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Abstract

This paper shows that using yields may not be informative of the relationship
between farm size and productivity in the context of small-scale farming. This occurs
because, in addition to productivity, yields pick up size-dependent market distortions
and decreasing returns to scale. As a result, a positive relationship between farm
productivity and land size may turn negative when using yields. We illustrate the
empirical relevance of this issue with microdata from Uganda and show similar findings
for Peru, Tanzania, and Bangladesh. In addition, we show that the dispersion in
both measures of productivity across farms of similar size is so large that it renders
farm size an ineffective indicator for policy targeting. Our findings stress the need to
revisit the empirical evidence on the farm size-productivity relationship and its policy
implications.
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1 Introduction

An important and established microeconomic literature has documented a robust inverse re-

lationship between yields (i.e., output per unit of land) and farm size. This finding has been

interpreted as evidence that small farms are more productive (Berry et al., 1979; Eswaran

and Kotwal, 1986; Barrett, 1996; Assuncao and Ghatak, 2003; Barrett et al., 2010). How-

ever, these results contrast with growing macroeconomic evidence of a positive relationship

between farm size and agricultural productivity, both across and within countries.1 A similar

finding has been reported in microeconomic studies, mostly from developed countries, using

measures of total factor productivity instead of yields (Alvarez and Arias, 2004; Sheng and

Chancellor, 2019; Key, 2019).

What explains these divergent findings? Answering this question is important given its

consequential policy implications. If small farms are indeed more productive, then policies

that encourage small landholdings (such as land redistribution) could increase aggregate

productivity (see the discussion in Collier and Dercon, 2014).

We argue that these divergent results reflect the limitation of using yields as a measure

of productivity. Our contribution is to show that, in many empirical applications, yields are

not informative of the size-productivity relationship, and can lead to qualitatively different

insights. Our findings cast doubts on the interpretation of the inverse yield-size relationship

as evidence that small farms are more productive, and stress the need to revisit the existing

empirical evidence.

Our results also point out to a broader limitation of the size-productivity relationship as

a policy tool. This relationship promises a tractable mechanism for policy implementation:

if farm size is correlated with productivity, then size could be used to target farmers and

enhance efficiency. We show, however, that there is substantial dispersion in measures of
1See for instance, Adamopoulos and Restuccia (2014); Chen et al. (2017); Restuccia and Santaeulàlia-

Llopis (2017); Adamopoulos and Restuccia (2020).
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productivity across farms of similar size, sometimes as large as the productivity dispersion

between land size classes. Thus, even if the size-productivity is correctly estimated, farm

size would still be a poor proxy for productivity.

Our starting point is the observation that yields pick up not only total factor productivity,

but also deviations from constant returns to scale (CRS) and relative input use. We show that

this feature has two relevant empirical implications. First, in the presence of size-dependent

distortions in input markets, estimates of the size-productivity relation using yields are

inconsistent. This occurs because the omitted input ratio reflects market distortions. Second,

solutions to address market imperfections, such as controlling for input ratios (the so-called

production function approach) or exploiting within-farm variation in plot size (plot-level

regressions), only work in the knife-edge case of CRS, but would fail in other cases.

We assess the empirical relevance of this issue by comparing the estimated size-productivity

relationship using two alternative measures of productivity: (1) yields, as is standard in the

literature, and (2) farm productivity. Farm productivity is the farm-specific component of to-

tal factor productivity (TFP) obtained by estimating a farm-level production function. Due

to data availability, our main empirical analysis focuses on Uganda. However, we replicate

the core findings using data from other countries.

We find that the results are highly sensitive to the measure of productivity we use,

despite both measures being strongly correlated (i.e., 0.86). We find a negative relationship

between yields and farm size, consistent with the broad findings documented in the literature.

Interestingly, the quantitative magnitude of the relationship for Uganda is quite close to that

reported for other countries. However, when using a measure of farm productivity instead

of yields, we find a positive relationship. We document a similar pattern of results using

microdata from Peru, Bangladesh and Tanzania.

We interpret these findings as evidence of the limitation of using yields to identify the size-

productivity relationship due to deviations from CRS and size-dependent distortions. We
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evaluate the validity of this interpretation in several ways. First, we check that our results

are not driven by measurement error on farm size or omitted soil characteristics. Second,

we show that, after correcting for market distortions and deviations from CRS, the negative

correlation between yields and farm size goes away (and in our case, becomes positive).

Third, we exploit household variation in land tenure in Uganda together with district and

region-by-year fixed effects to examine in more detail the role of local market distortions. We

find that the yield-farm size relationship becomes less negative for households with stronger

land property rights. We interpret this finding as suggestive evidence of the role of market

distortions in driving the negative yield-farm size result.

The methodological shortcomings of using yields as a measure of productivity have long

been acknowledged in the literature (Sen, 1962; Bardhan, 1973; Binswanger et al., 1995;

Townsend et al., 1998). Despite this recognized limitation, a large body of the evidence on

the farm size-productivity relationship comes from studies using yields or other measures of

partial productivity.2 Recently, some studies have re-started to question the use of partial

measures of productivity to understand the size-productivity relation and suggest using

measures of total factor productivity instead (Gautam and Ahmed, 2019; Julien et al., 2019;

Rada et al., 2019; Helfand and Taylor, 2021). This paper contributes to this debate by

highlighting the empirical relevance of this issue, and the role of size-dependent market

distortions and deviations from CRS as key sources of endogeneity.

The paper is organized as follows. In the next section, we discuss under which conditions

the yield is an appropriate measure captureing farm productivity. Section 3 presents the

empirical evidence from Uganda, showing that alternative measures of productivity produce

opposing estimates of the farm size-productivity relationship. In Section 4, we provide
2For example, out of the top 20 most cited empirical papers in the size-productivity literature, 16 used

yields and another two used partial productivity measures (such as profits per acre), whereas only two papers
used measures of total factor productivity. The group of highly cited empirical papers using yields includes
analyses of possible explanations of the inverse relationship such as omitted variables, market distortions
and measurement error (Assunção and Braido, 2007; Barrett et al., 2010; Carletto et al., 2013).
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robustness checks and evidence for other countries. Section 5 examines theoretically and

empirically the reasons for the inverse size-yield relationshipp and provides evidence of land

tenure as an indirect measure of market distortions on the farm size-productivity relationship.

Section 6 concludes.

2 Yields and the size-productivity relationship

The study of the relationship between farm size and productivity occupies a central place

in the agriculture and development economics literature. The interest on this relationship

stems, in part, from its profound normative implications. In the presence of heterogeneous

farmers, the efficient factor allocation that maximizes aggregate output requires that farm

size is proportional to productivity (Lucas, 1978; Adamopoulos and Restuccia, 2014; Restuc-

cia and Santaeulàlia-Llopis, 2017). Thus, if small farms are more productive, then policies

that redistribute land into smaller farms would increase aggregate productivity.

A large literature using micro-data from small-scale traditional farmers in developing

countries has indeed found an inverse relationship between farm size and productivity mea-

sured by yields (output per unit of land). This result has been documented in several coun-

tries in Asia, Africa, and Latin-America and has been interpreted as evidence that small

farms are more productive (Berry et al., 1979; Barrett, 1996; Barrett et al., 2010).

There are two common econometric specifications used to estimate the farm size-productivity

relationship: the yield approach and the production function approach (Carter, 1984; As-

sunção and Braido, 2007; Ali and Deininger, 2015). The yield approach regresses yields on

farm size (usually cultivated area) and a set of control variables. The production approach

adds to the previous specification the input ratios (usually labor per unit of land).3

3These are not the only approaches used in the literature. For example, some studies regress profits
or labor demand on farm size (Benjamin, 1995; Lamb, 2003), while others use estimates of total factor
productivity, e.g., Key (2019); Julien et al. (2019); Sheng and Chancellor (2019).
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To examine the validity of these approaches, we derive the relationship between yields

and farm size starting from the farm’s production function. This allows us to distinguish

two different measures of productivity. The first measure is what we call farm productivity

(or total factor productivity), which captures the returns to all factors of production, e.g.

the ability of a farmer to produce an amount of output with a given set of inputs, including

land, labor, tools, fertilizers, etc. The second measure is yields, i.e. production per unit area

of cultivated land. This is a partial measure of productivity, as yields can increase when

either total factor productivity is higher or the use of other inputs is higher.

