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Deriving a statisti
al model for the predi
tionof spiralling in BTA deep-hole-drilling from aphysi
al modelC. Weihs1, N. Raabe1, and O. Webber21 Chair of Computational Statisti
s,University of Dortmund, Germany2 Department of Ma
hining Te
hnology,University of Dortmund, GermanyAbstra
t. One serious problem in deep-hole drilling is the o

urren
e of a dy-nami
 disturban
es 
alled spiralling. A 
ommon explanation for the o

urren
e ofspiralling is the 
oin
iden
e of time varying bending eigenfrequen
ies of the toolwith multiples of the spindle rotation frequen
y. We propose a statisti
al model forthe estimation of the eigenfrequen
ies derived from a physi
al model. The majoradvantage of the statisti
al model is that it allows to estimate the parameters ofthe physi
al model dire
tly from data measured during the pro
ess. This representsan eÆ
ient way of dete
ting situations in whi
h spiralling is likely and of deriving
ountermeasures.1 Introdu
tionDeep hole drilling methods are used for produ
ing holes with a high lengthto diameter ratio, good surfa
e �nish and straightness. For drilling holes witha diameter of 20mm and above, the BTA deep hole ma
hining prin
iple isusually employed (VDI (1974)). The ne
essarily slender tools, 
onsisting of aboring bar and head, have low dynami
 sti�ness properties. Therefore deep-hole-drilling pro
esses are at a high risk of dynami
 disturban
es su
h asspiralling, whi
h 
auses a multi-lobe-shaped deviation of the 
ross se
tion ofthe hole from absolute roundness, see �g. 1.As the deep hole drilling pro
ess is often applied during the last produ
-tion phases of expensive workpie
es, pro
ess reliability is of prime importan
e.Predi
tion and prevention of spiralling are therefore highly desirable.By using a �nite elements model to determine drilling depth dependentbending eigenfrequen
ies of the tool, spiralling was shown to reprodu
iblyo

ur when one of its slowly varying eigenfrequen
ies interse
ts with an un-even multiple of the tool rotational frequen
y (Gessesse et al. (1994)). Thissuggests preventing spiralling by avoiding these 
riti
al situations. Unfortu-nately the pra
ti
al appli
ation of the �nite elements model is limited as ithas to be 
alibrated using experimentally determined eigenfrequen
ies.Earlier investigations demonstrated that the 
ourses of the bending eigen-frequen
ies 
learly show in spe
trograms of the stru
ture borne sound of the
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Fig. 1. Left: Longitudinal se
tion of a bore hole showing marks resulting fromspiralling. Right: Asso
iated roundness 
harts.boring bar, whi
h 
an be re
orded during the pro
ess (Raabe et al. (2004)).In this paper this signal is used to statisti
ally estimate the parameters ofa physi
al model of the bending eigenfrequen
ies. A lumped mass model isused to 
al
ulate the tools bending eigenfrequen
ies. It in
ludes the physi
alparameters of the pro
ess allowing to dire
tly 
al
ulate the in
uen
es of theirvariations on the eigenfrequen
y 
ourses. However, this model 
ontains someunknown parameters and naturally the measurement is subje
t to random er-ror. It is therefore 
ombined with a statisti
al model allowing the estimationof the unknown parameters by the Maximum Likelihood method.The work presented in this paper is based on experiments 
arried out ona CNC deep hole drilling ma
hine type Giana GGB560 (see Szepannek et al.(2006) for te
hni
al details). Self ex
ited torsional vibrations were preventedthrough the appli
ation of a Lan
hester-damper. The damper was moved atfeed speed together with the boring bar, implying a 
onstant axial positionof the damper relative to the tool. In order to dete
t bending vibrationso

urring during the pro
ess, time series of the lateral a

eleration of theboring bar were re
orded. The experiments were 
arried out with stationarytool and rotating workpie
e. The experimental setup is illustrated in �g. 2.

Fig. 2. Experimental setup (top) and proposed modelling approa
h (bottom).



