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Purpose: Industry 4.0 has increased the availability of real-time data in manufacturing 

systems, but scientific evidence about the value stemming from such data is still lacking in 

several fields. This paper studies data-driven approaches for the assignment of tasks to a 

fleet of mobile robots transporting parts to the stations of a mixed model assembly line. 

The approaches exploit real-time data concerning the robots and assembly stations state. 

Methodology: An agent-based simulation model of the system, including factory 

warehouses, assembly stations, and robots, is developed and validated through a real case 

in the automotive industry. 

Findings: The paper proposes a model that measures the part feeding system performance 

in terms of transportation tasks completion time, idle time of the assembly stations due to 

lack of materials, and amount of inventories at the assembly line. Different data-driven 

approaches are considered, differing among each other for the type of real-time data used 

and for the update frequency of the task assignment. 

Originality: The developed model enriches the ones presented in previous literature by 

including new information (e.g., robots failures) and new data-driven approaches, such as 

the dynamic assignment of tasks to robots. 
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1 Introduction 

The transition towards Industry 4.0 is deeply changing production and logistics systems, 

relying on new paradigms such as Internet of Things (IoT) and Cyber Physical Systems 

(CPS). Factories are turning into networks of smart objects, equipped with sensing 

technologies and processing units, coupled with communication technologies, with the 

ability of real-time information perception, transmission, and processing (Qu, et al., 

2017). More and more often, such real-time information is being fed to decision support 

systems, replacing stochastic data and enhancing the responsiveness of decisions. Some 

application fields have been extensively investigated in the scientific literature, spanning 

from real-time machine diagnosis for maintenance purposes (O’Donovan, et al. 2015) to 

production planning and control, driven by real-time information about the status of 

processes, equipment, and materials, combined with frequently updated customer 

requirements (Zhang et al. 2017; Müller, et al. 2018). However, the increasing adoption of 

new technologies makes a large amount of real-time data available also for supporting 

other decisions, still understudied in the extant literature, for which there is still a lack of 

scientific evidence about the value stemming from the use of real-time information. It is 

the case of the task assignment to logistics resources replenishing production stations 

with materials. In the current business scenario, this problem is becoming more and 

more complex given the increasing demand volatility and product personalization 

request coming from the market, which is leading to growing product variety and smaller 

batch dimensions, often managed with the adoption of mixed-model assembly lines 

(Faccio, 2014). Factory logistics resources are required to feed assembly stations with 

small quantities of a wide range of materials, delivered in time for the start of production 

operations but without piling up too much stock on the shop floor (Schmid and Limère, 

2019). The exploitation of real-time data could be an effective way to manage this 

complexity, by dynamically scheduling logistics resources so as to accommodate the 

evolving requirements of customers and manufacturing systems, always knowing when, 

where, and in what way to deliver materials (Hofmann and Rüsch 2017; Tao and Qi, 2019). 

In literature, most contributions present offline scheduling methods, which generate 

schedules based on offline data like average part consumptions and layout distances 

(e.g., Choi and Lee, 2002; Rahman et al., 2020). Only few studies propose online 
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scheduling methods of tugger trains (Zhou and Xu, 2017) and mobile robots (Kousi et al., 

2019), exploiting real-time data gathered on the shop floor. However, these studies do 

not present any tools to estimate the performance improvement resulting from the use 

of real-time data, compared with offline scheduling.  

This paper presents a simulation-based tool for assessing the performance of different 

scheduling methods of the material handling equipment transporting materials to a 

mixed model assembly line. Following Kousi, et al. (2019), the problem of assigning 

replenishment tasks to a fleet of autonomous mobile robots (AMRs) is considered. AMRs 

are emerging as an alternative to traditional automated guided vehicles (AGVs). AGVs are 

extensively used in factories also for part feeding at mixed model assembly lines (Boysen, 

et al. 2015), but require great effort in coordination, lack flexibility, and often ask for 

human intervention for loading and unloading parts (Kousi, et al. 2019). Compared to 

AGVs, AMRs do not require expensive investments in navigation infrastructures, since 

they navigate thanks to simultaneous localization and mapping algorithms (Köseoğlu, 

Çelik and Pektaş, 2017). Moreover, they are becoming more and more collaborative with 

loading/unloading capabilities and have better built-in sensing and communication 

capabilities than AGVs (Liaqat et al. 2019), thus representing a more suitable technology 

when dealing with the use of real-time data. 

