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Abstract

The risk of a credit portfolio depends crucially on correlations between latent covariates, for

instance the probability of default (PD) in different economic sectors. Often, correlations have

to be estimated from relatively short time series, and the resulting estimation error hinders the

detection of a signal. We suggest a general method of parameter estimation which avoids in a

controlled way the underestimation of correlation risk. Empirical evidence is presented how, in

the framework of the CreditRisk+ model with integrated correlations, this method leads to an

increased economic capital estimate. Thus, the limits of detecting the portfolio’s diversification

potential are adequately reflected.

∗ The first two authors have contributed equally.
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Managing portfolio credit risk in a bank requires a sound and stable estimation of the

loss distribution with a special emphasis on the high quantiles denoted as Credit Value-at-

Risk (CreditVaR). The difference between the CreditVaR and the expected loss has to be

covered by the economic capital, a scarce resource of each bank. From a risk management

perspective, the definition of industry sectors allows to diversify credit risk. The degree to

which this diversification is successful depends on the strength of correlations between the

sectors. Moreover, the correlations between sector PDs crucially influence the CreditVaR

and hence the economic capital.

In large banks, the concentration risk in industry sectors is a key risk driver. Recently,

several approaches for describing and modelling concentration risk were discussed [1, 2, 4]. In

CreditRisk+ [5], concentration risk is modelled as a multiplicative random effect on the PD

per counterpart in a given sector. In the original version of CreditRisk+, the loss distribution

is calculated for independent sector variables. Correlations between PD fluctuations in

different sectors can be integrated into CreditRisk+ with the method of Bürgisser et al.

[1]. For the calculation of the CreditVaR it is important whether input parameters like the

correlation coefficients between sector PDs are known or must be estimated. In the latter

case, this estimation leads to an additional variability of the target estimate, in our case the

portfolio loss. In this way, uncertainty in the estimation of PD correlations translates itself

into uncertainty of the economic capital of a bank.

The estimation of cross–correlations is difficult due to the “curse of dimensionality”: if

the length T of the available time series is comparable to the number K of industry sectors,

the number of estimated correlation coefficients is of the same order as the number of input

parameters with the result of large estimation errors. A way out of this dilemma is the use

of a minimal model with a reduced dimensionality of the parameter space. A reasonable

choice is a parsimonious model with the global default rate as latent factor [6].

Despite the fact that the parameter space of a one-factor model has considerably lower

dimensionality than that of the full correlation matrix, there are large statistical fluctuations

in the parameter estimation resulting in a considerable uncertainty in the CreditVaR based

on such a model. We discuss these fluctuations in detail and suggest a bootstrap method

which allows to find a level for the parameters that reflects the applicable risk aversion of

the individual bank. We exemplify the impact of different conservative estimates on the

CreditVaR of a realistic portfolio.
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Methodology

As the economic activity and the probability of default in a given industry sector is not

directly observable, we approximate it by the insolvency rate in that sector over the last

T +1 years. The probability of insolvency PDit of sector i in year t is calculated as the ratio

of the number of insolvencies in that sector to the total number of companies in the sector

ˆPDit =

∑
A ∈ sector i in year t I{A fails}∑

A ∈ sector i in year t

. (1)

With the help of insolvency rates, the default probability for a given company A can be

factorized into an individual expected PD pA and the sector specific relative PD movement

Xi with expectation E(Xi) = 1 according to

P (A fails) = pAXi . (2)

When using CreditRisk+ with a time horizon of one year, one is interested in the relative

change of default probabilities. The individual PD, pA in Eq. 2, is usually taken to depend

on the current economic activity at time t−1, i.e. it describes a point-in-time rating. The PD

for the forthcoming period t+1 is hence the product of the current individual pA (depending

on information available at time t− 1) and the ratio of the future PD at time step t and the

current PD. The latter ratio is the relative change in economic activity,

Xit =
ˆPDit+1

ˆPDit

+ 1− 1

T

T∑
t=1

ˆPDit+1

ˆPDit

, (3)

which is normalized to 〈Xi〉 = 1
T

∑T
t=1 Xit = 1 in the above definition. As the correlations

between relative PD movements in different sectors crucially influence the risk of a credit

portfolio, it is important to estimate them in a reliable way.