Deriving a statisti
al model from a physi
al model 32 Physi
al ModelFor formulating the model the BTA system was redu
ed to its most important
omponents. These are the tool, the Lan
hester damper, two oil seal ringswithin the oil supply devi
e and the workpie
e, again see �g. 2, top. Underoperating 
onditions, the latter 
omponents a
t as lateral elasti
 
onstraintsof the boring bar. While the damper stays in the same lo
ation relative tothe boring bar, the oil supply devi
e is kept at 
onstant distan
e relative tothe workpie
e and therefore moves at feed speed relative to the boring barduring the pro
ess. The workpie
e permanently a
ts on the tip of the tool.
Fig. 3. Detailed modeling prin
iple: Regular linear elasti
 
hain with additionallinear elasti
 support.As illustrated in �g. 3 by an exemplary system with 4 degrees of freedom,the bar is subdivided into N elements of identi
al length l for 
onstru
tingthe lumped mass model. These elements are linked to form a regular linearelasti
 
hain 
omprising N identi
ally spa
ed and elasti
ally linked masses.Additional linear elasti
 supports represent the 
onstraints resulting from thesupporting elements. Adopting the x-
oordinates as generalized 
oordinatesand assuming only small de
e
tions we 
an write the homogenous equationsof motion of the system as[M ℄f�xg+ [K(lB)℄fxg = f0g with [K(lB)℄ = [KTool℄ + [KSupp(lB)℄;where [M ℄N�N and [K(lB)℄N�N are the mass and sti�ness matri
es of thesystem and lB represents the a
tual drilling depth. The sti�ness-matrix 
anbe de
omposed into the sti�ness matrix [KTool℄ of the boring bar and a ma-trix [KSupp(lB)℄ 
ontaining the sti�ness in
uen
es of the supporting elements.[KTool℄ is time 
onstant and 
an be 
omputed from the physi
al and geomet-ri
al properties of the tool (see Szepannek et al. (2006)), whereas [KSupp(lB)℄
hanges stepwise with in
reasing drilling depth due to the movement of theoil supply devi
e relative to the boring bar. Furthermore, [KSupp(lB)℄ gener-ally is unknown. More pre
isely, all elements of [KSupp(lB)℄ are zero ex
ept ofthese elements on the main diagonal that 
orrespond to a supporting element



4 Weihs et al.in the setup. The values of these matrix entries are the unknown parametersof the model.The sti�ness in
uen
es of the workpie
e and the two seals of the stu�-ing box within the oil supply devi
e are ea
h assumed to a
t pointwise andare therefore modelled by one single parameter ea
h (kwp, ksbf1;2g). TheLan
hester-damper 
onta
ts the boring bar within a region of nominal lengthld. It is assumed, that this region may be redu
ed, e. g. by wear. So two pa-rameters Æld;r and Æld;l representing a right- and left-hand trun
ation of ldare added. The sti�ness in
uen
e of the damper (kd) is equally distributedover the elements within the remaining region of length ld � Æld;r � Æld;l.The sti�ness 
onstants kwp, ksbf1;2g, kd together with Æld;r, Æld;l, whi
hde�ne the matrix [KSupp(lB)℄, are a priori unknown and 
annot be measureddire
tly. These parameters therefore have to be estimated. For 
al
ulatingthe eigenfrequen
ies from the model the homogeneous equations of motionof the system (see above) have to be solved for ea
h regarded value of thedrilling depth lB . This leads to the following eigenvalue-problem�[K(lB)℄� !2[M ℄� fxgei!t:The solution of this problem 
onsists of the eigenvalues !2r;lB , the N squaredeigenfrequen
ies of the model, and the eigenve
tors f	gr;lB , the 
orrespond-ing N mode shape ve
tors.3 Statisti
al ModelFor the estimation of the unknown parameters a statisti
al approa
h usingthe already introdu
ed stru
ture borne sound is proposed. In the followingthe data measured in a lo
ation between damper and oil supply devi
e isexemplarily used.To provide a basis for statisti
al estimation of the unknown parametersp, the following statisti
al model is proposedSk(!; lB ; p) = j�jk(!; lB ; p)j2 � ����j (!)��2 � S�(lB):For ea
h value of the hole depth lB the term Sk(!; lB ; p) presents the peri-odogram of the stru
ture borne sound measured at a lo
ation 
orrespondingto element k. Due to the dis
reteness of the physi
al model lB 
hanges step-wise and so the periodograms are 
omputed based on non-overlapping time-windows. The model writes these periodograms Sk(!; lB; p) as the produ
tof a systemati
 
