ECOMNZTOR

Make Your Publications Visible.

Weihs, Claus; Raabe, Nils; Webber, Oliver

Working Paper

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

Deriving a statistical model for the prediction of
spiralling in BTA deep-hole-drilling from a physical

model
Technical Report, No. 2007,10

Provided in Cooperation with:

Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB

475), University of Dortmund

Suggested Citation: Weihs, Claus; Raabe, Nils; Webber, Oliver (2007) : Deriving a statistical
model for the prediction of spiralling in BTA deep-hole-drilling from a physical model,
Technical Report, No. 2007,10, Universitat Dortmund, Sonderforschungsbereich 475 -
Komplexitatsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/24995

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/24995
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Deriving a statistical model for the prediction
of spiralling in BTA deep-hole-drilling from a
physical model

C. Weihs', N. Raabe!, and O. Webber?

! Chair of Computational Statistics,
University of Dortmund, Germany

? Department of Machining Technology,
University of Dortmund, Germany

Abstract. One serious problem in deep-hole drilling is the occurrence of a dy-
namic disturbances called spiralling. A common explanation for the occurrence of
spiralling is the coincidence of time varying bending eigenfrequencies of the tool
with multiples of the spindle rotation frequency. We propose a statistical model for
the estimation of the eigenfrequencies derived from a physical model. The major
advantage of the statistical model is that it allows to estimate the parameters of
the physical model directly from data measured during the process. This represents
an efficient way of detecting situations in which spiralling is likely and of deriving
countermeasures.

1 Introduction

Deep hole drilling methods are used for producing holes with a high length
to diameter ratio, good surface finish and straightness. For drilling holes with
a diameter of 20mm and above, the BTA deep hole machining principle is
usually employed (VDI (1974)). The necessarily slender tools, consisting of a
boring bar and head, have low dynamic stiffness properties. Therefore deep-
hole-drilling processes are at a high risk of dynamic disturbances such as
spiralling, which causes a multi-lobe-shaped deviation of the cross section of
the hole from absolute roundness, see fig. 1.

As the deep hole drilling process is often applied during the last produc-
tion phases of expensive workpieces, process reliability is of prime importance.
Prediction and prevention of spiralling are therefore highly desirable.

By using a finite elements model to determine drilling depth dependent
bending eigenfrequencies of the tool, spiralling was shown to reproducibly
occur when one of its slowly varying eigenfrequencies intersects with an un-
even multiple of the tool rotational frequency (Gessesse etal. (1994)). This
suggests preventing spiralling by avoiding these critical situations. Unfortu-
nately the practical application of the finite elements model is limited as it
has to be calibrated using experimentally determined eigenfrequencies.

Earlier investigations demonstrated that the courses of the bending eigen-
frequencies clearly show in spectrograms of the structure borne sound of the
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Fig. 1. Left: Longitudinal section of a bore hole showing marks resulting from
spiralling. Right: Associated roundness charts.

boring bar, which can be recorded during the process (Raabe et al. (2004)).
In this paper this signal is used to statistically estimate the parameters of
a physical model of the bending eigenfrequencies. A lumped mass model is
used to calculate the tools bending eigenfrequencies. It includes the physical
parameters of the process allowing to directly calculate the influences of their
variations on the eigenfrequency courses. However, this model contains some
unknown parameters and naturally the measurement is subject to random er-
ror. It is therefore combined with a statistical model allowing the estimation
of the unknown parameters by the Maximum Likelihood method.

The work presented in this paper is based on experiments carried out on
a CNC deep hole drilling machine type Giana GGB 560 (see Szepannek et al.
(2006) for technical details). Self excited torsional vibrations were prevented
through the application of a Lanchester-damper. The damper was moved at
feed speed together with the boring bar, implying a constant axial position
of the damper relative to the tool. In order to detect bending vibrations
occurring during the process, time series of the lateral acceleration of the
boring bar were recorded. The experiments were carried out with stationary
tool and rotating workpiece. The experimental setup is illustrated in fig. 2.

Chuck Lanchster-  Qil supply Boring head
damper device

- (M

%mwmm
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ngld ~ / /'
clamping Linear elastic supports

Fig. 2. Experimental setup (top) and proposed modelling approach (bottom).
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2 Physical Model

For formulating the model the BTA system was reduced to its most important
components. These are the tool, the Lanchester damper, two oil seal rings
within the oil supply device and the workpiece, again see fig. 2, top. Under
operating conditions, the latter components act as lateral elastic constraints
of the boring bar. While the damper stays in the same location relative to
the boring bar, the oil supply device is kept at constant distance relative to
the workpiece and therefore moves at feed speed relative to the boring bar
during the process. The workpiece permanently acts on the tip of the tool.

