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Purpose: Exoskeletons are robotic wearables that have the potential to positively support
employees during physical working operations. However, the technology is rather young,
and long-term studies that could positively influence exoskeletons with respect to health,
productivity, and ROI (and thereby support investment in it) are lacking. Accordingly,
logistics companies are cautious about investing in exoskeletons. This paper identifies the
research gaps that should be addressed in further research to change this situation.

Methodology: Based on an extensive literature review following the systematic approach
of vom Brocke et al. (2009), this paper surveys current research regarding the impact of

exoskeletons in intralogistics with respect to productivity and health.

Findings: Since exoskeletons in industrial contexts have been used mainly in pilot trials so
far, few findings from long-term studies are available. Accordingly, the sustainable positive

influence of exoskeletons on productivity and health cannot be empirically proved.

Originality: This paper identifies research gaps for a novel technology that could transform
a sector which is characterized by a high proportion of manual labor, a high age average,

a shortage of skilled workers, and beside increasing complexity.
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1 Introduction

“Exoskeletons are wearable robotic systems that integrate human intelligence and robot
power” (Chen 2016, p.1). Two goals are relevant to considering the implementation of
industrial exoskeletons in operational logistics processes: Improvement of productivity
and optimization of ergonomics (Dahmen et al. 2018a). Because logistics processes are
still affected by a large amount of physical work, rising requirements, cost and
performance pressure, and a lack of labor, strategies to reduce back-pain issues affected
by repetitive lifting and moving of goods are needed to cover rising needs and
requirements in this industrial sector. Exoskeletons have the potential to reduce back
pain and support workers in lifting and moving processes (Constantinescu et al. 2016 I),
especially in areas where layouts and working conditions cannot be easily changed
(Ippolito et al. 2020). Exoskeletons can enhance strength, endurance and capacity and
can thereby help to cover volatile peaks of demand, (reached especially during the
Corona crisis). They can help to reduce repetitive strain occupational injuries, and their
financial consequences (Bogue 2018, Burton 2020, Xie et al. 2014).

44 million Europeans suffer from musculoskeletal disorders (MSDs), 25% suffer from back
injuries, and 23% of sick days in Germany are related to back injuries, caused by physical
work. This leads to 10 billion euros of gross loss and 4% of gross national product
annually (Bogue 2018, Burton 2020, Constantinescu et al. 2019, Koopman et al. 2020).
Thus, exoskeletons exhibit huge economic potential both for countries and for

companies.

Though exoskeletons have the image of being highly valuable for logistics and
manufacturing optimization, statistical evidence and long-term studies that prove their
effect on productivity and health and thereby support investment decisions are missing.
So far, no reasons for this fact have been given, though the potential of exoskeletons to

optimize productivity and ergonomics is stated in many articles.

By using a systematic literature review focused on empirical data and future research,
this paper aims to discover why there is no holistic empirical evidence regarding the

impact of exoskeletons in logistics.
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2 Research Methodology and Literature Search Process

To determine why there is no holistic empirical evidence about the impact of
exoskeletons in logistics despite many relevant articles in the literature, a systematic
review of exoskeleton literature was conducted to follow out the thought that new
knowledge is created by the combination of existing knowledge (Vom Brocke et al. 2019).
The goal of this review was to compile scientific insights and empirical data based on

structured testing and field research, thereby to identify further areas for investigation.

For the literature review for this paper, the theory of vom Brocke et al., based on Baker,
and Durach et al. was chosen as an approved methodological framework, thereby
facilitating a structured scientific overview of existing findings. While vom Brocke et al.
follow a general approach, which fits rather well with exoskeleton technology, Durach et
al. bring the industrial aspect of Supply Chain Management in (Baker 2000, Brocke et al.

2019, Durach et al. 2017). This combination provided a good fit for our research focus.

Based on the mentioned combined frameworks, the literature review used for this paper
followed six process steps (Figure 1): 1) Definition of the research question; 2) definition
of the research scope; 3) research conceptualization and definition of keywords; 4)
literature search (database search based on keyword search); 5) literature analysis,

evaluation and synthesis; and 6) research results and further agenda.

