
Schwender, Holger

Working Paper

Minimization of Boolean expressions using matrix
algebra

Technical Report, No. 2007,09

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB
475), University of Dortmund

Suggested Citation: Schwender, Holger (2007) : Minimization of Boolean expressions using
matrix algebra, Technical Report, No. 2007,09, Universität Dortmund, Sonderforschungsbereich
475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/24994

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/24994
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Minimization of Boolean Expressions Using

Matrix Algebra

Holger Schwender

Collaborative Research Center SFB 475

University of Dortmund

holger.schwender@udo.edu

Abstract

The more variables a logic expression contain, the more complicated is

the interpretation of this expression. Since in a statistical sense prime

implicants can be interpreted as interactions of binary variables, it is

thus advantageous to convert such a logic expression into a disjunctive

normal form consisting of prime implicants.

In this paper, we present two algorithms based on matrix alge-

bra for the identification of all prime implicants comprised in a logic

expression and for the minimization of this set of prime implicants.

1 Introduction

Boolean combinations of binary variables with outcome true or false can be

employed as predictors for the response in classification and regression prob-

lems (Ruczinski et al., 2003). Such logic expressions are of particular interest

in genetic association studies in which high-order interactions of biological

variables such as SNPs (Single Nucleotide Polymorphisms) are assumed to

be more important for the prediction than the variables themselves.

1

SNPs are characterized by the possibility of (typically two) different bases

at a specific single base-pair position in the DNA sequence, where each of the

bases has to occur in at least 1% of the population to distinguish this variation

from, e.g., spontaneous mutations. Since the human genome consists of pairs

of chromosomes, the less frequent variant can occur in the DNA sequence

of none, one, or two of the two chromosomes. Thus, examples for binary

variables in association studies are

S1 : “At least one of the bases explaining SNP S is of the less frequent

variant,”

and

S2 : “Both bases explaining SNP S are of the less frequent variant.”

These variables can be negated by the operator C (e.g., SC
1 means “None of

the bases explaining S is of the less frequent variant.”), and combined to a

logic expression using the operators ∧ (AND) and ∨ (OR).

A disadvantage of logic expressions is that it becomes more complicated

to interpret them, the more variables they contain. Since we are interested

in interactions, a representation of a logic expression would be preferable –

and easier to interpret – that reveals directly which variables interact with

each other. We, therefore, propose to convert each logic expression into

a disjunctive normal form (DNF), i.e. an OR-combination (disjunction) of

AND-combinations (conjunctions), as conjunctions can be interpreted as in-

teractions of variables.

To avoid redundancy, such a DNF should only consist of prime implicants,

i.e. conjunctions of minimum order/length. If, e.g., both A ∧ B ∧ C and

A ∧ B ∧ CC are part of a DNF, then C will be redundant, as the DNF will

be true if A ∧ B is true, no matter whether C is true or false. These two

conjunctions can thus be combined to the prime implicant A ∧B.

If the goal of a study is the detection of interactions associated with the

covariate of interest (as, e.g., in Schwender and Ickstadt, 2006), we would

2

stop here, since we would like to consider all identified interactions, i.e. all

prime implicants. For other purposes such as classification, it might be bet-

ter to reduce the set of prime implicants to a minimum size, as measuring

genetic variables is very costly, and we are in general interested in having a

classification rule consisting of as few variables as possible. Minimizing the

DNF would not lead to a worse classification, as the outcome of the DNF is

the same no matter if it is minimized or not.

The classical procedures for minimizing Boolean expressions are the Kar-

naugh mapping (Karnaugh, 1953) and the Quine-McCluskey algorithm (Quine,

1952, McCluskey, 1956). Since Karnaugh maps are hard to use if a logic ex-

pression contains more than four variables, but we are interested in expres-

sions containing up to about 16 variables, we will only consider the Quine-

McCluskey method in the following that consists of the two above-mentioned

steps:

1. Identify all prime implicants belonging to a logic expression.

2. Minimize the set of prime implicants.

In the first step, the minterms for which the logic expression is true are

recursively reduced (e.g., A∧B ∧C and A∧B ∧CC are combined to A∧B)

to generate the set of all prime implicants, where a minterm is one of the 2m

conjunctions of length m composed of the otucomes of the m binary variables

comprised by the logic expression. In the second step, this set is minimized

by removing prime implicants from the set that cover the minterms that are

also explained by other prime implicants.

In this paper, we present two algorithms based on matrix algebra for the

identification of the prime implicants and the minimization of a logic ex-

pression. While the algorithm for the second step employs the ideas of the

Quine-McCluskey algorithm, the algorithm for the first step follows the oppo-

site way: Instead of successively combining conjunctions, we first consider all

variables individually to identify those variables that are prime implicants.

3

Then, two-way interactions are considered to detect the prime implicants

consisting of two variables, and so on.

This paper is organized as follows: In Section 2, the Quine-McCluskey

procedure is presented, whereas in Section 3 we introduce the matrix algebra

based algorithms. Besides a formal description, all approaches are explained

using examples. Finally, Section 4 contains a discussion of the new algo-

rithms.