The presented simulation tool allows assessing the value stemming from the use of real-

time data in the task assignment to a fleet of AMRs, by comparing the performance of 

offline and online scheduling methods. Real-time data which might be exploited in the 

scheduling concerns both the AMRs and the assembly stations. The considered 

performance measures include task completion times, idle times at the production 

stations due to the lack of materials, and stock levels near the stations.  

The remainder of the paper is organized as follows. Section 2 reports a literature review 

on the use of real-time data in factory logistics and on the scheduling methods of 

material handling vehicles. Section 3 describes the considered factory logistics system 

and scheduling methods, while Section 4 presents the simulation model and Section 5 

reports its validation through a real case in the automotive industry. Finally, Section 6 

includes conclusions and directions for further research.  
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2 Related literature 

This section reports a literature review on the use of real-time data to support decisions 

in factory logistics systems (Section 2.1) and on the scheduling methods of material 

handling vehicles adopted in factories and warehouses (Section 2.2). 

2.1 Real-time Data in Factory Logistics Systems 

The extant literature encompasses a few studies which highlight the aims and potential 

benefits related to the use of real-time data within decision support systems in factory 

logistics. Most of these studies adopt qualitative methodologies, based on literature 

reviews (e.g., Zhang, Zhu and Lv, 2018) and case studies (e.g., Müller, et al. 2018), while 

only very few contributions present quantitative analyses (e.g., Zhou and Xu, 2017).  

Two main purposes of the use of real-time data emerge from the extant literature, 

namely routing of material handling vehicles (e.g., Zhang, Zhu and Lv, 2018) and task 

assignment to logistics resources (e.g., Yan, Zhang and Fu, 2019). Different types of real-

time data are considered in literature, gathered through different types of connected 

entities, intended as smart objects equipped with sensing and communication 

technologies. Three main categories of connected entities are found:  

• the moved materials: raw materials, components, work-in-process, and/or 

finished goods (e.g., Mörth, et al., 2020). The real-time data they gather 

includes position, quantity, and consumption;

• the material handling equipment (e.g., Thoben, et al., 2017; Zhang, Zhu and 

Lv, 2018). The gathered real-time data includes the material handling 

equipment position, battery level, assigned tasks, speed, acceleration, 

blockages, and operating conditions;

• the destination or consumption points, i.e., warehouses and production 

stations (e.g., Zhou and Xu, 2017; Kousi, et al., 2019). The gathered real-time 
data includes inventory levels for each item, queues, cycle times, and 

stoppages. 

The reviewed contributions also list the benefits which could be gained from the use of 

real-time data. These include: lower inventory levels (e.g., Zhang, et al., 2015), reduced 

travel time of logistics resources (e.g., Thoben, et al., 2017), reduced assembly errors, and 
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lower idle time of production stations (Kousi, et al., 2019). Nonetheless, the studies either 

provide only qualitative considerations or present quantitative insights concerning a 

specific case, without providing a tool to generalize their results. For instance, Thoben, 

et al. (2017) describe the case of a German gear manufacturer; they show that a dynamic 

routing of tugger trains, based on real-time vehicles positions and assembly stations 

states, allows reducing the number of replenishment cycles by more than 60% compared 

to the use of milk run tours with fixed routes.  