omponent j�jk(!; lB ; p)j2 � ����j (!)��2 (the spe
tral density ofthe pro
ess) and a sto
hasti
 ex
iting 
omponent S�(lB), the periodogram ofa white noise pro
ess. The systemati
 
omponent 
onsists of the frequen
yresponse fun
tion (FRF) series �jk(!; lB; p) and the time 
onstant ��j (!),whi
h transforms the white noise pro
ess into the ex
itation in element j.In a �rst attempt ��j (!) for ea
h frequen
y ! is set to its mean observed
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al model from a physi
al model 5amplitude value. Re�nements like �tting ��j (!) and p alternately are imag-inable in later investigations. For a better impression �g. 4 gives a graphi
alrepresentation of the proposed statisti
al model.
Sk(!; lB ; p) = jajk(!; lB; p)j2 � ��a�j (!) � ���2 � S�(lB)Fig. 4. Visualization of the statisti
al model.3.1 FRF ComputationFor the 
omputation of a FRF damping has to be in
luded. The most straight-forward way of doing this is assuming proportional damping, implying thedamping matrix [C(lB)℄ = �[K(lB)℄ + 
[M ℄. This leads to the two furthermodel parameters � and 
. Therefore the list of model parameters readsp = (kwp; ksbf1;2g; kd; Æld;r; Æld;l; �; 
):Computation of the FRF ne
essitates the de�nition of the points of ex
itationj and response k. The ex
itation point j was 
hosen to be the last element N ,be
ause at this position the 
utting pro
ess takes pla
e. Element k naturally
orresponds to the point at whi
h the 
onsidered signal is re
orded. The FRF
an then be 
omputed by�jk(!; lB ; p) = !2 NXr=1 	jr;lB	kr;lBkrr;lB � !2mrr + i!
rr;lB ;where 	jr;lB denotes the j-th element of the r-th mode shape ve
tor f	gr;lB ,and krr, mrr and 
rr are the r-th diagonal elements of the modal sti�ness-, mass- and damping matri
es, respe
tively. These matri
es 
an dire
tly bederived from quadrati
 forms of the mode shape ve
tors and the sti�ness- andmass matri
es [M ℄ and [K(lB)℄ (Ewins (2000)). Finally, the eigenfrequen
ies!0r;lB of the proportionally damped system are given by!0r;lB = !r;lBq1� (�!r;lB=2 + 
= [2!r;lB ℄)2:As for this des
ription on
e a spe
i�
 p is 
hosen, the 
orresponding eigen-frequen
ies 
an be determined.