2 Quine-McCluskey Algorithm

Typically, the starting point of the Quine-McCluskey algorithm is either a

logic expression L, or directly a table T in which each row represents a

minterm, i.e. one of the 2m possible combinations of the m variables for

which L is true.

Example 2.1 Assume that T is given by

X1 X2 X3 X4

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

9 1 0 0 1

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

The fifth row of this table, i.e. the row named 9, represents, e.g., the minterm

X1∧XC
2 ∧XC

3 ∧X4, where the name of each row of T is the decimal number

4

corresponding to the binary number composed by the entries of this row.

An obvious disjunctive normal form of the logic expression corresponding

to T is

L = (XC
1 ∧XC

2 ∧XC
3 ∧XC

4) ∨ (XC
1 ∧XC

2 ∧XC
3 ∧X4) ∨

(XC
1 ∧XC

2 ∧X3 ∧XC
4) ∨ (XC

1 ∧XC
2 ∧X3 ∧X4) ∨

(X1 ∧XC
2 ∧XC

3 ∧X4) ∨ (X1 ∧XC
2 ∧X3 ∧X4) ∨

(X1 ∧X2 ∧XC
3 ∧XC

4) ∨ (X1 ∧X2 ∧XC
3 ∧X4) ∨

(X1 ∧X2 ∧X3 ∧XC
4) ∨ (X1 ∧XC

2 ∧XC
3 ∧X4),

i.e. a disjunction of all the minterms in T. However, there are many re-

dundant conjunctions in this DNF that can be removed. For example, the

minterms X1 ∧X2 ∧X3 ∧XC
4 and X1 ∧XC

2 ∧XC
3 ∧X4 can be combined to

X1 ∧X2 ∧X3 without loosing any information.

The process of successively joining minterms to identify the prime impli-

cants, i.e. conjunctions that cannot be further combined, is the first step of

the Quine-McCluskey algorithm.

2.1 Identification of the Prime Implicants

For an easier evaluation, the nT rows of T are ordered by the number of 1’s

they contain. Each pair of rows is considered to determine whether they can

be combined or not. Since a pair can only be joined if m − 1 entries of the

two rows are identical, it is actually only necessary to compare each row from

one block with each row of the neighbor block, i.e. each row containing no

1’s is compared with each row comprising exactly one 1, each row that sums

up to 1 is compared with each row showing two 1’s, and so on.

If two rows can be joined, then the combined row will be added to a new

table containing all minterms that are combined once. For each of these new

rows, the entry that differs between the parent rows is set to “–”, whereas

all the other entries are equal to the respective elements of the parent rows.

5

For Example 2.1, the ordered version of T and the new table are shown

on the left and the right hand side, respectively, of

X1 X2 X3 X4 X1 X2 X3 X4

0 0 0 0 0 (0, 1) 0 0 0 –

1 0 0 0 1 (0, 2) 0 0 – 0

2 0 0 1 0 (1, 3) 0 0 – 1

3 0 0 1 1 (1, 9) – 0 0 1

9 1 0 0 1 −→ (2, 3) 0 0 1 –

12 1 1 0 0 (3, 11) – 0 1 1

11 1 0 1 1 (9, 11) 1 0 – 1

13 1 1 0 1 (9, 13) 1 – 0 1

14 1 1 1 0 (12, 13) 1 1 0 –

15 1 1 1 1 (12, 14) 1 1 – 0

(11, 15) 1 – 1 1

(13, 15) 1 1 – 1

(14, 15) 1 1 1 –

where, e.g., row (0, 1) of the new table is a combination of the rows named

0 and 1 in T.

Afterwards, the new table is considered to identify pairs of rows that can

be combined. Again, each row of a block (marked by the solid lines within

the tables) is compared to each row of the neighbor block, and if two rows

can be merged, then they will be stored in a new table.

This procedure is repeated until no rows of the latest table can be com-

bined with each other anymore. Any of the rows in any of the tables that

could not be merged with another row of this table corresponds to a prime

implicant.

In Example 2.1, the procedure stops after the second iteration, as

6

X1 X2 X3 X4

(0, 1, 2, 3) 0 0 – –

(1, 3, 9, 11) – 0 – 1

(9, 11, 13, 15) 1 – – 1

(12, 13, 14, 15) 1 1 – –

does not contain a pair of rows that can be further combined.

Since each of the rows of the two other tables could be combined with

at least one other row, only the rows of this final table correspond to the

prime implicants. Hence, the disjunctive normal form consisting of the prime

implicants is given by

L = (XC
1 ∧XC

2) ∨ (XC
2 ∧X4) ∨ (X1 ∧X4) ∨ (X1 ∧X2).

2.2 Minimizing the Set of Prime Implicants

In the next step, the set of prime implicants is reduced by the following

procedure:

1. Construct the prime implicant table.

2. Reduce the prime implicant table by

(a) removing the essential prime implicants,

(b) removing rows that dominate other rows,

(c) removing columns dominated by other columns,

(d) repeating Steps 2 (a)–(c) until no further reduction is possible.

