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Abstract

We adopt an artificial counterfactual approach to assess the impact of lockdowns on

the short-run evolution of the number of cases and deaths in some US states. To do so,

we explore the different timing in which US states adopted lockdown policies, and divide

them among treated and control groups. For each treated state, we construct an artificial

counterfactual. On average, and in the very short-run, the counterfactual accumulated

number of cases would be two times larger if lockdown policies were not implemented.
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1 Introduction

The evolution of the Covid-19 has been posing several challenges to policymakers. Decisions have

to be made in a timely fashion, without much undisputed evidence to support them. Being a new

disease, and despite the enormous research effort to understand it, estimates of the transmission,

recovery and death rates remain uncertain. Nevertheless, these are key pieces of information to

assess potential pressures on the health system capacity, as well as the need of a lockdown policy

and its intensity if implemented.

Not surprisingly, similar regions have implemented different strategies regarding lockdowns.

The leading example in the media is the looser social distancing policy in Sweden versus strict

policies in its Scandinavian peers. By informally comparing the evolution of the pandemics in

Sweden and Denmark (or Norway), many commentators argue that several Covid-19 cases and

deaths in Sweden would be avoided in the short-run were a strict lockdown in place.1

Aiming to provide a quantitative assessment on the short-run effects of lockdowns, this paper

takes this exercise seriously in the context of US states. Given that the timing US states adopted

lockdown policies differs among them, we adopt techniques based on synthetic control (SC)

approach of Abadie and Gardeazabal [2003] and Abadie et al. [2010] to assess the impact of

lockdowns on the short-run evolution of the number of cases (and deaths) in the treated US

states.2 More specifically, we consider an extension of the original SC method called Artificial

Counterfactual (ArCo) which was put forward by Carvalho et al. [2018]. Due to the nonstationary

nature of the data, the correction of Masini and Medeiros [2019] is necessary.

It is hard to downplay the importance of finding out the effects of lockdown policies, especially

now that several countries are experiencing even harsher second waves of Covid-19. Our results

point to a substantial short-run taming of the cumulative number cases due to the adoption of

lockdown policies. On average, for treated states, the counterfactual accumulated number of

cases, according to the method adopted here, would be two times larger were lockdown policies

not implemented.

The decision to implement a lockdown policy is not taken out of the blue. It might comple-

ment or substitute other types of containment policies implemented in control or treated states,

such as, for example, mask mandates. Hence, in principle, our estimates are better interpreted as

capturing the effect of a “combo” of policies that include lockdowns, relative to another “combo”

1Juranek and Zoutman [2020] explore this case study to construct proper counterfactuals. Hospitalizations
and ICU patients would be much higher in Denmark and Norway were Sweden’s more lenient measures adopted.
Andersen et al. [2020] argue that despite the divergence in deaths in Sweden relative to Denmark, at least in
the very short-run, there was not a large difference in the aggregate spending drop due to the stricter lockdown
strategy in Denmark.

2Throughout the main text in this paper, we focus on the number of cases. Results concerning the number
of deaths are relegated to the Appendix. The timing of most lockdowns was soon enough such that there is
not enough in-sample observations of deaths to apply the synthetic control method, so we use an alternative
methodology we explain below.
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of policies that do not include them. Nonetheless, to address some confounding effects, we use

a simple causal model similar to Chernozhukov et al. [2021] to claim that a sizable part of the

estimated effects is arguably attributable to lockdown policies.

A key feature of our approach is that it is purely data-driven. In the beginning of the crisis,

the majority of papers written by economists to evaluate the effectiveness of lockdowns relied on

epidemiological models for analysis, including the most recent ones that incorporate behavioral

responses.3 These models are hard to discipline quantitatively. Many calibrated parameters

remain uncertain,4 and models that incorporate behavioral responses need time to mature and

agree on a reliable set of ingredients and moments to be matched.

Model-free approaches like ours or Medeiros et al. [2020] should complement policy discussions

or forecasting exercises based on those models, especially from a quantitative point of view. There

are related papers using state or county level US data.5 At least one of them, Friedson et al. [2020],

uses a synthetic control approach but it is restricted solely to California. Other papers, such as

Brzezinski et al. [2020], Dave et al. [2020] and Sears et al. [2020], use variations in the timing

of statewide adoption of containment policies, and difference-in-differences models to document

substantial reductions in mobility and improvements of health outcomes. The key identification

assumption in these papers is that variations in the timing are random after controlling for

covariates. Brzezinski et al. [2020] also consider an instrumental-variable approach. Fowler et al.

[2020] and Grassi and J. Sauvagnat [2020] follow similar empirical strategies but at county level,

and also find substantial reductions in cases and fatalities in counties that adopted stay-at-home

orders and state-mandated business closures, respectively. Our analysis, that rests on alternative

identification assumption and method, should be seen as complementary.

The paper is organized as follows. Section 2 describes the data, while Section 3 presents the

empirical strategy. The results are discussed in Section 4. In Section 5, we discuss our estimates

and address some confounding effects. Finally, Section 6 concludes the paper. Additional results

are included in the Appendix.

2 Data

Data on Covid-19 (confirmed) cases are obtained from the repository at the Johns Hopkins

University Center for Systems Science and Engineering (JHU CSSE). We consider the cumulative

cases for a subset of the 50 US states and the District of Columbia. Instead of using the

3Descriptions of epidemiological models and simulations concerning the evolution of the Covid-19 pandemic
can be found in Atkeson [2020b] and Berger et al. [2020]. Alvarez et al. [2020], Bethune and Korinek [2020], Jones
et al. [2020], Eichenbaum et al. [2020], among many others, incorporate behavioral responses and evaluate several
containment policies.

4See, for example, Atkeson [2020a] on the uncertainty regarding estimates of the fatality rate.
5There are also related papers for other countries. For example, Fang et al. [2020] for China.
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chronological time across the states, we consider the epidemiological time, which means that the

day one in a given state is the day that the first Covid-19 case was confirmed there.

The econometric approach adopted here relies on the fact that some states adopted a lockdown

strategy (the treatment), whereas others did not adopt social distancing measures (control group)

and are used to construct the counterfactual.6 Lockdown strategies include a mix of state-wide

non-pharmaceutical measures aiming to limit social interactions, such as restrictions on non-

essential activities and requirements that residents stay at home.

3 Empirical strategy

In this section, we describe how we assign states to control and treatment groups, and then,

describe the method used to construct the counterfactuals.

3.1 Treated and non-treated states

Aiming to balance control and treatment states, and at the same time obtain enough observations

to estimate properly the model before the lockdown policy was implemented, we divide US states

into three groups.