2.2 Material Handling Equipment Scheduling 

A wide body of literature is available on the scheduling of material handling vehicles in 

warehouses and factories, which represents one of the main operational decisions in 

material handling systems and also deeply affects the tactical problem of estimating the 

required number of vehicles (Le-Anh and de Koster, 2006). The scheduling methods can 

be grouped into two main classes: offline methods, according to which the scheduling is 

performed before the start of operations, and online methods, according to which tasks 

are assigned to material handling vehicles during the running of operations, based on 

data gathered on the shop floor. Most offline scheduling methods deal with the solution 

of the vehicle routing problem (VRP), which is a generalization of the traveling salesman 

problem with more than one agent and with limited capacity of the vehicles to which a 

series of tasks must be assigned. These problems are known to be NP-hard and literature 

presents a number of heuristics to cope with them (e.g., Laporte, 1992), using 

deterministic and static information known in advance. The developed schedule is very 

sensitive to changes in information (Mes, et al. 2007). In addition, the time required for 

the algorithms to update the schedule may not allow a timely response to unexpected 

events such as equipment failure or rush orders; therefore, it is not practically feasible to 

use offline methods in dynamic and stochastic environments (Le-Anh & De Koster, 2006; 

Li, et al., 2019). Online scheduling methods allow assigning tasks to vehicles based on 

real-time or nearly real-time information gathered on the shop floor (Li, et al., 2015). 

Egbelu and Tanchoco (1984) study alternative methods, where the load is assigned to a 

vehicle based on the optimization of one parameter which might be either the distance 

between the vehicle and the load, the vehicle idle time, or the vehicle mean utilization. 
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More recent studies present methods based on the combination of different parameters. 

For instance, Li, et al. (2019) present a mixed-integer programming model for AGVs 

scheduling in warehouse sorting operations, where the objective function to be 

minimized includes a weighted average of the makespan, the number of AGVs in the 

system, and the amount of electricity used by the AGVs. Shifting the focus to mobile 

robots, Nielsen, et al. (2017) consider a system where a single robot transports small unit 

loads from a supermarket to multiple-step feeders of a machine. When the stock level at 

a feeder reaches a threshold value, a material replenishment request is issued. A genetic 

algorithm is proposed for the scheduling problem, aiming at minimizing the total robot 

travel time and the total tardiness of the tasks. Kousi, et al. (2019) consider a fleet of AMRs 

feeding a mixed-model assembly line and present a service-oriented architecture that 

orchestrates the material replenishments at assembly stations and collects real-time 

data from the shop floor. Replenishment requests are issued based on real-time 

inventory levels, and the scheduling method assigns tasks to the AMRs so as to minimize 

the weighted average of the overall traveled distance and the tour duration, which are 

computed using the real-time position of robots and considering a fixed battery charging 

time for each robot.  

3 System Description 

This section describes the general layout of the system considered in this study (Section 

3.1) and the scheduling process of mobile robots within this system (Section 3.2). 

3.1 Main Components and Layout 

The investigated system consists of a mixed-model assembly line and a number of 

supermarkets. The line, made of several assembly stations, can produce different types 

of finished products, using different types of materials. Each finished product type 

requires using a known quantity of one or more material types at each station and entails 

a certain service time. In every production shift, a target production should be achieved 

within the available time. Materials are handled in small boxes, containing multiple units 

of one material type each. At each assembly station, at least one box of every material 
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type used at that station is stored. Moreover, extra stock of each material type is kept at 

the supermarkets, which are decentralized warehouses located on the shop floor. AMRs 

are in charge of replenishing assembly stations with materials. Each robot can move up 

to multiple boxes simultaneously, and a typical robot movement involves the arrival at 

the supermarket, the load of one or more boxes, the travel to the stations requiring the 

boxes, and the unloading of the boxes. Robots might incur in failures (e.g., stoppages due 

to the presence of obstacles that cannot be avoided or mechanical failures) and have a 

certain level of battery autonomy, which is restored every time the robot is sent to a 

charging station. For the sake of example, a system with 4 assembly stations, 2 

supermarkets, 6 types of materials, 2 robots, and 1 charging station is shown in Figure 

1. 