In some applications, when all inputs are fixed, changes to total and partial productivity

due to external reasons (such as temperature or pollution) would be the same.4 However,

these productivity measures would diverge when other inputs change. For example, farmers

can increase yields by using more labor in the same amount of land, in which case, with

diminishing returns to labor, a higher land productivity (yield) is associated with lower

marginal and average productivity of labor, while total farm productivity remains the same.

As the total factor productivity is a measure of the returns to all factors of production, it

obviates the trade-offs between alternative measures of partial productivity.

Consider a farmer who produces a single, homogeneous, good Y according to the following

Cobb-Douglas technology:5

Yit = si(TαitL1−α
it )γeωt+εit , (1)

where Tit and Lit stand for the amounts of land and labor used by farmer i in period t.6

Note that parameter α measures the contribution of land to total output, while γ captures

returns to scale at the farm level.
4See, for instance, the discussion in Aragón and Rud (2016) and Aragón et al. (2021).
5We use a Cobb-Douglas functional form in land and labor inputs for ease of exposition. We relax

this assumption in our empirical analysis to check the robustness of our results to using more flexible
specifications.

6Consistent with our empirical analysis, our discussion assumes that the researcher uses panel data. The
implications are identical, however, if we assume cross sectional data and drop the subscript t.
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In this specification, total factor productivity (TFP) is equal to sieωt+εit , where ωt are

common productivity drivers (such as weather or local public goods), εit is an unantici-

pated productivity shock, and si is a farm-specific output shifter, such as farming ability or

entrepreneurship. Henceforth, we call si farm productivity.

Consider the ‘true’ relationship between farm productivity and size:

ln si = β ln T̄i + δXi, (2)

where T̄i is a measure of farm size (such as average cultivated land or size of land holdings),

and Xi is a set of observable farm characteristics (such as soil quality or farmer’s education).

Note that a researcher interested in the relationship between farm size and productivity

would need to estimate β. If a measure of farm productivity si is available, then the researcher

could directly estimate equation (2). Instead, we consider the case where the resercher uses

yields as a proxy for productivity.

Dividing (1) by Tit, taking logs, and using (2), we obtain a expression linking yields to

farm size:

ln Yit
Tit

= β ln T̄i + δXi + γ(1 − α) ln Lit
Tit

+ (γ − 1) lnTit + ωt + εit, (3)

We can further simplify this expression using standard results linking input ratios to

relative input prices. We consider a general case in which farmers face (potentially) imperfect

input markets. Following Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), we

model market distortions as ‘wedges’ or taxes on input prices. Without loss of generality,

we assume that the price of labor is w while the price of land is r(1 + τi).7 The wedge τi

measures the relative distortion in input markets. Thus, we are implicitly normalizing the
7Note that τi has a broad interpretation. It can be interpreted as subsidies or taxes, but also as any other

market imperfection or institutional feature that distorts effective relative input prices.
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distortion in labor prices equal to one. We allow for these distortions to be different across

farms.

Profit maximization implies that farmer i chooses the following input ratio:

Lit
Tit

= 1 − α

α

r

w
(1 + τi).

Using this result, we can re-write expression (3) as:

ln Yit
Tit

= β ln T̄i + δXi︸ ︷︷ ︸
farm productivity

+ γ(1 − α) ln(1 + τi)︸ ︷︷ ︸
market distortions

+ (γ − 1) lnTit︸ ︷︷ ︸
deviations from CRS

+c+ ωt + εit, (4)

where c is a function of common prices and parameters (w, r, α, γ).

Equation (4) summarizes the main insight of our paper. It shows that yields pick up

not only farm productivity, but also factors that affect input ratios (such as market distor-

tions), and deviations from constant returns to scale. These issues could lead to inconsistent

(wrong) estimates of the farm size-productivity relation (β) when using yields as a measure

of productivity.

The yield approach Consider a researcher who uses the yield approach and estimates

the following model:

ln Yit
Tit

= β lnTit + δXi + µit. (5)

By construction, the error term is:

µit = γ(1 − α) ln(1 + τi) + β ln(T̄i − Tit) + (γ − 1) lnTit + c+ ωt + εit.

There are two reasons why estimating this model would lead to inconsistent estimates of

β: (1) presence of size-dependent market distortions (i.e., a correlation between τi and farm

size), and (2) deviations from constant returns to scale (CRS). In either case, the error term
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µ would be, by construction, correlated with farm size and OLS estimates of β would be

inconsistent.

This problem cannot be solved by adding better controls of soil quality or other determi-

nants of farm productivity, nor by reducing measurement error on land or output. Similarly,

in the presence of decreasing or increasing returns to scale, the problem would persist even

after using instruments or even randomizing farm size. The source of the problem is more

profound: it arises from using yields, a proxy of land productivity, instead of measures of

productivity of the production unit, i.e., farm productivity.

The production function approach and plot-level regressions The potential prob-

lems associated with decreasing input ratios and imperfect markets have been recognized

in the literature as early as Sen (1962). There have also been important work examining

whether imperfect markets could explain the inverse yield-size relationship (Barrett et al.,

2010; Eswaran and Kotwal, 1986; Feder, 1985).

There are two main approaches used to account for imperfect markets. First, researchers

add input ratios to the yield regression. This is called the production function approach since,

under the assumption of a Cobb-Douglas technology with CRS, it is equivalent to estimating

the production function. The validity of this approach, however, crucially depends on the

CRS assumption. To see this, re-write expression (3) as follows:

ln Yit
Tit

= β ln T̄i + δXi + γ(1 − α) ln Lit
Tit

+ ωt + εit, (6)

where the error term is: εit = (γ−1) lnTit+εit. Given that in most applications the measure

of farm size (T̄i) is correlated with land used (Tit), this specification does not identify β except

in the special case of CRS.8

8For instance, in studies using cross-sectional data and using cultivated land (crop area) as a measure of
farm size, by construction T̄i = Tit.
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A second strategy estimates the yield-size relationship comparing different plots within

the same farm holding. This approach exploits within-farm variation and involves estimating

a yield regression using plot-level data and including farm fixed effects (in the case of cross-

sectional data) or farm-period fixed effects (in the case of panel data).

The key idea is that markets are not involved in the allocation of inputs within the farm.

Thus, imperfect markets (and other farm-level factors) could not affect the yield-plot size

relationship. This view has important implications: findings of an inverse yield-plot size

relationship have led some researchers to reject imperfect markets as an explanation of the

farm size-productivity results (Assunção and Braido, 2007; Kagin et al., 2016).

This approach, however, also relies on the assumption of CRS to identify the size-

productivity relationship. To see this, let us modify expression (3) in three ways. First,

we eliminate the time dimension t to focus on within-farm variation. Second, we change the

unit of observation to be plot p in farm i. Third, profit maximization and the Cobb-Douglas

assumption imply that the plot-level input ratio Lip

Tip
is equalized across plots. Let us denote

this unobserved input ratio as κi.

With these modifications, we can represent the relationship between plot-level yields and

size as:

ln Yip
Tip

= β lnTip + δXi + γ(1 − α) ln κi︸ ︷︷ ︸
farm fixed effect

+(γ − 1) lnTip + εip. (7)

Note that, conditional on farm fixed effects, yields would no longer pick up market dis-

tortions. However, it would still capture deviations from CRS. Thus, a yield regression using

plot-level data would still produce inconsistent estimates of the size-productivity relation-

ship, except in the special case of constant returns to scale.

This discussion does not imply that yields would always produce inconsistent estimates

of the size-productivity relationship β. If the technology exhibits CRS, then either the

production function approach or plot-level regressions are informative. If, in addition, input
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markets are well-functioning or distortions are not size-dependent, then regressing yields on

farm size would be enough.

We argue, however, that these conditions may not be met in several applications, es-

pecially in the context of subsistence farmers in developing countries. For instance, Dillon

and Barrett (2017), Aggarwal et al. (2018) and Dillon et al. (2019) document quantitatively

important distortions in agricultural input markets in Africa. Recent work by Julien et al.

(2019) documents distortions in input markets (measured using shadow prices) correlated

with farm size in Malawi, Tanzania, and Uganda.. Similarly, several studies suggest that

in some contexts (like Thailand, China, Malawi, Ethiopia, and Bangladesh) the agricultural

production function of subsistence farmers may exhibit decreasing returns to scale (Shenoy,

2017; Chari et al., 2020; Restuccia and Santaeulàlia-Llopis, 2017; Gautam and Ahmed, 2019;

Chen et al., 2021). We document similar findings of DRS in our empirical analysis using

data from Uganda, Tanzania, Bangladesh and Peru.