Correlation estimate from empirical data

For the illustration of our theoretical concept, we use sector specific time series of insolvency

rates for a segmentation of the German economy into K = 20 sectors selected by us. We

take the viewpoint of a portfolio owner whose counterparts are to a large extent located in

Germany. The environment for the remaining counterparts is assumed to be alike. The data

– for a much finer segmentation – are supplied by the federal statistical office of Germany

and date unfortunately only from 1994–2000 [13].
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FIG. 1: Default rate growth factors of K = 20 German sectors from 1995 to 2000. For clarity,

subsequent curves have an offset against each other.

In view of the small sample size, namely T = 6, we use a parsimonious one-factor model

for the estimation of cross-correlations. As a factor we use relative changes Yt of the national

insolvency rate. The definition of Yt is analogous to the definition of the Xit in Eq. (3). We

decompose the sector PDs according to

Xit = Yt + εit , (4)
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FIG. 2: Relative changes of insolvency rate for the German economy from 1962 to 2003 (until 1994

West Germany).

where the residuals εit are defined by this equation. The economic reasoning behind this

decomposition is that we do not allow sectors’ fortunes being systematically linked other

than via the single factor. Moreover, we do not differentiate sectors according to their

intensity of being related to the single factor. This has two major advantages: i) one needs

to estimate only K + 1 parameters as compared to the 2K + 1 parameters for a standard

one-factor model, ii) the factor variance can be reliably estimated over a long time interval

spanning several economic cycles, since no sector specific data is required.

As a consequence, the correlation between the systematic parts of sectors’ default rates

now is uniformly equal to one. However, this systematic correlation is obscured by the

residuals. As Eq. (4) realizes a variance decomposition, it creates a relation between the

correlations and volatilities. For reasons of tractability we now make the fundamental as-

sumption that the residuals are uncorrelated among each other and uncorrelated with the

factor. Then, one obtains the correlation matrix Cvar with elements

Cvar
ij = δij + (1− δij)

1√
1 + σ2

εi
/σ2

Y

√
1 + σ2

εj
/σ2

Y

. (5)

Here the Kronecker symbol δij is one if i = j and zero otherwise. The variance of the

residuals εit is denoted by σ2
εi
. Cvar has an intuitive interpretation: according to Eq. (4),
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the sector variance is decomposed into the factor variance and the residual variance. The

smaller the influence of the factor on a given sector is, the larger is the residual variance of

this sector and according to Eq. (5) the correlation coefficients between this sector and other

sectors becomes small. Cvar is a conservative and robust input for business applications.

This is because the neglect of (negative) covariances between factor and residuals tends to

result in an overestimation of correlations.

Model (4) links the sectorial to the national default rates. Hence, additional to the data

for the 20 sectors we use the insolvency rate for the entire German economy, available from

1962 to 2003 (until 1994 West Germany). In order to obtain credible volatility estimates, we

need information concerning the stationarity of the time series. The use of relative changes

according to Eq. (3) eliminates any linear trend. For a visual assessment of stationarity,

we display the time series of sector default rate growth factors {Xit} in Fig. 1 [14] and the

default rate growth factor Yt for the national economy in Fig. 2. All time series appear to be

stationary. As we have only six observations each for the sectorial growth rates, a statistical

test for non–stationarity is not feasible. However, for the longer series of national insolvency

rates statistical tests are possible, and we test the hypothesis is non–stationarity.

