the function

� (h;m) =

Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
B�2m z ( )m ( )m

�
 0
�
d d 0

� 2
Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
B�1m z ( )� ( )m

�
 0
�
d d 0 +

Z
S
h ( ; )� ( ) d :

We have to show that

max
h
� (h;m) � max

h
� (h;�) : (A.4)

To establish (A.4), it is clearly su¢ cient to show that for any function h 2 H,

0 � � (h;m)� � (h;�) for any m (�) : (A.5)
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For this, note that

� (h;m)� � (h;�) =
Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
B�2m z ( )m ( )m

�
 0
�
d d 0

� 2
Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
B�1m z ( )� ( )m

�
 0
�
d d 0

�
Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
z ( )� ( )�

�
 0
�
d d 0

+ 2

Z
S

Z
S
h
�
 ; 0

�
zT
�
 0
�
z ( )� ( )�

�
 0
�
d d 0

=

Z
S

Z
S
h
�
 ; 0

� �
zT
�
 0
�
B�2m z ( )m ( )m

�
 0
�

�2zT
�
 0
�
B�1m z ( )� ( )m

�
 0
�
+ zT

�
 0
�
z ( )� ( )�

�
 0
��
d d 0

=

Z
S

Z
S
h
�
 ; 0

�
aT ( )a

�
 0
�
d d 0;

with a ( ) = B�1m z ( )� ( )� z ( )m ( ) : Now (A.5) follows from the non-negative de�niteness of the
kernel h (�; �), i.e. from the �rst inequality in (3.6). �

Proof of Theorem 4: The constraint (4.1) on f is given by the equation ZTPf = 0. Equivalently, Pf
lies in the orthogonal complement to the column space of Z, so that f = P�1~Zc for some vector c. We
have to maximize the expression

fTMQPQMf + fTPf = cT ~ZTP�1MQPQMP�1~Zc+ cT ~ZTP�1~Zc

subject to condition (4.2), which is fTPf = cT ~ZTP�1~Zc � �2f . Equivalently, with e =
�
~ZTP�1~Z

�1=2
c=�f ,

we maximize

eT
�
~ZTP�1~Z

��1=2
~ZTP�1MQPQMP�1~Z

�
~ZTP�1~Z

��1=2
e+ eTe

subject to eTe � 1. This is a standard problem whose solution is as described in the Theorem. �

Proof of Proposition 3: In light of Theorem 4 we have only to show that

(i) rTg =
P
rig ( i) and

�
�+ 1

nr
�T
=
P�

�i +
ri
n

�
g ( i) are both maximized over g 2 G0 by g = g�;

(ii) tr [QPQMHM] and tr [(QM� I)H (MQ� I)P] are both maximized over h 2 H0 by H = �2hP
�1.

The �rst of these is immediate from the de�nition of G0 and the fact that

ri = z
T ( i)B

�1
m AB�1m z ( i)miwi =




A1=2B�1m z ( i)



2miwi � 0:

The second follows from the fact that both traces are maximized by choosing H to be maximal with
respect to the Loewner ordering. But from the de�nition of H0 it follows that H � �2hP

�1 in this
ordering. �

Proof of Theorem 5. If �2f > 0 then we are to minimize �m. But �m is minimized by m = �, with
minimum value �� = 0. This is because for m = � we have M = P, and consequently the matrix (4.3)
contains a factor

~ZTP�1MQ = ~ZTQ = ~ZTZ
�
ZTPZ

��1
ZT = 0:

If �2g > 0 then we are to show that
PN

i=1mi



B�1m z ( i)


 is also minimized by m = �. But this is merely

the discrete analogue of (A.2), and is proven in an identical manner. That the minimax weights (4.5)
are constant follows from (4.7), B� = I and the constancy of g0.
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It remains to show that the design m = � is also optimal when �2h > 0, i.e. that

tr
�
QPQMP�1M

�
=

NX
i=1





B�1m z ( i)
mi

�i





2 �i
and

tr
�
(QM� I)P�1 (MQ� I)P

�
= tr

�
QPQMP�1M

�
+N � 2 (d+ 1)2 :

are both minimized by m = �. The �rst of these is proven as at (A.3), and implies the second. �
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