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When uncertainty decouples expected and
unexpected losses ∗

Mikael Juselius (Bank of Finland)
Nikola Tarashev (Bank for International Settlements)

Abstract

A parsimonious extension of a well-known portfolio credit-risk model allows us
to study a salient stylized fact – abrupt switches between high- and low-loss phases
– from a risk-management perspective. As uncertainty about phase switches in-
creases, expected losses decouple from unexpected losses, which reflect a high
percentile of the loss distribution. Banks that ignore this decoupling have short-
falls of loss-absorbing resources, which is more detrimental if the portfolio is more
diversified within a phase. Likewise, the risk-management benefits of improving
phase-switch forecasts increase with diversification. The analysis of these findings
leads us to an empirical method for comparing the degree of within-phase default
clustering across portfolios.

JEL Codes: G21; G28; G32
Keywords: Expected loss provisioning; Bank capital; Unexpected losses; Credit

cycles; Portfolio credit risk
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Figure 1: Elusive phase-switching factor. Blue lines: an observation in quarter T is equal to the
default rate over a one-year period (left-hand panel) or a three-year period (right-hand panel) starting
at T. A default rate is defined as the share of US non-financial corporates that are rated C or CC in
quarter T+4 (left-hand panel) or T + 12 (right-hand panel) after being rated between BB+ and CCC-
(ie high-yield) in quarter T. Red lines: an observation in quarter T is equal to the one-year (left-hand
panel) or three-year (right-hand panel) expected default frequency (EDF) estimated as of T for US
high-yield non-financial corporates. Sources: Moody’s and Moody’s KMV.

1 Introduction

Default rates evolve through distinct phases. After seemingly benign periods, they
surge abruptly and stay elevated for some time before reverting to another prolonged
phase of low levels (Figure 1, blue lines). An understanding of the underlying phase-
switching risk factor is of utmost relevance for risk management, as it would allow
for accumulating adequate loss-absorbing resources that protect creditors’ – notably,
banks’ – solvency. However, such an understanding has been generally elusive, with
default-rate forecasts by commercial providers signalling phase switches only after the
fact (red lines). While the related literature has tackled this challenge by exploiting
the gradual accumulation of risks in the run-up to loss spikes, substantial uncertainty
remains about default-phase switches.1

Most recently, the Covid-19 pandemic increased the phase-switch uncertainty. Against
the backdrop of persistently low default rates into 2021, Banerjee et al. (2019) and Gour-

1While Covas and Nelson (2018), Abad and Suárez (2017), Chae et al. (2018), Krüger et al. (2018),
Goncharenko and Rauf (2020), and Loudis and Ranish (2019) are sceptical about the possibility to
forecast phase switches in real time (i.e. out of sample), Lu and Nikolaev (2020) and Juselius and
Tarashev (2020) reveal reasons for optimism.
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inchas et al. (2020) argue that the accumulation of debt after the pandemic’s outbreak
raised vulnerabilities to creditor retrenchment. Consistent with this, Juselius and Tara-
shev (2021) find that – while the baseline scenario seemed benign from the standpoint
of 2021 – there was an increased likelihood of a wave of bankruptcies over the following
years. Yet it is hard to tell how close the financial system was to a potential switch
into a high-default phase.

In this paper, we evaluate loss-absorbing resources in the presence of uncertainty
about phase switches. Our analysis is centred around two aspects of the perceived prob-
ability distribution of default rates. One is the expected loss (EL), which determines
banks’ provisions (IASB (2014) and FASB (2016)). The other is the unexpected loss
(UL) – or the difference between some high percentile of the default-rate distribution
and EL – which drives banks’ capital decisions and in particular their regulatory require-
ments (BCBS (2017)). All else the same, greater uncertainty about the phase leaves
EL unchanged but raises UL. Such a decoupling can explain how a baseline scenario
may continue to be benign while the likelihood of a wave of bankruptcies increases.
Ultimately, the sum of EL and UL determine banks’ overall loss-absorbing resources.

We start with a well-known model of portfolio credit risk (Vasicek (1991) and Gordy
(2003)). This model assumes that the relevant phase is known, as banks estimate
perfectly the probabilities of default (PDs) of the borrowers in their portfolio. It implies
that any deviation of default rates from PDs stems from an inherently unpredictable
macro risk factor that affects simultaneously the creditworthiness of all borrowers, i.e. a
default-clustering factor. For a given loading on this factor, the model also implies that
PDs drive any change in both EL and UL, which effectively rules out a decoupling.2

To allow for uncertainty about the phase, we extend this model. Namely, we intro-
duce a factor that follows a two-state Markov switching process – driving transitions
between low- and high-PD phases. Such a process describes well data on US loan-loss
rates from 1985 to 2021.

In this environment, we cast three banks that differ with respect to their information
sets and approaches to uncertainty. The first bank is “informed”, as it can genuinely
anticipate phase switches and estimate exactly the relevant PD level. This is in line with
the traditional Vasicek model. The second bank is “uninformed”: it faces uncertainty
about the phase and thus the PD level but accounts accurately for this uncertainty in
assessing its EL and UL. The third bank is “naive”: it has the same information set

2For completeness, we also discuss in passing the EL vs UL decoupling that stems from changes to
the loading on the default-clustering factor, even though this is not central to our analysis.
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as the uninformed bank but assumes falsely that it can anticipate accurately phase
switches, and that the PD it estimates pertains to the relevant phase.

A parameterization of the model allows us to address the following two questions.
First, what would be the shortfall of loss-absorbing resources – i.e. the difference be-
tween the level that generates a target failure probability and the actual level – if a
bank ignored the uncertainty in its credit-risk forecasts? The answer stems from a com-
parison between the naive and uninformed banks. Second, how would loss-absorbing
resources change if a bank improved its capacity to forecast phase switches? For this
question, we compare the informed and uninformed banks. With the phase-contingent
risk factors assumed to be Gaussian, we need the following parameter values to per-
form each comparison: borrowers’ PD in each phase, the phase-switching probabilities
and the loading of borrowers’ assets on the default-clustering factor (or the “default
correlation parameter”).

For the main conceptual insight, we investigate how a bank’s approach to uncertainty
or the quality of its information affects its failure probability. Concretely, we study
how these effects depend on the asset portfolio’s diversification, which increases within
a phase as the loading on the default-clustering factor decreases. We keep all else the
same and, in particular, we keep the target failure probability fixed. We find that the
naive bank faces a higher failure probability from the perspective of the uninformed
bank when the portfolio diversification is greater. The result is qualitatively similar if,
on the cusp of a switch from the low- to the high-PD phase, we consider the failure
probability of the uninformed bank from the perspective of the informed bank. The
overarching intuition is as follows. A lower loading on the default clustering factor
means that benign realisations of this factor are less likely to compensate for wrongly
abstracting from phase switches (the naive bank) or failing to anticipate such a switch
(the uninformed bank). In other words, since there is greater certainty about the level
of phase-contingent losses on a more diversified portfolio, missing a phase switch is more
detrimental for a bank holding such a portfolio.

While our loss-rate data do not allow us to estimate loadings on the default clus-
tering factor, they do allow us to compare these loadings between two portfolios: one
comprised of business loans and another of real estate loans. For the comparison, we
note that, when there are two PD phases, the portfolio with a lower loading on the
default clustering factor would have – all else the same – less dispersion of phase-
contingent losses. This leads us to conjecture that the phase-driven bi-modality of such
a portfolio’s unconditional loss distribution should be less likely to reject in the data.
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We confirm this conjecture by applying three standard bi-modality tests (developed by
Cheng and Hall (1998), Hall and York (2001), and Ameijeiras-Alonso et al. (2019)) to
Monte Carlo simulations that use the Markov-switching probabilities and the low- and
high-PD estimates for each portfolio. We find that the business loan portfolio has a
lower loading on the default clustering factor, which implies that it is more important
to reduce and/or account for phase uncertainty in the context of this portfolio.