In these cases, using yields (instead of farm productivity) would lead to inconsistent

estimates of the farm size-productivity relationship, and erroneous policy recommendations.

Whether this issue is quantitatively relevant or not remains an empirical question. Below,

we examine the empirical relevance of this issue.

3 Empirical evidence

Our main analysis uses detailed microdata from Ugandan households to examine whether

the choice of measure of productivity affects the estimates of the farm size- productivity

relationship. We use two measures: yields and an estimate of farm productivity (si). We

also replicate the main findings using comparable data from Peru, Tanzania, and Bangladesh.
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3.1 The Ugandan case

We use data from the Uganda Panel National Survey (UPNS), a household-level panel dataset

collected with support from the World Bank, as part of the LSMS-ISA project. This survey

is representative at the urban/rural and regional level and covers the entire country. We

use the four available rounds: 2009-10, 2010-11, 2011-12, and 2013-14. Every round collects

agricultural information for each of the two cropping seasons (i.e., January to June and July

to December), potentially providing 8 observations per household.

We focus on the household farm as the production unit. A farmer may operate one

or several parcels of land, hence we aggregate any information at the parcel level to the

household-farm level. Our dataset contains a panel of around 3,400 farming households

observed, on average, for four periods. Figure A.1 in the Appendix displays the map of

Uganda and sample coverage.

Output and inputs We construct measures of agricultural output and input use (land

and labor) for each farm in a given period. To measure real agricultural output at the farm

level, we construct a Laspeyres index of production that aggregates the quantity produced

of each crop (in kg) by the household farm using proxies of prices in 2009 as weights. We

use unit values as proxies of prices. To calculate these proxies, we divide the value of sales

(in Ugandan shilling) by the quantity sold of each crop (in kg). Then, we obtain the median

unit value of each crop at the national level.9

We measure the area of land cultivated (in hectares) by adding up the size of parcels

planted by the household. Similar to previous studies, we use this variable as our main

measure of land input and farm size. We also obtain measures of available land from self-

reported information and GPS data. The available land corresponds to all the parcels of
9The main results are qualitatively similar when using prices at regional and local level (Tables A.5 and

A.6 in the Appendix) or when restricting the sample to single-crop households or to households specialized
in one of the three main crops, i.e., cassava, maize or beans (Tables A.3 and A.4 in the Appendix.)
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land the farmer has access to either because the farmer owns the land or has user rights, for

instance, due to rental agreements. We use these variables as measures of land endowment

and as alternative proxies of farm size.

Our measure of labor input is the total number of person-days used on the farm. The

survey distinguishes between work done by household members and by hired workers. We

use this information to construct measures of family and hired labor.

Other variables The survey also provides information on agricultural practices (such as

the use of fertilizers, pesticides, or intercropping), and soil characteristics. The survey asks

farmers to classify each parcel according to soil type, quality and topography. We aggregate

these parcel-level indicators to the farm level to obtain the share of household’s farmland in

each category. We also obtain indicators of the share of land (at the farm and district level)

under different tenure regimes.

We complement the household survey with weather data on temperature (in degree Cel-

sius) and precipitation (in mm per month). These variables are relevant determinants of agri-

cultural productivity (Auffhammer et al., 2013; Hsiang, 2016; Carleton and Hsiang, 2016).

We use high-frequency satellite imagery and gridded data to obtain measures of cumulative

exposure to heat and water. For temperature, we use the MOD11C1 product provided by

NASA. The satellite data provides daily estimates of land surface temperature (LST). Pre-

cipitation data comes from the Climate Hazards Group InfraRed Precipitation with Station

data (CHIRPS) product (Funk et al., 2015). We combine the weather and survey data using

the location of the sub-county (n=967) of residence of the household.

Our approach to model exposure to weather is similar to previous work (Schlenker and

Roberts, 2006, 2009; Aragón et al., 2021). In particular, we obtain average precipitation,

degree days, and harmful degree days during the last cropping season for each farmer. Degree

days (DD) measures the cumulative exposure to temperatures between 8℃ and 26℃ while
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harmful degree days (HDD) capture exposure to temperatures above 26℃. The inclusion of

HDD allows for potentially different, non-linear, effects of extreme heat.

Table 1 presents summary statistics of our main variables. There are several relevant

observations. First, farmers have small scale operations (the average cultivated area is

2.3 hectares). Second, farmers use practices akin to subsistence agriculture such as inter-

cropping (i.e, cultivation of several crops in the same plot) and reliance on family instead

of hired labor. Third, there is limited use of capital inputs (such as oxen) and productivity-

enhancing inputs such as fertilizers, pesticides, and improved seeds. Finally, there is a

substantial variation on land tenure regimes: around 27% of the land is held under non-

customary, modern, regimes (like freehold, leasehold, and Mailo) while the rest is held under

customary, communal, property rights.

Measures of productivity We construct two alternative measures of productivity: land

productivity (or yields) and farm productivity.10 First, we calculate yields (Y/T ) by dividing

real farm agricultural output, at 2009 prices, by the area of land cultivated. This variable is

similar to measures of crop yields used in previous work. The key distinction is that we use

the value of total agricultural farm output (using time-invariant and common prices across

farms) instead of the quantity produced of a single crop. This distinction arises because of

our focus on the farm rather than the plot as the main production unit and the presence

of multi- and inter-cropping: farmers usually cultivate several crops, sometimes even in the

same plot. These features make it difficult to attribute inputs (either land or labor) to

individual crops.

Second, we obtain estimates of farm productivity si. We use the same functional assump-

tions as in Section 2 but modify it so that the unit of observation is a household farm i, in

location j, and period (season-year) t. In addition, we parametrize the common productivity
10We refer to our measure of real farm output per unit of operated land as land productivity or yield

interchangeably.
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Table 1: Summary statistics (UPNS 2009-2014)

Variable Mean Std. Dev.

HoH age 47.2 15.2
HoH can read and write 0.657 0.475
HoH is female 0.222 0.416
Household size 6.1 2.9

Total output (in 2009 Ush, 000s) 2854.4 6118.0
Yields (output per ha.) 5013.6 7510.0

Land cultivated (has) 2.300 2.136
Land available (has) 4.247 10.713
Land available GPS (has) 2.606 17.015

Total labor (person-day) 125.5 97.0
Domestic labor (person-day) 124.0 119.4
Hired labor (person-day) 14.1 170.6

% hire workers 28.0 44.9
% have bulls or oxen 19.1 39.3
% use org. fertilizer 6.6 24.9
% use inorg. fertilizer 1.8 13.3
% use pesticides 6.4 24.4
% use improved seeds 9.1 28.7

% farm land intercropped 35.3 42.0
% farm land non-customary tenure 27.3 38.8

Average degree days (℃) 15.1 1.8
Average harmful degree days (℃) 1.0 1.0
Precipitation (mm/month) 105.8 50.7

Notes: Sample restricted to farming households. HoH = Head of
household. Non-customary land tenure includes freehold, leasehold,
and Mailo. Average degree days are calculated by dividing the total
degree days by the number of days in the growing season.

shock ωjt = exp(δ · weatherjt + ηjt) where weatherjt is a set of weather (temperature and
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precipitation) variables, and ηjt is a region-season-year fixed effect. Taking logs, we obtain:

ln Yit = ln si + αγ lnTit + (1 − α)γ lnLit + δweatherjt + ηjt + εit. (8)

We estimate equation (8) using panel data methods with household fixed effects.11 Our

preferred specification is a Cobb-Douglas production function in land and labor inputs and

with the same parameters for all regions (see Column 1 in Table A.1).12 We check the

robustness of our results using estimates of farm productivity si obtained from alternative

specifications (see Columns 2 to 6 in Table 3). In particular, we (1) include as additional

controls indicators of using other inputs such as oxen, fertilizers, pesticides and improved

seeds, (2) decompose labor into family and hired workers, (3) allow for heterogeneous pa-

rameters (α, γ) by region, (4) use input endowments (available land and household size) as

instruments for land and labor, and (5) estimate a more flexible translog production function.