Research Literature
concept- search
ualization (database

Literature
analysis,
evaluation,
and
synthesis

Research
results and
further
agenda

Definition of Definition of
the research the research

question(s) scope Ene el

definition of keyword
keywords search)

Figure 1: Literature-review process applied in this paper

In the following, the literature search process for this paper is described.

The research question defines the focus of the scientific work and the research scope
(Phase 1): Why is there no clear statement in the literature regarding the effect of

exoskeletons on productivity and ergonomics in logistics?
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[ Characteristic ‘ | Categories I
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[ Criticism | Central Issues |
[ Historica | Conceptual Methodological
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Coverage ‘ | Exhaustive REPT&SEH'B‘WE Cenlral.'pwmal |

Figure 2: Taxonomy of literature reviews (following Cooper 1988, p. 109)

Based on the research question, a taxonomy matrix was created (Figure 2) to define the
scope (Phase 2) of the literature analysis (Cooper 1988). Research outcomes were used,
to understand why there is no clear statement in the literature regarding the effect of
exoskeletons on productivity and ergonomics in logistics yet. An integrational approach
was chosen to determine whether data exists already. This section summarizes the
available data from a neutral perspective to shape future research investigation based
on the current status quo. Focus groups for this paper include specialized scholars and
practitioners from logistics, productions, and process disciplines. To initiate further
research, an exhaustive and selective literature research procedure was chosen.

Keywords exoskeleton literature review

Wkeywor2———— Pkeworas R or
Exoskeleton synonyms Discipline Productivity Health
xoskeleton Jogistics jproductivity [proonomic |
exoskeletons intralogistics productiveness ergonomics
exoframe fntra-logistics efficiency health
EX0SUit production pptimization sick days
muscle suit manufacturing iterature investigation performance ispinal disc
hardsuit pssembly key performance indicator spinal disk
power armor profitability jntervertebal disc
powered armor kapability intervertebal disk
powered suit iability demographic change
increase in efficiency demographic transition
improvement in efficiency back pain
impact muscle pain
effect physical stress
invest fuscle stress
jnvestment heart rate
eturn on investment
Bconomic
Economicainess
pconomic efficiency
economic efficiency
kconamic viability
Bconomic analysis
gcanomic feasibility

Figure 3: Keyword search concept
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A catalogue of keywords was created and combined (Pateli and Giaglis 2004) to
conceptualize the study (Phase 3, Figure 3). Synonyms were included, and the current
state of research between the logistics and manufacturing literature was compared, as
exoskeleton use was found to be mainly related to manufacturing. Further investigation
was set to productivity and ergonomics content and empirical data. The first aim was to
find out, if literature reviews already exist regarding exoskeletons, logistics, and impact
on productivity and ergonomics by systematically screening reputable online data bases.
The outcomes were documented in a concept matrix as a starting point for future
research. Only English papers, preferably peer-reviewed ones, were considered; papers
related to rehabilitation or the military were excluded.
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Figure 4: Paper extraction of the literature search

A total of 411 publications were identified in 13 databases (Phase 4). Title and abstract
evaluations based on relevance, accuracy, and purpose were applied; whereby 85
articles were selected for a full paper analysis. After forward and backward analysis, 70

papers were included in this systematic literature review (Figure 5).
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3 Literature Analysis and Synthesis

According to Cooper’s taxonomy, the focus of this paper is set to identify missing
research gaps (Phase 5). The findings were synthesized and documented in a concept
matrix, thereby providing information regarding the content coverage, methodologies,
and empirical data of the included articles to lay foundation for further scientific research
into the application of exoskeletons in logistics and their influence on productivity and
employee health.

Various synonyms for keywords were evaluated. Exoskeleton is the most common noun,
foundin the literature. Powered suit, exosuit and muscle suit created hits, while words like
exoframe, hard suit or power(ed) armor did not yield much data. Therefore, the main
keyword for the analysis became exoskeleton. More than 22,000 hits were found in all
databases by searching only for exoskeleton. Many sources were found which are

connected to the military and the rehabilitation of the elderly and invalids.