Fig. 3. Detailed modeling principle: Regular linear elastic chain with additional
linear elastic support.

As illustrated in fig. 3 by an exemplary system with 4 degrees of freedom,
the bar is subdivided into N elements of identical length [ for constructing
the lumped mass model. These elements are linked to form a regular linear
elastic chain comprising IV identically spaced and elastically linked masses.
Additional linear elastic supports represent the constraints resulting from the
supporting elements. Adopting the z-coordinates as generalized coordinates
and assuming only small deflections we can write the homogenous equations
of motion of the system as

[M]{#} + [K(Ip){z} = {0} with [K(Ip)] = [Krool] + [Ksupp(lB)],

where [M]nxn and [K(Ig)]nxn are the mass and stiffness matrices of the
system and Ip represents the actual drilling depth. The stiffness-matrix can
be decomposed into the stiffness matrix [Kr,4] of the boring bar and a ma-
trix [K gupp(lB)] containing the stiffness influences of the supporting elements.
[KTo01] is time constant and can be computed from the physical and geomet-
rical properties of the tool (see Szepannek et al. (2006)), whereas [Kgupp(IB)]
changes stepwise with increasing drilling depth due to the movement of the
oil supply device relative to the boring bar. Furthermore, [K gy, (I)] gener-
ally is unknown. More precisely, all elements of [Ksypp(lB)] are zero except of
these elements on the main diagonal that correspond to a supporting element
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in the setup. The values of these matrix entries are the unknown parameters
of the model.

The stiffness influences of the workpiece and the two seals of the stuff-
ing box within the oil supply device are each assumed to act pointwise and
are therefore modelled by one single parameter each (Kwp, kspf1,2y). The
Lanchester-damper contacts the boring bar within a region of nominal length
lg. Tt is assumed, that this region may be reduced, e.g. by wear. So two pa-
rameters dlg , and 6l4; representing a right- and left-hand truncation of lg
are added. The stiffness influence of the damper (kq) is equally distributed
over the elements within the remaining region of length Iy — dlg,, — 6l4,.

The stiffness constants k., ksp(1,2y, ka together with 8lg,, dl4;, which
define the matrix [Kgypp(IB)], are a priori unknown and cannot be measured
directly. These parameters therefore have to be estimated. For calculating
the eigenfrequencies from the model the homogeneous equations of motion
of the system (see above) have to be solved for each regarded value of the
drilling depth Ig. This leads to the following eigenvalue-problem

([K (15)] — w?[M]) {z}e’".

The solution of this problem consists of the eigenvalues waB, the N squared
eigenfrequencies of the model, and the eigenvectors {¥},,, the correspond-
ing N mode shape vectors.

3 Statistical Model

For the estimation of the unknown parameters a statistical approach using
the already introduced structure borne sound is proposed. In the following
the data measured in a location between damper and oil supply device is
exemplarily used.

To provide a basis for statistical estimation of the unknown parameters
p, the following statistical model is proposed

2

Sk(w, 155 p) = |aji(w, lp;p)|” - |l (w)|” - Selp).

For each value of the hole depth Ig the term Sy (w,lp;p) presents the peri-
odogram of the structure borne sound measured at a location corresponding
to element k. Due to the discreteness of the physical model /g changes step-
wise and so the periodograms are computed based on non-overlapping time-
windows. The model writes these periodograms Si(w,lp;p) as the product
of a systematic component |a;j(w, Ig;p)| - ‘a} (w)‘2 (the spectral density of
the process) and a stochastic exciting component S, (Ig), the periodogram of
a white noise process. The systematic component consists of the frequency
response function (FRF) series ajx(w,lp;p) and the time constant aj(w),
which transforms the white noise process into the excitation in element j.
In a first attempt aj(w) for each frequency w is set to its mean observed
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amplitude value. Refinements like fitting af(w) and p alternately are imag-
inable in later investigations. For a better impression fig. 4 gives a graphical
representation of the proposed statistical model.

Se(w,lp;p) = lakw,isp)® - |ajw)-o] - Se(ls)

Fig. 4. Visualization of the statistical model.