3. If necessary, solve the remaining prime implicant table.

The goal of this reduction is that

– this set contains a minimum number of prime implicants,

7

– each minterm represented in T is covered by at least one prime impli-

cant.

Construct the Prime Implicant Table. The prime implicant table is

an nT × p matrix indicating which of the nT minterms represented in T are

covered by which of the p prime implicants, i.e. which of the minterms have

been combined to generate a particular prime implicant.

For Example 2.1, the prime implicant table is thus given by

X1 ∧X2 XC
1 ∧XC

2 X1 ∧X4 XC
2 ∧X4

0 0 1 0 0

1 0 1 0 1

2 0 1 0 0

3 0 1 0 1

9 0 0 1 1

11 0 0 1 1

12 1 0 0 0

13 1 0 1 0

14 1 0 0 0

15 1 0 1 0

Essential Prime Implicants. If any of the minterms is covered by only

one of the prime implicant, then this prime implicant will be essential for

correctly evaluating the logic expression, and must hence be part of the mini-

mum set. Both the columns corresponding to the essential prime implicants

and the rows covered by these prime implicants are removed from the table.

In Example 2.1, X1 ∧X2 and XC
1 ∧XC

2 are essential prime implicants, as

they are the only prime implicants that cover the minterms named 12 and 14,

and 0 and 2, respectively, in the above table. Removing the corresponding

columns and the rows covered by X1 ∧ X2 or XC
1 ∧ XC

2 from the prime

8

implicant table leads to

X1 ∧X4 XC
2 ∧X4

9 1 1

11 1 1

Row Dominance. A row dominates another row if it is covered by the

same prime implicants as the dominated row as well as by other prime impli-

cants. If, e.g., r1 =
[
1 1 1 1

]
, r2 =

[
0 1 0 1

]
, and r3 =

[
0 0 1 1

]
are rows of the prime implicant table, then r1 dominates both r2 and r3.

Dominating rows such as r1 can be removed from the prime implicants table,

since r1 is covered if, e.g., r2 (or r3) is covered. If two rows dominate each

other – as in Example 2.1 – then only one of the rows is eliminated. Thus,

removing row dominances from the above prime implicant table results, e.g.,

in

X1 ∧X4 XC
2 ∧X4

9 1 1

Column Dominance. Contrary to the row dominance step in which

dominating rows are eliminated, columns dominated by other columns are

removed in the column dominance step. If thus a prime implicant P1 covers

the same minterms as the prime implicant P2 as well as additional minterms,

the column in the prime implicant table corresponding to P2 will be removed.

Otherwise, i.e. if dominating rows would be removed, P2 and additional prime

implicants – instead of just P1 – would be required to cover the same set of

minterms.

In Example 2.1, the two remaining prime implicants dominate each other

such that either of them can be removed from the table leading, e.g., to

9

X1 ∧X4

9 1

These three steps (removing essential prime implicants, column and row

dominance) are repeated until no further reduction of the prime implicant

table is possible anymore, either because this table is empty, or because there

are no further essential prime implicants, or column or row dominances.

As X1∧X4 is a (secondary) essential prime implicant, it is removed from

the table in the second iteration of the reduction step. Since the prime

implicant table is empty after this removal, the Quine-McCluskey algorithm

stops, and a minimum disjunctive normal form of L is given by

L = (XC
1 ∧XC

2) ∨ (X1 ∧X4) ∨ (X1 ∧X2).

Solving the Prime Implicant Table. The prime implicant table is,

however, not always empty after all essential prime implicants, all column

and all row dominances have be eliminated.

Example 2.2 Consider the prime implicant table

P1 P2 P3 P4 P5 P6

0 1 0 0 0 1

0 0 0 1 0 1

0 0 1 0 1 0

0 1 0 0 1 0

1 0 1 0 0 0

1 0 0 1 0 0

Since none of the rows of this table is covered by only one of the prime impli-

cants Pi, i = 1, . . . , 6, or dominates another one, and none of the columns is

dominated by another column, it is not possible to further reduce this prime

10

implicant table. A minimum DNF, however, would not be composed of all

six prime implicants, as, e.g., P1 ∨P5 ∨P6 cover all the minterms included in

this table. But this is just one of the possible subsets that cover all minterms.

Instead of trying which subset of the remaining prime implicants, on

the one hand, covers all the minterms, and on the other hand, contains the

minimum number of prime implicants, this cyclic covering problem can be

analytically solved by Petrick’s method (Petrick, 1956).

Petrick’s method. For g = 1, . . . , p, set

Cg : “Prime implicant Pg is included in the covering subset.”

and let C be a Boolean combination of the propositions, i.e. variables with

outcome true or false, Cg, g = 1, . . . , p, that is true if all rows of the prime

implicants table are covered, and false otherwise.