The estimated production function parameters are α̂ = 0.526 and γ̂ = 0.708, which are

close to the values calibrated in the context of similar economies, such as Restuccia and

Santaeulàlia-Llopis (2017) for Malawi and Adamopoulos et al. (2017) for China.13 We use

the estimated fixed effects of our baseline specification as measures of ln si, the log of farm

productivity.

There is a strong positive correlation between land productivity and farm productiv-
11We prefer using panel data methods with household fixed effects than using proxy variable methods

such as Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015), or Gandhi et al.
(2020). Shenoy (2020) shows that these alternative methods fail in the presence of input market frictions and
recommends instead using dynamic panel methods. We implement the dynamic panel method and replicate
our main analysis estimating the production function as in Shenoy (2017). This alternative approach uses
the Anderson and Hsiao (1981) dynamic panel estimator and lagged values of inputs as instruments. The
results are very similar to our approach. See Tables A.1 and A.7 in the Appendix.

12Results remain virtually unchanged when including a continuous measure of capital using the value of
farm implements and machinery used in last 12 months. See Table A.1 in the Appendix. As shown in Table
A.9, farmers in our sample mostly use tools, such as hoes and machetes.

13Table A.1 in the Appendix presents detailed results of the production function estimation. Figure A.2
in the Appendix reports the resulting distribution of the estimated household-farm fixed effects.
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ity of 0.86.14 Despite this strong correlation, we show below that both measures produce

qualitatively different estimates of the farm size-productivity relationship.

3.2 Conflicting findings depending on the measure of productivity

Figure 1 displays the relationship between the log of cultivated area, our baseline measure

of farm size, and the two measures of productivity. An important observation is that the

relationship is qualitatively different, depending on the measure of productivity used. Using

yields (panel A), we observe a negative relationship. This finding is consistent with pre-

vious results of an inverse farm size-productivity relationship. However, when using farm

productivity (panel B), the relationship is positive.

Table 2 presents a formal analysis of the inverse relationship between yields and farm size.

We employ two specifications commonly used in the farm size-productivity literature: the

yield approach and the production function approach. The yield approach regresses log of

yields on the log of land cultivated and includes a rich set of control variables such as soil and

farmer characteristics, weather, region-by-period and district fixed effects. The production

function approach adds to the previous specification the log of the labor-land ratio. Assuming

a Cobb-Douglas technology with constant returns to scale, this specification is equivalent to

estimating the production function.

We present results using both specifications and varying the set of covariates. We also

check the robustness of our results to using (self-reported) available land as a measure of

farm size, and to collapsing the panel data by taking the average for each household (see

Table A.2 in the Appendix). In all cases, we find a negative and significant relationship

between farm size and yields. Interestingly, the estimated coefficient (around −0.27 in our

preferred specification in column 2 in Table 2) is similar in magnitude to previous estimates

using data from other countries (Barrett et al., 2010; Desiere and Jolliffe, 2018).
14See Figure A.3 in the Appendix.
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Figure 1: Farm size and productivity

(a) Land productivity (ln(Y/T ))

(b) Farm productivity (ln si)
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We replicate the analysis using farm productivity (ln si) instead of yields and report the

results in Table 3. The results confirm the conflicting patterns observed in Figure 1: there

is a robust and significant positive relationship between farm size and farm productivity

(see results in columns 1 and 3 in Table 3 for specifications without and with controls).

One potential concern with these last results is that we are artificially obtaining statistically

significant results by duplicating the time-invariant measure of farm productivity in the panel

data. However, this turns out not to be an issue as we obtain qualitatively similar results

collapsing the panel data at the household level (column 2 in Table 3).

Our baseline specification uses estimates of si obtained from a production function that

is Cobb-Douglas in land and labor. However, this choice of functional form does not drive

our results. We obtain similar results using estimates of si obtained with more flexible

specifications, such as translog production function, a Cobb-Douglas with heterogeneous

parameters by region or estimating the production function using endowments as instruments

for input used (columns 4 to 6 in Table 3). Our findings are also robust to using land available

as a measure of farm size (see Table A.2 in the Appendix.)

3.3 Substantial dispersion in productivity measures

To the extent that policy makers do not observe productivity (either land or farm produc-

tivity), but instead can easily observe farm size, the inverse size-productivity relationship

promises a tractable mechanism for policy implementation that has been highly influential.

Our previous results, however, point to an important limitation: there is substantial

dispersion in both measures of productivity across farms of similar size (see Figure 1). This

feature renders farm size a poor proxy of productivity and an ineffective instrument for

policy. This conclusion is general because it applies to both measures of productivity. To

illustrate this point, Table 4 documents the mean and dispersion of the two measures of

productivity (farm productivity and yields) across farms within farm-size bins for different
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Table 2: Yields and farm size

Outcome variable: ln(output per ha)
Yield approach Production function approach

(1) (2) (3) (4) (5) (6)

ln(land -0.239*** -0.257*** -0.487*** -0.035** -0.064*** -0.295***
cultivated) (0.015) (0.014) (0.019) (0.016) (0.016) (0.021)

ln(labor/land) 0.422*** 0.390*** 0.336***
(0.016) (0.017) (0.017)

Controls No Yes Yes No Yes Yes
Household FE No No Yes No No Yes

No. obs. 16,063 14,578 15,788 15,806 14,335 15,533
R-squared 0.029 0.176 0.110 0.087 0.217 0.145
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household level. *
denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regressions (except in
column 1) include district and region-by-year fixed effects as well as soil, farmer, and weather controls.
Soil controls= % of farmland of different types, quality, and topography. Farmer controls = age, literacy,
gender, ethnic group. Weather controls: DD, HDD, and log of precipitation. Columns 3 and 6 also
include household fixed effects.

Table 3: Farm productivity and farm size

Outcome variable = farm productivity (ln si)
(1) (2) (3) (4) (5) (6)

ln(land 0.198*** 0.295*** 0.179*** 0.181*** 0.160*** 0.175***
cultivated) (0.011) (0.022) (0.010) (0.011) (0.011) (0.010)

Prod. function CD CD CD + agric. CD by CD + IV Translog
used to estimate si practices region

No. obs. 15,363 3,249 15,332 15,332 15,251 15,332
R-squared 0.399 0.352 0.348 0.333 0.831 0.352
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household level. *
denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regressions include soil and
farmer controls similar to Table 2, as well as district fixed effects. CD=Cobb-Douglas in land and labor
inputs. Column 2 uses a cross-section of farmers obtained by collapsing the panel data at the household level
taking a simple average. Column 3 estimates a CD specification adding indicators of agricultural practices
such as the use of bulls/oxen, fertilizers, pesticides, improved seeds, and intercropping. Column 4 estimates
si using a flexible CD specification with different parameters by region, column 5 uses a CD specification
that instruments input use with input endowments (land available and household size), while column 6 uses
a translog production function.
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farm size categories.15 To characterize dispersion, we use the ratio of the 90th and 10th

percentiles.

The main observation is that the within-class dispersion is similar to, or even greater,

than the dispersion of the overall distribution. For instance, within very small farms (0 to 1

ha), the ratio of productivity between farms in the 90th and 10th percentiles is 11.2, whereas

the ratio for the whole distribution is 8.9. We observe a similar pattern using yields. In that

case, the ratio of productivity between the 90th and 10th percentile is around 12.6 for the

very small farms, but 8.8 for the whole distribution.

Table 4: Productivity dispersion by farm size

Farm productivity (si) Yields (Y/T)
Farm size % farms Mean 90th / 10th Mean 90th / 10th
(has) percentile percentile

0-1 28.8 1.348 11.2 3,185.6 12.6
1-2 33.8 1.334 8.0 2,712.6 8.6
2-5 32.6 1.624 6.7 2,386.0 6.5
5+ 4.8 2.296 6.4 2,274.0 8.4

All farms 100.0 1.479 8.9 2,698.5 8.8
Notes: Farm size classes are calculated using average area planted. Yields (Y/T) refer
to average yields per farmer.

4 Robustness checks

4.1 Omitted soil characteristics and measurement error

Existing work suggests that the inverse yield-farm size relationship may be driven by omitted

variables, e.g. soil quality (Benjamin, 1995), or systematic measurement error (Carletto et

al., 2013; Gourlay et al., 2017; Desiere and Jolliffe, 2018; Abay et al., 2019). This error arises

if small farmers over-report output or under-report land. The measurement error could
15To facilitate comparison, we transform the farm productivity measure ln(si) into si.
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generate the inverse relationship between yields and farm size, even if the actual relationship

is insignificant.16 A relevant concern is that the pattern of results we observe may be a

statistical artifact of these identification problems.