Taking the database of Emerald and combining exoskeleton with manufacturing terms
such as production, assembly or manufacturing yielded 345 hits (10.05.2021), while the
result for the combination with logistics or intra-logistics provided only 21 articles. This
phenomenon suggests that a limited number of papers of exoskeletons in logistics exist
compared to manufacturing. This finding can be retraced in other databases as well, as
the results were familiar. Selected papers covered general information about
exoskeletons (de Looze 2016), procedure models for implementing exoskeletons in
logistics (Feldmann et al 2020) workplace designs to use exoskeletons (Dahmen et al.
2018a), and exoskeletons for age management (Grah 2020). In most papers, the
potentials of exoskeletons are mentioned, but rather few papers provide specific data
(Table 5).
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IX

Concept Matri

Table 5
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4 Research Results

This chapter presents the results of the research analysis. Productivity and ergonomic
impacts are considered separately. We begin with a general overview of the image

exoskeletons have in most analyzed articles.
Image of exoskeletons in literature

In all the papers that were analyzed, exoskeletons are considered as a way to improve
worker performance as measured in terms of productivity, quality, and efficiency in
logistics at least in sub-processes, and depending on the device and user attributes
(Constantinescu 2019, Butler 2016, Dahmen and Constantinescu 2020). Precision
increaseis valued as an aspect of performance and workplace increase (e.g. of air-freight
forwarders or ship builders), though cycle times might increase (Dahmen and
Constantinescu 2020, Constantinescu et al. 2019, Diefenbach et al. 2021, Feldmann et al.
2020, Kawale and Sreekumur 2018). Enhancement of strength and an increase of motion
intension are supposed and therewith, an achievement of higher performance (e.g. to
carry and lift heavy loads and reducerisks for injuries; Chen 2016, Cimini 2020, Kuhlmann
and Klumpp 2017). Scientists even see the potential that exoskeletons could replace
loading technologies like forklifts (Brown et al. 2003, Burton 2020).

It is expected that exoskeletons can reduce injuries and fatigue, especially for tasks
related to extended standing, heavy lifting, moving, carrying, pushing, pulling,
assembling, repetition, constant bending, and un-ergonomic body postures when the
required level of vigilance needs to be high and constant (Braces et al. 2019, Bogue 2018,
Burton 2020, Constantinescu 2019, de Vries et al. 2019, Edirisinghe 2019). Exoskeletons
are seen as a technology that may be used to support the Logistics 4.0 operator in the
future (Di Pascale et al. 2021, Kaasinen et al. 2020; Karre et. al. 2017, Romero et al. 2016,
Schmidtler et al. 2015, Winkelhaus and Grosse 2020). Exoskeletons also show potential
for use in the biological transformation of hybrid manufacturing (Dimitropoulos et al.
2020, Miehe et al. 2020).
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However, there are also negative assumptions: Productivity decrease due to limitations
of movements and motions are expected (Dahmen and Constantinescu 2020).
Effectiveness may vary, while decision makers have to consider the benefits compared

to the costs of exoskeletons (Toxiri et al. 2019).

The positive impact of exoskeletons regarding ergonomics and health is attested in
literature (Constantinescu et al. 2016 1). Exoskeletons are thought to have the potential
to reduce workload; to support the upper body and hips during heavy-load handling; to
prevent muscle pain, stress, and injuries; and to reduce costs and sick days due to
musculoskeletal disorders (MSD; Bogue 2018, Braces et al. 2019, Brown, et al. 2003,
Cochran 2020, Chu et al. 2014, Constantinescu et al. 2016 |, Khakurel et al. 2018).

Also, the social component is relevant: Exoskeletons can support the reintegration of
disabled workers and can enable elderly people to extend their longevity and retain the
capability to fulfill their tasks. Employers benefit in terms of resilience and cost
reduction, flexibility regarding shortages at the job market, and by avoiding investments
in automation technology (Dahmen and Constantinescu 2020, Staub and Anderson
2019).

In the future, exoskeletons may collect data on heart rate, stress responses and fatigue
and thereby keep workers healthy and productive (Khakurel et al. 2018, Maltseva 2020).