In Example 2.2, the first row is covered if C2 ∨ C6, the second row is

covered if C4 ∨ C6, and so on. The whole table is therefore covered if

C = (C2 ∨ C6) ∧ (C4 ∨ C6) ∧ (C3 ∨ C5) ∧

(C2 ∨ C5) ∧ (C1 ∨ C3) ∧ (C1 ∨ C4)

= (C3 ∧ C4 ∧ C5 ∧ C6) ∨ (C2 ∧ C3 ∧ C4) ∨

(C1 ∧ C5 ∧ C6) ∨ (C1 ∧ C2 ∧ C4 ∧ C5) ∨

(C1 ∧ C2 ∧ C3 ∧ C6)

(2.1)

is true. If thus one of the five conjunction in the disjunctive normal form of

(2.1) is true, then C will be true. Since we are looking for a minimum set of

prime implicants, each of the conjunctions of order 3, i.e. either C2 ∧C3 ∧C4

or C1∧C5∧C6, is a solution to the cycling covering problem. The minimum

DNF will hence contain either {P2, P3, P4} or {P1, P5, P6}.

11

3 Logic Minimizing Based on Matrix Algebra

In this section, we present two new algorithms for minimizing a logic expres-

sions. These algorithms make essential use of matrix computation to speed

up the computation. As in the Quine-McCluskey procedure, we first identify

the set of all prime implicants, and then reduce it to a minimum size. How-

ever, in particular the first step of our approach differs substantially from the

Quine-McCluskey algorithm: Instead of successively combining minterms to

generate the set of all prime implicants, we start with conjunctions of or-

der 1, i.e. with binary variables or their complement, and check if any of

these conjunctions is a prime implicant. Afterwards, we consider conjunc-

tions of order 2, i.e. two-way interactions, to detect prime implicants of order

2. Then, conjunctions of order 3 are examined, and so on. This procedure

stops when all minterms for which the logic expression of interest is true are

covered by at least one of the identified prime implicants.

Since different types of the indicator function are used in the following,

it is defined for these situations before the algorithms are described.

Definition 3.1 The indicator function I is a function that compares two

object, where the structure of the outcome of I consisting only of ones and

zeros depends on the structure of the two object.

(a) If X is an n×m matrix and y is a numeric value, then the outcome of

the indicator function I(X = y) is an n×m matrix with elements

ik` =

1, if xk` = y

0, if xk` 6= y

, k = 1, . . . , n, ` = 1, . . . ,m.

(b) If X is an n×m matrix and y is a vector of length n, then the outcome

of the indicator function I(X = y) is an n×m matrix with elements

ik` =

1, if xk` = yk

0, if xk` 6= yk

, k = 1, . . . , n, ` = 1, . . . ,m.

12

(c) If both X and Y are n×m matrices, then the outcome of the indicator

function I(X = Y) is an n×m matrix with elements

ik` =

1, if xk` = yk`

0, if xk` 6= yk`

, k = 1, . . . , n, ` = 1, . . . ,m.

Analogously, define I(X > y) for any type of y by replacing each “=” by

“>”, and each “6=” by “≤” in Definition 3.1.

Note that the two cases x is a vector and y is either a numeric value or

a vector of the same length as x are special cases of Definition 3.1 (a) and

(b), respectively.

3.1 Identification of the Prime Implicants

The idea behind our procedure for the identification of prime implicants is

based on the following theorem.

Theorem 3.1 Let T be an nT ×m matrix containing all the nT minterms

of length m for which the logic expression of interest is true. A conjunction

of order i will be a prime implicant if

(a) 2m−i rows of T contain this conjunction,

(b) no prime implicant of lower order exists that is part of this conjunction.

Proof. (b) follows directly from the fact that a conjunction has to be

minimal, i.e. cannot be further combined with other conjunctions, to be

considered as prime implicant.

For (a), note that if a prime implicant consists of i variables, then the

corresponding row in the table containing the combined minterms (see Sec-

tion 2.1) will consist of i values that are either 0 or 1, and m − i entries

being “−”. Each of these “−” has been generated by successively combining

two minterms. A row containing one “−” is thus obtained by combining

13

2m−(m−1) = 2 rows with no “−”, each row consisting of two “−” is generated

by joining two rows each comprising one “−”, i.e. by combining 2m−(m−2) = 4

rows with no “−”, and so on. Consequently, a row with m− i entries being

“−”, and hence the corresponding conjunction of order i are generated by

combining 2m−i rows containing no “−”, i.e. by joining 2m−i rows of T.

And none of these 2m−i rows is a duplicate of one of the other 2m−i − 1

rows. To see this, let’s assume that two conjunctions should be combined,

and that (at least) one minterm has been employed in the generation of both

conjunctions. Two conjunctions can only be joined if exactly one element dif-

fers between them. This entry must thus be 0 in one of the conjunctions, and

hence in all minterms used in the generation of it, and 1 in the other conjunc-

tion and in all its ancestral minterms. This, however, is a contradiction to

the assumption that both conjunction have (at least) one common minterm.

�

Thus, if a column of T contains either 2m−1 ones or 2m−1 zeros, then the

corresponding variable or the complement of this variable, respectively, will

be a prime implicant. After identifying such prime implicants of order 1, all

possible Boolean combinations of two of the variables and their complements

are considered. Each of these combinations that appears in 2m−2 rows of T

corresponds to a prime implicant of order 2. Afterwards, all interactions of

order 3, 4, . . . are considered, until all rows of T are covered by at least one of

the identified prime implicants. The procedure for the detection of all prime

implicants is summarized in Algorithm 3.1.