We examine this possible explanation in several ways. First, our regressions control for a

rich set of soil characteristics, and are robust to including district or household fixed effects.

These findings weaken the argument that our results are affected by omitted variables. Sec-

ond, we replicate our baseline results using, as proxies of farm size, the area of available land

measured using a GPS device. Arguably, this variable is less prone to have a systematic

measurement error than self-reported land.17 The results are, however, qualitatively similar

(see columns 1 and 2 in Table 5).

Finally, we examine the role of systematic measurement error in the self-reported output.

In the absence of crop-cut measures or other variables to address measurement error in

output (as in Gourlay et al. (2017), for example), we use an indirect approach exploiting

the observation that, to affect the estimates of farm-size and productivity, the measurement

error needs to be correlated with farm size. Thus, we can proxy the measurement error using

a function of land and labor.

In particular, we modify equation (8) by assuming that ξijt = vijt +M(Ti, Li), i.e., there

is systematic measurement error which is a function of farm size. Note that omitting M(·)

as a regressor would create an endogeneity problem and we would not obtain consistent

estimates of farm productivity (si).

We proxy M with a 4th degree polynomial of the GPS measures of available land and

total labor, and include these variables as additional regressors when estimating si. This

approach is similar in flavor to using polynomials of inputs to account for unobservables
16We check whether this is a potential issue and find evidence of a sizable and systematic measurement

error between self-reported and GPS measures of available land (see Figure A.4 in the Appendix).
17It is not clear, however, that GPS measures are always preferable to self-reported land size. As pointed

out by Abay et al. (2019), in the presence of correlated measurement errors, using objective measures (such
as GPS) could aggravate the bias when estimating the size-productivity relationship.
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Table 5: Addressing measurement error

ln(output per ha) farm productivity (ln si)
GPS measure

(1) (2) (3) (4)

ln(land available) -0.628*** 0.140*** 0.139*** 0.137***
GPS measure (0.016) (0.010) (0.010) (0.010)

Prod. function CD CD + CD + land and
used to estimate si land polyn. labor polyn.

No. obs. 10,070 11,146 11,146 11,146
R-squared 0.392 0.423 0.428 0.430
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household
level. * denotes significant at 10%, ** significant at 5% and *** significant at 1%. Column 1 same
controls as column 2 in Table 2. Columns 2 to 4 use same controls as column 1 in Table 3. Column
3 uses a measure of si estimated from CD production function with a 4th degree polynomial of
land cultivated while column 4 further adds a 4th degree polynomial of total labor.

as in Levinsohn and Petrin (2003). Note that this approach also addresses biases due to

unobserved inputs (such as labor quality or capital) that could be correlated with farm size.

Columns 3 and 4 in Table 5 show the results adding only the 4th degree polynomial of land

(column 3), and for land and labor (column 4). In both cases, we still observe the positive

relationship between farm productivity and farm size. Taken together, we interpret these

results as evidence that the conflicting findings on the farm size-productivity relationship

documented in Tables 2 and 3 are unlikely to be driven by omitted variables or systematic

measurement error.

4.2 Parcel-level regressions

Several studies estimate the yield-size relationship using plot or parcel level data and exploit-

ing within-farm variation. This approach effectively controls for all farm-specific variable and
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thus reduce concerns of bias due to market distortions.18 However, as shown in Section 2,

the validity of this approach still relies on the assumption of constant returns to scale.

How relevant is this issue in our context? Ideally, we would like to replicate the previous

analysis and compare the estimated size-productivity relationship using measures of yield

and si at the plot level. However, we cannot perform this analysis due to data limitations.

In particular, we do not have a panel of plots (nor parcels) so we cannot reliable control for

time-invariant unobserved characteristics as in our baseline household-level regressions.

We can, however, indirectly assess the importance of the CRS assumption. To do so,

we estimate yield regressions using parcel-level data and including household-period fixed

effects (see Table 6). Column 1 does not include any control except for the fixed effects,

while column 2 adds indicators of plot characteristics (soil type, quality, and topography).19

According to equation (7), the estimated parameter is equal to β + γ − 1, where γ measures

economies of scale and β is the size-productivity relation. We can use this expression to

calculate the implied value of β under different assumptions about economies of scale.

Under the CRS assumption, the implied β = −0.271 is negative. However, if returns to

scale are sufficiently small (γ ≤ 0.72) the size-productivity relation would become weakly

positive. Interestingly, using our preferred farm-level estimates of γ = 0.708, we cannot

reject the hypothesis that β is equal to zero.

4.3 Evidence from other countries

Are our results applicable in other contexts or are they specific to the Ugandan case? We

explore this issue by replicating our analysis using household panel data from three different
18The use of farm fixed effect does not eliminate all relevant identification concerns. There is, for example,

suggestive evidence that plot-level regressions may be biased due to systematic measurement error (Desiere
and Jolliffe, 2018).

19Bevis and Barrett (2020) use a panel of plots using a different non-representative survey of farmers in
Uganda and find qualitatively similar results. They show that the inverse relation at the plot level can be
partially explained by the perimeter-area ratio, i.e. an edge effect.
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Table 6: Plot-level yield regressions

Outcome variable: ln(output per ha.)
(1) (2)

ln(land cultivated) -0.271*** -0.272***
(0.018) (0.018)

Plot characteristics No Yes
Household-period FE Yes Yes

Assuming γ = 0.708
Implied β 0.021 0.020
p-value H0: β = 0 0.248 0.285

No. obs. 28,144 27,804
R-squared 0.021 0.025
Notes: Robust standard errors in parentheses. Standard errors are clus-
tered at the household-period level. * denotes significant at 10%, ** signifi-
cant at 5% and *** significant at 1%. Period refers to season-year pair. All
regressions include household-period fixed effects. Column 2 adds indicators
of plot characteristics (soil type, soil quality, and topography).

countries: Peru, Tanzania, and Bangladesh. These countries expand our analysis across

different regions in the world. For Peru, we use data from the National Household Survey

(ENAHO) years 2007 and 2011. For Tanzania, we use the National Panel Survey (TNPS)

which was carried out biannually from 2008 to 2012. For Bangladesh, we use data from the

2011 and 2015 Bangladesh Integrated Household Survey (BIHS).

In all cases, we find similar results as in Uganda: a negative correlation between yields

and farm size, but a positive relationship between farm size and farm productivity (see Table

7). Similar to our main result, these findings are robust to alternative specifications of the

production function (see Tables B.2 and B.3 in the Appendix).20

We also note that, although not directly comparable, since we do not have access to

the microdata, we find similar patterns for the United States. Using the 2017 US Census
20Additional figures and estimated are available in Appendix B.
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of Agriculture and the disaggregated information by farm size following the analysis in

Adamopoulos and Restuccia (2014), we find a negative relationship between yields and farm

size, whereas the relationship between labor productivity and farm size is strongly positive

(see Table B.4). The implied elasticities with respect to farm size are −0.37 for the yield

and 0.51 for labor productivity.

While the analysis so far relies on a few different countries, these results indicate that

our findings may be broadly applicable to different developing countries, and highlight the

need to revisit the interpretation of the negative yield-farm size relationship and its policy

implications.

5 What explains the different results?

We show that, in several applications, using yields as a measure of productivity is not

informative of the farm size-productivity relationship. This occurs because yields pick up

not only farm productivity, but also market distortions and deviations from constant returns

to scale. These issues can lead, as in the case of Uganda, to wrongly inferring a negative

relationship between farm size and productivity.