Figure 1: System layout – Example 

Each supermarket or station can process one robot at a time. Therefore, robot queues in 

front of supermarkets and stations are taken into account. 
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The system also includes a central supervisor node assigning replenishment tasks to 

AMRs. Depending on the system configuration, the supervisor can also receive real-time 

data from robots (i.e., position, state, and battery level) and assembly stations (i.e., state 

and inventory levels inside each box stored at the station), and exploit such data in the 

scheduling process. 

3.2 Scheduling Process 

The central supervisor may assign tasks to AMRs according to three different scheduling 

methods, differing among each other for the task assignment logic, for the use of real-

time data, and for the schedule update frequency based on such data. The simplest one, 

called Offline-First Available (OFF-FA) method, is an offline scheduling method that 

assigns replenishment tasks to the first available robot, without exploiting real-time data 

from the system. If all robots are busy, the task is assigned to the robot with the minimum 

number of already assigned tasks. The replenishment requests are generated according 

to a periodic review model and events such as station stoppages or robot failures are not 

taken into account.  

The remaining three methods work according to the two-phase task assignment process 

described in the following. Whenever the inventory level of a material at an assembly 

station reaches a pre-defined threshold level, a replenishment request for a box of that 

material is issued and the task allocation procedure is initiated. The replenishment 

request is split into a pick-up and a drop-off task, executed by the same robot. Since each 

robot can be in charge of more than one replenishment request at a given time, a multi-

load task assignment method is implemented. The aim is to assign tasks to robots in 

order to minimize the total execution time of the schedule and avoid idle times of the 

assembly stations due to lack of materials. More in detail, the scheduling process can 

be divided into two main phases (Figure 2).  
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Figure 2: Scheduling process 

In the Combinatorial phase, whenever new pick-up and drop-off tasks must be assigned, 

the method compares all possible tasks permutations for each robot. Permutations 

represent sequences of tasks created starting from the current schedule of each robot 

and adding the new tasks. Only feasible permutations are considered, i.e., sequences 

where pick-up locations (i.e., supermarkets) are visited before the corresponding drop-

off locations (i.e., assembly stations). Moreover, permutations which imply the loading of 

more boxes than the actual capacity of the robot are excluded. The permutations are 

compared based on the total schedule time, an indicator corresponding to the time 

needed to complete the entire sequence of tasks, increased by a penalty every time a 

station is expected to be idle due to lack of materials. To compute such an indicator, the 
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finishing time of each replenishment request must be estimated and compared with the 

estimated time at which the station reaches the idle time. Thanks to the possibility to 

exploit real-time data, in online scheduling methods the finishing times of the requests 

are estimated based on the actual robots positions and states. Moreover, the time of 

station blockage is estimated starting from the actual inventory level. Besides pick-up 

and drop-off tasks, also battery charging times are included when computing the total 

schedule time. An opportunity charging strategy is adopted (Le-Anh & De Koster, 2006): 

a robot is charged either when it is idle and its battery level is below a certain threshold 

(e.g., 60%), or when it reaches a critical battery level (e.g., 20%). In the online methods, 

the time of charging end can be estimated with the real-time battery level and queues at 

the charging station, thus allowing to assign tasks to the robots while they are charging. 

At the end of the Combinatorial step, the permutation leading to the lowest total 

schedule time is identified and the task is assigned to the corresponding robot. In the 

ensuing Monte Carlo-based phase, reallocations of tasks among different AMRs are 

evaluated. In fact, given the stochasticity of events (e.g., robot failures and machine 

stoppages), a task previously assigned to a robot could provide a lower total schedule 

time if assigned to another robot. Therefore, a Monte Carlo simulation-based procedure 

consisting of multiple runs is followed. In each run, a couple of pick-up and drop-off tasks 

are randomly picked from the pool of all the tasks which have not started yet, and all 

possible task permutations are evaluated, considering all the AMRs. If this phase provides 

a better schedule than the previous one, tasks are re-allocated according to it.  