In addition, our analysis delivers regulatory implications. The naive bank would be
very similar to a bank applying blindly the credit-risk model that is hard-wired in Pillar
1 requirements for credit risk under Basel III (BCBS (2017), pp 62-3). But the overall
Basel III package extends way beyond Pillar 1, which – deliberately stylised to minimise
banks’ operational burden and ensure comparability across jurisdictions – delivers only
minimum capital requirements. In particular, the regulatory package stresses the need
for supervisory (Pillar 2) and management overlays. This paper effectively argues that
these overlays need to take phase uncertainty into account.

Our analysis also indicates what should guide the overlays for phase uncertainty. Ide-
ally, they would reflect estimates of phase-switch probabilities and the phase-contingent
PDs. If such estimates are not possible to obtain, the overlays in loss-absorbing re-
sources should reflect econometric specifications that incorporate multiple observable
risk factors, thus allowing EL and UL to have joint underlying drivers but also to move
in different directions over time.

Roadmap. The rest of this paper is organised as follows. Section 2 presents the risk
environment in which we conduct the analysis. Then, Section 3 introduces three banks
and discusses how risk parameters affect their loss-absorbing resources. Sections 4-5
conduct cross-bank comparisons to first determine the implications of accounting for
or reducing phase-switch uncertainty and then study how these implications depend on
the loading on the default-clustering factor. Section 6 develops an empirical method for
comparing the loading parameter between portfolios. Section 7 concludes. Appendices
contain proofs of the propositions.

2 Risk environment

We first present an extension of the credit-risk model underlying bank regulation (Va-
sicek (1991), Gordy (2003), BCBS (2017). Then, we use our model to specify the
probability distribution of losses on a bank’s portfolio.
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At the beginning of each year t, the portfolio is composed of homogeneous one-year
loans and is asymptotic. The loans are homogeneous in the sense that each one is of
size 1/n and are extended to borrowers with the same one-year probability of default
(PD). The portfolio is asymptotic in the sense that the number of constituent loans
approaches infinity, n→∞.

A representative borrower j, defaults in year t if the value of its assets falls below
its debt, Aj,t < Dt. While Dt is known at the beginning of year t, Aj,t is stochastic. We
set Aj,t = µA,t + σG,tGt + σZ,tZj,t, where the common and borrower-specific shocks –
Gt ∼ N (0, 1) and Zj,t ∼ N (0, 1) – are mutually and serially independent and inherently
unpredictable, with Zj,t independent across j. In addition, the volatility parameters
– σG,t > 0 and σZ,t > 0 – have a known relative level σZ,t/σG,t and stochastic but
predictable absolute levels, and the expected asset value – µA,t – is predictable. The
default condition can then be rewritten as:

ρtGt +
√

1− ρ2
tZj,t < Bt, where: (1)

ρt ≡
1√

1 + σ2
Z,t/σ

2
G,t

∈ (0, 1) and Bt ≡
Dt − µA,t√
σ2
G,t + σ2

Z,t

.

Thus, borrower j defaults if the weighted sum of the unpredictable shocks (left-hand
side of (1)) drops below the stochastic default boundary, which is a predictable risk
factor (right-hand side). Since the left-hand side of (1) is a standard normal variable,
the default boundary can be rewritten as Bt = Φ−1 (PDt), where Φ is the standard-
normal CDF and the loans’ PDt increases with the debt level, Dt, and asset volatility,
σ2
G,t + σ2

Z,t, and decreases with the expected asset value, µA,t.
The key difference between the two unpredictable shocks surfaces at the portfolio

level. While the idiosyncratic Zj,t is fully diversified at that level, Gt is not and generates
default clustering. This clustering is stronger for a higher “loading parameter” ρt, which
is equivalent to a higher volatility of the “default clustering” shock relative to that of
idiosyncratic shocks. Conversely, a lower ρt captures a more diversified portfolio.

2.1 Parsimonious phase-switching model

We allow for cyclicality in the evolution of credit risk. Namely, we let PDt follow a two-
phase Markov process that is independent of the other risk factors and has realisations
PDt ∈

{
PDl

t, PD
h
t

}
, where the levels of PDl

t and PDh
t are known at the beginning

6



of period t and PDl
t < PDh

t . Finally, πxt ≡ Pr
(
PDt = PDx

t |PDx
t−1

)
is the probability

that phase x ∈ {l, h} materialises in period t, conditional on the same phase being in
place in period t− 1. This is the phase-continuation probability.3

Despite its parsimonious nature, the Markov specification captures key dynamics
of real-world default rates, as they tend to undergo abrupt switches between phases
with low and materially higher default rates. In Appendix A, we fit our Markov model
to quarterly loan-loss rates from 1985q1 to 2020q4 – setting PDx

t = PDx + εt, where
εt is white noise, and assuming time-invariant πl and πh. We find that each phase is
persistent, with πl = 94% and πh = 70% at the yearly level in the total loan portfolio.
The corresponding one-year PDs switch from 1.41% to 2.84% between phases. We
examine such estimates at the level of sub-portfolios in Section 6.

We close this subsection by stressing that the estimates of phase-continuation prob-
abilities do not condition on any information other than the past phase. Thus, they do
not allow for the possibility that an abrupt phase switch may stem from a gradual build-
up of credit risk. Richer forecasts might be able to deliver refined phase-continuation
probabilities, that condition on this build-up and decline towards 0 in the run-up to an
actual phase switch. We return to this point in Section 5 below.

2.2 Loss distribution

The portfolio’s stochastic default rate is equal to

limn→∞
∑n

j=1
1
n

Pr
(
ρtGt +

√
1− ρ2

tZj,t < Φ−1 (PDt)
)

= Pr

(
Zj,t <

Φ−1(PDt)−ρtGt√
1−ρ2

t

)
or, equivalently:

Loss (Gt, PDt; ρt) = Φ

(
Φ−1 (PDt)− ρtGt√

1− ρ2
t

)
. (2)

Assuming that loss-given-default is 100%, this is also the portfolio’s loss rate.4

The loss-rate probability distribution has three drivers. First, the default clustering
factor Gt. Second, the known and potentially time-varying loading on this factor, ρt.

3A similar Markov switching setup underpins studies of the effects of ratings-sensitive capital re-
quirements on banks’ capital buffers over the business cycle (see Peura and Jokivuolle (2004) and
references therein).

4See Gordy (2003) for the theoretical underpinning of an asymptotic portfolio’s loss rate under weak
conditions on the shape, continuity and differentiability of the idiosyncratic and default-clustering
factors, Zj and G. Our setup satisfies these conditions by assuming normality of these two factors and
departs from Gordy (2003) by allowing for uncertainty about loans default probability, PDt.
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Third, the persistent phase-switching factor PDt.
While the assumption of homogeneous loans is clearly unrealistic, it does not un-

dermine the insights from our analysis. The core of this analysis stems from derivations
of a specific quantile of the probability distribution of portfolio losses for given risk
parameters: πxt , PDl

t, PDh
t and ρt. Under the maintained homogeneity assumption,

considering one loan is sufficient for obtaining this quantile. For heterogeneous loans
– ie when the risk parameters vary with j – our derivations below correspond to the
contribution of loan j to the target quantile. A simple summation of these contributions
across loans would deliver this quantile (Gordy (2003)).

The assumption of a known default-clustering parameter, ρt, is also unrealistic. We
maintain it in order to focus on uncertainty about PDt.