In general, testing theory needs a model for the data and autoregressive models (AR[q])

are common for financial time series:

Yt = a0 + a1Yt−1 + . . . + aqYt−q + ηt t = p + 1, . . . , T. (6)

Here a0, . . . , aq are time-independent parameters, q is called the order of the regression and

the innovations ηt represent “white noise”, i.e. have expectation E(ηt) = 0 and variance

V ar(ηt) = σ2
η. Clearly, if e.g. in an AR[1] model the parameter a1 is larger than one, the

times series is trended, i.e. non mean-stationary, and the volatility of a future Yt may not be

estimated by the empirical volatility of the time series Y1, . . . , Yt−1. The finding that an a1

unequal to one indicates a trend generalizes to the rule that the existence of a “unit root”

indicates non stationarity. As test for the hypothesis of a unit root - essentially an adoption

of the famous t-test - the Dickey-Fuller test was developed in [8] and is now a standard test

(see [7, pg.81]). We apply the test to our national insolvency rate data using the SAS macro

“dftest”. The statistical decision against the hypothesis depends on the error probability

α one is willing to risk, the type I error. We will use the common value α = 5% in the
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following. For a given data set, the p-value gives the smallest error rate at which one is able

to reject the hypothesis. For a test performed at a level of α = 5% the decision rule is to

reject whenever the p-value is smaller than 5%. Our p-value for the Dickey-Fuller test under

the AR(1) model is 0.00079 and enables to reject the trend hypothesis and safely work in a

stationarity world. The decision does not change (again at level α = 5%) for larger models,

i.e. for orders q = 2 to 5.

In addition to testing the mean-stationarity of the time series {Yt}, one must assess

stationarity of its variance. A finding of clustered volatility would impede the estimation

of the current volatility. Again a model is needed and the autoregressive conditional

heteroscedastic model (ARCH) is typical for financial time series. The Lagrange-multiplier

test for the hypothesis of the absence of ARCH-effects in the volatility (see [3]) does not

reject, for orders up to 12 the p-value - using the SAS procedure “autoreg” - is between 0.5

and 0.8. Hence we conclude that the conditional volatility may be considered as constant,

in other words, the series is mean-variance stationary.

In the following we estimate both σ2
Y and the σ2

εi
with the standard variance estimator,

e.g. σ̂2
εi

= 1
T−1

∑T
t=1(εit − 〈εi〉)2. More precisely, the factor volatility σY is estimated during

the period 1962-2003, and the residual volatilities σεi
are estimated over the time interval

1994-2000. By using these volatility estimates in Eq. (5), we obtain the canonical correlation

estimate Cvar
canonical. However, applying this estimation procedure for the variances leads to

some non desirable properties of the correlation estimate and produces a bias in further

applications. The issue becomes relevant for small sample sizes and is investigated in a

controlled environment in the next section.

Fluctuations in empirical correlation matrices – a simulation study

In this section, we use the results of Monte Carlo simulations to study the relation between

the true cross correlation matrix C and matrices Csim estimated from time series of length

T . We find that the {Csim} differ from C both in a systematic way, for example a shift of

the largest eigenvalue towards larger values, and a random way, i.e. an individual member

of the simulated ensemble deviates significantly from the average [9, 10].

Assuming that the process Eq. (5) with mutually independent time series Yt, εit, and

εjt is valid, uncertainties in the determination of Cvar
canonical arise from uncertainties in the
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estimation of σY and the σεi
. As σY is calculated from a long time series including more

than forty years of data, its estimation error is negligible in comparison with that of the σεi

and we set it to zero in the following. For the simulations, we assume normality of the εit

due to the increased computational efficiency as compared to the standard assumption of

gamma distributed random variables [5]. This gain in efficiency is especially important for

the computationally quite demanding iterative calculations described in the next section.

We have checked that the deviation between a simulation with normal distributed variables

and a simulation with gamma distributed variables is smaller than 3% for the standard

deviations defined in Eqs. (8) and (9).