The three scheduling methods are called Offline-Two-Phase assignment (OFF-TP), Real-

time-Two-Phase assignment (RT-TP), and Real-time-Two-Phase Dynamic assignment 

(RT-TPD). The OFF-TP is an offline method that feeds the developed two-phase task 

allocation process with average and static data, like the average travel distances 

between each couple of elements in the system and the average consumption of each 

material. Although being an offline scheduling method, the OFF-TP differs from the 

simpler OFF-FA because it uses a higher amount of data and aims to minimize the total 

schedule time. The RT-TP is an online scheduling method according to which a new 

replenishment request for a box at a station is triggered when the actual level of 

inventory reaches the threshold value set for the corresponding material type. Schedule 
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times are computed based on actual AMRs positions and battery autonomy, AMRs and 

stations states, and actual queues. Finally, the RT-TPD is an online method that differs 

from the RT-TP for the schedule update frequency: the schedule is updated dynamically, 

based on real-time information continuously gathered on the shop floor. In other words, 

the two-phase task assignment process is run not only when a new replenishment 

request is issued, but also at defined time intervals; the shorter the time interval, the 

more the schedule is reactive to stochastic events.  

4 Model Description 

This section presents the agent-based simulation model developed to estimate the 

performance resulting from the use of the task assignment methods described in Section 

3.2. Agent-based simulation has been deemed suitable due to the nature of the 

investigated system, where AMRs, supermarkets, stations, and the central supervisor 

interact with each other, driving operations planning and execution. In fact, differently 

from other simulation approaches used in this field such as discrete-event (Yin and 

Mckay, 2018), agent-based simulation allows representing complex interactions among 

the actors of a system, accounting for state variables that interrelate with one another 

and change on a continuous basis (Bonabeau, 2002).  

The pivotal elements of an agent-based simulation model are the so-called agents, which 

attempt to maximize their utility functions by interacting with other agents and 

resources. Each agent is described by a series of attributes defining its state, which 

evolves in time as a reaction to external events. In the developed model, the agents are 

the AMRs, the assembly stations, the supermarkets, the charging stations, and the central 

supervisor. The other elements in the environment, namely boxes, tasks, and WIPs (i.e., 

products being assembled at the stations), are represented by data structures, rather 

than agents, since their relationship with the other entities is simpler and does not 

require evolution of states.  

The model has been developed in Python language, using the Mesa module. In this 

module, a method called STEP is run at every simulation cycle for each agent and enables 

the progression of states of the agents. Three types of classes are defined in the 



Scheduling Mobile Robots in Part Feeding Systems 

developed model. The Model class ensures that each other agent in the model progresses 

its state at every simulation cycle, by calling the STEP method for every agent. The Model 

class also populates the model with instances and supervises the production orders, thus 

stopping the simulation if the target production has been achieved or the defined 

maximum number of cycles (i.e., the available time for production) has been reached. 

The Space components class describes the space the agents operate in. Finally, the Agent 

classes describe the model agents. The following subsections (4.1 to 4.5) briefly describe 

the Agent classes defined in the developed model. Then, Section 4.6 explains how the 

model measures system performance. 

4.1 Autonomous Mobile Robot Class 

The AMR agent is in charge of transporting materials according to the tasks assigned to it 

by the supervisor. Three types of states are allowed for an AMR agent:  

• Committed states: the AMR is either Charging or fulfilling replenishment tasks 

(i.e., Moving, Waiting to load, or Waiting to unload).

• Idle state: no tasks are assigned to the AMR. As soon as the supervisor assigns 

one or more tasks to the AMR, the agent transitions to a Moving state. 

Otherwise, if no tasks are assigned for a certain amount of time and the 

battery level is below a threshold, the AMR is sent to a charging station, thus 

transitioning to a Charging state.

• Error: the robot is in failure mode. After a certain time to repair, the AMR exits 

this state and enters the Idle state.

4.2 Assembly Station Class 

Each assembly station agent represents one of the stations of the mixed-model line. Like 

the AMR agent, the assembly station can be described as a sequence of states reached 

upon fulfillment of certain conditions. Given the complexity and the number of activities 

it carries out, this agent is divided into three main parts (production, inventory, robot 

queue), described by a state each. 
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4.2.1 Production 

Every station has a list of production orders that it must fulfill before the end of the 

available time. The possible states are: 

• Production state: the station is processing a product. 