6 Weihs et al.3.2 Maximum Likelihood EstimationThe parameters of the systemati
 model part 
an be estimated using theMaximum Likelihood method. The Likelihood-fun
tion 
an be derived by
onne
ting the following well known results.1. The periodogram Ix(�) of ea
h stationary pro
ess Xt with a moving-average representationXt = 1Xu=�1�u�t�u with 1Xu=�1 (1 + juj)j�uj <1implying the spe
tral density fx(�) = ��Pu �uei2��u��2 has an exponentialdistribution at ea
h Fourier frequen
y � with parameter 1=fx(�). Thenperiodogram ordinates at di�erent Fourier frequen
ies are asympoti
allyindependent (S
hlittgen and Streitberg (1999), p. 364).2. Ea
h stationary pro
ess Xt with 
ontinuous and for all � non-negativespe
tral density fx(�) has an in�nite moving-average representation(S
hlittgen and Streitberg (1999), p. 184).Assumption 2 
an be seen as ful�lled, as all inspe
ted spe
trograms 
learlyshow values di�erent from zero for all frequen
ies and time points. Assump-tion 2 substantially implies assumption 1, so for ea
h Fourier frequen
y !and hole depth lB the distribution fun
tion of S(!; lB; p) is approximativelygiven by d:f:(s) = f(!; lB ; p)�1ef(!;lB;p)�1s;where f(!; lB; p) = j�jk(!; lB ; p)j2 � ����j (!)��2.Using the asymptoti
al independen
e of periodogram ordinates of dif-ferent frequen
ies and assuming independen
e for di�erent hole depths, theLog-Likelihood-fun
tion is given byLL(p) =XlB X! �ln 1f(!; lB; p) � S(!; lB ; p)f(!; lB ; p)�The ML-estimators are the set pML of parameters maximizing this fun
tion.With these parameters the estimated eigenfrequen
ies 
an be derived as il-lustrated in the last two se
tions.The introdu
ed model has been su

essfully �tted to di�erent experimentsby using the sear
h-based method by Nelder and Mead (1965) for the maxi-mization of the Log-Likelihood-fun
tion. Fig. 5 shows an exemplary 
ompar-ison between an a

eleration spe
trogram and the bending eigenfrequen
ies
omputed from the �tted model for a pro
ess without spiralling.Even though the se
ond and third eigenfrequen
y seem to over-estimatethe area of elevated amplitudes the pattern in the spe
trogram is 
learlyrepresented by the �t. So apart from possible model re�nements, these results,
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Fig. 5. Comparison between a

eleration spe
trogram and �tted eigenfrequen
ies.whi
h are similar for all other experiments investigated up to now, supportthe 
onne
tion of the physi
al model with the statisti
al model as a basis forestimating its parameters from spe
trogram data.4 Summary and OutlookThe presented paper shows that a 
onne
tion of a physi
al and a statisti
almodel helps to estimate the bending eigenfrequen
ies of a deep-hole-drillingtool from data available during the pro
ess. Bending eigenfrequen
ies areknown to 
ause spiralling when 
rossing multiples of the spindle rotationalfrequen
y. By supervising the estimated eigenfrequen
ies, shifts in the pro
essdynami
s 
an be dete
ted and 
ru
ial situations 
an be predi
ted.The supervision may be possible within a bat
h produ
tion, where afterea
h 
ompletely drilled workpie
e the eigenfrequen
ies are 
he
ked and thene
essity of parameter 
hanges is de
ided. In the a
tual form �tting the modelis too time extensive to allow online intervention. But if the model 
an besimpli�ed implying faster �tting pro
edures, strategies su
h as 
ontrol 
hartsfor the eigenfrequen
ies 
ould be feasible as well.Simpli�
ations of the physi
al model are possible by 
on
entrating on therelevant regions of the spe
tra or modi�
ations of the dis
retization. Thestatisti
al model may be simpli�ed by estimating the spe
tra for frequen
y



8 Weihs et al.bands instead of Fourier frequen
ies using 
onsistent estimates as introdu
edin S
hlittgen and Streitberg (1999). Furthermore for a more eÆ
ient way ofestimating the eigenfrequen
ies histori
al data may be used in 
onne
tionwith the physi
al model.In future experiments roundness errors of the drilled workpie
es will bemeasured at di�erent equally spa
ed hole depth points. These measurementsrepresent a quantization of the e�e
t of spiralling over time and so help toinvestigate the development of spiralling more 
losely in di�erent situations.Here main features of interest are whether spiralling starts rapidly or devel-ops slowly and if the magnitude of spiralling depends on how qui
kly thefrequen
y 
rossing takes pla
e. As the measurement of roundness errors isnot possible in produ
tion the potentials of estimating these from the spe
-trogram data will be 
he
ked as well.A
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