Under the normality assumption of the εit by definition (εit−E(εi))
2/σ2

εi
follows a central

χ2 distribution with one degree of freedom. The sum of T independent χ2
1 random variables

is a χ2
T variable and the estimation of the mean E(εit) with 〈εi〉 amounts to a reduction of one

degree of freedom. Multiplying the ratio σ̂2
εi
/σ2

εi
with σ2

εi
/σ2

Y and application of the density

transformation yields that the ratio σ̂2
εi
/σ2

Y follows a χ2 distribution with T − 1 degrees of

freedom

fi(z) = fχ2,T−1

(T − 1

µi

z
) T − 1

µi

, (7)

where fχ2,n is the density function of the central χ2 distribution with n degrees of freedom,

and unknown µi = σ2
εi
/σ2

Y . As a consequence, we have Var(σ̂2
εi
/σ2

Y ) = 2µ2
i /(T − 1). In the

limit T →∞, statistical fluctuations disappear.

In this section, we study the outcome of model simulations with the help of (7) for the

particularly simple hypothetical case where signal Yt and noise εit have the same volatility, i.e.

µi ≡ 1, in order to gain qualitative insight into the occurring fluctuations. The corresponding

infinite time series correlation matrix Cmodel
ij = δij − (1 − δij)/2 has a largest eigenvalue

λK = 10.5 and a corresponding eigenvector u
(K)
i ≡ 1/

√
K.

Instead of simulating the time series {εit} and estimating their variance, we remember

that for normally distributed {εit} the variance estimator follows a χ2 distribution. If in

addition σ2
Y is known, then the ratios σ̂2

εi
/σ2

Y are indeed distributed according to Eq. (7).

Hence, for each of the 500,000 simulation runs, we i) draw a set of K = 20 values for the

ratios {σ̂2
εi
/σ2

Y } from the χ2 distribution defined by Eq. (7) with parameters T = 6 and

µi ≡ 1, ii) calculate a matrix Csim by inserting the ratios {σ̂2
εi
/σ2

Y } in Eq. (5) , iii) and

calculate the largest eigenvalue λK,sim and the corresponding eigenvector u
(K)
sim [15] from this

matrix. Averaging over all simulation runs, we finally obtain the probability distribution
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FIG. 3: Distribution of (a) the largest eigenvalue and of (b) all components of the corresponding

eigenvector from simulations of the model with λK,model = 10.5.

function (pdf) for both quantities.

The goal of the simulation is to understand i) whether our estimates Csim are biased

compared to the true correlation matrix Cmodel, and ii) how large fluctuations from one

simulation run to the next are. To answer these questions, we use the fact that by con-

struction all relevant information in the {Csim} is contained in the largest eigenvalue and

the corresponding eigenvector.

We find that both eigenvalue and eigenvector components have broad distributions (see

Fig. 3). The distribution of eigenvalues has an average 〈λK,sim〉 = 11.3 which is significantly

larger than the true eigenvalue λK,model = 10.5. Hence, the above described procedure for

estimating the correlation matrix is indeed biased towards larger eigenvalues. We quantify
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the systematic shift of eigenvalues by the difference ∆λ = 〈λK,sim〉 − λK , which is 0.81 for

the present simulation.

In addition, one sees from Fig. (3) that there are significant fluctuations around the

mean. The magnitude of eigenvalue fluctuations is described by the standard deviation in

the simulation

σλ =
√
〈λ2

K,sim〉 − 〈λK,sim〉2 . (8)

For the distribution shown in Fig. 3 we find σλ = 0.65.

There are significant fluctuations of the eigenvector components as well. To quantify

them, we calculate the standard deviations

σui
=

√
〈(u(K)

i,sim)2〉 − 〈u(K)
i,sim〉2 . (9)

As all eigenvector components of Cmodel are equal, we may aggregate all components of the

simulated eigenvectors u
(K)
sim , and calculate one common standard deviation σu = 0.03.

Our aim is now to use our knowledge about statistical fluctuations of eigenvalue and

eigenvector components to construct a better estimator for Cvar. As the matrix Cvar is cal-

culated from a one factor model, it is adequately described by its first principal component,

the largest eigenvalue and its eigenvector. The model simulations show that the use of the

maximum likelihood estimator for the variances {σ2
εi
} leads to a systematic overestimation

of the largest eigenvalue as 〈λK,sim〉 = 11.3 while the true model eigenvalue is λK = 10.5.