• Waiting for production state: the station is tasked with a production order, but 

the required material is not fully available. As soon as the material is 

replenished, the agent transitions to the Production state.

• Idle state: the station is not processing any product. This is the starting state, 

which is also temporarily entered every time the station needs to transition 

from the Production state to the following state (Production or Waiting for 
production).

4.2.2 Inventory 

Inventories consist of boxes with materials stored at the station. Each material inventory 

has its own state:  

• Wait for robot state: inventory levels are checked every time the station 

finishes assembling one product. The agent enters this state when the 

inventory level is equal to or below the threshold triggering a replenishment 

request or below the quantity needed to process the following product. The 

state is exited as soon as the material is replenished.

• Full state: inventory is above the threshold level and is enough to fulfill the 

following production order. 

4.2.3 Robot Queue 

This part of the assembly station agent represents the queue of AMRs waiting to unload 

the boxes they are carrying. The possible states are:  

• Idle state: no robots are unloading boxes and the robot queue is empty. 

• Unloading boxes state: one or more robots are waiting to unload boxes. Every 

time an AMR approaches the assembly station, a function is called to evaluate 

the AMR state. If the AMR state is Waiting to unload (Section 4.1), the robot 

queue state transitions to Unloading boxes. Then, once the unloading time 

has passed, the station either waits for the next robot in the queue to unload 

or transitions to the Idle state if the queue becomes empty.
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4.3 Supermarket Class 

Supermarket agents are modeled as a simpler version of the assembly station agents, 

without the production and the inventory parts. Therefore, both the possible states 

(called Idle state and Loading boxes state) and the conditions for the transition from one 

state to another are analogous to the ones described in Section 4.2.3. The only difference 

is that the states are related to the loading, rather than the unloading, of boxes by the 

AMRs. 

4.4 Charging Station Class 

The charging station agents are modeled similarly to the supermarkets. Their possible 

states are: 

• Idle state: no AMRs are currently charging and the robot queue in front of the

charging station is empty.

• Charging state: the station is charging a robot. The agent enters this state 

when an AMR, whose state is Charging, approaches the charging station. Then, 

once the charging time has passed, the agent either remains in the Charging 

state, if there is at least one more robot in the queue waiting to be charged, or 

transitions to the Idle state.

4.5 Supervisor Class 

The supervisor agent represents the central node that receives replenishment requests 

from assembly stations, identifies the target supermarket where the required materials 

are stored, translates replenishment requests into tasks, and assigns tasks to the fleet of 

AMRs. In case an online scheduling method is used, the supervisor also continuously 

monitors the states of all the other agents in the system, as well as the real-time positions 

and current task lists assigned to each robot and the queue lengths at all stations and 

supermarkets. Then, it uses such real-time information for the task assignment. The 

procedure and methods followed by the supervisor agent to assign tasks to AMRs are 

described in Section 3.2.  
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4.6 Performance Measures 

The developed model allows assessing three system performance measures. First, the 

average completion time, measured as the average time needed by an AMR to fulfill a 

replenishment request, from the pick-up of the box at the supermarket to its drop-off at 

the target station. It includes movement, queuing, and loading/unloading times. The 

lower this measure, the better the ability of the AMR fleet to promptly react to 

replenishment requests. Second, the idle time, measured as the percentage of the 

available time in which stations are not producing due to unavailability of materials. The 

idle time, resulting from the material handling system performance, directly affects the 

efficiency of assembly operations and should be eliminated or kept to a minimum. 

Finally, the average stock level of each material at the assembly stations. An effective 

scheduling method should allow reducing this indicator, consequently decreasing the 

amount of floor space on the shop floor dedicated to storage purposes, hence 

maintaining a high efficiency of assembly operations. 

5 Model Validation 

This section describes the validation of the developed agent-based simulation model. 