For a state to be included in the analysis, a state-wide lockdown policy must be established at

least twenty days after the first case. We assume that whenever an individual becomes infected,

it takes an average of ten days to show up as a confirmed case in the statistics.7 Hence, the

in-sample period used to estimate the synthetic control (“before” the lockdown policy) for each

treated state (to be defined below) is the number of days between the tenth day after the first

confirmed case and the tenth day after the lockdown strategy was implemented. We choose to

start the in-sample from the tenth day as a way to smooth the initial volatility of the data.

We adopt a criteria that a state must have at least twenty observations in the in-sample

period to be included in the analysis. This criteria excludes states that adopted a state-wide

lockdown strategy too early, such as Connecticut, New Jersey, Ohio, among others. These are

the unmarked states in Table 1, which reports the dates of the first case and lockdown policy, as

well the difference in days between them, and also helps visualize the three groups of states.

The remaining states must be divided into treated and control groups. The idea is to find a

synthetic control for each of the treated states. The group of potential controls should consist of

6The timing of those policies at each state were obtained, and double checked, in sev-
eral press articles, e.g., https://www.businessinsider.com/us-map-stay-at-home-orders-lockdowns-2020-3 and
https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html.

7This assumption is motivated by the incubation period of the virus. According to the World Health
Organization, the “[...] the incubation period for COVID-19, which is the time between exposure to the
virus (becoming infected) and symptom onset, is on average 5-6 days, however can be up to 14 days.” See
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-covid-19.pdf.
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states that adopted a lockdown policy too late (or never adopted), such that counterfactuals are

not contaminated by lockdown policies implemented in those states. At the same time, and for

a similar reasoning, the lockdown strategies adopted in treated states must be in place during

the period of analysis.8

Table 1: Number of Days from First Case until Lockdown for each State

State First Case Lockdown (𝑇0 + 10) Days Diff. State First Case Lockdown (𝑇0 + 10) Days Diff.

Alabama 03/13/2020 04/14/2020 32 Mississippi 03/12/2020 04/13/2020 32

Alaska 03/13/2020 04/07/2020 25 Missouri 03/08/2020 04/16/2020 39

Arizona 01/26/2020 04/10/2020 75 Montana 03/13/2020 04/07/2020 25

Arkansas 03/13/2020 - - Nebraska 03/06/2020 - -

California 01/26/2020 03/29/2020 63 Nevada 03/05/2020 04/11/2020 37

Colorado 03/06/2020 04/05/2020 30 New Hampshire 03/02/2020 04/06/2020 35

Connecticut 03/10/2020 04/02/2020 23 New Jersey 03/05/2020 03/31/2020 26

Delaware 03/11/2020 04/03/2020 23 New Mexico 03/11/2020 04/03/2020 23

DC 03/16/2020 04/03/2020 18 New York 03/02/2020 04/01/2020 30

Florida 03/02/2020 04/11/2020 40 North Carolina 03/03/2020 04/09/2020 37

Georgia 03/03/2020 04/13/2020 41 North Dakota 03/12/2020 - -

Hawaii 03/07/2020 04/01/2020 25 Ohio 03/10/2020 04/02/2020 23

Idaho 03/13/2020 04/04/2020 22 Oregon 02/29/2020 04/02/2020 33

Illinois 01/24/2020 03/31/2020 67 Pennsylvania 03/06/2020 04/11/2020 36

Indiana 03/06/2020 04/02/2020 27 Rhode Island 03/01/2020 04/07/2020 37

Iowa 03/09/2020 - - South Carolina 03/07/2020 04/17/2020 41

Kansas 03/08/2020 04/09/2020 32 South Dakota 03/11/2020 - -

Kentucky 03/06/2020 04/05/2020 30 Tennessee 03/05/2020 04/10/2020 36

Louisiana 03/11/2020 04/02/2020 22 Texas 03/05/2020 04/12/2020 38

Maine 03/12/2020 04/12/2020 31 Vermont 03/08/2020 04/04/2020 27

Maryland 03/06/2020 04/09/2020 34 Virginia 03/08/2020 04/04/2020 27

Massachusetts 02/01/2020 04/02/2020 61 Washington 01/22/2020 04/02/2020 71

Michigan 03/11/2020 04/03/2020 23 West Virginia 03/18/2020 04/03/2020 16

Minnesota 03/06/2020 04/04/2020 29 Wisconsin 03/10/2020 04/04/2020 25

Fortunately, there are horizons that can balance both goals: enough states to build the

synthetic controls and a relative extensive period to construct the counterfactuals. In particular,

we restrict the analysis up to the 58th epidemiological day. This figure accommodates at least ten

control states to build the synthetic controls,9 at the same time it maximizes the out-of-sample

days to run the counterfactuals. In this sense, our analysis concerns the very short-run impact

of lockdowns, up to nearly three weeks.

8In the Appendix A.1, Table A.1 shows the reopen dates for the treated states.
9That is, to be in the control group, whenever a lockdown policy was implemented in a given control state, it

was implemented at least 48th days after the first epidemiological day. Given the aforementioned assumption, its
effects on Covid-19 confirmed cases only show up in the statistics ten days later, on average.
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The treated states are marked in blue in Table 1, and include twenty states: Alabama, Col-

orado, Florida, Georgia, Kansas, Kentucky, Maine, Maryland, Mississippi, Missouri, Nevada,

New Hampshire, New York, North Carolina, Oregon, Pennsylvania, Rhode Island, South Car-

olina, Tennessee, and Texas. The potential control states are marked in red, and include ten

states: Arizona, Arkansas, California, Illinois, Iowa, Massachusetts, Nebraska, North Dakota,

South Dakota, and Washington. Nonetheless, due to the lack of variation within the in-sample

period, we exclude four states from this control pool as we explain below.

Importantly, Oklahoma, Utah and Wyoming only implemented partial lockdowns (not re-

ported in the table). Therefore, they are hard to classify as either treated or control states. We

opt to exclude them from the analysis.

Figure 1 illustrates the empirical strategy, which is formalized in the next subsection. It plots

the evolution of (log) cumulative cases along the epidemiological time. The first vertical dashed

line represents the tenth day after the first confirmed case. The in-sample period is represented

in between the first and second vertical dashed lines, which mark the tenth day and the following

twenty days, respectively. Similarly, the out-of-sample period is in between the second and third

vertical dashed lines, which mark the 31th and 58th epidemiological day, respectively.

Figure 1: (Log) Cumulative cases for each State in treated and control groups.