Algorithm 3.1 (Identification of Prime Implicants)

Let T be an nT × m matrix in which each row corresponds to one of the

nT minterms for which the logic expression L of interest is true, and each

column corresponds to one of the m variables X1, . . . , Xm composing L.

1. Replace each zero in T by -1, and set i = 1.

14

2. Let Q(i) be a 2i

(
m

i

)
×m with elements

q
(i)
kj =


1, if Xj is part of the kth conjunction of order i

−1, if XC
j is part of the kth conjunction of order i

0 otherwise

. (3.1)

3. Set S(i) = Q(i)T′, and compute h(i) = I
(
S(i) = i

)
1nT

.

4. Set Hi =
{

k : h
(i)
k = 2m−i

}
. If Hi = ∅, set i to i + 1, and repeat Steps

2-6. Otherwise, update Q(i) by removing all rows k 6∈ Hi from Q(i)

such that Q(i) becomes a |Hi| ×m matrix.

5. Denote the set of prime implicants P1, . . . , Ppi
each of order i or lower

by Li, where L0 = ∅. If Li−1 = ∅, add the conjunctions represented by

the (remaining) rows of Q(i) to Li−1 to generate Li. Otherwise,

(a) let Mi−1 denote a pi−1×m matrix in which each row represents –

analogous to (3.1) – one of the pi−1 prime implicants of an order

lower than i,

(b) compute v(i−1) = diag
(
Mi−1M

′
i−1

)
, i.e. determine the vector v(i−1)

containing the pi−1 diagonal elements of Mi−1M
′
i−1, and set R(i−1) =

Mi−1Q
(i)′,

(c) update Q(i) by removing any row of Q(i) corresponding to a non-

zero entry in

1′
pi−1

I
(
R(i−1) = v(i−1)

)
,

(d) and add the conjunctions corresponding to the remaining rows of

Q(i) to Li−1 to generate Li.

6. Stop if all elements of 1′
pi
I
(
MiT

′ = v(i)
)

are non-zero. Otherwise, set

i to i + 1, and repeat Steps 2-6.

15

Instead of considering each of the 2i

(
m

i

)
possible conjunctions of order i,

i = 1, . . . ,m, separately, a 2i

(
m

i

)
×m matrix Q(i) is constructed allowing to

examine all conjunctions simultaneously. The second column of Q(2) in (3.2),

e.g., represents the conjunction X1 ∧ XC
2 . In the following, it is explained

how Algorithm 3.1 employs Q(2) to identify the prime implicants of order 2

in Example 3.1.

Example 3.1 Suppose that the matrix T corresponding to a logic expres-

sion L composed of m = 3 variables X1, X2 and X3 is given by

T′ =


0 0 1 0 1 1

0 1 0 1 1 1

1 0 0 1 0 1

 ,

and that X2 has already been identified as the only prime implicant of length

1 such that now all conjunctions of order i = 2 are of interest. In this case,

the matrix Q(2) is given by

Q(2) =



1 1 0

1 −1 0

−1 1 0

−1 −1 0

1 0 1

1 0 −1

−1 0 1

−1 0 −1

0 1 1

0 1 −1

0 −1 1

0 −1 −1



. (3.2)

16

For the detection of all prime implicants of order 2, the rows of Q(2) are

compared with the rows of T to compute for each of the conjunctions in Q(2)

the number of minterms (represented by the rows of T) that are covered by

the respective conjunction.

For this computation, it is necessary to replace each zero in T by −1 such

that complements of variables (represented in T by zeros), and hence, prime

implicants are, on the one hand, identifiable by matrix multiplication, and

on the other hand, distinguishable from the variables themselves.

Having replaced the zeros in T by −1, the kth conjunction of order i in

Q(i) covers, i.e. is part of, the conjunction of order m in the `th row of T, if
m∑

j=1

q
(i)
kj t`j = i.

Therefore, if the
(
kth, `th

)
element of

S(2) = Q(2)T′ = Q(2)


−1 −1 1 −1 1 1

−1 1 −1 1 1 1

1 −1 −1 1 −1 1



=



−2 0 0 0 2 2

0 −2 2 −2 0 0

0 2 −2 2 0 0

2 0 0 0 −2 −2

0 −2 0 0 0 2

−2 0 2 −2 2 0

2 0 −2 2 −2 0

0 2 0 0 0 −2

0 0 −2 2 0 2

−2 2 0 0 2 0

2 −2 0 0 −2 0

0 0 2 −2 0 −2



17

is equal to 2, then the conjunction represented by the kth row of Q(2) covers

the minterm corresponding to the `th row of T.