3.1 FRF Computation

For the computation of a FRF damping has to be included. The most straight-
forward way of doing this is assuming proportional damping, implying the
damping matrix [C(Ig)] = B[K(Ig)] + v[M]. This leads to the two further
model parameters § and «. Therefore the list of model parameters reads

p= (kwpa ksb{l,Z}: kda 6ld77‘a 6ld7la ﬂv 7)

Computation of the FRF necessitates the definition of the points of excitation
j and response k. The excitation point j was chosen to be the last element IV,
because at this position the cutting process takes place. Element k naturally
corresponds to the point at which the considered signal is recorded. The FRF
can then be computed by

2 al UirigVhris

krnls — w?m,, + iwcrr,lg ’

ajk(w,lp;p) = w

r=1

where @;,;,, denotes the j-th element of the r-th mode shape vector {¥'},,,.,
and k., m,, and ¢, are the r-th diagonal elements of the modal stiffness-
, mass- and damping matrices, respectively. These matrices can directly be
derived from quadratic forms of the mode shape vectors and the stiffness- and
mass matrices [M] and [K(Ig)] (Ewins (2000)). Finally, the eigenfrequencies

w;’lB of the proportionally damped system are given by

Whiy = i\ 1 = (Bonin /2 + 7/ [20010) "

As for this description once a specific p is chosen, the corresponding eigen-
frequencies can be determined.
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3.2 Maximum Likelihood Estimation

The parameters of the systematic model part can be estimated using the
Maximum Likelihood method. The Likelihood-function can be derived by
connecting the following well known results.

1. The periodogram I,()) of each stationary process X; with a moving-
average representation

Xi= Y Bubr—u with > (L+ul)|Bu| <

U=—00 u=—00

implying the spectral density f,(\) = |Zu 6uei2”’\“|2 has an exponential
distribution at each Fourier frequency A with parameter 1/f,(\). Then
periodogram ordinates at different Fourier frequencies are asympotically
independent (Schlittgen and Streitberg (1999), p. 364).

2. Each stationary process X; with continuous and for all A non-negative
spectral density f,(\) has an infinite moving-average representation
(Schlittgen and Streitberg (1999), p. 184).

Assumption 2 can be seen as fulfilled, as all inspected spectrograms clearly
show values different from zero for all frequencies and time points. Assump-
tion 2 substantially implies assumption 1, so for each Fourier frequency w
and hole depth I the distribution function of S(w,lp;p) is approximatively
given by

d.f.(s) = f(w,lg;p)teftmm) 7,

where f(w, 15 p) = oy (w, L p)|” - |af (@) [*,

Using the asymptotical independence of periodogram ordinates of dif-
ferent frequencies and assuming independence for different hole depths, the
Log-Likelihood-function is given by

~ . 1 _ S(w,lB;p)
LL(p)—lZB:Zw: {l flwisip)  flw,lpip)

The ML-estimators are the set pasr, of parameters maximizing this function.
With these parameters the estimated eigenfrequencies can be derived as il-
lustrated in the last two sections.

The introduced model has been successfully fitted to different experiments
by using the search-based method by Nelder and Mead (1965) for the maxi-
mization of the Log-Likelihood-function. Fig. 5 shows an exemplary compar-
ison between an acceleration spectrogram and the bending eigenfrequencies
computed from the fitted model for a process without spiralling.

Even though the second and third eigenfrequency seem to over-estimate
the area of elevated amplitudes the pattern in the spectrogram is clearly
represented by the fit. So apart from possible model refinements, these results,



Deriving a statistical model from a physical model 7

Spectrogram vs. fitted eigenfrequencies
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Fig. 5. Comparison between acceleration spectrogram and fitted eigenfrequencies.

which are similar for all other experiments investigated up to now, support
the connection of the physical model with the statistical model as a basis for
estimating its parameters from spectrogram data.

4 Summary and Outlook

The presented paper shows that a connection of a physical and a statistical
model helps to estimate the bending eigenfrequencies of a deep-hole-drilling
tool from data available during the process. Bending eigenfrequencies are
known to cause spiralling when crossing multiples of the spindle rotational
frequency. By supervising the estimated eigenfrequencies, shifts in the process
dynamics can be detected and crucial situations can be predicted.

The supervision may be possible within a batch production, where after
each completely drilled workpiece the eigenfrequencies are checked and the
necessity of parameter changes is decided. In the actual form fitting the model
is too time extensive to allow online intervention. But if the model can be
simplified implying faster fitting procedures, strategies such as control charts
for the eigenfrequencies could be feasible as well.

Simplifications of the physical model are possible by concentrating on the
relevant regions of the spectra or modifications of the discretization. The
statistical model may be simplified by estimating the spectra for frequency
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bands instead of Fourier frequencies using consistent estimates as introduced
in Schlittgen and Streitberg (1999). Furthermore for a more efficient way of
estimating the eigenfrequencies historical data may be used in connection
with the physical model.

In future experiments roundness errors of the drilled workpieces will be
measured at different equally spaced hole depth points. These measurements
represent a quantization of the effect of spiralling over time and so help to
investigate the development of spiralling more closely in different situations.
Here main features of interest are whether spiralling starts rapidly or devel-
ops slowly and if the magnitude of spiralling depends on how quickly the
frequency crossing takes place. As the measurement of roundness errors is
not possible in production the potentials of estimating these from the spec-
trogram data will be checked as well.
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