Blue lines represent the treated states, whereas the red ones the potential control states. The

turning points from blue full- to dashed-lines represent the days lockdowns were implemented

(plus ten days) in treated states. Note that New York is clearly an outlier among the treated

states, exhibiting a huge amount of cases (more on that below). We use the red lines to build

synthetic controls for each full blue-line up to the turning point, and then construct counterfac-

tuals by simulating the synthetic controls forward up to the 58th day. The idea is to compare
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counterfactuals with the blue dashed-lines that capture actual cases, and obtain the effect of

lockdowns.10

As Figure 1 highlights, some states display lack of variation within the in-sample period. Just

to give an example, Washington had had only one confirmed case for the first 36 days since its

first confirmed Covid-19 infection. Therefore, we exclude it from the control group. For similar

reasons, we also exclude Arizona, Illinois, and Massachusetts from the control pool. The analysis

ended up relying on six control states.

3.2 Estimation

We propose a two-step approach using the artificial counterfactual (ArCo) method introduced by

Carvalho et al. [2018] with the correction of Masini and Medeiros [2019] to estimate the number

of cases for each US state.

Let 𝑡 = 10, 11, . . . , 58 represents the number of days after the first confirmed case of Covid-19

in a given state. Define 𝑦𝑡 as the natural logarithm of the number of confirmed cases 𝑡 days

after the outbreak of Covid-19 in this specific treated state, and 𝑥𝑡 contains the logarithm of the

number of cases for 𝑝 control states 𝑡 days after the first case, as well as a logarithmic trend,

log(𝑡). The inclusion of the trend is important to capture the shape of the curve.

The model is estimated as follows. We use the weighted least absolute and shrinkage operator

(WLASSO) as described in Masini and Medeiros [2019] to select the control states that will be

used to estimate counterfactuals. The goal of the WLASSO is to balance the trade-off between

bias and variance and is an useful tool to select the relevant peers in an environment with very

few data points. The estimator is given as:

̂︀𝜔 = argmin
𝜔

[︃
1

𝐿− 10

𝐿∑︁
𝑡=10

(𝑦𝑡 − 𝑥′
𝑡𝜔)

2
+ 𝜆

𝑝∑︁
𝑗=1

𝜅𝑗|𝛽𝑗|

]︃
, (1)

where 𝜅𝑗 = |𝑥𝑗,𝐿|, 𝑗 = 1, . . . , 𝑝− 1, and 𝜅𝑝 = 1. 𝐿 is, for each state, the number of days from the

first reported case until the lockdown plus ten extra days, and 𝜆 > 0 is the penalty parameter

which is selected by the Bayesian Information Criterion (BIC), in accordance with Medeiros and

Mendes [2016]. The weight correction in the WLASSO is necessary in order to control for the

nonstationarity of the data; see Masini and Medeiros [2019] for a detailed discussion.

The counterfactual for 𝑡 = 𝐿+1, . . . , is computed as ̂︀𝑦𝑡 = 𝑥′
𝑡̂︀𝜔. We also report 95% confidence

intervals based on the resampling procedure proposed in Masini and Medeiros [2019].

10A lockdown policy might complement or substitute other types of containment policies implemented in control
or treated states. Hence, our empirical strategy is arguably capturing the effect of a “combo” of policies that
include lockdowns, relative to another “combo” of policies that do not include them. We further discuss below
how to disentangle the role of lockdown policies from alternative policies.
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3.3 Constructing a counterfactual to deaths

We are interested in examining the effects of lockdown policies not only on the number of cases,

but also on the number of deaths. However, we cannot implement the strategy described above

because there is not enough variation in deaths for the in-sample period. Some states, for

instance, implemented a state-wide lockdown policies before the first confirmed death.

Thus, we propose an alternative method. We consider a counterfactual state for the number of

deaths based on the counterfactual estimated for the number of cases. This is not straightforward

as in the traditional synthetic control method because the ArCo methodology described above

includes an intercept in the estimation, which is measured in the log of the number of cases, and

the counterfactual is not only a convex combination of other states. Intuitively, the methodology

described above chooses a combination of states that is at a fixed distance from the treated

unit at the in-sample period and not a convex combination of states that matches exactly the

actual number of cases. The intercept controls for all time-invariant characteristics that define

the counterfactual.

Then, we proceed as follows. Let 𝑦𝑠𝑡 be the number of accumulated deaths in state 𝑠 at the

day 𝑡. Also, let 𝛽𝑠 be the vector of estimated coefficients for the state 𝑠 as in expression (1) above

and used to construct the counterfactual for cases. In addition, let 𝑦𝑡 be a vector of the number

of deaths for all states in the control pool at time 𝑡. We define the counterfactual number of

deaths in that state as

𝑦𝐶𝑠𝑡 = 𝑦𝑡𝛽
𝑠 − 𝑦𝑡𝛽

𝑠 + 𝑦𝑠𝑡,

where 𝑡 is the day that state 𝑠 implemented the lockdown policies. That is, we maintain the

weights estimated above and adjust the intercept so that the counterfactual series for deaths

matches the number of actual observed deaths in the beginning of the quarantine. For the sake

of exposition, we relegate the results on cumulative deaths to Appendix A.4.

4 Results

To illustrate how the method works, Figure 2 presents the ArCo counterfactuals for the states

of Alabama, Colorado, and Maine. The timing of the policy intervention (𝑇0 + 10) corresponds

to the lockdown date plus ten days. The gray area represents 95% confidence intervals.

The counterfactual analysis makes it clear the importance of lockdown policies in mitigating

the acceleration of the number of Covid-19 confirmed cases in the treated states. As shown in

Figure 2a, for example, our results point to a substantial increase in the number of cases in

Alabama if it had not adopted an early lockdown. Similarly, Figures 2b and 2c reveal the same

behavior for the cumulative curves in the other selected states. Counterfactuals are constructed

with the estimated weights and cumulative cases of the six states that compose the control group.
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These weights are reported in Table A.2 in Appendix A.2. In Appendix A.3, we present similar

counterfactual plots for the remaining treated states. Similar results apply for most of the treated

states.

Figure 2: ArCo estimates counterfactual without state lockdown (𝑇0 + 10)

(a) Alabama

(b) Colorado

(c) Maine

In order to assure that the proposed methodology is producing proper counterfactual analysis,

we generate placebo results by producing a “synthetic control” for each control state using the

remaining control states as donor pool. Results are displayed in Figure 3, which shows the ratio

of the estimated counterfactual cumulative cases to the actual ones for treated states except New

York (black lines), and non-treated states (red lines). We assume that the epidemiological day

of the placebo intervention is 𝑇0 = 36, marked by the vertical dashed line, which is the median

8



(and the mean) timing of the policy interventions in the treated states.