Thus, most of the literature expects exoskeletons to impact productivity and ergonomic
optimization, but it does not prove that this will happen. Most papers do not provide
empirical data (compare Figure 5) and build on each other by referring to a limited
number of test scenarios which state that it “might be” that exoskeletons will influence
ergonomics or that it is “foreseen” that researchers will measure the impact of
exoskeletons with simulations (Karvouniari et al. 2018, p.3 & 6). However, the impact of
ergonomics still “has to be critically proven for all situations”, as Dahmen et al. wrote in
2018 (a, p. 3).

Therefore, the authors analyzed and systemized existing empirical data in the literature

regarding productivity and ergonomics in industrial processes.
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Data-based findings regarding the productivity of exoskeletons in the literature

Compared to the number of papers reviewed, the number of papers that deliver data is
small (19:70 =27, 1%, Figure 5).

Baltrusch et al. tested a passive trunk exoskeleton in general tasks which are not directly
related to logistics. The exoskeleton affected performance both positively and
negatively. A decrease of performance occurred in seven out of 10 tasks. Still, the
potential for use in static, repetitive bending tasks was described (Baltrusch et al. 2018).
Efficiency was found to increase in lifting, but to decrease in walking (Baltrusch et al.
2019).

Butler executed a field test in a welding company. He expected that the welders would
feel less fatigue and would increase productivity. In a test scenario, he demonstrated an
improvement in productivity of 27-86% due to the better blood supply in the muscles of
the workers. The workers worked more efficiently, more accurately and longer, and
muscle pain was reduced (Butler 2016). He found that exoskeletons can prevent fatigue
by slowing muscle activities, which can reduce the risk of injuries during work (Butler
2016).

Ford tested passive exoskeletons in 2015-2016 and reported an up to 83% reduction in
injuries on assembly lines (Bances et al. 2019), lowa State University analyzed fatigue

reduction in shoulders and biceps (Bances et al. 2019, Burton 2020).

Range of motions (e.g. arm ranges) can be increased by exoskeletons and liftable weight
can be increased up to 50-70% (Brown et al. 2003, Butler 2016).

De Looze et al. conducted a review of 40 papers and 26 industrial exoskeletons in 2015,
analyzing potential impacts on wearers (De Looze et al. 2015). Thirteen exoskeletons
were evaluated regarding the effect on physical loading, holding, lifting, and bending.
Reductions in muscle activities between 10% and 70% were evaluated (De Looze et al.
2015). For active exoskeletons, muscle-activity reduction between 20% and 70%

(dynamic lifting, holding above head) was documented (De Looze et al. 2015).

Studies with arm exoskeletons showed a reduction of muscle activity in arms and
shoulders (42 to 62%) and an extension of working endurance in realistic work activities

(de Vries et al. 2019). Overhead manufacturing tasks were also evaluated (de Vries et al.
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2019). Reduction of physical load was measured to compare ability with and without
exoskeletons. Mixed findings and mixed results were documented in the studies (de Vries
etal.2019).

In another example, muscle-activity reduction of between 32% and 64% were
demonstrated for the bending, turning, and squatting tasks of logisticians in a bank
(Geregei et al. 2020). Searching for documents with an exoskeleton was faster than
without, thereby showing a connection between relaxed muscles and concentration due

to less fatigue and less muscle activity (Geregei et al. 2020).

Reduction of muscle activity and the enhancement of weight handled during an upper-
arm and upper-head task were registered in manufacturing. Muscle activities were

reduced with the exoskeleton working with and without load (Hyun et al. 2019).

Koopman et al. evaluated a passive back exoskeleton. They measured a reduction of
compression of 21% while bending and of 14% while lifting (Koopman et al. 2020).

Lee and Cha did a statistical analysis of walking tasks with and without loads and
exoskeleton, taking lap time as measurement of effectiveness (Lee and Cha 2021). They
demonstrated that the exoskeleton reduced fatigue of workers while carrying loads. At
the same time, the lap times increased, using an exoskeleton compared to walking

without one. This means a decrease in productivity (Lee and Cha 2021).