3 Three banks: setting loss-absorbing resources

We now study three banks, for which the only source of potential losses are their loan
portfolios. While all the banks operate in the above risk environment, they differ with
respect to their perceptions, which reflect: (i) capacity to forecast the relevant loan
PD, and (ii) the extent to which this capacity is taken into account when building loss-
absorbing resources (LAR). At the beginning of year t, each bank sets its LAR equal
to the (1− α)-quantile of the perceived probability distribution of the random variable
in (2). In case the actual losses exceed a bank’s LAR, this bank fails and an identical
bank replaces it, facing the same loss distribution that the failed one would have faced.
Ultimately, while each bank perceives its one-year failure probability to be equal to α –
which would tend to be a very low number (see Section 3.4.1 below) – this probability
would typically not be equal to α from the perspective of the other banks.

In practice, LAR are broken into two parts. First, a bank estimates expected losses
(EL), which in our setting are equal to an estimate of the loans’ PD. The bank’s provi-
sions cover EL. Second, the difference between the (1− α) percentile of the perceived
loss distribution and EL is denoted by unexpected losses (UL), which is covered by
capital. With accounting and prudential authorities governing respectively provisioning
and capital requirements (IASB (2014) and BCBS (2017)), there are differences between
the time horizons underpinning the corresponding loss distribution. We abstract from
these differences, which implies that the sum of provisions and capital equals LAR.

For each of the banks, we next derive expressions for EL and UL. Then, we study
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how the dependence of these LAR components on risk parameters – and in particular
the scope for decoupling – differs across banks.

3.1 Informed bank

The informed bank has exact knowledge of the relevant risk parameters and the relevant
loan-loss phase. Denoting its LAR by the generic Λ, expression (2) implies that its
failure probability is

FP I (PDt, ρt; Λ) ≡ FP I
t = Pr

(
Λ < Φ

(
Φ−1 (PDt)− ρtGt√

1− ρ2
t

))

= Φ

(
Φ−1 (PDt)−

√
1− ρ2

tΦ
−1 (Λ)

ρt

)

In turn, targeting a failure probability of α, the informed banks sets its LAR to:

ΛI (PDt, ρt;α) = Φ

(
Φ−1 (PDt)− ρtΦ−1 (α)√

1− ρ2
t

)
. (3)

Finally, we record this bank’s EL and UL:

ELIt = PDt and ULI (bt, ρt;α) ≡ ULIt = ΛI (PDt, ρt;α)− PDt, (4)

3.2 Uninformed bank

While the uninformed bank knows the default clustering factor, ρt, and the phase-
contingent levels of loans’ probability of default, PDl

t and PDh
t , it faces uncertainty

as to whether the period-t − 1 phase x ∈ {l, h} will continue in period t, πxt ∈ (0, 1).
Taking this uncertainty into account, this bank attains its target failure probability by
setting its loss-absorbing resources, ΛU

(
πxt , PD

x
t , PD

x̃
t ; ρt, α

)
, at the (unique) solution
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of the following equation in terms of Λ:

FPU
(
Λ; πxt , PD

x
t , PD

x̃
t , ρt

)
≡ FPU

t

= πxt Φ

(
Φ−1 (PDx

t )−
√

1− ρ2
tΦ
−1 (Λ)

ρt

)
(5)

+ (1− πxt ) Φ

(
Φ−1

(
PDx̃

t

)
−
√

1− ρ2
tΦ
−1 (Λ)

ρt

)
= α

where x̃ is the phase that did not materialize in year t − 1. The uninformed bank’s
LAR is sandwiched between the two phase-contingent levels for the informed bank (see
Appendix B.1 for a proof):

ΛU
(
πxt , PD

x
t , PD

x̃
t ; ρt, α

)
≡ ΛU

t ∈
(
ΛI
(
PDl

t; ρt, α
)
,ΛI

(
PDh

t ; ρt, α
))

. (6)

Ultimately, the uninformed bank perceives the following EL and UL:

ELU
(
πxt , PD

x
t , PD

x̃
t

)
≡ ELUt = πxt PD

x
t + (1− πxt )PDx̃

t , (7)

ULU
(
πxt , PD

x
t , PD

x̃
t ; ρt, α

)
≡ ULUt = ΛU

t − ELUt . (8)

3.3 Naive bank

The naive bank has the same forecasting capacity as the uninformed bank but, in
contrast to the latter, ignores the uncertainty it is subject to. Such a bank shares
important features with a bank that adopts blindly the credit-risk model stipulated
in global regulatory standards.5 Concretely, if the current phase is xt, the naive bank
estimates PDN

t = πxt PD
x
t + (1− πxt )PDx̃

t but perceives its failure probability to be
equal to:

FPN
(
PDN

t ; ρt,Λ
)

= FPN
t = Φ

(
Φ−1

(
PDN

t

)
−
√

1− ρ2
tΦ
−1 (Λ)

ρt

)
. (9)

5For a discussion of the “regulatory” bank, see Appendix C.
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In turn, this leads it to set the following LAR, EL and UL:

ΛN
(
PDN

t ; ρt, α
)
≡ ΛN

t = Φ

(
Φ−1

(
PDN

t

)
− ρtΦ−1 (α)√

1− ρ2
t

)
, (10)

ELNt = PDN
t , (11)

ULN
(
PDN

t ; ρ, α
)
≡ ULNt = ΛN

t − ELNt . (12)

3.4 Discussion: Comparative statics and EL-UL decoupling

In this section, we conduct comparative statics from each bank’s own perspective. Since
the discussions of the informed and naive banks would be qualitatively identical in this
setting, we consider only the former bank.

3.4.1 Parameter restrictions

For the discussion and proofs, we impose three parameter restrictions as maintained
assumptions, which turn out to be borne one by the data.

First, we assume that, even in the low-loss phase, the loan PD is larger than the
bank’s target failure probability: PDl

t > α. One would expect this condition to hold in
practice, as otherwise banks would have a higher cost of funding than their borrowers.
In turn, this would make banks’ intermediation model non-viable. Indeed, given that
α = 0.1% in Basel III (BCBS (2017)), the condition is satisfied in the data – the lowest
one-year loan PD estimate reported in Section A.1 is 0.44%.

Second, we assume that a borrower services its debt in the absence of shocks (Gt =

Zj,t = 0). By expression (1), this implies that PDt < 50%. This is also borne out in
the data, as the highest PD estimate reported in Section A.1 is below 3%.

Third, we limit the persistence of the low-loss regime from above and below with
the assumption, PDh

t < 1−πlt < 50%, which is also in line with our empirical estimates
(Section A.1).

Combining all assumptions, we impose:

α < PDl
t < PDh

t < 1− πlt < 50%. (13)
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Figure 2: EL and UL: joined at the hip for realistic PDs. Loss-absorbing resources (LAR)
and their components – expected loss (EL) and unexpected loss (UL) – from the perspective of the
informed bank when the target one-year probability of bank failure is 0.1%. The dashed line indicates
maximum UL.

3.4.2 Comparative statics

In Figure 2, we illustrate the impact of PDt on LAR and its components for the informed
bank.6 It follows directly from (3) and (5) that LAR increases in loans’ PD and in the
loading on the default-clustering factor, ρt. By contrast, the impact of loans’ PD on UL
is ambiguous. While increasing PDt from low levels raises UL, the opposite happens at
high levels of PDt. For the intuition, we note that UL is zero at PDt = ELt ∈ {0, 1}.
Since UL is positive for intermediate levels of PDt and continuous in PDt, it needs to
increase and then decrease. In the light of the sandwiching result in (6), the picture is
qualitatively the same for the uninformed bank.

Henceforth, we consider only realistic levels of PDt, which are at the lower end of
the range in Figure 2 and for which the relationship with UL is monotonic. Indeed,
as reported in Appendix A.1, the PD estimates in our dataset are all below 3%, way
below the levels at which UL peaks in Figure 2. When such PDs evolve over time, EL
and UL are joined at the hip: they either increase or decrease together.