In addition, estimates of the largest eigenvalue and eigenvector from a single simulation are

subject to significant statistical fluctuations described by the variances σλ and σu.

As a first step, we want to remove the bias from the estimate Cvar
canonical. To achieve this

goal, we now take the point of view that its largest eigenvalue λK,canonical can be interpreted

as the expectation value 〈λK,sim〉 of a Monte Carlo simulation. We relax the hypothetical

assumption µi ≡ 1 ∀i, and use our knowledge of the bias generation to remove the bias. We

start from the original volatility estimates that define the set {µi}. Again, our simulation

tells us that using this set for the calibration of our model (4) results in overestimating the

correlations, especially in overestimation of the largest eigenvalue of the correlation matrix

estimate. We construct a set of smaller model parameters {µi,boot} such that 〈λK,sim〉 =

λK,canonical and 〈u(K)
sim 〉 = u

(K)
canonical. As the map G : {µi} → {〈λK,sim〉, 〈u(K)

sim 〉} is only defined

via a Monte Carlo simulation, it cannot easily be inverted. The inversion of G is described
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in detail in appendix A. The new parameters are defined by

{µi,boot} = G−1
(
λK,canonical,u

(K)
canonical

)
. (10)

We use the µi,boot as optimal estimators (with respect to estimating the correlation matrix

from finite length time series) for the ratios σ2
εi
/σ2

Y in Eq. (5) to derive an unbiased estimate

Cvar
boot for the correlation matrix Cvar.

The largest eigenvalue of Cvar
boot is λK,boot = 11.8, which is smaller than the previous esti-

mate λK,canonical = 12.4. The difference between the two is due to the systematic eigenvalue

shift explained above. The eigenvector u
(K)
boot corresponding to the largest eigenvalue of Cvar

boot

is displayed in Fig. 4, it is almost identical to the eigenvector of Cvar
canonical.

As a conclusion, even if the generating process for relative PD movements is a simple

one–factor model, the empirically found parameters - estimated on basis of the separate

univariate times series - can deviate significantly from the theoretical ones. We advocate

the point of view that the empirical Cvar has to be viewed as a member of such a fluctuating

ensemble in that its eigenvalues and eigenvectors can deviate significantly from the unknown

“true” correlation matrix of PD movements [9, 10]. Then, the statistical properties of the

ensemble {Csim} can be used to derive error bars for both the largest eigenvalue and the

components of the corresponding eigenvector.

Conservative estimates

How can we use these results to make a reliable estimate for the correlation matrix of relative

PD movements? A bank needs to act in a conservative manner to prevent its insolvency.

Using the bias corrected correlation estimate Cvar
boot discussed in the last section, the bank

risks that the correlations are “accidently” low. The most conservative approach would be

to assume all correlations to be 1, i.e. u
(K)
i = 1/

√
K ∀ i and λK = K. But now the model

would effectively be a one-sector model. Any possibility to measure concentration risk in

certain industry sectors would be prevented. The model would not encourage diversifying

the business across sectors.

As a controlled mediation we introduce “cases” of add-ons of x = 1, 2, 3 standard devi-

ations to the fluctuating quantities such that the predicted risk for a portfolio is increased.

To achieve this goal, we proceed in the following way: we determine parameters {µi,case}
such that

11



i) the bias in the largest eigenvalue is removed,

ii) the expectation value 〈λK,sim〉 calculated from simulations with parameters {µi,case} is

by x standard deviations σλ larger than the corresponding expectation value calculated

based on the parameters {µi,boot},

iii) the eigenvector component expectation values 〈u(K)
i,sim〉 calculated from simulations with

parameters {µi,case} are x standard deviations σui
closer to the most conservative value

1/
√

K than the corresponding expectation values from simulations with parameters

{µi,boot}. In contrast to our simulation, now the σui
differ from sector to sector.