Li et al. analyzed a logistics operator who lifted 20 kg loads with motion-capture
software, sensors, and a dynamometer treadmill. The oxygen level was reduced by 9.45%
(Li et al.2021).

Poliero at al. tested exoskeletons in lifting, carrying, re-placing, and walking with 1.2 to
16.2 kg loads, with and without exoskeletons. Lifting activities were supported well, but
anegative impact for activities like carrying was found. Lumbar muscle-activity reduction
up to 12% was measured, but no clear evidence for exoskeleton efficiency was found
(Poliero et al. 2020).

Schrdter et al. 2020 analyzed the influence of support systems on human cognitive
function in construction. The exoskeleton reduced fatigue, improved concentration, and

lowered concentration errors (Schréter et al. 2020).
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Spada et al. tested exoskeletons in static and repeated manual tasks. A 30% performance
increase due to decreased fatigue was observed. Stamina in holding was increased. Time
reduction was reported in 2/3 of the cases and time extension in 1/3, but the task was
fulfilled by three times more volunteers with an exoskeleton than without (Spada et al.
2017).

Toxiri et al. compared the effects of exoskeletons while moving weights between two
positions. In all cases, muscle activity with an exoskeleton was less than muscle activity

without one. The active one especially showed efficiency (Toxiri et al. 2018).

An analysis of lifting tasks based on muscle activity was conducted by Yong et al. They

demonstrated a reduction of muscle activities by 24% to 39% (Yong et al. 2019).

Only one example for exoskeletons in logistics was found. Picking, lifting, and carrying of
parcels from pallets in a warehouse was evaluated with acceleration sensors, motion
recording and electromyographic measurements (EMG). Moderate relief effects of 5% to
10%, no difference in efficiency while lifting, and a decrease of productivity for walking
were identified (Winter et al. 2019).

Data-based findings regarding the ergonomics of exoskeletons in the literature

Compared to studies focusing on productivity of exoskeletons, there are even fewer

empirical studies available regarding the ergonomics of industrial exoskeletons.

Many papers describe prototype testing of exoskeletons. Roveda et al. (2020) presented
a design methodology for an active exoskeleton aiming to support the lower back by
redistributing the spinal load and thereby relieving the operator (Roveda et al. 2020).
Rogge et al. present the Stuttgart Exo-jacket and describe how functions could be
designed and the impact of the exoskeleton can be analyzed. However, they mention that
there are no standardized test procedures for exoskeletons (Rogge et al. 2017). Designing
an exoskeleton is seen as difficult, as criteria include weight, performance, and comfort
(Lanotte et al. 2020). Descriptions of the Robo-Mate project were summarized by
O'Sullivan et al. (2015), and a qualitative study and interviews with farmers were
conducted in 2020 (Omoniyi et al.2020). Schnieders and Stone (2017), and Stadler and
Scherly (2017) summarized designs and exoskeleton types (Schnieders and Stone 2017).
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Fox et al. (2019) describe the potential positive and negative effects of exoskeletons: e.g.
reduction of forces, mechatronic support, reduction of strain, and transfer of loads.
However, they do not provide concrete, quantified data (Fox et al. 2019). Furthermore,
the impact of exoskeleton use depends both on the individual worker’s health, body, and
muscle conditions and on load characteristics like shape, weight, volume, and workplace
(Fox et al. 2019).

Due to a lack of conversion methods to identify ergonomic impact, most available
ergonomic investigation is based on virtual simulations (Constantinescu et al. 2019,
Dahmen and Constantinescu 2020, Dahmen et al. 2018b). A computer analysis for lifting
examined a reduction of muscle activity of 58% with an active exoskeleton. In addition,
tests with finger exoskeletons proved the extension of movements of injured fingers
(Ippolito et al. 2020).

Koopman et al. evaluated compression forces, muscle activity and kinematics,
emphasizing that the exoskeleton might reduce the risk of low back pain during static
bending and lifting activities (Koopman et al. 2020). The compression force was reduced
by 13% to 21% for static bending and by an average of 14% for lifting, thus indicating a

reduction of strain (Koopman et al. 2020).