Decoupling of EL and UL: loading on default-clustering factor. EL and UL
may decouple if the loading on the default clustering factor changes over time. This is

6See Appendix B.2 for proofs of statements in Section 3.4 and for how these proofs make use of the
assumptions sated in Section 3.4.1.
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Figure 3: Sources of decoupling and implications for bank failure. Loss-absorbing resources
(LAR) and their components – expected loss (EL) and unexpected loss (UL) – from the perspective
of the informed bank (left-hand panel) and uninformed bank (centre panel) when the target one-year
probability of bank failure is 0.1%. On the assumption that the latest phase is the low-PD one, the
additional parameters are as follows: loan PD = 2% (left-hand panel, also the expected loan PD in
centre panel and right-hand panels); ρ2 = 20% (centre panel); πl = 95%. The right-hand panel plots
the naive bank’s probability of failure from the perspective of the uninformed bank, for different levels
of uncertainty (PDh–PDl) = 5% (low), 10% (medium) and 20% (high).

because such changes affect UL but not EL (see, for instance, expressions (3) and (4)).
We illustrate this in Figure 3 (left-hand panel).

While time variation in ρt has important implications for the probability distribution
of losses, its empirical relevance is questionable. For instance, Düllmann et al. (2007),
Zhang et al. (2008) and Bams et al. (2012) derive asset-return correlations, which are
the empirical analog of ρ2

t by expression (1) and the paragraph that precede it. While
they do find evidence that this parameter differs across portfolios of credit exposures
(see below), they do not find evidence that it changes over time in a cyclical fashion
that would help explain the patterns of default clustering that we observe in Figure 1.
In addition, in a stochastic setting akin to the one we use here, Zhou (2001) derives that
the effect of a higher ρt on default clustering is similar to that of higher probabilities of
default in the credit portfolio. Thus, we henceforth focus on a setting with a constant
ρt, which allows us to concentrate on changes in PDt over time.

Decoupling of EL and UL: uncertainty about the PD phase. Alternatively,
the decoupling of EL and UL could stem from uncertainty about the credit-loss phase,
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i.e. from uncertainty about PDt. We consider two specific scenarios that give rise to
uncertainty: (i) the emergence of a wedge between PDl

t and PDh
t for a given πxt ; (ii)

the phase x becoming uncertain in period t, i.e. πt dropping below 1. In each of these
scenarios, we keep EL constant.

The following proposition refers to these two scenarios and states that the switch to
uncertainty raises UL. The proof – in Appendix B.3 – uses the fact that the uninformed
bank’s failure probability in expression (5) is an increasing convex function of loans’
PD.

Proposition 1 Effect of uncertainty on UL. Suppose that each of the following
two switch-to-uncertainty scenarios maintains ELUt = ELUt−1: (i) πlt−1 = πlt and PDl

t <

PDl
t−1 = PDh

t−1 < PDh
t or (ii) πlt−1 = 1 > πlt, PDl

t < PDl
t−1 and PDh

t = PDh
t−1.

Under either scenario, ULUt−1 < ULUt .

In Figure 3 (centre panel), we illustrate the implications of scenario (i): while the
blue area (EL) is flat, the red area (UL) is narrowest at the left edge, where there
is no uncertainty. Moreover, the monotonic widening of the red area from left to
right indicates decoupling between EL and UL even when uncertainty increases from a
positive level. The picture is similar for scenario (ii).

4 LAR shortfalls: due to ignoring uncertainty

Recent forecasts of the distribution of loan portfolio losses underscore the empirical
relevance of the decoupling between EL and UL amidst uncertainty due to the Covid-19
pandemic (see Juselius and Tarashev (2021)). From the standpoint of the first quarter
of 2021, these forecasts imply that expected losses remain stable (consistent with a
baseline scenario in which the policy response to the pandemic keeps bankruptcies
low by cushioning the blow to cashflows) while unexpected losses increase massively
(reflecting the possibility that the high accumulated debt triggers creditor retrenchment
down the road). We thus investigate how ignoring uncertainty-driven decoupling of EL
and UL would affect the probability of bank failure.

For this, we consider the naive bank from the perspective of the uninformed one.
From this perspective, the naive bank has a LAR shortfall under either scenario (i) or
(ii) in Proposition 1. In turn, this shortfall results in a failure probability that is higher
than the target one.
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Figure 4: Effect of ρ on the loss distribution. Conditional on the latest phase being the low-PD
one, with additional model parameters: πl = 55%; PDl = 2% and PDh = 6%. The value of πl is
chosen to optimize readability.

In studying how the impact of ignoring uncertainty depends on the default-clustering
factor loading, ρ, we proceed as follows. We first observe that the naive bank would
generate LAR that is higher (respectively, lower) than the level needed to attain the
target failure probability of α in the low-PD (respectively, high-PD) phase. This fol-
lows from comparing expressions (3) and (10). Second, we note that, as ρ → 0, the
probability distribution of portfolio losses converges to a degenerate distribution with
only one realisation in each phase: PDl

t and PDh
t . If the state in period t− 1 is x = l,

the probability mass associated with each of these PDs is πlt and 1−πlt: Figure 4. Taken
together, the two observations imply that, as ρ→ 0, the probability of the naive bank’s
failure converges to the probability of the high-PD state, 1− πlt.

Suppose then that the parameters ρ, πlt, PDl
t and PDh

t imply a failure probability
for the naive bank that is smaller than 1 − πlt. By the above reasoning, we know that
the failure probability would be higher at a smaller value of ρ that is sufficiently close
to 0. This is stated formally in the following proposition and proved in Appendix B.4.

Proposition 2 Effect of ignoring uncertainty on failure probability. Suppose
that the state in period t− 1 is x = l. There exist ρ̄ < 1 and ρ < ρ̄ such that the naive
bank’s failure probability is higher at ρ ∈

(
0, ρ
)

than at ρ ∈ (ρ̄, 1).

For any given πlt, PDl
t and PDh

t , Appendix B.4 delivers an implicit expression for
ρ̄. Given our estimates of the former three parameters within the Markov switching
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Figure 5: Implications of missing a turning point. The underlying parameterisation is: PDl =

2%, PDh = 6%, α = 0.1%, πl = 95%, ρ2 = 1% (left-hand panel) and ρ2 = 20% (right-hand panel).

model (Appendix A), we derive ρ̄ on the basis of that expression and report the re-
sults for different loan portfolios in Table A.1. All derived values of ρ̄ are so low that
(ρ̄, 1) encompasses any estimate of asset-return correlations that we are aware of in the
literature (Düllmann et al. (2007), Zhang et al. (2008) and Bams et al. (2012)) and
regulatory texts (BCBS (2017)).

In Figure 3 (right-hand panel), we employ specific parameterisations of the risk
environment in Section 2 under which the naive bank’s failure probability increases as
ρ decreases. This is a generalisation of the implication in Proposition B.4.

5 LAR shortfalls: due to uncertainty

We now change perspectives to study how the uncertainty in loss forecasts – as opposed
to the improper use of such forecasts – affects LAR shortfall and banks’ failure proba-
bility. To this end, we treat the “appropriate” LAR and the “true” failure probability to
be those derived and perceived, respectively, by the informed bank (Section 3.1), and
study how they differ from those of the uninformed bank. For brevity, we discus only
a scenario where the latest phase has featured PDl

t−1. The implications are symmetric
for PDh

t−1.
While the informed bank’s failure probability is always at the target level, the unin-

formed bank’s can be lower or higher (Figure 5, diamonds versus dots). Concretely, the
latter probability is below target if the low-loss phase continues (low-to-low scenarios:
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dots below diamonds) and above target if there is a low-to-high switch. This reflects
LAR excesses, respectively shortfalls, stemming from the sandwiching property of the
uninformed bank’s LAR: expression (6).

The overshooting of the target failure probability is more pronounced if the unin-
formed bank holds a more diversified portfolio (see Appendix B.5).