We explore the validity of this interpretation in two ways. First, we modify the yield

approach to account for market distortions and relax the CRS assumption. We show that,

when correcting for these issues, the negative relationship between yields and farm size is

reversed. Second, we exploit variation in land tenure security across Ugandan households as

an indirect measure of market distortions to assess their role in driving the negative yield-size

relationship.
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Table 7: Replication of main results using data from other countries

Peru Tanzania Bangladesh
ln(output farm ln(output farm ln(output farm
per ha) productivity per ha) productivity per ha) productivity
(1) (2) (4) (5) (4) (5)

ln(land -0.759*** 0.197*** -0.403*** 0.151*** -0.103*** 0.081***
cultivated) (0.014) (0.011) (0.019) (0.016) (0.012) (0.010)

Soil controls Yes Yes Yes Yes Yes Yes
Farmer controls Yes Yes Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes No No
Fixed effects Strata & region-by-growing Season (short-long), District &

season & month of interv. district & survey round survey round

No. obs. 11,359 11,364 7,899 7,894 6,506 6,525
R-squared 0.433 0.358 0.287 0.573 0.224 0.229
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household level. * denotes significant at
10%, ** significant at 5% and *** significant at 1%. Columns 1, 3, and 5 replicate the yield approach of column 2 in Table 2.
Columns 2, 4, and 5 replicate the regression in Column 1 of Table 3. This specification uses as dependent variable the farm
productivity (ln si) obtained from estimating a Cobb-Douglas production function. All regressions include a set of locations
and time fixed effects. Soil controls: (Peru) indicators of soil quality from Fischer et al. (2008) (nutrient availability, nutrient
retention, rooting conditions, oxygen availability, salinity, toxicity, and workability) and the share of irrigated land share of
land. (Tanzania) share of loam soil, flat plot, and self-reported good soil. Indicators of whether the farm has irrigation, oxen,
or tractor. (Bangladesh) share of arable land of different types (clay, loam, and sand). Farmer controls: age, age2, gender,
educational attainment (or literacy). Weather controls: degree days, harmful degree days, average monthly rainfall, and its
square.
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5.1 Correcting for market distortions and returns to scale

Equation 3, derived in section 2, provides the correct specification linking yields to farm size.

Using land cultivated (Ti) as measure of farm size, we can rewrite this expression as:

ln Yit
Tit

= (β + γ − 1) lnTit + γ(1 − α) ln Lit
Tit

+ δXi + ωt + εit. (9)

This specification is similar to the production function approach since it regresses yield

on farm size and the input ratio. It does not, however, impose constant returns to scale. This

implies that the estimate associated with farm size is equal to β + γ − 1, where β captures

the farm size-productivity relationship and γ measures economies of scale.

Table 8 presents the estimates of equation (9) using two alternative measures of farm size:

(self-reported) area cultivated and GPS measures of available land. We start by replicating

the “yield approach" which suggests a negative relation between yields and farm size (columns

1 and 4). Then, we relax the CRS assumption and recover β by subtracting (γ̂− 1) from the

estimates associated with farm size (columns 2 and 5). We use a value of γ̂ = 0.708 obtained

from estimating the production function (see column 1 in Table A.1). Finally, we add the

input ratio, our proxy for market distortions (columns 3 and 6).

The main result is that the initial negative estimate of β becomes less negative after

relaxing the assumption of CRS and eventually becomes positive when correcting for market

distortions. We obtain similar sign reversal of the yield-size relationship in the cases of Peru,

Tanzania, and Bangladesh (see Table B.1 in the Appendix).
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Table 8: Correcting for market distortions and returns to scale

Outcome variable: ln(Y/T)
(1) (2) (3) (4) (5) (6)

ln(T) -0.257*** -0.257*** -0.064*** -0.629*** -0.629*** -0.181***
β + γ − 1 (0.014) (0.014) (0.016) (0.016) (0.016) (0.020)

ln(L/T) 0.390*** 0.578***
γ(1 − α) (0.017) (0.019)

Measure of T area planted (self reported) GPS measure of available land

Assume CRS Yes No No Yes No No
Add input ratio Yes Yes

Assumed γ 1.000 0.708 0.708 1.000 0.476 0.476
Implied β -0.257 0.035 0.228 -0.629 -0.105 0.343

No. obs. 14,578 14,578 14,335 10,256 10,256 10,060
R-squared 0.176 0.152 0.195 0.392 0.176 0.279
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household level. *
denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regressions include district,
region-by-year fixed effects and soil, weather and farmer controls as column 2 in Table 2. γ̂ = 0.708 obtained
from Column 1 Table A.1.

5.2 Using land tenure to proxy for market distortions

Our previous results implicitly use the input ratio L/T as proxy for market distortions.

However, the validity of this proxy depends on assumptions of the production function.21 As

a complementary approach, we proxy for market distortions by exploiting variation in land

tenure security across household farms. This approach is motivated by the Coase theorem

and existing evidence suggesting that property rights play an important role in allocative

efficiency (Besley and Ghatak, 2010; De Janvry et al., 2015; Restuccia and Santaeulàlia-
21For example, consider an alternative CES specification f(Ti, Li) = [AiT ρ + BiL

ρ]
γ
ρ where Ai and Bi

are input-specific productivity parameters that can vary across farms. Then, the optimal land-labor ratio
would be [AiBi

w
r(1+τi) ]

1
−ρ and hence picks up not only market distortions, but also differences in input-specific

productivity Bi
Ai

.
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Llopis, 2017; Chen, 2017). We note, however, that property rights can be the outcome of

other factors affecting productivity and input choices (such as access to infrastructure and

distance to markets). In this context, the results in this section do not necessarily have

a causal interpretation, instead they are suggestive of the effects of property rights as an

indirect measure of market distortions on the inverse size-productivity relationship.

Land tenure measure We distinguish between two broad types of land tenure in Uganda:

customary and non-customary land. Non-customary land includes tenure regimes such as

freehold, leasehold, and Mailo, a form of leasehold in which landowners hold their land in per-

petuity a while tenants have security of occupancy (Coldham, 2000). Non-customary tenure

regimes offer some degree of formal, secure, property rights. In contrast, customary land

are based on communal ownership, which are perceived as less secure and may face higher

transaction costs due to lack of formal land registries and community approval requirements

(Coldham, 2000; Place and Otsuka, 2002; Deininger and Castagnini, 2006). We construct a

farm-level measure of land tenure, in particular, use the share of cultivated household land

that is under non-customary rights as the main proxy for a household’s exposure to market

distortions.

Land tenure and market distortions We start by assessing whether farm-level land

tenure captures meaningful differences in market distortions. To do so, we follow the litera-

ture on factor misallocation and evaluate the correlation between input use (land and labor)

and farm productivity (Restuccia and Santaeulàlia-Llopis, 2017; Adamopoulos et al., 2017;

Adamopoulos and Restuccia, 2020). In an efficient allocation, input use and productivity

should be strongly positively correlated. A low correlation would be indicative of market

distortions.

A concern, however, is that the dispersion in productivity may be picking up not only

market distortions but also unobserved heterogeneity or measurement error (Abay et al.,
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2021). For this reason, we also examine the separability of consumption and production

decisions in farming households (Benjamin, 1992; Dillon and Barrett, 2017). In the pres-

ence of perfect input markets, input use in production should be independent of household

endowments. In our context, this implies that households with more secure property rights

should observe a weaker correlation between total labor demand and household size. In

the absence of market distortions, this correlation should be zero, while positive correlation

would indicate distorted or imperfect markets.

Table 9 displays the results. The main finding, from columns 1 and 2, is that the rela-

tionship between farm productivity and input use is larger (more positive) for households

with higher proportion of land under non-customary (more secure) rights. These results are

suggestive of market distortions being less severe for households with more secure property

rights.

Columns 3 and 4 report the results for the alternative approach of testing for separability

of household’s consumption and production decisions. While there is a positive correlation

between labor demand and household size, this relationship is significantly weaker for house-

holds with modern property rights. This finding rejects the separability hypothesis, a result

also consistent with the presence of more severe market distortions for households with less

secure land rights.

Land tenure and the yield-size relationship We re-examine the farm size-yield rela-

tionship across farm households that differ in land tenure. If the negative size-yield relation-

ship is driven by market distortions, then we should observe a less negative relationship when

households have stronger land rights. Table 10 presents our findings using both the yield

(column 1) and the production function approach (column 2). In both cases, we maintain

the CRS assumption as in the existing literature.