Figure 3: Ratio between estimated and actual cumulative cases (𝑇 = {10, ..., 58})

It is reassuring that for half of the placebo counterfactuals, these ratios fluctuate around one,

whereas for the majority of treated states ratios grew above one at some point (likely around

the actual timing of policy intervention). The latter result means that lockdown policies were

effective to tame the spread of the virus, whereas the former suggests that results are not driven

by chance.

Regarding South Dakota, the only placebo counterfactual that reached a ratio well above one,

by using Google Mobility Data (described in Appendix A.5), we show that mobility in residential

areas increased whereas mobility in outdoor areas decreased substantially once compared to the

period before the pandemic (see Figures A.41 and A.42 in Appendix A.5). This is suggestive

that South Dakota’s population endogenously decided to stay more at home, and avoided en-

vironments prone to the risk of contamination. At the time, a proper lockdown policy was not

necessary, and South Dakota’s non-conformity to the placebo test does not seem to invalidate

our approach.

In contrast, for Nebraska and California, the counterfactuals are pointing to a smaller number

of cases than the actual ones, which goes against finding that lockdowns were effective to reduce

cases of Covid-19. The case of California is quite emblematic, as the number of cases during the

estimation window remained very small and with very low variation. However, the number of

cases started to grow at a fast rate much after the cut-off date. The state of Nebraska displays

a similar pattern.

To gauge the quantitative impact of lockdown policies, for each state, whether treated or

9



control used as placebo, we compute the ratio of the counterfactual estimated cumulative cases

(“without” a lockdown strategy in place) to actual ones on the 58th epidemiological day, which

is the last day used to compute the counterfactual. Table 2 reports the mean and median of

the ratios across states, whereas Table A.3 in Appendix A.2 reports these ratios for each state.

The first row corresponds the case in which controls are used as placebos, whereas the second

considers the treated states only. As we discuss below, New York is clearly an outlier, whose ratio

reached an implausible value of 16.5 as reported in Table A.3. Hence, our preferred specification

is displayed in the third row which excludes New York from the pool of treated states. We also

compute other two versions of these ratios using the lower bound (lb) and upper bound (up) of

the 95% confidence interval in the numerator.

Table 2: ArCo estimates (58th day)

Mean ArCo Med ArCo Mean lb Med lb Mean ub Med ub

Control 1.04 0.92 0.91 0.80 1.18 1.03

Treated 3.08 2.28 2.46 1.91 3.67 2.63

Treated (-NY) 2.37 2.08 1.99 1.72 2.75 2.32

The ratios are clearly above one for the treated units, whether New York is excluded or not.

According to our preferred specification, counterfactual estimates suggest that the number of

cases would be nearly two times larger were lockdown policies absent. Again, it is reassuring

that among the controls used as placebo, these average ratios remain around one.

Of course, a lockdown policy might complement or substitute other types of containment

policies implemented in control or treated states (e.g., mask mandates). Hence, our estimates

are arguably better interpreted as capturing the effect of a “combo” of policies that include

lockdowns, relative to another “combo” of policies that do not include them. Nonetheless, in the

next section, we use a simple casual model to argue that a sizable part of the counterfactual is

attributable to lockdown policies.

Regarding the effects of lockdowns on cumulative deaths, we present the results for all treated

states in Appendix A.4. For some states, the counterfactual cumulative deaths exhibit similar

patterns to those regarding cumulative cases. But, for many other states, they are not statistically

significant at least for the first days after the policy implementation. One possible explanation

is that there is a delay between cases and deaths, as the latter is a consequence of the former.

Hence, deaths only show up in the official statistics days after cases. Perhaps, if we could estimate

counterfactuals for longer periods, the synthetic accumulated deaths would further decouple from

the actual ones. In addition, since weights on the controls are estimated considering the (log)

cumulative number of cases, the counterfactuals for cumulative deaths are arguably noisier.
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4.1 Outlier: New York

As discussed above and presented in Table A.3 in Appendix A.2, we obtain an implausible ratio

(of counterfactuals to actual cumulative cases) of 16.5 to New York. This section zooms on this

state. In particular, Figure 4 displays the estimated cumulative number of cases for New York

“without” lockdown, as well as extrapolations of the cumulative number of cases based on the

mean and median growth rate of the last ten days of the in-sample period.

Figure 4: New York: ArCo Estimates Counterfactual Without State Lockdown (𝑇0 + 10)

As reported in Table 1, among the treated states, New York was the fastest one to react to

the pandemic, and established a state-wide lockdown policy only 20 days after the first case.

Figure 4 extrapolates the last in-sample observations by using both the observed mean and

median growth rates for the last ten days, which yields a similar pattern to the result obtained

by applying the ArCo approach. Due to the progression of the virus, particularly in New York

City, the in-sample observed rates are quite high once compared to other states as illustrated

in Figure 1, which can be explained not only by the dynamics of the city but also by its high

population density. Hence, New York is clearly an outlier and might not be amenable to our

synthetic control approach, which justifies reporting results excluding New York.

5 Confounding effects

Several factors may act as possible confounders to the estimaded effects of lockdowns.

First, individuals may react to the pandemic and change their behavior endogenously inde-

pendent of the adoption of stricter lockdown rules imposed by the authorities. To the extent

that this endogenous change of behavior would be similar across control and treated states, this
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is less of a concern. After all, we would like to report the impact of lockdown policies above and

beyond individual responses to the pandemic that would occur in the absence of lockdowns.

Second, lockdown is not the only policy in the menu. Control states may not implement

a lockdown, but may enact other alternative policies, such as, for example, mandatory mask-

wearing or massive campaigning for people to stay at home, that may contain the pandemic

evolution. This would introduce a negative bias in our estimates, suggesting even more sizable

effects of lockdowns. Alternatively, lockdown policies in treated states may be designed altogether

with other containment measures. In this case, our results should be better interpreted as the

average effect of a “combo” of policies that include a lockdown strategy.

In order to guide the interpretation of the empirical estimates, and try to isolate the role of

lockdowns, we describe a simple causal model similar to Chernozhukov et al. [2021]. The model

helps to organize ideas on how lockdown policies affect the variables of interest and how they

interact with confounders. We argue below that, through the lens of this simple model and some

auxiliary evidence, lockdowns (rather than other confounders or alternative policies) explain a

sizable part of our estimated effects.