Having found a set of parameters {µi,case} satisfying the above requirements, we use them

to calculate conservative estimates Cxσ from the formula Eq. (5).

As the requirements i) – iii) cannot be solved directly for the {µi,case}, we use an iterative

routine to determine them. The details of this routine are as follows. In the iterative loop

A)–C), we determine the relative size of the {µi,case} while keeping their overall size fixed

through the requirement 〈λK,sim〉 ≡ λK,canonical. We choose {µi,boot} as initial values for the

{µi,case} and iterate the following steps A) to C) of the routine until convergence is reached.

A) We use the parameters {µi,case} to calculate 〈u(K)
sim 〉 and the {σui

} via a Monte Carlo

simulation along the lines described in the previous section.

B) The ideal values for the expectation values of eigenvector components would be

〈u(K)
i,sim〉ideal =





u
(K)
i,canonical + x σui

if 1√
K
− u

(K)
i,canonical > x σui

u
(K)
i,canonical − x σui

if u
(K)
i,canonical − 1√

K
> x σui

1√
K

otherwise

(11)

As these ”ideal values” depend on the {σui
} which in turn are functions of the {µi,case},

it is not useful to impose the conditions Eq.(11) directly. Instead, we choose an

iterative approach and define auxiliary quantities

vi = 〈u(K)
i,sim〉+ η

(
〈u(K)

i,sim〉ideal − 〈u(K)
i,sim〉

)
, (12)

which we normalize to unity before proceeding. For our actual calculations, the choice

η ≈ 0.1 turned out to be a good compromise between achieving a fast convergence

(favors large values of η) and avoiding oscillatory limit cycles of the iterative algorithm

(demands small values of η).
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C) Next, we calculate a new set of parameters {µi,case}, which satisfy the equation

〈u(K)
sim 〉 = v when used as input parameters for a Monte Carlo simulation. The de-

termination of these new parameter values is the most difficult part of the iterative

routine, as the map G : {µi} → {〈λK,sim〉, 〈u(K)
sim 〉} is only defined via a Monte Carlo

simulation and hence cannot easily be inverted. For the inversion of G se again ap-

pendix A.

The new parameters are defined by

{µi,case} = G−1
(
λK,canonical,v

)
. (13)

In the iterative loop, this new set of parameters is used as input for step A.

To achieve both fast convergence and reliable results, we increase the number N of Monte

Carlo simulations in A) from 103 to 105, as the parameters {µi,case} converge to their final

values. We stop the iterative routine when the total change resulting from five successive

iterations is smaller then one percent. For each value of x = 1, 2, 3, we save the vectors

v1σ, v2σ, v3σ from the last iteration cycle and denote them by vcase when using them in the

routine to calculate the overall size of the {µi,case}.
This iterative routine contains the following steps D)–F), as start values we use the

{µi,case} from the last iteration of Eq. (13).

D) Via a Monte Carlo simulation, we calculate 〈λK,sim〉 and σλ.

E) Incorporating the safety margin of xσλ, the ideal value of 〈λK,sim〉 would be

〈λK,sim〉ideal = λK,canonical + xσλ . (14)

Again, as σλ is a function of the {µi,case}, it is not useful to enforce the relation Eq. (14)

directly. Instead, we define an auxiliary “largest eigenvalue” which contains a small

correction

κ = 〈λK,sim〉+ η
(
〈λK,sim〉ideal − 〈λK,sim〉

)
. (15)

F) Using the inversion G−1 of the mapping G : {µi} → {〈λK,sim〉, 〈u(K)
sim 〉} defined in

appendix A, we can now calculate a new set of parameters

{µi,case} = G−1
(
κ,vcase

)
. (16)

These new parameters are used in step E) again, until convergence is reached.
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Having derived the sets {µi,case} which satisfy the conditions 〈u(K)
sim 〉 = 〈u(K)

sim 〉ideal,

〈λK,sim〉 = 〈λK,sim〉ideal to the desired accuracy, we use them in the relation Eq. (4) to derive

the “true” infinite time series correlation matrices C1σ, C2σ, and C3σ for each case. We di-

agonalize these matrices and calculate their largest eigenvalues λK,1σ = 12.4, λK,2σ = 13.1,

and λK,3σ = 13.6. We indeed see that with increasing safety margin the largest eigenvalue

grows.