Heart-rate measurements for ship-builder analysis demonstrated a much lower heart
rate working above the head with an exoskeleton than without (Moyon et al. 2018).

Sylla et al. evaluated the ergonomics of an exoskeleton used to hit a target two meters
above ground with a screw gun. They used reflection markers, floor scales, and motion-
capture technologies. The exoskeleton reduced the mechanical energy up to 16.72% and

decreased the process cycle time, which means a productivity increase.
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5 Discussion

As demonstrated, only a limited amount of data is provided by the literature (Figure 5) to
cover the influence of exoskeletons for operational logistics processes. Most articles that
provide data regarding exoskeletons in an industrial context take pilot trials as a basis.
Long-term studies are missing, and real-life data is rare, as most data is created in
laboratories or by computer simulation. Accordingly, the sustainable positive influence
of exoskeletons on productivity and health cannot yet be proved empirically. Therefore,
two research questions are formulated for future investigation based on the findings of

this systematic literature analysis:
RQ 1: Do exoskeletons increase productivity in logistics operations?
RQ 2: Do exoskeletons positively affect the health/ergonomics of workers in logistics?

To answer these questions, the following research gaps and potential further

investigation must be considered:
No clear statements regarding the effects of exoskeletons

In the literature, you can find risk-management strategies, implementation procedures,
decision guidelines, and other useful information regarding industrial exoskeletons; but
no clear statement of the effects of exoskeletons exist at present. Most authors attribute
to exoskeletons a high potential to support operational challenges like productivity,
efficiency, ergonomics, safety, and integration of the elderly, but most papers do not
provide appropriate data. It stands to reason that exoskeletons can improve

productivity, but it is not clear to which extent.

Understanding the advantages of exoskeletons is partly given, disadvantages of

exoskeletons or shifts of stain to other regions of the body are not analyzed yet.
Need of long-term studies

Most data provided by the literature covers trials and short-term test results. Long-term
studies of the use of exoskeletons in industry have not yet been published (Dahmen et al.
2018a, Feldmann et al. 2020, Fox et al. 2019, Winter et al. 2019). Studies with appropriate

numbers of participants, continuous screening, and long periods of use are needed to
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validate the effects of exoskeletons in practice and their potential to reduce work-related
musculoskeletal diseases and sick days (Dahmen and Constantinescu 2020, Daub 2017,
de Vries et al. 2019, Geregei et al. 2020).

Deeper investigation in logistics processes and tasks

In the current literature, only single-handling tasks, like static holding or dynamic lifting
were evaluated. The trials were conducted mainly in laboratories, not in authentic
environments that truly cover the challenges of logistics processes. Long term studies
have not yet been conducted in factories or logistics facilities under real working
conditions (Lee and Cha 2021, Poliero et al. 2020).

The complexity of logistics operations with experienced logisticians like changing
packaging sizes and weights, picking, packing, forklift driving and changing tasks within
one work shift have not been covered: The high diversity of tasks and features of
exoskeletons makes it difficult to create a general estimate of whether and how

exoskeletons support productivity increase (Dahmen et al. 2018a).
Standardized productivity-measurement methods for exoskeletons

To analyze the positive or negative efficiency of exoskeletons in logistics, a concrete
scientific assessment methodology based on data is needed (Dahmen and
Constantinescu 2020). Suitable methodologies for calculating the operational impact of
exoskeletons based on key performance indicators (KPI) are needed (Dahmen et al.
2018a,Dahmen et al. 2018b). Methods-time measurement (MTM; or an analysis according
to Verband fiir Arbeitsgestaltung, Betriebsorganisation und Unternehmensentwicklung
(REFA)) is an option for the evaluation of these KPIs (Lee and Cha 2021). Optimization of
time, cost and quality can be used to evaluate the return on investment potential of

exoskeletons (Dahmen et al. 2018a, Dahmen and Constantinescu 2020).
Standardized ergonomics-measurement methods for exoskeletons

Data regarding effects on ergonomics is rare. Loads that are reduced at one body part
might be increased at another (Fox et al. 2019), and counter activating due to external
forces is possible (De Looze et al. 2015). Lifting and carrying of loads, static working
postures, and repetitive work require a uniform scheme to examine the impact of
exoskeletons (Daub 2017).