The model is validated through its application to a real industrial case concerning a car 

assembly plant where a fleet of 11 AMRs replenish assembly stations with kits. For this 

purpose, both the considered layout and the model parameters are adapted to the case. 

The layout consists of: a U-shaped assembly line, supermarkets located all around the 

line, and one AMR charging station placed next to each supermarket. The line is made of 

23 stations and its takt time is 36 minutes. Supermarkets are organized so that the 

materials needed at an assembly station are stored in the closest supermarket. The 

distance between a supermarket and the closest station is 9 meters, while the distance 

between two neighboring stations is 8.5 meters. Kits, i.e., small trolleys containing the 

parts needed to assemble one product, are prepared at the supermarkets. The assembly 

of each product requires two different kits at each station. Two kits of each type are 

stored at a station and every time one of the kits is emptied, a replenishment request is 

issued. Then, replenishment tasks are allocated to AMRs based on the OFF-FA scheduling 
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method (Section 3.2). After the task assignment, the AMR reaches the supermarket input 

point, autonomously loads the kit, transports it to the station, unloads the kit, loads an 

empty trolley, and transports it back to the closest supermarket. An average speed of 0.9 

meters/second and fixed loading/unloading times of 30 seconds are considered for the 

AMRs. Moreover, every 36 minutes, each robot goes to the closest free charging station, 

where it remains until its battery level is restored to full.  

In order to validate the model, its outputs are compared with the real values measured 

in the industrial case. The outputs are the average task completion time, the average 

distance traveled by AMRs to fulfill a replenishment request, and the average robot 

utilization (i.e., percentage of the available time in which a robot is performing 

replenishment tasks). As shown in Table 1, the model provides a satisfactory estimation 

of the real values, which are only slightly underestimated. The percentage difference is 

around 3% for the average task completion time and robots utilization, while it increases 

to 4.7% for the average distance traveled by robots. This last value is explained by the 

deviations between the simulated paths, assumed to be straight, and the real ones, 

which are affected by obstacles that the AMRs might need to avoid. 

Table 1: Validation results 

Output 
Real 

case 
Simulation 

% difference (Simulation 

vs. Real case) 

Avg task completion time [min] 7.41 7.2 – 2.8% 

Avg distance travelled [m/task] 270.9 258.1 – 4.7% 

Avg AMR utilization 86.1% 83.6% – 3.0% 
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6 Conclusions 

The growing adoption of data sensing, transmission, and processing technologies is 

increasing the amount of real-time information available to support decisions within 

modern factories. Considering mobile robots feeding parts to assembly lines, this paper 

provides, for the first time in literature, a model for estimating the performance 

improvements resulting from the use of real-time data in the scheduling of material 

handling activities. The developed model also accounts for new type of data, never 

considered in previous studies (e.g., robot failures), and new data-driven approaches, 

such as the dynamic assignment of tasks to robots.  

From an academic viewpoint, this study stimulates further research on the value 

stemming from the real-time data availability offered by the Industry 4.0 paradigm. From 

a practitioner viewpoint, the developed model can be applied in industrial contexts to 

support both the comparison of alternative scheduling methods and the sizing of the 

mobile robots fleet. 

Some limitations should be acknowledged, mainly related to the model assumptions. In 

particular, the model considers only one type of production system (i.e., mixed-model 

assembly line) and a specific layout of the factory logistics system, consisting of a set of 

supermarkets from which all material replenishments originate. Future studies could 

adjust the model to take into account also different kinds of systems, like job shops, and 

alternative layouts. For instance, they could consider a setting in which direct 

replenishments of materials from the central factory warehouse are possible.  Future 

research should also focus on applications of the developed model, so as to compare the 

proposed scheduling methods and develop insights on the value stemming from the use 

of real-time data. Moreover, economic analyses could be performed, thus comparing the 

methods in terms of overall investments in the robot fleet and in data gathering, 

transmission, and processing technologies. Finally, sensitivity analyses could be carried 

out to investigate how performance is affected by critical parameters and choices like the 

demand level, the inventory reorder policies, and the robots capacity. 
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