Proposition 3 Failure probability and exposure to default clustering. Suppose
that the phase sequence delivers PDl

t−1 and PDh
t . When the uninformed bank sets its

loss-absorbing resources according to (5), its probability of failure decreases with ρ.

We illustrate this proposition in Figure 5, where the low-to-high dot in the left-hand
panel is above that in the right-hand panel. The underlying intuition is as follows. A
lower ρ implies that phase-contingent losses are more certain, i.e. that ULα,I and
ULα,U are lower, which leads to lower capital levels for the informed bank in the left-
hand panel than in the right-hand panel. The flip side of this is a lower likelihood that
the unpredictable default-clustering factor (Gt) would undo the implications of missing
a phase switch. Thus, when the phase-contingent losses are more certain, it is also more
certain that missing a phase switch would be detrimental.

When the loan portfolio is sufficiently diversified, under-provisioning would be solely
responsible for the uninformed bank’s LAR shortfall in a low-to-high scenario. Imposing
a weak restriction on the failure-probability target – namely, that it is lower than the
probability of switching phases – we prove the following proposition in Appendix B.6.

Proposition 4 EL as a driver of LAR shortfall. Suppose that the phase sequence
delivers PDl

t−1 and PDh
t . If 1 − πlt ≥ α, there exists ρ > 0 such that the uninformed

bank perceives a higher UL than the informed bank for any ρ < ρ. In this case, the
uninformed bank’s LAR shortfall stems entirely from under-provisioning, due to under-
estimated EL.

We illustrate this proposition in Figure 5. In the left-hand panel, despite the uninformed
bank’s LAR shortfall in the boom-bust scenario, the UL it perceives (and thus its
capital) is actually larger than that of the informed bank. This is because the two banks
perceive different implications of a decline in ρ on loss uncertainty. As ρ declines to zero,
losses become more and more certain from the perspective of the informed bank: the
perceived UL and capital shrink to zero. From the perspective of the uninformed bank,
however, a decline in ρ cannot eliminate the uncertainty about the phase-switching
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factor: thus, UL cannot decline to zero. With the uniformed bank’s UL being larger
than the informed bank’s, the former bank’s LAR shortfall comes from underestimating
EL.

Improving the uninformed bank’s forecasting capacity would result in lower devia-
tions of its true failure probability from target. In terms of our setup, the improvement
would affect the phase-switching probabilities, with e.g. πlt−1 decreasing on the cusp
of a low-to-high switch. All else the same, the benefit of better forecasting capacity
would be greater if the portfolio of the uninformed bank is more diversified within a
phase (Proposition 3). And when the portfolio is sufficiently diversified, the improved
forecasting capacity would lead to lower capital and higher provisions (Proposition 4).

6 Empirical relevance

The importance of within-phase loan diversification for our discussion prompts the
question: Which portfolios are more diversified? That is, which portfolios load less on
within-phase macro risk factors?

In addressing this question, we go through the following thought process. First, we
refer to Figure 4, which illustrates that the existence of a low- and a high-loss phase
gives rise to a bi-modal loss distribution. Second, we observe that the bi-modality is
more distinct for a lower loading, ρ, on the within-phase macro factor. This suggests
that, for a given sample size, statistical tests would be more likely to reject uni-modality
when ρ is low.

Then, we turn to the two distinct sub-portfolios in our dataset, comprising respec-
tively business and real-estate loans. We recall that each portfolio undergoes switches
between two phases (Appendix A). That said, bi-modality is clearly visible for the
business-loan portfolio but not for the real-estate one (Figure A.1). Consistent with
this, a battery of tests (based on Cheng and Hall (1998), Hall and York (2001) and
Ameijeiras-Alonso et al. (2019)) reject the uni-modality null hypothesis for the first
portfolio but not for the second (Table A.2).

Of course, these results could stem from portfolio specificities other than ρ. For
instance, there are fewer observations for the real-estate portfolio in the high-loss phase
– reflected in a notably lower πh estimate: 72% vs 88% for the business-loan portfolio.
The lower persistence of the high-PD phase would translate into fewer observations in
this phase, thus making a second mode less easy to detect. That said, while the two
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portfolios feature similar PDh estimates, the PDl estimate for the real-estate portfolio
is much lower: 0.44% vs 0.81% for business loans. The bigger difference between the
low- and high-loss phases for the real-estate portfolio should have made it easier to
detect bi-modality all else the same.

To place these considerations in a more formal setting, we resort to Monte Carlo
simulations. For a given value of the default-clustering loading ρ and referring to
equation (2), we simulate two time series of default rates: one based on the Markov-
process parameter estimates for business loans and another one on the corresponding
estimates for real-estate loans (Table A.1). Generating a large number of replications
of each time series and applying the above three tests at each iteration, we calculate
the corresponding rates of rejecting a null hypothesis of uni-modality. We repeat these
steps over a range of ρ values and report the results in Table A.3. With the rejection
rates being roughly similar across tests and loan portfolios for the same ρ and declining
monotonically as ρ increases, we interpret the results in Table A.2 as indicating that
ρ is smaller for the business-loan portfolio. Accounting for and/or mitigating phase
uncertainty would make a bigger difference under this portfolio.

7 Concluding remarks

Our paper has delivered three novel insights. First, a straightforward generalisation
of a well-known credit-risk model underscores the importance of accounting for and
reducing the uncertainty about switches between default-rate phases. Second, this im-
portance is especially high for a bank whose phase-contingent losses are driven mostly
by diversifiable risk factors. Third, testing for the number of modes in loss rates’ uncon-
ditional distribution helps rank-order portfolios with respect to their phase-contingent
diversification.

The practical implementation of these insights depends to a large extent on the
richness of the dataset that a risk manager has at its disposal. At a minimum, however,
it is necessary to recognise that phase-switch uncertainty may lead to a decoupling
whereby expected and unexpected losses evolve in different directions. Thus, empir-
ical forecasts need to target different aspects of the loss distribution on the basis of
multiple forecast variables. To reduce the uncertainty about loss switches, these vari-
ables would need to capture risk-taking as it builds up, in the spirit of the literature
of early warning indicators of banking crisis (Detken et al. (2014), Tölö et al. (2018),
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Aldasoro et al. (2019) and references therein) and more recent advances in default-risk
forecasting (Lu and Nikolaev (2020) and Juselius and Tarashev (2020)). Ultimately,
to the extent that private incentive distortions get in the way (Borio and Zhu (2008),
Acharya (2009) and Gorton and Ordoñez (2014)), it will be up to a bank supervisor to
ensure the proper execution of empirical forecasts and their translation into adequate
loss-absorbing resources.

It is also key to acknowledge that even the best forecast models would be in a
position to flag in advance some but not all boom-bust switches. Such models would
combine economic reasoning with systematic empirical relationships to forecast busts
that are endogenous outcomes of excessive risk taking during booms. However, any
forecast model would inevitably fail to predict busts that are rooted in inherently ex-
ogenous shocks, such as the fallout of the Covid-19 outbreak. To be prepared for the
outsize losses that stem from such shocks, the financial system should build forecast-
independent – that is, precautionary – loss-absorbing resources.
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A Regime-switching in the data

In this appendix, we use data on credit loss rates in the US banking sector to study
our modeling assumption that loans’ one-year probability of default follows a two-state
Markov process. First, we show that this assumption provides a fair description of real-
ity and that the loan PD estimates satisfy a condition in the main text. Second, given
the estimated Markov-switching model, we derive values of ρ̄ in Proposition 2. Third,
we establish that different loan sub-portfolios exhibit bi-modality to a different extent,
which is consistent with different degrees of within-phase credit-risk diversification.