The model incorporates the interactions between the following variables: (i) 𝑌𝑠,𝑡+𝑙, which are

the cases of or deaths by Covid-19 in state 𝑠 and period 𝑡 + 𝑙; (ii) 𝐿𝑠𝑡, an indicator variable

that a state adopted a lockdown policy in state 𝑠 and period 𝑡; (iii) 𝑃𝑠𝑡, another indicator

variable of alternative policies implemented; (iv) 𝐼𝑠𝑡, which is available information to individuals

that maybe be useful to affect behavior and/or contain the pandemic;11 (v) 𝐵𝑠𝑡 summarizes the

relevant behavior of individuals such as adherence to social distancing, use of masks, etc; and (vi)

𝑈𝑠𝑡 is the set of confounders that might affect the determination of policies, individuals’ behavior,

and the pandemic evolution. We represent these interactions through the Direct Acyclic Graph

(DAG) below.12

Figure 5: Simple Causal Direct Acyclic Graph (DAG)

𝑈𝑠𝑡

𝑃𝑠𝑡

𝐿𝑠𝑡 𝐼𝑠𝑡

𝐵𝑠𝑡 𝑌𝑠,𝑡+𝑙

11In the Chernozhukov et al. [2021] model, this variable generates inter-temporal dependence between periods.
In our model, this variable is modeled differently as an alternative mechanism through which policies can contain
the pandemic.

12See Pearl [1995] and Pearl [2009] for a discussion of DAGs and causal models.
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The sequence of events is the following. First, every period, potential confounders are deter-

mined. Second, public policies (𝐿𝑠𝑡 and 𝑃𝑠𝑡) are set, and note that 𝑃𝑠𝑡 already encodes the trans-

mission mechanisms (e.g., behavioral responses) through which policies other than lockdowns

affect cases or deaths. Third, conditional on confounders and policies, individuals’ information is

updated. Fourth, individuals behavior are determined by confounders, policies and information.

Finally, the variable of interest (𝑌𝑠,𝑡+𝑙) is determined.

Importantly, we assume that a lockdown policy, 𝐿𝑠𝑡, does not directly affect the number cases

or deaths, 𝑌𝑠,𝑡+𝑙. In fact, a lockdown policy only has effects on 𝑌𝑠,𝑡+𝑙 to the extent that it affects

some mediating variables, such as individuals’ behavior (above and beyond endogenous responses

to the pandemic in the absence of lockdowns) or available information.

Ideally, we would like to identify the causal effect of a lockdown policy (𝐿𝑠𝑡) on the pandemic

evolution (𝑌𝑠𝑡+𝑙). By using the back-door criteria suggested by Pearl [1993], we can envision two

threats to the identification of the causal effect of interest.

First, non-observed variables (𝑈𝑠𝑡) affect the probability of lockdown adoption and the evolu-

tion of the pandemic simultaneously. This is the traditional omitted variable bias in public policy

evaluation. We discuss the problem of omitted variable bias below in the end of this section.

Second, as mentioned above, the potential additional problem related to the simultaneous

implementation of alternative policies. Local authorities could adopt other containment policies

𝑃𝑠𝑡 as a substitute to the lockdown policy 𝐿𝑠𝑡 in control states, or as a complement in the treated

ones. Hence, the adoption of alternative policies may affect the probability of implementing a

lockdown and, simultaneously, affect individuals’ behavior and the number of Covid-19 cases and

deaths. Thus, we need to control for this possibility to identify the causal effect of interest.

The model also incorporates the possibility of endogenous responses of individuals to the

evolution of the pandemic (or the accumulation of information in terms of the model). However,

this is a mechanism through which our treatment acts. Therefore, according to the front-door

criteria in Pearl [1993], we should not control for these variables, 𝐼𝑠𝑡 and 𝐵𝑠𝑡 (more on that

below).

In what follows we discuss how we can control for some of the threats to the identification

scheme described above. We also discuss the nature of the treatment.

5.1 Mandatory mask-wearing

Consider the implementation of simultaneous policies. Beyond policies such as the closure of

schools, firms, and services included in 𝐿𝑠𝑡, mandatory mask-wearing is arguably the most im-

portant alternative implemented policy. We focus, here, on this alternative policy.

If the state is in lockdown, the mandatory mask-wearing is less of a concern as social contact

and mobility are substantially curtailed (as we document in the next subsection). Regarding

control states that did not adopt a lockdown strategy, in order to deal with policy simultaneity,
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we leverage on the temporal mismatch between policies.

In the beginning of the pandemic, lockdown policies were widely suggested by international

institutions. In contrast, mandatory mask-wearing was not encouraged by the World Health

Organization (WHO), which only changed its recommendation in the beginning of July. Note,

however, that we restrict the sample to the first 56 days after the first Covid-19 case in each

state. Thus, the last calendar day in the sample is May 11 (Arkansas).

In Table 3, we report the dates a mandatory mask-wearing policy was adopted in control

states.13 Note that these dates are not within our sample. Indeed, the earliest adoption of such

policy was in June 26 in both Illinois and Washington.

Table 3: Implementation dates for mandatory mask wearing

State Date State Date

Arizona No Massachusetts 11/06/2020

Arkansas 07/20/2020 Nebraska No

California 06/29/2020 North Dakota 11/14/2020

Illinois 06/26/2020 South Dakota No

Iowa 11/17/2020 Washington 06/26/2020

We conclude that the most important alternative policy was not implemented until the end

of the period considered in this paper, and that lockdowns implemented during this period were

exogenous to this policy. Hence, mandatory mask wearing among control states does not seem

to attenuate the effect of interest. Below, we change the casual DAG above to accommodate this

insight.

Figure 6: Causal Direct Acyclic Graph (DAG) with timing of restrictions

𝑈𝑠𝑡

𝐿𝑠𝑡 𝐼𝑠𝑡

𝐵𝑠𝑡 𝑌𝑠𝑡+𝑙

5.2 The nature of the treatment

Before discussing the other threat to identification of causal effects, i.e. the omitted variable

bias, we explore the nature of the treatment we are considering. What a lockdown policy does?

Why would it affect the variables of interest?

13We manually collected data for these dates from state-level executive orders. For an example of these executive
orders, see: https://governor.arkansas.gov/images/uploads/executiveOrders/EO20− 43.𝑝𝑑𝑓.
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The causal diagram in Figure 6 suggests two mechanisms. First, a lockdown affects individ-

uals’ behavior by reducing mobility. Second, the policy might affect the available information.

For instance, its implementation can increase the awareness of individuals about the pandemic

and provide incentives to further changes in behavior.

Despite considering the theoretical possibility of an informational transmission channel, some

auxiliary empirical evidence suggests that its relevance is quite limited. Figure 7 plots the number

of (changes in) pandemic-related Google searches in the days immediately before and after the

policy is implemented, obtained through an event-study design for the treated states.14 We also

plot the 95% confidence interval for each estimate. Note there is a small increase in searches a

few days after the lockdown announcement, but its magnitude is very limited and it vanishes

almost immediately.