We find that the inverse relationship becomes less negative for households with stronger
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Table 9: Assessing market distortions

ln(land available) ln(total labor)
GPS measure

(1) (2) (3) (4)

Farm productivity 0.132** 0.179***
(0.052) (0.020)

Farm productivity × 0.340*** 0.079**
% non-custom. land in farm (0.086) (0.032)

ln HH size 0.449*** 0.382***
(0.022) (0.024)

ln HH size × -0.080** -0.147***
% non-custom. land in farm (0.037) (0.038)

ln(land available) 0.190***
GPS measure (0.010)

No. obs. 1,905 14,511 14,588 10,259
R-squared 0.397 0.184 0.223 0.287
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household level.
* denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regressions include
soil and farmer controls, as well as region-by-period and district fixed effects. Farm productivity
(ln si) is estimated using a flexible Cobb-Douglas in land and labor inputs with different parameters
by region. Column 1 collapses the panel data to a cross section of households taking a simple
average.

land rights. These results are consistent with our interpretation that the negative relationship

between yields and farm size reflects, in part, the plausible effect of market distortions implied

by restrictive land institutions. They should, however, be interpreted as suggestive evidence

only, given the potential endogeneity of land tenure even at the household level.
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Table 10: Farm size-yield relationship and land tenure

ln(output per ha) GPS measure
(1) (2)

ln(land available) GPS -0.703*** -0.242***
(0.024) (0.025)

ln(land available) GPS × 0.140*** 0.128***
% non-custom. land in farm (0.033) (0.028)

ln(labor/land 0.586***
available GPS) (0.020)

No. obs. 10,042 9,813
R-squared 0.401 0.477
Notes: Robust standard errors in parentheses. Standard errors are clustered
at the household level. * denotes significant at 10%, ** significant at 5% and
*** significant at 1%. All regressions use GPS measure of available land as
a proxy for farm size and include soil and farmer controls, as well as region-
by-period and district fixed effects.

6 Conclusion

A prevalent view in development economics is that small farms are more productive than

large farms. This view is rooted in the widely-held empirical finding of an inverse relationship

between yields and farm size.

We show, however, that using yields is not informative as to whether small farms are

more or less productive. This occurs because yields are affected by market distortions and

deviations from constant returns to scale. These issues limit the usefulness of the inverse

relationship to inform agricultural policies in developing countries and may lead to erroneous

policy recommendations. We illustrate this limitation using data from Uganda and other less

developed countries and show that the use of yields (instead of measures of farm productivity)

leads to qualitatively different results.

Our evidence also points to a more general limitation of the size-productivity relationship
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as a policy tool. We show for the case of Uganda that there is substantial dispersion in

productivity across farms of similar size. This feature renders farm size a poor proxy of

productivity, even if the size-productivity relationship is correctly estimated.

These results imply that there is not a simple instrument for policy. An effective policy

should facilitate better resource allocation by farm productivity, but productivity is difficult

to observe for the policymaker. Our results suggest that policy should focus on fostering

and improving markets, in particular, markets for land. Even with an egalitarian distribu-

tion of property rights, land ownership can be decoupled from farm operational scales via

rental markets or other decentralized mechanisms. Decoupling land use from land rights can

also have substantial effects on migration and occupation decisions, further contributing to

productivity growth in agriculture (De Janvry et al., 2015; Adamopoulos et al., 2017). How

to achieve these outcomes in poor and developing countries is a challenging endeavor that

merits the focus of future research.
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ONLINE APPENDIX - Not for publication

A Additional figures and tables

Figure A.1: Sample coverage

Notes: Figure depicts the number of observations per county.
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Figure A.2: Distribution of farm productivity (ln si)

Notes: The estimated production function parameters are α̂ = 0.526 and
γ̂ =0.708. The difference between the 90th and 10th percentile is 2.23.

Figure A.3: Yields (ln Y/T ) and farm productivity (ln si)
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Figure A.4: Systematic measurement error in self-reported available land

Notes: Vertical axis is a proxy of measurement error = log of ratio of self-
reported to GPS measure of available land.
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Table A.1: Production function estimates

ln(output)
(1) (2) (3) (4) (5) (6) (7)

ln(land) 0.372*** 0.341*** 0.355*** 0.392*** 0.048** 0.298*** 0.459***
(0.020) (0.020) (0.020) (0.071) (0.020) (0.021) (0.047)

ln(total labor) 0.336*** 0.339*** 0.428*** 0.387*** 0.418***
(0.017) (0.019) (0.021) (0.025) (0.077)

ln(domestic labor) 0.237*** 0.296**
(0.017) (0.149)

ln(hired labor) 0.132*** 0.131***
(0.011) (0.011)

ln(value of tools 0.041**
and machinery) (0.018)

Method Baseline Baseline + Baseline + IV Baseline + Baseline + First
agric. pract. disagg. labor GPS measure capital Diff.

Implied γ 0.708 0.681 0.724 0.819 0.476 0.725 0.877
Implied α 0.526 0.502 0.490 0.479 0.101 0.533 0.476

Observations 15,541 14,361 14,361 13,933 10,789 11,535 8,082
No. farmers 3,457 3,403 3,403 3,356 2,617 3,321 2,118
R-squared 0.154 0.155 0.155 0.120 0.187
Notes: Robust standard errors in parentheses. Standard errors are clustered at household level. * denotes significant at 10%, **
significant at 5% and *** significant at 1%. All regressions include region-by-period fixed effects and weather controls. Columns 1
to 6 also include household fixed effects. Columns 2 to 5 include indicators of agricultural practices (fertilizers, pesticides, improved
seeds, intercropping, hired labor, and tenure of bulls/oxen). Column 3 disaggregates measure of total labor into domestic and hired
labor. Column 4 uses land available and no. of household members who work in farm in last year as instruments for land cultivated
and domestic labor. All regressions use land cultivated as measure of land, except for column 5 which uses GPS measure of land
available. Column 6 adds the value of farm implements and machinery as a continuous measure of capital. Column 7 replicates the
first difference panel model suggested in Shenoy (2017). Land measured in has. Labor measured in person-days.
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Table A.2: Main results using available land as measure of size

ln(output/land cultivated) Farm productivity
(1) (2) (3) (4) (5) (6)

ln(land -0.073*** -0.101*** -0.230*** -0.037* 0.188*** 0.251***
available) (0.013) (0.013) (0.022) (0.020) (0.011) (0.019)

Controls No Yes Yes Yes Yes Yes
Household FE No No Yes No No No

No. obs. 16,010 14,532 15,740 3,252 16,373 3,249
R-squared 0.003 0.153 0.057 0.250 0.392 0.350
Notes: Robust standard errors in parentheses. Standard errors are clustered at household level. *
denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regressions (except
column 1) include soil and farmer controls similar to Table 2, as well as district fixed effects. Columns 2
to 4 also includes region-by-period fixed effects, while column 3 adds household fixed effects. Columns
4 and 6 use a cross-section of farmers obtained by collapsing the panel data at household level taking
a simple average.
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Table A.3: Yields and farm size using sub-sample of specialized farm-
ers

Outcome variable: ln(output/land cultivated)
(1) (2) (3) (4)

ln(land -0.167** -0.317*** -0.164*** -0.292***
cultivated) (0.068) (0.050) (0.050) (0.056)

Sample: Monocrop 50% or more of farm land planted with:
farmers cassava maize beans

No. obs. 870 1,366 867 673
R-squared 0.266 0.281 0.334 0.446
Notes: Robust standard errors in parentheses. Standard errors are clustered
at household level. * denotes significant at 10%, ** significant at 5% and ***
significant at 1%. Table replicates the results in column 2 of Table 2 using a
sub-sample of farmers that planted a single crop (column 1) or that planted
more than 50% of their farm land with one of the major crops: cassava, maize
or beans (columns 2 to 4).

Table A.4: Farm productivity and farm size using sub-sample of
specialized farmers

Outcome variable = farm productivity
(1) (2) (3) (4)

ln(land 0.238*** 0.175*** 0.247*** 0.209***
cultivated) (0.036) (0.030) (0.031) (0.034)

Sample: Monocrop 50% or more of farm land planted with:
farmers cassava maize beans

No. obs. 870 1,365 866 673
R-squared 0.536 0.461 0.618 0.647
Notes: Robust standard errors in parentheses. Standard errors are clustered
at household level. * denotes significant at 10%, ** significant at 5% and ***
significant at 1%. Table replicates the results in column 1 of Table 3 using a
sub-sample of farmers that planted a single crop (column 1) or that planted
more than 50% of their farm land with one of the major crops: cassava, maize
or beans (columns 2 to 4).
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Table A.5: Yields and farm size using regional and local prices

Outcome variable: ln(output/land cultivated)
(1) (2) (3) (4)

ln(land -0.160*** -0.282***
cultivated) (0.018) (0.025)

ln(land available) -0.583*** -0.637***
GPS (0.019) (0.023)

Output prices Regional (n=5) District (n=109)

No. obs. 14,685 10,330 7,582 5,601
R-squared 0.235 0.365 0.276 0.422
Notes: Robust standard errors in parentheses. Standard errors are clustered
at household level. * denotes significant at 10%, ** significant at 5% and ***
significant at 1%. All regressions include soil, farmer and weather controls similar
to column 2 of Table 2, as well as district fixed effects. Columns 1 to 2 calculate
real agricultural output (at 2009 prices) using median prices by region, while
columns 3 and 4 use median prices by district.