A.1 A Markov-switching model for default rates

Our loan loss data consist of quarterly net charge-off rates on loans from the US banking
sector to the non-financial private sector. These series are obtained from the Federal
Reserve Board of Governors. On the assumption that the underlying loss-given-default
is 50%, we obtain default-rate estimates by multiplying the raw series by 2. We consider
both the total aggregate default rate, PDT,t, and separately the default rates in two
loan sub-portfolios: commercial and industrial (C&I) or “business” loans, PDB,t, and
real-estate loans, PDR,t. The sample begins in 1985q1 and ends on 2021q1.

The first impression is that the default rates exhibit a tendency to oscillate around
either low or high levels (Figure A.1, blue lines), consistent with the two phases in our
theoretical model. Moreover, the transitions between phases tend to be rapid. While
quite general, this overall pattern is most clearly visible in the case of business loans.

This leads us to estimate a simple two-state Markov-switching model, where:

PDx
k,t = PDx

k + εt (14)

where k ∈ {T,B,R}, x ∈ {l, h} stands for the unobserved state, and εt is a white noise
error with variance σ2. Without loss of generality, we assume that PDl

k < PDh
k . In

addition, we model x as an irreducible, aperiodic Markov chain, with phase-continuation
probability πx. The model is estimated by maximizing the implied likelihood function
using numerical techniques (Table A.1). Figure A.1 illustrates the model’s fit (red vs
blue lines). The estimates capture fairly well the jump dynamics in the default rates.
More elaborate specifications, for instance with auto-regressive terms, deliver similar
point estimates of the parameters but different standard errors of these estimates. Thus,
statistical inference on the basis of the simpler model requires caution.
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Figure A.1: Fitting a Markov-switching model. Blue lines: Quarterly charge-off rates on loans
by US banks to the non-financial private sectors (first panel) or sub-sectors (second and third panels).
Red lines: the fitted values of estimating a two-regime Markov switching model.

The upper part of Table A.1 delivers two messages. First, loan PDs are quite dif-
ferent across regimes, eg roughly 1.41% vs 2.84% for the total portfolio. Second, as
assumed in the main text, the PDs in tranquil times (the PDl

k estimates) are consis-
tently above banks’ target probability of failure, α = 0.1% and those in times of stress
are way below 50%.

The parameter estimates also suggest that there is a fair amount of persistence in the
two estimated regimes (Table A.1). In the case of the total portfolio, for instance, the
likelihood of remaining in the low-PD (high-PF) phase for one more year is estimated
to be 94% (70%).

We are now in a position to determine the range of ρ values for which expression
(15) below is smaller than (1 − πxt ). This is a necessary and sufficient condition for a
decline in ρ to raise the naive bank’s failure probability per Proposition 2. We report
this range (in terms of ρ2) for each set of estimates for πl, PDl

k and PDh
k as a memo

item in Table A.1.

A.2 Testing for bi-modality

Figure 4 illustrates that the bi-modality of the loss distribution is more visible for
a lower loading, ρ, on the default-clustering factor. This suggests that studying the
distribution of loss rates in the data can shed light on the value of this parameter.
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Total portfolio Business sub-portfolio Real-estate sub-portfolio
Param. Estimated Annualized Estimated Annualized Estimated Annualized
PDl 0.35

(0.02)
1 .41 1) 0.20

(0.02)
0 .81 1) 0.11

(0.01)
0 .44 1)

PDh 0.95
(0.04)

2 .84 1) 0.73
(0.02)

2 .11 1) 0.74
(0.04)

1 .95 1)

σ 0.17
(0.01)

0 .68 0.14
(0.01)

0 .56 0.15
(0.01)

0 .60

πl 0.98
(0.01)

0 .94 1) 0.97
(0.02)

0 .89 1) 0.98
(0.01)

0 .94 1)

πh 0.91
(0.06)

0 .70 2) 0.96
(0.03)

0 .83 2) 0.92
(0.05)

0 .72 2)

Memo item: condition for Proposition 2
ρ2 0 .0020 1) 0 .0019 1) 0 .0061 1)

0 .0004 2) 0 .0003 2) 0 .0007 2)

Table A.1: Markov switching parameter estimates. Based on fitting the model in (14) to
US quarterly loan loss rates from 1985q1 to 2020q4 (144 quarters). Standard errors in parenthesis.
The annualized estimates (in italics) abstract from paths of quarterly states along which there is
a switch reversal and treat a phase switch in any quarter as indicating a phase switch during the
year.1) Conditional on x = l in the quarter prior to the initial quarter. 2) Conditional on x = h in the
quarter prior to the initial quarter.

Total portfolio Business sub-portfolio Real-estate sub-portfolio
test stat p stat p stat p
CH 0.05 0.29 0.07∗∗ 0.01 0.04 0.63
HY 0.36∗ 0.08 0.26∗∗ 0.03 0.25 0.37
ACR 0.06∗ 0.09 0.06∗ 0.05 0.04 0.40

Table A.2: Tests of multi-modality. CH: Cheng and Hall (1998); HY: Hall and York (2001);
ACR: Ameijeiras-Alonso et al. (2019). The null hypothesis in each test is that the distribution of a
variable is uni-modal. ∗ indicates significance at the 10% level; ∗∗ indicates significance at the 5%
level.

On a first look, Figure A.2 suggests that portfolios differ with respect to signs of
bi-modality. Bi-modality is clearer for the business loan portfolio than for the portfolio
of real-estate loans.

We consider three formal tests of multi-modality. The first is a test by Cheng and
Hall (1998), which seeks to reduce the conservatism of the dip test by Hartigan and
Hartigan (1985). The second test is by Hall and York (2001), which improve on the
kernel density-based test by Silverman (1981). The third is a recent test by Ameijeiras-
Alonso et al. (2019), which mixes elements from the other two tests. The null hypothesis
in all tests is that the distribution of a variable is uni-modal.

As reported in Table A.2, the formal tests largely confirm the impressions from
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Figure A.2: Unconditional distributions of the loss rates. The histograms map the data into
20 evenly spaced bins over the support of each series. The solid black lines are kernel density estimates
using Gaussian kernel functions. The bandwidth scales down the optimal bandwidth for uni-modal
Gaussian data by 0.75.

Figure A.2. All three tests reject the null for business loans (at either the 10% or 5%

significance levels). By contrast, the null cannot be rejected for real estate loans. In the
context of the model in the main text, these results suggest that business loans have a
lower loading factor ρ.

This conclusion is corroborated by Monte Carlo simulation results (Table A.3).

B Proofs

The proofs in this appendix make us of the assumptions stated in Section 3.4.1.

B.1 Proof of sandwiching claim in Section 3.2

We derive equation (5) and show that it has exactly one solution in terms of Λ.
Given PDt−1, the uninformed bank knows the following when its LAR is equal to
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ρ 0.05 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25
Based on business loan parameters

CH 0.92 0.87 0.73 0.51 0.27 0.11 0.06 0.05 0.03
HY 0.99 0.97 0.89 0.54 0.15 0.04 0.03 0.02 0.01
ACR 0.94 0.90 0.79 0.47 0.22 0.10 0.06 0.05 0.05

Based on real estate loan parameters
CH 0.66 0.59 0.47 0.31 0.17 0.07 0.03 0.02 0.01
HY 0.95 0.93 0.82 0.61 0.34 0.15 0.09 0.05 0.03
ACR 0.73 0.65 0.58 0.41 0.24 0.11 0.06 0.04 0.03

Table A.3: Rejection probabilities of uni-modality, simulated data. Based on 1000 random
draws of a time series of length 150 of the portfolio loss rate according to Equation (2) and the two-
phase Markov switching process for PDx

t . In parameterising the latter process, we refer sequentially
to estimates for business loans and real-estate loans in Table A.1. Each number corresponds to the
rejection frequency of the null: that the loss rate’s distribution is uni-modal. The underlying tests are
from: CH: Cheng and Hall (1998); HY: Hall and York (2001); ACR: Ameijeiras-Alonso et al. (2019).