Figure 7: Changes in Google searches about the pandemic relative to lockdown announcement
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We also examine if lockdown measures impact Google searchers related to traditional and

alternative methods to fight the pandemic. The search terms for traditional methods include

“social distancing”, “mask use” and “washing hands”. The search terms for alternative treat-

ment include “zinc”, “hydroxychloroquine”, and “Covid alternative treatments”.15 Results are

14We collected data on total Google searches for terms related to the pandemic for all states in the sample.
The search terms include “pandemic” and “Covid-19”. Google analyses a sample of total searches and makes
available the relative amount of searches at each point in time. The results are normalized to a fraction of the
highest number of searches in time for each state. In order to make the data comparable across states, we use
the Stephens-Davidowitz [2014] methodology.

15Again, we use Stephens-Davidowitz [2014] methodology to standardize the data.
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reported in Figure 8. The top (bottom) panel plots searchers for traditional (alternative) methods

in both treated and control sates.

Figure 8: Lockdown treatment effects on searches for traditional (top panel) and alternative (bottom
panel) methods of fighting the pandemic
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We find little evidence that the search patterns are systematically different between treatment

and control groups, or that the lockdown implementation affected these search patterns. Hence,

information seem to evolve in an aggregate way and not to be affected by policies. We further

rewrite the causal diagram to incorporate this insight.

Figure 9: Causal Direct Acyclic Graph (DAG) with timing and mechanisms restrictions

𝑈𝑠𝑡

𝐿𝑠𝑡 𝐼𝑡

𝐵𝑠𝑡 𝑌𝑠𝑡+𝑙

By eliminating the casual link between 𝐿𝑠𝑡 and 𝐼𝑡, this simplification allows a straightforward

interpretation of the treatment. The lockdown policy affects pandemic evolution mainly through

its effects on behavior. To confirm this, we evaluate the impact of lockdown policies in mobility,

captured by Google Mobility Data (described in Appendix A.5), above and beyond the effects

that would have happened endogenously.

Similar to the way we compute the counterfactual to cumulative deaths, we compute the

counterfactual to mobility in residential and outdoor areas. Figure 10 plots the average measures

of mobility that in fact realized in treated states (blue lines), and the average counterfactual

measures were lockdowns not implemented there (red lines). We consider the same control

states above and we use the same weights as in the main estimates. The top panel considers

outside activities, whereas the bottom panel considers residential activities.

As the figure makes it clear, lockdown policies affected the pandemic evolution mainly through

its effects on behavior, captured by this substantial decrease (increase) in outside (residential)

mobility in treated states relative to the counterfactuals (that is, above and beyond endogenous

behavioral responses in the absence of lockdowns).
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Figure 10: Lockdown effects on outside (top panel) and residential (bottom panel) mobility
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5.3 Omitted variable bias and estimation

In this subsection we discuss the problem of omitted variable bias. To do so, we write a linear

model based on the DAG in Figure 9. The variable of interest depends on available information

(𝐼𝑠𝑡), individuals’ behavior (𝐵𝑠𝑡) and confounders (𝑈𝑠𝑡). That is,

𝑌𝑠,𝑡+𝑙 = 𝜋𝐵𝑠𝑡 + 𝜇𝐼𝑠𝑡 + 𝛿𝑈𝑠𝑡 + 𝜖𝑌𝑠𝑡,

where 𝜋, 𝜇, and 𝛿 are unknown parameters and 𝜖𝑌𝑠𝑡 is a zero-mean random term.

The behavior of individuals also depends on the lockdown policies implemented (𝐿𝑠𝑡) and can

be expressed as

𝐵𝑠𝑡 = 𝛼𝐿𝑠𝑡 + 𝜂𝐼𝑠𝑡 + 𝜖𝐵𝑠𝑡,

where 𝛼 and 𝜂 are unknown parameters and 𝜖𝐵𝑠𝑡 is a zero-mean random term.

As a consequence, we can write the reduced-form of the model above as

𝑌𝑠,𝑡+𝑙 = 𝛽𝐿𝑠𝑡 + 𝛾𝐼𝑠𝑡 + 𝛿𝑈𝑠𝑡 + 𝜖𝑠𝑡,

where 𝛽 = 𝛼𝜋, 𝛾 = 𝜋𝜂 + 𝜇, and 𝜖𝑠𝑡 = 𝜋𝜖𝐵𝑠𝑡 + 𝜖𝑌𝑠𝑡.

Since we do not observe 𝑈𝑠𝑡 and these confounders are correlated with 𝐿𝑠𝑡, a simple ordinary

least-squares (OLS) estimation of the reduced-form equation does not identify 𝛽. The ArCo

methodology used in this paper helps to mitigate the effects of potential confounders.

Indeed, for each state, we find a (non-necessarily convex) combination 𝑤 of states in the

control pool that most closely matches the number of cases in the treated state. Thus, we

propose the following estimator,

̂︀𝛽𝑠,𝑡+𝑙 = 𝑌𝑠,𝑡+𝑙 − 𝜔0 − 𝜔′𝑌 𝐶
𝑡+𝑙,

where 𝑌 𝐶
𝑡 is the vector of cases for the control states. Also, note that

̂︀𝛽𝑠,𝑡+𝑙 = 𝛽 + 𝛿(𝑈𝑠𝑡 − 𝜔0 − 𝜔′𝑈𝐶
𝑡 ),

where 𝑈𝐶
𝑡 is the vector of non-observed confounders for the control group. It is clear that if

𝑈𝑠𝑡 = 𝜔0 + 𝜔′𝑈𝐶
𝑡 ,

then the proposed estimator recovers the effect of the lockdown policy on the number of registered

cases. That is, the additional identification hypothesis is that the combination of estimated

weights does not only reproduce the trends in the in-sample period but also the non-observed

relevant variables. Finally, note that 𝛽 recovers precisely the effect of lockdowns through the
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behavioral channel.

6 Conclusion

In this paper, as opposed to most of the early and incipient literature on the lockdown effects

during the Covid-19 crisis, we consider a purely data-driven approach to assess the impact of

lockdowns on the short-run evolution of the number of cases and deaths in some US states.

Also, as opposed to some recent papers that use a difference-in-difference approach, we adopt a

variant of the synthetic control approach. On average, according to the synthetic controls, the

counterfactual accumulated number of cases would be two times larger were lockdown policies

not implemented in treated states.
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A Appendix: Additional analyzes and results

A.1 Reopen Dates

In the first two columns of Table A.1 we show the date of the first confirmed case in every treated

state we analyze and its reopen date (plus ten days), whenever available at the time we started

to circulate this paper.16 In the third column, we show the difference (in days) from the first

confirmed case and the reopen date plus ten days.