Table A.6: Farm productivity and farm size using regional and
local prices

Outcome variable = farm productivity
(1) (2) (3) (4)

ln(land 0.226*** 0.177***
cultivated) (0.014) (0.020)

ln(land available) 0.157*** 0.142***
GPS (0.013) (0.019)

Output prices Regional (n=5) District (n=109)

No. obs. 15,368 11,146 13,640 9,986
R-squared 0.442 0.495 0.465 0.478
Notes: Robust standard errors in parentheses. Standard errors are clus-
tered at household level. * denotes significant at 10%, ** significant at 5%
and *** significant at 1%. All regressions include soil and farmer controls
similar to column 1 of Table 3, as well as district fixed effects. Columns 1
to 2 calculate real agricultural output (at 2009 prices) using median prices
by region, while columns 3 and 4 use median prices by district.
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Table A.7: Farm productivity and farm size using alterna-
tive TFP estimates

Farm productivity (ln si)
(1) (2) (3)

ln(land cultivated) 0.198*** 0.148*** 0.478***
(0.011) (0.012) (0.017)

Prod. function used Baseline Baseline + First Diff.
used to estimate si capital

No. obs. 15,363 11,184 12,677
R-squared 0.399 0.759 0.395
Notes: Robust standard errors in parentheses. Standard errors are
clustered at household level. * denotes significant at 10%, ** signifi-
cant at 5% and *** significant at 1%. All regressions include soil and
farmer controls and district fixed effects similar to column 1 of Table
3. Columns 1 uses the baseline estimates of TFP, while columns 2
and 3 use alternative estimates from columns 6 and 7 of Table A.1.
These estimates are obtained from a model with a measure of capital
(tools and machinery) and a first difference panel model suggested by
Shenoy (2017).

Table A.8: Main crops

Crops Average % % farmers
area planted who plant crop

Cassava 17.2 58.4
Beans 14.7 60.7
Maize 14.2 55.0
Banana food 13.8 47.5
Sweet potatoes 8.7 39.5
Ground nuts 4.2 20.7
Sorghum 4.0 13.2
Coffee 3.7 19.5
Millet 2.9 12.0
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Table A.9: Usage of farm imple-
ments and machinery

Farm implement or % farmers
machinery use tool
Hoe 99.4
Ploughs 3.8
Pangas (machetes) 86.5
Slashers 30.4
Wheel barrows 10.1
Tractor 0.3
Watering cans 4.1
Pruning knives 11.1
Pruning saws 0.6
Chain/band saws 0.5
Sheller 0.3
Spade 21.9
Fork hoe 6.7
Ox-plough 7.4
Trailer 0.1
Harrow/cultivator 0.4
Weeder 0.2
Planter 0.1
Sprayer 14.7
Pail 2.0
Milk can 1.2

48



B Evidence from other countries

Figure B.1: Farm size and productivity - Peru

(a) Land productivity (lnY/T )

(b) Farm productivity (ln si)
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Figure B.2: Farm size and productivity - Tanzania

(a) Land productivity (ln(Y/T ))

(b) Farm productivity (ln si)
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Figure B.3: Farm size and productivity - Bangladesh

(a) Land productivity (ln(Y/T ))

(b) Farm productivity (ln si)
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Table B.1: Replication of Table 8: Correcting by DRS and market distortions countries

Peru Tanzania Bangladesh
ln(output per ha.) ln(output per ha.) ln(output per ha.)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln(land cultivated) -0.533*** -0.533*** -0.286*** -0.403*** -0.403*** -0.152*** -0.103*** -0.103*** 0.032***
β + γ − 1 (0.012) (0.012) (0.030) (0.019) (0.019) (0.020) (0.012) (0.012) (0.010)

ln(labor/land) 0.259*** 0.447*** 0.476***
γ(1 − α) (0.029) (0.017) (0.016)

Relax CRS Yes Yes Yes Yes Yes Yes
assumption
Add input ratio Yes Yes Yes

Assumed γ 1.000 0.384 0.384 1.000 0.691 0.691 1.000 0.904 0.904
Implied β -0.533 0.083 0.330 -0.403 -0.094 0.157 -0.103 -0.014 0.128

No. obs. 11,359 11,359 11,357 7,899 7,899 7,890 6,506 6,506 6,506
R-squared 0.384 0.205 0.213 0.287 0.234 0.334 0.224 0.201 0.360
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household level. * denotes significant at 10%, ** significant at 5% and
*** significant at 1%. Results replicate columns 1-3 of Table 8. Regressions includes same controls as baseline results in Table 7. Assumed γ obtained
from estimation of production function.
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Table B.2: Robustness checks of yield-size relationship

Peru Tanzania Bangladesh
ln(output per ha.) ln(output per ha.) ln(output per ha.)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln(land cultivated) -0.759*** -0.286*** -0.613*** -0.152*** -0.213*** 0.040***
(0.014) (0.030) (0.031) (0.020) (0.025) (0.010)

ln(land available) -0.498*** -0.363*** -0.083***
(0.012) (0.020) (0.011)

ln(labor/land) 0.259*** 0.447*** 0.476***
(0.029) (0.017) (0.016)

Household FE Yes No No Yes No No Yes No No

No. obs. 11,359 11,359 11,357 7,899 7,899 7,890 6,506 6,506 6,506
R-squared 0.384 0.205 0.213 0.172 0.272 0.379 0.052 0.218 0.378
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household level. * denotes significant at 10%, ** significant at 5%
and *** significant at 1%. Results replicate columns 2-4 of Table 2. Regressions includes same controls as baseline results in Table 7. Column 1 also adds
household fixed effects. Columns 3, 6 and 9 use the production function approach , while other columns use the yield approach.
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Table B.3: Robustness checks of farm productivity-size relationship

Peru Tanzania Bangladesh
ln(output per ha.) ln(output per ha.) ln(output per ha.)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln(land cultivated) 0.183*** 0.136*** 0.176*** 0.163*** 0.201*** 0.154*** 0.078*** 0.111*** 0.083***
(0.011) (0.011) (0.011) (0.017) (0.017) (0.016) (0.010) (0.020) (0.009)

Prod. function used CD by CD + IV Translog CD by CD + IV Translog CD by CD + IV Translog
used to estimate si department region division

No. obs. 11,364 11,364 11,364 7,894 7,055 7,894 6,525 6,525 6,525
R-squared 0.301 0.333 0.314 0.868 0.450 0.576 0.430 0.246 0.234
Notes: Robust standard errors in parentheses. Standard errors are clustered at the household level. * denotes significant at 10%, ** significant at 5%
and *** significant at 1%. Results replicate columns 4-6 of Table 3. Regressions includes same controls as baseline results in Table 7. No. of departments
in Peru = 24. No. regions in Tanzania=26. No. divisions in Bangladesh=7.
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Table B.4: Yields and labor productivity by farm size – United States

Farm size Average Farm Land Value added Value added
(acres) farm size distribution (%) share (%) per acre per worker
1−9 4.8 13.4 0.1 23.3 1.0
10−49 25.4 28.5 1.6 6.6 1.5
50−69 58.1 6.6 0.9 4.7 2.3
70−99 82.2 8.0 1.5 3.8 3.0
100−139 116.0 7.3 1.9 3.0 3.3
140−179 157.4 5.7 2.0 2.6 3.8
180−219 197.7 3.6 1.6 2.9 5.0
220−259 238.0 2.8 1.5 2.6 5.4
260−499 357.8 9.0 7.3 2.6 7.5
500−999 696.6 6.5 10.3 2.8 13.3
1,000−1,999 1376.6 4.3 13.4 2.4 19.3
2,000+ 6103.4 4.2 57.7 1.0 22.7
Notes: Value added per acre and value added per worker are normalized relative to the lowest value.
Data is from the 2017 US Census of Agriculture, Table 71, Summary by Size of Farm. Value added
and adjusted farm labor are computed following Adamopoulos and Restuccia (2014).
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