Following Theorem 3.1, a conjunction of order i is a prime implicant if

it covers 2m−i rows of T, and if this conjunction is not covered by a prime

implicant of lower order. Thus, each conjunction represented by a row of

Q(2) that corresponds to an entry of

h(2) = I
(
S(2) = 2

)
1nT

=
[

2 1 2 1 1 2 2 1 2 2 1 1
]′

equal to 23−2 = 2, i.e. by a row of the reduced matrix

Q(2) =



1 1 0

−1 1 0

1 0 −1

−1 0 1

0 1 1

0 1 −1


, (3.3)

is a potential prime implicant.

However, the reduced matrix (3.3) still contains all conjunctions of order 2

that are composed of the prime implicant X2 and another literal, i.e. another

variable or complement of a variable. Such conjunctions are removed in Step

5 of Algorithm 3.1 by constructing a pi−1 × m matrix Mi−1 containing the

identified prime implicants of order i−1 or lower. For Example 3.1, e.g., M1

is given by

M1 =
[

0 1 0
]
.

If the prime implicant in the `th row of Mi−1 is part of the conjunction

represented by the kth row of the (reduced) matrix Q(i), then the
(
`th, kth

)
element of R(i−1) = Mi−1Q

(i)′ will be equal to the order of the `th prime

implicant, where the orders of the pi−1 prime implicants are comprised by

the vector v(i−1) containing the diagonal elements of Mi−1M
′
i−1. Therefore,

18

each column k of R(i−1) for which
pi−1∑
`=1

I
(
r
(i−1)
`k = v

(i−1)
`

)
> 0

corresponds to a row of Q(i) consisting of a prime implicant of an order lower

than i.

In Example 3.1, v(1) = 1 and

R(1) = M(1)A(2)′ =
[

1 1 0 0 1 1
]

such that the first, second, fifth and sixth row of (3.3) can be removed leading

to the matrix

Q(2) =

 1 0 −1

−1 0 1


comprising the two prime implicants, X1 ∧XC

3 and XC
1 ∧X3, of order 2.

Algorithm 3.1 will stop if each of the minterms in T is covered by at

least one of the identified prime implicants. To check if Algorithm 3.1 can

be stopped, the same idea as in Step 5 of Algorithm 3.1 is employed: If each

of the columns of MiT
′ consist of at least one entry that is equal to the

corresponding entry in v(i), then each of the rows of T are covered by at

least one of the rows of Mi.

In Example 3.1,

M2T
′ =


0 1 0

1 0 −1

−1 0 1

T′ =


−1 1 −1 1 1 1

−2 0 2 −2 2 0

2 0 −2 2 −2 0



and

v(2) = diag
(
M2M

′
2

)
= diag




1 0 0

0 2 −2

0 −2 2


 =


1

2

2


such that the first row of T is covered by XC

1 ∧ X3, the second and the

sixth row by X2, the third row by X1 ∧XC
3 , the fourth row by both X2 and

19

XC
1 ∧X3, and the fifth row by both X2 and X1 ∧XC

3 . Since all minterms re-

presented in T, hence, contain at least one of the identified prime implicants,

Algorithm 3.1 stops, and the disjunctive normal form of the logic expression

corresponding to T is given by

L = X2 ∨ (X1 ∧XC
3) ∨ (XC

1 ∧X3).

3.2 Minimizing the Set of Prime Implicants

Contrary to Algorithm 3.1, Algorithm 3.2 follows the ideas of the second step

of the Quine-McCluskey algorithm. We thus also reduce a prime implicant

table successively by removing essential prime implicants, and column and

row dominances, and if necessary, solve the remaining table. We, however,

again employ matrix algebra to consider all prime implicants, columns or

rows simultaneously in the respective reduction steps.

Algorithm 3.2 (Minimization of the Set of Prime Implicants)

Let P be the nT × p prime implicants table, i.e. a matrix indicating which of

the nT minterms for which the logic expression of interest is true is covered

by which of the p prime implicants.

1. Successively reduce P, where the dimensions of P at the respective

stage of reduction are denoted by nnow and pnow, by

(a) setting nred = nnow and pred = nnow,

(b) removing each column of P corresponding to a non-zero entry of

e = P′ · I
(
P1pnow = 1

)
,

and each row of P corresponding to a non-zero entry of

P · I
(
e > 0

)
,

where the prime implicants represented by the removed columns

are added to P , the set of the essential prime implicants,

20

(c) eliminating each row of P that

(i) is a duplicate of a row with a smaller subscript,

(ii) corresponds to an entry of

r′dom = 1′
nnow

· I
(
PP′ = P1pnow

)
not equal to 1,

(d) removing each column of P that

(i) is a duplicate of a column with a smaller subscript,

(ii) corresponds to an entry of

cdom = I
(
P′P = P′1nnow

)
· 1pnow

not equal to 1,

(e) repeating 1 (a)–(d), if nnow < nred, or pnow < pred.