Table A.1: Number of Days from First Case until Reopen for each Treatment State

State First Case Reopen (+10) Days Diff.

Alabama 03/13/2020 05/10/2020 58
Colorado 03/06/2020 05/07/2020 62
Florida 03/02/2020 05/14/2020 73
Georgia 03/03/2020 05/10/2020 68
Kansas 03/08/2020 05/14/2020 67
Kentucky 03/06/2020 - -
Maine 03/12/2020 05/10/2020 59
Maryland 03/06/2020 06/11/2020 97
Mississippi 03/12/2020 05/17/2020 66
Missouri 03/08/2020 05/14/2020 67
Nevada 03/05/2020 05/19/2020 75
New Hampshire 03/02/2020 05/21/2020 80
New York 03/02/2020 05/25/2020 84
North Carolina 03/03/2020 05/18/2020 76
Oregon 02/29/2020 05/25/2020 86
Pennsylvania 03/06/2020 06/08/2020 94
Rhode Island 03/01/2020 05/18/2020 78
South Carolina 03/07/2020 05/14/2020 68
Tennessee 03/05/2020 05/07/2020 63
Texas 03/05/2020 05/10/2020 66

These figures illustrate why we had to limit our sample size to only 58 epidemiological days.

For example, if we had used 60 days in our analysis, we would have to exclude Alabama and

Maine from our treated states, given that they would not be in a state-wide lockdown in the last

days of the out-of-sample period.

16In other words, it represents the tenth day after the day the state-wide lockdown policy was supposed to end.
It is possible that these dates changed.
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A.2 Cumulative Cases: ArCo Statistics

We report in the first seven rows of Table A.2 the coefficients estimated by the LASSO model

for each treated state for the 𝑇0+10 in-sample period, where 𝑇0 is the epidemiological day the

lockdown was implemented in a given treated state. The last two rows display the mean and the

median (across the out-of-sample period) of the ratio between the actual cumulative cases and

the counterfactual cases for every state.

Table A.2: LASSO Coefficients

LASSO Coefficients (𝑇0+10)

AL CO FL GA KS KY ME MD MS MO NV NH NY NC OR PA RI SC TN TX

(Intercept) 3.49 0.95 -1.93 -0.47 -0.31 -1.45 2.49 -0.30 3.38 -0.62 -0.31 -3.36 -2.00 -2.56 -1.10 -0.75 -7.31 0.66 -1.78 -0.32

Arkansas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.48 0.00 0.00 0.00

California 0.00 0.00 -0.25 -0.14 0.00 0.00 0.00 0.00 0.00 -0.36 -0.36 0.00 0.00 0.00 0.00 0.00 0.21 -0.20 0.00 0.00

Iowa 0.21 0.82 0.91 0.68 0.77 0.78 0.31 0.60 0.18 0.54 0.35 0.00 0.79 0.88 0.44 1.12 0.52 0.45 0.46 1.00

Nebraska 0.00 0.00 0.41 0.24 0.00 0.08 0.00 0.20 0.03 -0.16 0.38 0.20 0.00 0.00 0.56 0.22 0.00 0.21 -0.09 0.00

North Dakota 0.00 0.00 0.32 0.15 0.00 0.39 0.20 0.00 0.10 0.70 0.45 1.02 1.40 0.61 0.00 0.00 -0.73 0.26 1.23 0.14

South Dakota 0.29 0.27 0.00 0.20 0.16 0.00 0.00 0.35 0.18 0.00 0.00 0.36 0.00 0.00 0.16 0.00 0.40 0.00 -0.14 0.09

Log(𝑡) 0.43 0.00 0.24 0.32 0.23 0.07 0.21 0.28 0.41 0.88 0.42 0.00 - 0.13 0.00 0.29 0.08 0.53 0.33 0.19

Mean 𝑦/𝑦 (OSS) 0.81 0.57 0.63 0.76 0.73 0.68 0.82 0.71 0.97 1.12 1.12 0.51 0.33 0.48 0.57 0.46 0.76 0.89 0.39 0.54

Median 𝑦/𝑦 (OSS) 0.78 0.53 0.58 0.74 0.68 0.68 0.80 0.70 0.97 1.09 1.12 0.46 0.22 0.41 0.55 0.40 0.72 0.87 0.31 0.48

With only two exceptions (Missouri and Nevada), every state has an out-of-sample mean and

median of the observed-to-predicted ratio below one. This means that, on average, the realized

cumulative cases were smaller than the counterfactual, which highlight that lockdowns had a

meaningful impact on slowing down the Covid-19 spread in these states.

A.2.1 ArCo forecasts for every state

Table A.3 reports the ratio of the counterfactual cumulative cases to the actual ones on the 58th

day after the first confirmed case in each state. It also reports the lower and upper limits of

the 95% confidence interval. Among the 20 treated states, the ratio is larger than one in 18 of

them. For Missouri and Nevada, there is no evidence on the effectiveness of lockdown policies.

For Mississipi and South Carolina, the impacts of lockdowns are only modest. Note that New

York is clearly an outlier, with such ratio around 16.5. We discuss this case in the main text.

In contrast, among the non-treated states, we obtain ratios close to one for three out of six

cases. We assume that the cut-off of the placebo intervention is 𝑇0 = 36, which is the median

(and the mean) timing of the policy interventions in the treated states. As discussed in the main

text and in Appendix A.5, South Dakota, which displays a ratio well above one, experienced

a large reduction in outside mobility even without official lockdown measures. California and

Nebraska, which display ratios below one, had very few Covid-19 confirmed cases during the

period before the cut-off.
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Table A.3: Counterfactual/actual cases ratio for every State (58th day)

State ArCo forecast ArCo lb ArCo ub Treated

Alabama 1.30 1.14 1.44 Yes
Colorado 2.78 2.34 3.25 Yes
Florida 2.48 2.11 2.94 Yes
Georgia 1.68 1.43 2.10 Yes
Kansas 1.49 1.34 1.69 Yes
Kentucky 2.68 2.31 2.99 Yes
Maine 1.45 1.33 1.59 Yes
Maryland 2.08 1.72 2.32 Yes
Mississippi 1.03 0.98 1.08 Yes
Missouri 0.74 0.61 0.86 Yes
Nevada 0.82 0.63 1.05 Yes
New Hampshire 2.90 2.15 3.55 Yes
New York 16.48 11.44 21.18 Yes
North Carolina 3.69 2.95 4.28 Yes
Oregon 3.96 3.21 4.33 Yes
Pennsylvania 5.63 4.99 6.41 Yes
Rhode Island 1.72 1.47 2.06 Yes
South Carolina 1.18 1.03 1.31 Yes
Tennessee 4.25 3.56 4.95 Yes
Texas 3.19 2.56 4.00 Yes

Arkansas 0.97 0.93 1.03 No
California 0.01 0.01 0.01 No
Iowa 0.93 0.81 1.02 No
Nebraska 0.28 0.23 0.32 No
North Dakota 0.92 0.78 1.09 No
South Dakota 3.13 2.72 3.59 No
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A.3 Cumulative cases: ArCo estimates for treated states

In this section, in Figures A.1–A.20, we report the counterfactual estimates for all states that

adopted lockdown strategies. With the exception of Missouri, Mississippi, Nevada, and South

Carolina, lockdown measures were effective in reducing the number of confirmed cases in the

very short-run.