The components of the corresponding eigenvectors u
(K)
1σ , u

(K)
1σ , and u

(K)
3σ are shown in

Fig. (4) together with the components of u
(K)
boot. We see that for increasing x = 1, 2, 3,

the model eigenvector comes closer to the null hypothesis of an eigenvector with identical

components. While the components of u
(K)
boot fluctuate significantly, the components of u

(K)
1σ

fluctuate less, and u
(K)
3σ is closest to the null hypothesis of equal components.

Economic implications of the different correlation matrices

In the last section we have described five different estimates for the cross correlation matrix,

i.e. Cvar
canonical, Cvar

boot, C1σ, C2σ, and C3σ. To judge the economic implications of these estimates,

we study the differences in the loss distribution resulting from these correlation estimations.

To do this, we quantify the impact of the different correlation estimates by calculating

their influence on CreditVaR and the conditional expectation over the CreditVaR, i.e. the

expected shortfall.

The portfolio we study is realistic – although fictitious – for an international bank. It
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consists of 4,934 risk units distributed asymmetrically over 20 sectors with 20 to 500 coun-

terparts per sector. The total exposure is in the double–digit bn Euro range with a largest

exposure of 750 mn Euro and a smallest exposure of 0.13 mn Euro. The counterpart specific

default probability varies between 0.03% and 7%, the expected loss for the total portfolio is

187 mn Euro. Our primary aim is to estimate a quantile and a lower partial moment of a

probability distribution – namely the CreditVaR and the Expected Shortfall of the portfolio

loss distribution.

Table I shows the CreditVaR and expected shortfall calculated by using CreditRisk+ and

the method of Bürgisser et al. [1], which uses momentfitting (of the first two moments) to

integrate correlations: instead of the original set of factors, one uses one synthetic factor Z

with a variance σ2
Z that mimics the portfolio-loss expectation and variance for the correlated

factors.

Correlation matrix CreditVaR Expected Shortfall

Independence 1.078 (983) 1.209 (1117)

Cvar
canonical 1.299 (1186) 1.460 (1348)

Cvar
boot 1.283 (1172) 1.441 (1331)

C1σ 1.314 (1200) 1.478 (1365)

C2σ 1.340 (1223) 1.509 (1392)

C3σ 1.366 (1246) 1.539 (1419)

One sector 1.561 (1417) 1.769 (1625)

TABLE I: Analysis of CreditVaR and expected shortfall at level 99.95% (99.90%) for different

correlation matrices [in billion Euro]

In the presence of an unknown parameter, it is a well established statistical result (see

[12]) that the use of the point estimate for the parameter – derived by a model or not –

leads to an underestimation of the quantile estimate. To account for this additional esti-

mation uncertainty, we use the bias-corrected point estimate Cvar
boot as a starting point and

add volatilities 1σ, 2σ, and 3σ to the correlation estimate. (The bias correction accounts

for a reduction of 16 mn Euro capital as compared to Cvar
canonical on the 99.95% level.) When

applying a one–σ estimate, the CreditVaR increases by 31 mn Euro, for the two–σ estimate

there is another increase by 27 mn Euro, and using the three–σ estimate the CreditVaR
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increases by yet another 26 mn Euro (all at 99.95% level). To put these numbers in per-

spective, we note that the CreditVaR without including correlations is found to be 1.078 bn

Euro, and that the assumption of full correlations among all sectors leads to a CreditVaR

of 1.561 bn Euro. The effects on the 99.90% confidence level for the CreditVaR as well as

for the expected shortfall are similar.