2. If pnow > 0, solve P by

(a) setting Cg: “The prime implicant represented by the gth column

of P is included in the subset that should cover the rows of P”,

g = 1, . . . , pnow,

(b) constructing a 2pnow × pnow matrix A consisting of zeros and ones,

where each row indicates one of the 2pnow possible conjunctions of

the Boolean propositions Cg, g = 1, . . . , pnow,

(c) computing

v = I
(
AP′ = 0

)
· 1nnow ,

(d) removing all rows of A corresponding to a non-zero entry of v to

generate the nv × pnow matrix Ared,

(e) computing

amin = min
k=1,...,nv

{ak : a = Ared1pnow} ,

21

(f) adding the prime implicants indicated by one of the rows of Ared

that add up to amin to P .

The minimum set of prime implicants is given by P .

The entries of each row of P covered by only one prime implicant sum up

to 1. Essential prime implicants can thus be identified by multiplying P′ by

a vector indicating which of the rows sum up to one, since only the entries

of the vector e resulting from this matrix calculation will be non-zero that

correspond to an essential prime implicant.

Not only the columns representing essential prime implicants, but also

rows covered by these conjunctions should be removed from P. Such rows

can be identified by multiplying P with a vector indicating if the entries of e

are non-zero or not, as the non-zero entries of the resulting vector correspond

to the rows covered by the essential prime implicants.

Example 3.2 Suppose that the conjunctions Pp, p = 1, . . . , 4, have been

identified as prime implicants, and that the corresponding prime implicant

table P is given by

P =



0 0 1 1

1 0 0 0

0 1 1 0

0 1 1 1

1 0 0 1


. (3.4)

Since only the second row of P sums up to 1, e is computed by

e =


0 1 0 0 1

0 0 1 1 0

1 0 1 1 0

1 0 0 1 1





0

1

0

0

0


=


1

0

0

0

 .

22

The first column of P thus contains an essential prime implicant that in turn

covers the second and the fifth row of P as indicated by

P · I(e > 0) =
[

0 1 0 0 1
]′

.

Hence, P1 is an essential prime implicant, and P is reduced to

P =


0 1 1

1 1 0

1 1 1

 .

If two or more rows are duplicates of each other, i.e. if rows dominate

each other, all but one of these rows are eliminated first, since otherwise all

these rows would be removed by the matrix computation described in the

next paragraph. Instead of setting

U = I
(
PP′ = P1pnow

)
(3.5)

and

V = U ∗U′ ∗W,

where W is the pnow × pnow indicator matrix of the lower triangle of U, i.e.

W =


0 0 · · · 0 0

1 0 · · · 0 0

1 1
. . .

...
...

...
...

. . . 0 0

1 1 · · · 1 0

 ,

and “∗” denotes the element-wise multiplication of matrices, i.e.

vk` = uk` · u`k · wk` , k, ` = 1, . . . , pnow,

and identifying the rows that are duplicates of other rows with a lower sub-

script by the rows of V having at least one non-zero entry, the R (Ihaka and

Gentleman, 1996) function duplicated is employed to detect such duplicated

rows.

23

If the kth row of P is dominated by no other row, k = 1, . . . , nnow, then

only the kth entry in the kth row of PP′ will be equal to the corresponding

element of P1pnow , i.e. the vector of the row-wise sums of P. If this row

is, however, dominated by the `th row of P, then also the element (k, `)

of PP′ will be equal to the `th entry in P1pnow . Therefore, each row of P

corresponding to a column of U, see (3.2) with more than one entry equal to

1 dominates at least one other row, and can therefore be removed from P.

Column dominances can be eliminated similarly by removing columns

that dominate each other and that are dominated by another column. Again,

the former has to be done first such that the latter columns can be identified

by the corresponding rows of

I (P′P = P′1nnow)

with more than one entry equal to 1.

In Example 3.2, there are no rows dominating each other. So

U = I (PP′ = P1pnow) = I




2 1 2

1 2 2

2 2 3

 =


2

2

3


 =


1 0 1

0 1 1

0 0 1

 (3.6)

can be computed, and the third row dominates other rows, since the sum

over the third column of (3.6) is larger than 1. Removing this row from P

leads to

P =

 0 1 1

1 1 0

 . (3.7)

Since there are no duplicated columns in (3.7),

I (P′P = 1nnowP) = I




1 1 0

1 2 1

0 1 1

 =


1

2

1


 =


1 1 0

0 1 0

0 1 1

 (3.8)

can be computed directly. Since the row-wise sums of the first and the third

column of (3.8) are larger than 1, the first and the third column of P are

24

dominated by another column, and can hence be removed leading to

P =

 1

1

 , (3.9)

where the remaining column of P represents the prime implicant P3.

In the second iteration of Step 1 of Algorithm 3.2, the second row of P

in (3.9) is removed because of row dominance, and in the third iteration, P3

is identified as essential prime implicant such that a minimum disjunctive

normal form of (3.4) is given by

L = P1 ∨ P3.

Example 3.3 Assume that after Step 1 of Algorithm 3.2, the prime impli-

cant table P is given by

P =


0 1 0 1

1 1 0 0

0 0 1 1

1 0 1 0

 ,

where the gth column represents the prime implicant Pg, g = 1, . . . , 4.

Since neither essential prime implicants, nor row or column dominances

can be removed from P, this table has to be solved.