Kaupe et al. (2021) 549

Limited variety of measurement technologies - new technologies needed

The main analysis methods used to evaluate ergonomics are the measurement of muscle
activity and heart rate. Alternatively, computer simulation is used. New technologies that
evaluate the impact of exoskeletons are needed. Virtual simulation might be useful, but
concrete data is still missing. One option to collect data could be the transformation of
exoskeletons to smart wearables, connected to the Internet of Things (10T). This could
create feasible real-time data and the option to document productivity increase and cost
savings by data analytics and machine learning (Constantinescu et al. 2016 II).
Exoskeletons need sensors to analyze the impact on the human body depending on the
individual attributes of the wearer (Braces et al. 2019, Lee and Cha 2021). A continuous
improvement in performance, ergonomics, risk of disorders and stress levels might be
possible in future (Braces et al. 2019, Hoffmann et al. 2020, Ippolito et al. 2020, Sahashi
et al. 2018, Sgarbossa et al. 2020).

Economic evaluation of exoskeletons

Also, the economic impact of exoskeleton effects needs to be addressed. Monetary and
non-monetary methodologies, like static (cost comparison, return on investment, pay-
off method) and dynamic (net present value, internal rate of return, equivalent annual
cost) methodologies can be applied to document the effects in productivity and
ergonomics (Todorovic et al. 2018). Key performance indicators, like cycle time,
throughput, overall equipment effectiveness, or reduced overtime, can provide a basis
for the evaluation of product and process quality (Baszenski 2012, Bokranz and Landau
2012, REFA 1997, Todorovic et al. 2018). For ergonomics, the reduction of sick days and
the motivation of the employees are mentioned most (Todorovic et al. 2018). Evaluation
could be applied in three phases: as-is situation, optimized situation with exoskeleton

use, and comparison of both situations over a certain time (Todorovic et al. 2018).
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6 Conclusion

The objective of this paper is to identify research gaps that should be addressed in further
research to demonstrate the influence of exoskeletons on productivity and ergonomics
of workers in logistics operations. This academic examination and additional empirical
evidence will support the investment in exoskeletons to counter operational peaks, labor
shortage, and high rates of sick days in future. A systematic literature review was
conducted to analyze the current status quo in the literature.

To this point, there had been no literature review which systematically covered
exoskeleton impact on productivity and ergonomics in logistics. This paper closes this
gap.

Based on the findings from the literature, detailed information regarding the
investigation processes was created and summarized in a concept matrix, thus providing

an overview of exoskeleton articles, involved industries, effects and empirical data.

Most papers emphasize an effect of exoskeletons on productivity and ergonomics which
would economically support an investment, but most papers do not provide data. The
data that is presented, is based mainly on temporary tests and trials with few selected
tasks that do not cover the whole range of logistics processes. Long-term studies,
particularly ones regarding the impact of ergonomics, are lacking. There is currently no
clear procedure for tackling productivity and ergonomic benefits. Furthermore, the use

of sensors and computer calculation has not yet seen development.

Based on these findings, two research questions were formulated to pursue the study of
this processually and socially important topic: RQ 1: Do exoskeletons increase productivity
in logistics operations? RQ 2: Do exoskeletons positively affect the health/ergonomics of
workers in logistics? Further research is needed to create relevant data. Deeper
investigation of logistics processes and mid- and long-term studies regarding
productivity and ergonomics are needed to prove the positive influence of exoskeletons.
Extension of applied technologies, such as sensors or simulations, could support further

research. In particular, the development of smart exoskeletons as part of the Internet of
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Things could transform a sector currently characterized by a high proportion of manual

labor, high age average, a shortage of skilled workers, and increasing complexity.

Negative impacts have not yet been studied. Long-term evaluations and additional
measurement technologies are needed to evaluate the influence of exoskeletons on the
health of their wearers.

Limitations are given. Literature reviews cannot be complete and always represent a
snapshot of time. More research results might become available or may be published
soon.
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