We believe that the use of the two–σ estimate guarantees a sufficient forecast reliability on

the one hand and allows for some guidance for economical decision on the other hand. Even

more important, we expect our conservative method of parameter estimation to provide

smooth correlation estimates in the sense that new observations – occurring as times goes

by – have only a small impact on the correlation estimate. In this way, one prevents the

disruption of banking activities as a consequence of drastic changes in risk assessment, which

are not proportional to the increase in information.

In summary, we have addressed the problem of estimating correlations between empirical

default rates for economic sectors. Due to the short length of these time series, estimation

errors are large and the use of a parsimonious model like a one-factor model is necessary.

However, when using such a model to calculate the corresponding correlation matrix, one

typically observes still large statistical fluctuations in the correlation structure. Due to these

fluctuations, the parameter estimation for an explanatory factor-model is plagued by large

uncertainties. When estimating the model parameters in such a way that the empirically

observed ones appear as a worst case scenario, the reliability of the estimate is increased in

a systematic way, leading to a moderately increased CreditVaR.

We would like to stress that the proposed methodology is neither specific for CreditRisk+

nor to model (4). It may be used in any credit portfolio model depending on a multivariate

covariable following a specified model.
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APPENDIX A: INVERSION OF THE FUNCTION G

For the calculation of both unbiased and conservative estimates of correlation matrices, it

is important to find an efficient algorithm to invert the function G : {µi} → {〈λK,sim〉, 〈u(K)
sim 〉}

which was defined via Monte Carlo simulations in the section on “Fluctuations in empirical

correlation matrices - a simulation study”.

To find the inversion algorithm, we first describe an analytic approximation to G. First,

we calculate the expectation value E(Csim) by averaging the variances in Eq. (5) with respect

to the distribution Eq. (7). We have numerically convinced ourselves that the largest eigen-

value λK,E(Csim) and corresponding eigenvector u
(K)

E(Csim)
of E(Csim) are good approximations

(error of the order of one percent) to 〈λK,sim〉 and 〈u(K)
sim 〉 and hence proceed to calculate

them. To this end, we introduce the parameterization

E(Csim) = δij + (1− δij) α βi βj , with
K∑

i=1

β2
i = 1 . (A1)

The parameters are given by

√
α βi = E

((
1 +

σ̂2
εi

σ2
Y

)−1/2)
. (A2)

The expectation value is defined with respect to the distribution Eq. (7). We now specialize

to the practically relevant situation T = 6 and define a function

g(x) = E
((

1 +
σ̂2

εi

σ2
Y

)−1/2)∣∣∣∣
µi=x

=

∞∫

0

fχ2,5(η)
1√

1 + η x
5

dη
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=
1

Γ(5
2
)25/2

∞∫

0

η3/2 e−η/2

√
1 + x

5
η

dη

=
25

6

√
5

2π
x−5/2e5/(4x)

[
K0

( 5

4x

)
+

(
− 1 +

2x

5

)
K1

( 5

4x

)]
(A3)

such that
√

αβi = g(µi). Here, Γ(x) denotes the gamma function, and Kν(x) denotes the

modified Bessel function of the second kind [11]. Next, we approximately calculate the

eigenvalue λK,E(Csim) by approximating u
(K)

i,E(Csim)
≈ βi

K∑
j=1

E(Csim
ij ) βj =

(
1 − α β2

i

)
βi + α βi

≈
(
1− α

K
+ α

)
βi (A4)

The above approximation is justified because the replacement β2
i → 1

K
is made in a sub-

leading term (β2
i ¿ 1). We now identify

〈λK,sim〉 ≈ 1 + α
(
1 − 1

K

)
. (A5)

By using this approximation, the sought after inverse map G−1 has the component repre-

sentation

µi = g−1
(√

〈λK,sim〉 − 1

1− 1
K

〈u(K)
i,sim〉

)
. (A6)

We have convinced ourselves numerically that the approximations involved in calculating

G−1 give rise to errors of about one percent.
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