To solve a prime implicant table P, a 2p × p matrix A indicating each of

the 2p possible covering subsets of the p prime implicants is constructed. For

example, the second column of A′ in (3.10) represents the subset containing

P1, P2, and P3. If the kth row of P is covered by any of the prime implicants

represented by the `th row of A, then element (k, `) of AP′ will be larger

than zero. Since all the rows of P should be covered, we are only interested

in rows of A resulting in no non-zero entries in the respective rows of AP′.

Denoting the matrix containing such rows by Ared, each row of Ared having

a minimum row-wise sum contains a minimal solution to the cyclic covering

problem.

25

In Example 3.3, Ared is composed by the rows of A that correspond to

columns of

PA′ = P


1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0



=


2 1 2 1 1 0 1 0 2 1 2 1 1 0 1 0

2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0

2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0

2 2 1 1 2 2 1 1 1 1 0 0 1 1 0 0



(3.10)

with only non-zero entries, and the row-wise sum of Ared is computed by

Ared14 =



1 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

1 0 0 1

0 1 1 1

0 1 1 0




1

1

1

1

 =



4

3

3

3

2

3

2


.

Since both the fifth and the seventh row of Ared show the minimum row-wise

sum, both the subset {P1, P4} and the subset {P2, P3} are minimal solutions

to the cyclic covering problem.

In Example 2.2, A consists of 64 rows, and Ared of 18 rows. After remo-

ving row dominances from Ared,

Ared =



1 1 1 0 0 1

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 1 0 0

0 0 1 1 1 1


26

contains exactly the same combinations of prime implicants represented by

the conjunctions of the Boolean propositions Cg, g = 1, . . . , 6, in (2.1).

4 Discussion

In this paper, we have presented two algorithms based on matrix algebra for

the identification of the prime implicants composed by a logic expression,

and the minimization of the set containing these conjunctions.

The former algorithm has been in particularly developed for a situation

in which hundreds of logic expressions containing up to 16 binary variables

should be converted into a disjunctive normal form (as, e.g., in Schwender and

Ickstadt, 2006) consisting of prime implicants, where the prime implicants

exhibit typically a maximum order of 5.

This algorithm is limited by m, the number of variables in the logic ex-

pression of interest, and the maximum order i of the prime implicants, since

a matrix consisting of 2i

(
m

i

)
rows is constructed. A solution to this problem

would be to split this matrix in several matrices of smaller sizes, and consider

each of these matrices when searching for prime implicants of order i. If the

logic expression, however, will contain a large number of variables, and the

prime implicants are conjunctions of a very high order, then this solution

will also fail and heuristic algorithms for logic minimization such as Espresso

(McGeer et al., 1996) have to be used for logic minimization.

A drawback of the second algorithm for the minimization of the set of

prime implicants is that it just delivers one minimum disjunctive normal

form, even though more than one solution might exist when, e.g., two columns

dominate each other (see Section 2.2), or a prime implicant table has to be

solved (see, e.g., Section 3.2). This problem can be solved by recording which

prime implicant(s) can be replaced by which of the other prime implicants.

Since our main focus is on the identification of all prime implicants this

feature has not been implemented yet in our software for the matrix based

27

logic minimization that is available in the R package logicFS which can

be downloaded from http://www.bioconductor.org, the web page of the

Bioconductor project (Gentleman et al., 2004).

Acknowledgement

The financial support of the Deutsche Forschungsgemeinschaft (SFB 475,

“Reduction of Complexity in Multivariate Data Structures”) is gratefully

acknowledged.

References

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M.,

Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn,

T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M.,

Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang,

J. Y .H. and Zhang, J. (2004). Bioconductor: Open Software Development

for Computational Biology and Bioinformatics. Genome Biology, 5, R80.

Ihaka, R. and Gentleman, R. (1996). R: A Language for Data Analysis and

Graphics. Journal of Computational and Graphical Statistics, 5, 299–314.

Karnaugh, M. (1953). The Map Method for Synthesis of Combinatorial

Logic Circuits. Transactions of the American Institute of Electrical En-

gineers, Communications and Electronics, 72, 1, 593–598.

McCluskey, E. (1956) . Minimization of Boolean Functions. Bell System

Technical Journal, 35, 1417–1444.

McGeer, P. C., Sanghavi J. V., Brayton, R. K. and Sangiovanni-Vincentelli,

A. L. (1993). Espresso-Signature: A new Exact Minimizer for Logic Func-

tions. In: Proceedings of the 30th International Conference on Design Au-

tomation, ACM Press, New York, NY, USA, 618–624.

28

Petrick, S. R. (1956). A Direct Determination of the Irredundant Forms of

a Boolean Function from the Set of Prime Implicants. Technical Report

AFCRC-TR-56-110, Air Force Cambridge Research Center, Cambridge,

MA, USA.

Quine, W. V. (1952). The Problem of Simplify Truth Functions. American

Mathematical Monthly, 59, 8, 521–531.

Schwender, H. and Ickstadt, K. (2006). Identification of SNP Interactions

Using Logic Regression. Technical Report, SFB 475, University of Dort-

mund, Germany.

29