Λ:

Pr (loan losses > Λ)

= πxt Pr
G

(loan losses > Λ|G, x) + (1− πxt ) Pr
G

(loan losses > Λ|G, x̃)

= πxt Pr
G

(
Φ

(
Φ−1 (PDx

t )− ρGt√
1− ρ2

)
> Λ

)
+ (1− πxt ) Pr

G

(
Φ

(
Φ−1

(
PDx̃

t

)
− ρGt√

1− ρ2

)
> Λ

)

= πxt Φ

(
Φ−1 (PDx

t )−
√

1− ρ2Φ−1 (Λ)

ρ

)
+ (1− πxt ) Φ

(
Φ−1

(
PDx̃

t

)
−
√

1− ρ2Φ−1 (Λ)

ρ

)

which is the left-hand side of (5).
There is exactly one value of Λ that sets this expression equal to α. This is because

the expression is monotonically decreasing in Λ and converges to 1 (respectively, 0) as
Λ→ 0 (respectively, 1).

Next, we show that ΛU
t is sandwiched between its complete-knowledge counterparts:

ΛU
t ∈

(
ΛI
(
PDl

t

)
,ΛI

(
PDh

t

))
. Since each of the two summands on the left-hand side

of (5) is strictly decreasing in Λ, equation (3) implies that the left-hand side of (5) is
smaller (respectively, larger) than α if ΛU

t ≥ ΛI
(
PDh

t

)
(respectively, if ΛU

t ≤ ΛI
(
PDl

t

)
).

Ultimately, since (5) has exactly one solution, we obtain the desired result.
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B.2 Proof of statements in Section 3.4.2

The results ∂ULI/∂ρ > 0 and ∂ΛI/∂ρ > 0 follow from equations (3)-(4) and the
assumption that Φ−1 (α) < Φ−1 (PDt) < 0. To see this, note that
∂
(

(Φ−1 (PDt)− ρΦ−1 (α)) /
√

1− ρ2
)
/∂ρ = (ρΦ−1 (PDt)− Φ−1 (α)) / (1− ρ2)

3/2
> 0.

Next, we prove that ULI is non-monotonic in PDt. In particular, noting that
sgn

(
∂ULI/∂Φ−1 (PDt)

)
= sgn

(
∂ULI/∂PDt

)
, we show that ∂ULI/∂Φ−1 (PDt) is

positive at low PDt and negative at high PDt.

First, we record that Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

< Φ−1 (1− PDt) = −Φ−1 (PDt) ,which can

be rewritten as Φ−1 (PDt)
1+
√

1−ρ2

ρ
< Φ−1 (α). The latter inequality holds for PDt

sufficiently close to α (from above) because Φ−1 (α) < Φ−1 (PDt) < 0 by (13) and
1+
√

1−ρ2

ρ
> 1.

In addition, we record that Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

> Φ−1 (PDt) because Φ−1 (α) < 0 by

(13) and ρ ∈ (0, 1).
Combining the two observations, Φ−1(PDt)−ρΦ−1(α)√

1−ρ2
∈ (Φ−1 (PDt) ,−Φ−1 (PDt)).

By the bell-shape and symmetry properties of the standard normal PDF, φ, it then

follows that φ
(

Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

)
> φ (Φ−1 (PDt)), which implies that ∂ULI

∂Φ−1(PDt)
=

φ

(
Φ−1(PDt)−ρΦ−1(α)√

1−ρ2

)
1√

1−ρ2
− φ (Φ−1 (PDt)) > 0 for PDt that is sufficiently close to α

(from above).

As PDt increases, Φ−1 (PDt)
1+
√

1−ρ2

ρ
eventually rises above Φ−1 (α) or, equiva-

lently, Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

rises above −Φ−1 (PDt). Thus, φ
(

Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

)
1√

1−ρ2
−

φ (Φ−1 (PDt)) turns positive, implying ∂ULI/∂Φ−1 (PDt) < 0.

B.3 Proof of Proposition 1

We discuss only scenario (i) in the proposition. The proof is similar for scenario (ii).

We first prove that Φ

(
Φ−1(·)−

√
1−ρ2Φ−1(Λ)

ρ

)
is an increasing convex function in the

neighbourhood of EL that solves Φ

(
Φ−1(EL)−

√
1−ρ2Φ−1(Λ)

ρ

)
= α. It is immediate that

the function is increasing in EL. Its second derivative, evaluated at the above EL level

is equal to
(√

1−ρ2Φ−1(Λ)−(1−ρ2)Φ−1(EL)

ρ3

)
φ
(

Φ−1(EL)−
√

1−ρ2Φ−1(Λ)

ρ

)
/φ2 (Φ−1 (EL)) ,where φ

is the standard normal PDF. This expression is positive if Λ > EL, which is the case
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since Λ = Φ

(
Φ−1(EL)−ρΦ−1(α)√

1−ρ2

)
is equal to EL at ρ = 0 and increases in ρ (see Appendix

B.2).

Given that Φ

(
Φ−1(·)−

√
1−ρ2Φ−1(Λ)

ρ

)
is convex, we know that, for EL = πxt PD

x
t +

(1− πxt )PDx̃
t , Φ

(
Φ−1(πxt PDxt +(1−πxt )PDx̃t )−

√
1−ρ2Φ−1(Λ)

ρ

)
= α

< πxt Φ

(
Φ−1(PDxt )−

√
1−ρ2Φ−1(Λ)

ρ

)
+ (1− πxt ) Φ

(
Φ−1(PDx̃t )−

√
1−ρ2Φ−1(Λ)

ρ

)
. Thus, there is

a LAR shortfall if the bank maintains its initial LAR in the face of uncertainty. Given
that the right-hand side of the latter inequality decreases in Λ, the bank eliminates this
shortfall by increasing its LAR. Since the appropriate LAR increases while EL stays
constant, the switch to uncertainty raises UL.

B.4 Proof of Proposition 2

To obtain the probability of the naive bank’s failure, we substitute

Φ

(
Φ−1(πltPDlt+(1−πlt)PDht )−ρΦ−1(α)√

1−ρ2

)
for Λ in (9) and obtain:

πltΦ

(
Φ−1(PDlt)−Φ−1(πltPDlt+(1−πlt)PDht )

ρ

+Φ−1 (α)

)
+
(
1− πlt

)
Φ

(
Φ−1(PDht )−Φ−1(πltPDlt+(1−πlt)PDht )

ρ

+Φ−1 (α)

)
(15)

Next, we show that expression (15) is smaller than
(
1− πlt

)
for a sufficiently high

ρ ∈ (0, 1).
Since PDl

t < PDh
t , Φ−1

(
PDl

t

)
< Φ−1

(
πltPD

l
t +
(
1− πlt

)
PDh

t

)
and thus the first

summand of expression (15) is smaller than πltα. Then, since α <
(
1− πlt

)
by (13), this

summand is smaller than πlt
(
1− πlt

)
.

Turning to the second summand, we derive a condition under which it is smaller

than
(
1− πlt

)2. For this, we need that Φ

(
Φ−1(PDht )−Φ−1(πltPDlt+(1−πlt)PDht )

ρ
+ Φ−1 (α)

)
<

1− πlt, which is equivalent to Φ−1
(
1− πlt

)
−Φ−1 (α) >

Φ−1(PDht )−Φ−1(πltPDlt+(1−πlt)PDht )
ρ

.