Figure A.1: ArCo Estimates for Alabama (Cumulative Cases)

Figure A.2: ArCo Estimates for Colorado (Cumulative Cases)

A.4 Cumulative deaths: ArCo estimates for treated states

In this section, in Figures A.21–A.40, we report the counterfactual estimates for cumulative

deaths based on the methodology described in Section 3.3. As we discuss in the main text,

although for some states, the counterfactuals exhibit similar shapes to those regarding cumulative
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Figure A.3: ArCo Estimates for Florida (Cumulative Cases)

Figure A.4: ArCo Estimates for Georgia (Cumulative Cases)

Figure A.5: ArCo Estimates for Kansas (Cumulative Cases)
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Figure A.6: ArCo Estimates for Kentucky (Cumulative Cases)

Figure A.7: ArCo Estimates for Maryland (Cumulative Cases)

Figure A.8: ArCo Estimates for Maine (Cumulative Cases)
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Figure A.9: ArCo Estimates for Missouri (Cumulative Cases)

Figure A.10: ArCo Estimates for Mississippi (Cumulative Cases)

Figure A.11: ArCo Estimates for North Carolina (Cumulative Cases)
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Figure A.12: ArCo Estimates for New Hampshire (Cumulative Cases)

Figure A.13: ArCo Estimates for Nevada (Cumulative Cases)

Figure A.14: ArCo Estimates for New York (Cumulative Cases)
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Figure A.15: ArCo Estimates for Oregon (Cumulative Cases)

Figure A.16: ArCo Estimates for Pennsylvania (Cumulative Cases)

Figure A.17: ArCo Estimates for Rhode Island (Cumulative Cases)
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Figure A.18: ArCo Estimates for South Carolina (Cumulative Cases)

Figure A.19: ArCo Estimates for Tennessee (Cumulative Cases)

Figure A.20: ArCo Estimates for Texas (Cumulative Cases)
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cases, for many other states, they are not statistically significant at least for the first days after

the policy implementation.

Figure A.21: ArCo Estimates for Alabama (Cumulative Deaths)

Figure A.22: ArCo Estimates for Colorado (Cumulative Deaths)
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Figure A.23: ArCo Estimates for Florida (Cumulative Deaths)

Figure A.24: ArCo Estimates for Georgia (Cumulative Deaths)

Figure A.25: ArCo Estimates for Kansas (Cumulative Deaths)
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Figure A.26: ArCo Estimates for Kentuky (Cumulative Deaths)

Figure A.27: ArCo Estimates for Maryland (Cumulative Deaths)

Figure A.28: ArCo Estimates for Maine (Cumulative Deaths)
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Figure A.29: ArCo Estimates for Missouri (Cumulative Deaths)

Figure A.30: ArCo Estimates for Mississipi (Cumulative Deaths)

Figure A.31: ArCo Estimates for North Carolina (Cumulative Deaths)
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Figure A.32: ArCo Estimates for New Hampshire (Cumulative Deaths)

Figure A.33: ArCo Estimates for Nevada (Cumulative Deaths)

Figure A.34: ArCo Estimates for New York (Cumulative Deaths)
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Figure A.35: ArCo Estimates for Oregon (Cumulative Deaths)

Figure A.36: ArCo Estimates for Pennsylvania (Cumulative Deaths)

Figure A.37: ArCo Estimates for Rhode Island (Cumulative Deaths)
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Figure A.38: ArCo Estimates for South Carolina (Cumulative Deaths)

Figure A.39: ArCo Estimates for Tennessee (Cumulative Deaths)

Figure A.40: ArCo Estimates for Texas (Cumulative Deaths)
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A.5 Google mobility data

We know that lockdowns affect the Covid-19 dynamics by imposing social distancing and mobility

restrictions. To help understand the results described in this paper, we analyze the mobility data

available at Google Mobility Reports (https://www.google.com/covid19/mobility/).

Google mobility data show how visits and length of stay at different places change compared

to a baseline, before the outbreak of the pandemic. In particular, the baseline is the median

value, for the corresponding day of the week, during the five weeks between January 3rd and

February 6th 2020.

In order to understand how the population in each group (treated and control states) is

behaving during the Covid-19 crisis, we compute the median of mobility changes across our

sample period, i.e. the 48 days following the tenth day after the first confirmed case in each

state. Also, the data concern mobility changes for six categories, being five of them related to

outdoor activities. Namely, grocery & pharmacy, transit stations, parks, retail & recreation, and

workplaces. The remaining one concerns indoor activities, namely, residential.

Hence, to capture an idea of outdoor mobility changes, we aggregate the aforementioned five

categories into a single one defined as the median of the original five categories. In contrast,

mobility changes in residential areas capture indoor mobility changes. The two boxplots in

Figures A.41 and A.42 present the median of mobility changes in all analyzed states both in

residential and in outdoor areas, respectively. We report results for treated and control states

separately.

Figure A.41: Median of mobility changes in residential areas
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Figure A.42: Median of mobility changes in outdoor areas

Regarding mobility changes in residential areas, on average, residents from every state ana-

lyzed spent more time in these areas after the pandemic outbreak. However, those from treated

states spent even more time indoor. Nevertheless, there are outliers. For instance, residents from

South Dakota spent a lot more time in residential areas than before the pandemic, which helps

understand the results found for this state in the placebo test.

We found similar results for mobility changes in outdoor areas. Clearly, residents from treated

states remained in outside areas less often than residents from controls (always compared to the

period before the pandemic). In New York, for example, there was a 50% decrease of outdoor

mobility. Once more, South Dakota is an outlier for the control group, reinforcing the thesis that

its population voluntarily decided to stay more at home. Indeed, residents from South Dakota

spent almost 20% less time in outside areas, while those from the median state for the control

group spent nearly 8% less.
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