This inequality holds if Φ−1
(
1− πlt

)
−Φ−1 (α) >

Φ−1(PDht )−πltΦ−1(PDlt)−(1−πlt)Φ−1(PDht )
ρ

=
πlt
ρ

(
Φ−1

(
PDh

t

)
− Φ−1

(
PDl

t

))
, where the latter inequality stems from

πltPD
l
t +
(
1− πlt

)
PDh

t < 0.5, by (13), which implies that Φ−1
(
πltPD

l
t +
(
1− πlt

)
PDh

t

)
corresponds to the concave portion of Φ−1.
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Putting the arguments on the two summands together, we conclude that
Φ−1(1−πlt)−Φ−1(α)

Φ−1(PDht )−Φ−1(PDlt)
>

πlt
ρ
is a sufficient condition for expression (15) to be smaller than(

1− πlt
)
.

Referring again to (13), we obtain
Φ−1(1−πlt)−Φ−1(α)

Φ−1(PDht )−Φ−1(PDlt)
> 1, which implies that the

above sufficient condition is satisfied at a sufficiently high ρ.
Thus, there exists ρ̄ < 1 such that expression (15) is smaller than

(
1− πlt

)
for

ρ ∈ (ρ̄, 1) .

Then, we observe that expression (15) converges to
(
1− πlt

)
as ρ→ 0.

Finally, by continuity, we conclude that there exists ρ > 0 such that the bank’s
failure probability is smaller under ρ ∈ (ρ̄, 1) than under ρ ∈

(
0, ρ
)
.

B.5 Proof of Proposition 3

When the uninformed bank’s LAR is equal to ΛU and the phase implies PDt, the in-

formed bank perceives it as failing in year t with probability FPU
t = Φ

(
Φ−1(PDt)−

√
1−ρ2Φ−1(ΛU)
ρ

)
,

which implies ΛU = Φ

(
Φ−1(PDt)−ρΦ−1(FPUt )√

1−ρ2

)
. Using this to substitute for Λ in equation

(5) while imposing x = l and x̃ = h and rearranging, we obtain:

Φ−1
(
PDh

t

)
− Φ−1

(
PDl

t−1

)
ρ

= Φ−1
(
FPU

t

)
− Φ−1

(
α−

(
1− πlt

)
FPU

t

πlt

)
,

where the left-hand side is strictly positive and decreases in ρ, and the right-hand side
increases in FPU

t . This implies dFPU
t /dρ < 0, as stated in the proposition.

B.6 Proof of Proposition 4

Suppose that the economy undergoes a low-to-high switch – implying PDl
t−1 and PDh

t .
As ρ → 0, the informed bank perceives ULI → 0. By contrast, when ρ → 0, the
uninformed bank perceives that date-t losses will be higher than the expected ones,
ELU , with probability 1 − πlt. Thus, as long as 1 − πlt ≥ α – i.e. as long as the
perceived probability of switching phases is higher than the bank’s targeted probability
of failure – limρ→0 UL

U
t > 0. By continuity, this implies that there exists ρ > 0 such that

ULUt−1 > ULIt when ρ ∈
(
0, ρ
)
. That is, that the uninformed bank is over-capitalized

from the informed bank’s perspective. This proves the proposition.
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C “Regulatory” bank

A bank that implements exactly Pillar 1 of the international regulatory requirements
for credit risk (BCBS (2017) would share important similarities with the naive bank.
It would assume that – having overcome any uncertainty about the phase switch – it
always estimates the relevant loan PD at the beginning of period t. Moreover, this
“regulatory” bank would map deterministically its estimate, PDR

t , into the loading on
the default-clustering factor:

ρ2
t ≡ ρ2(PDR

t ; ρ̃, ˜̃ρ, S) = ρ̃2 1− e−S∗PDRt
1− e−S

+ ˜̃ρ2

(
1− 1− e−S∗PDRt

1− e−S

)
, (16)

where ρ̃ < ˜̃ρ denote the lower and upper limits of the loading and the parameter S
determines the speed at which this loading declines from the latter to the former as PDR

t

rises. Regulatory texts state that the assumption of a negative relationship between
PDR

t and ρt stems from “empirical analysis and intuition” that a higher credit risk
stems largely from idiosyncratic risk factors (BCBS (2005), p 12). From an operational
perspective, the mapping from PDR

t to ρt necessitates the estimation of only one risk
parameter (per exposure: see Section 2.2).

The parameters of ρ
(
PDR

t ; ρ̃, ˜̃ρ, S) differ across credit exposures (BCBS, 2017). For

instance, ρ̃2 = 12%, ˜̃ρ2
= 24% and S = 50 for corporate exposures; ρ̃2 = ˜̃ρ2

= 15% for
residential mortgages; and ρ̃2 = 3%, ˜̃ρ2

= 16% and S = 35 for “other retail exposures”.
When the regulatory bank’s LAR is equal to Λ, expression (2) implies that its failure

probability is equal to (where, for brevity, we write ρ
(
PDR

t

)
):

FPR
(
PDR

t ; Λ
)

= Pr

(
Λ < Φ

(
Φ−1

(
PDR

t

)
− ρ

(
PDR

t

)
Gt√

1− ρ2 (PDR
t )

))

= Φ

(
Φ−1

(
PDR

t

)
−
√

1− ρ2 (PDR
t )Φ−1 (Λ)

ρ (PDR
t )

)

In order for FPR
t = α, the bank’s LAR should be equal to

ΛR
(
PDR

t ;α
)
≡ ΛR

t = Φ

(
Φ−1

(
PDR

t

)
− ρ

(
PDR

t

)
Φ−1 (α)√

1− ρ2 (PDR
t )

)
. (17)

Finally, assuming that the regulatory bank has the same information set as the naive
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Figure C.1: Regulatory assumptions and implications of uncertainty. Loss-absorbing re-
sources (LAR) and their components – expected loss (EL) and unexpected loss (UL) – from the
perspective of the regulatory bank when the target one-year probability of bank failure is 0.1%. The
dashed line is plotted at the maximum UL. In the left-hand panel the regulatory bank’s LAR is com-
pared to that of the informed bank, assuming that the latter perceives three different levels of ρ2. For
the right hand panel, it is assumed that the true level ρ2 is as reported on the horizontal axis and the
naive bank’s probability of failure is from the perspective of the uninformed bank, for different levels
of uncertainty, (PDh–PDl) = 5% (low), 10% (medium) and 20% (high), while the expected loan PD
is always 2%.

one, the underlying EL and UL are

ELRt = PDR
t = πxt PD

x
t + (1− πxt )PDx̃

t , (18)

ULU
(
PDR

t ;α
)
≡ ULRt = ΛR

t − ELRt . (19)

Figure C.1 reports properties of the regulatory bank’s LAR using the parameterisa-
tion for corporate exposures. For one, the mapping in (16) implies a LAR that increases
less strongly with loan PD than the LAR of the informed bank (left-hand panel). In
addition, similar to the case of the informed bank, the EL and UL perceived by the
regulatory bank are joined at the hip over a realistic range of loan PDs (centre panel).

If the regulatory bank evolves in the same risk environment and has the same infor-
mation set as the naive bank, then its LAR will not attain the target failure probability
of α. To illustrate that, from the perspective of the uninformed bank, the regulatory
bank could be safer or riskier than targeted, Figure C.1 plots its failure probability for
a given PDR

t and for different levels of uncertainty, πxt , and of the actual ρ. To see the
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underlying mechanism, note first that, given PDR
t , the LAR of the regulatory bank is

constant. Then refer to Figure 4, which shows that, as ρ→ 0, the largest possible credit
losses converge to PDh

t . When the uncertainty stems from the difference
(
PDh

t − PDl
t

)
– as assumed in Figure C.1 – reducing it lowers PDh

t and eventually brings it below the
bank’s constant LAR. In this case, the failure probability is 0 in the limit ρ → 0 (red
and green lines). Conversely, when the uncertainty is sufficiently high, the regulatory
bank’s LAR would fall short of PDh

t and this bank’s failure probability will converge
to the continuation probability of the high-PD phase, πht , as ρ→ 0 (blue line).
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