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Yield Curve Momentum

Markus Sihvonen*

November 12, 2021

Abstract

I analyze time series momentum along the Treasury term structure.
Past bond returns predict future returns both due to autocorrelation in
bond risk premia and because unexpected bond return shocks increase
the premium. Yield curve momentum is primarily due to autocorrelation
in yield changes rather than autocorrelation in bond carry and can
largely be captured using a single bond return or yield change factor.
Because yield changes are partly induced by changes in the federal
funds rate, yield curve momentum is related to post-FOMC announcement
drift. The momentum factor is unspanned by the information in the
term structure today and is hence inconsistent with standard term
structure, macrofinance and behavioral models. I argue that the results
are consistent with a model with unpriced longer term dependencies.

Keywords: Bond risk premia, time series momentum, term structure
models, post-FOMC announcement drift.

JEL classification: G12, E43, E47

1 Introduction

Past returns can predict future returns (Fama, 1965). Moskowitz et al. (2012)
find evidence of medium horizon return autocorrelation among a large set
of asset classes. They dub this phenomenon ”time series momentum”.1

*Bank of Finland, Research Unit, Snellmaninaukio, P.O. Box 160. Email:
markus.sihvonen@bof.fi. I thank Michael Bauer, Ryan Chahrour, Emanuel Mönch, George
Pennacchi, Dimitri Vayanos and Michael Weber for useful comments.

1This is a growing literature, see e.g. Pitkäjärvi et al. (2020), Huang et al. (2020) and
Goyal and Jegadeesh (2018).
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Possibly due to a focus on a large set of asset classes, the time series
momentum literature has evolved largely separately from the vast literature
on term-structure modelling and bond risk premia (see e.g. Ang and Piazzesi
(2003), Fama and Bliss (1987) and Cochrane and Piazzesi (2005)). Because of
this disconnect it is for example not clear whether time series momentum of
government bonds is consistent with standard term-structure models.2 This
paper is an attempt to study the finer dynamics of time series momentum of
government bonds, or yield curve momentum, and close the gap between
the two literatures.

I argue that the findings of Moskowitz et al. (2012) are not necessarily
inconsistent with standard models. However, I present new evidence related
to yield curve momentum, which clearly is incompatible with such models.

First, I find that the term structure of momentum coefficients is downward
sloping. Slope coefficients from regressing bond returns on the past return
of the same maturity bond decline in bond maturity.

Second, I argue that yield curve momentum occurs both because of
autocorrelation in bond yield changes and bond carry. However, because
bond carry has small variation, most of the covariance between current and
past returns is due to autocorrelation in bond yield changes.

I also decompose yield curve momentum into autocovariance in bond
risk premia and covariance between bond risk premia and past unexpected
news to bond returns. On average the first channel explains roughly one
third of yield curve momentum while the second explains two thirds of it.

Third, I analyze the factor structure of yield curve momentum. I find
that yield curve momentum can be largely captured by the change in the
first principal component of yields or a single momentum factor defined as
the average past return of different maturity bonds.

Fourth, I assess the relationship between monetary policy and yield curve
momentum. Because changes in the Treasury yield curve are related to
changes in the federal funds target rate, yield curve momentum is partly
induced by monetary policy. That is yield curve momentum is in part
driven by a drift pattern following a recent, expected or unexpected, rate

2Durham (2013) analyzes the performance of a duration neutral cross-sectional
momentum strategy with government bonds. He argues that some its profitability can
be explained by a specific affine term structure model. However, he does not address
time series momentum. Asness et al. (2013) study a cross-country momentum strategy
with government bonds finding that such a strategy yields positive yet fairly small returns.
Brooks and Moskowitz (2017) explain bond returns using value, momentum and carry
factors. However, they do not study the sources of momentum or relate the findings to the
term structure modelling literature.
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change by the Fed. However, because especially long maturity yields display
movements unrelated to target rate changes, yield curve momentum is not
identical to post-FOMC announcement drift discussed in Brooks et al. (2019).

Fifth, I analyze whether yield curve momentum is consistent with standard
term-structure models. The standard models imply that yields are affine
in a set of factors. This form is also implied by standard macrofinance
models, at least up to first order. These models can in principle generate
covariance between current and past bond returns. However, this correlation
should vanish after controlling for information in the current yield curve.
The intuition is that, in this class models, the current factors determine
the expected bond returns and after controlling for these factors no other
variable should predict bond returns. On the other hand, these current
factors are priced in the yield curve today. But then controlling for sufficiently
many yields today is equivalent to controlling for the factors. I explain that
this intuition carries to more complicated models after controlling for the
generally non-linear relationship between bond returns and past yields.

I find that past bond returns predict future returns also conditional on
the information in the yield curve today. Hence the spanning condition
implied by standard models is violated in the data.

This point is similar to that made by Joslin et al. (2014), who study
affine term structure models with macroeconomic factors. Emprically macro
variables predict returns even after controlling for current yields. They
therefore argue that the data can only be explained by a model with unspanned
macro factors. However, they do not address momentum or consider the
predictive power of past returns.

Can behavioral theories resolve my findings? Not necessarily. The reasons
is that the current behavioral models still imply the same affine form for
yields though the coefficients and factors might be different from rational
models. Therefore these models still cannot generate yield curve momentum
conditional on all the information in the yield curve today.

However, I propose a model that is consistent with the above empirical
findings. In this model, factors exhibit longer term dependencies. However,
these longer term relations are not priced in the term structure of interest
rates today. Because past returns include information about such unpriced
dependencies, they predict future returns also conditional on current yields.
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2 Data and Definitions

I use the dataset on zero coupon US Treasury yields constructed by Liu and
Wu (2020). These yields are built using a novel non-parametric method,
which implies lower pricing errors compared to previous interpolation
procedures. I apply a sample of end of month data between August 1971 and
December 2019 and focus on the yields and returns on 1 to 10 year bonds as
well 1 month bills. In the appendix I show that the key results are robust to
using the alternative dataset constructed by Gürkaynak et al. (2007), the data
concerning the German yield curve available on the Bundesbank webpage
and the Bloomberg US Treasury Index.

I obtain the federal funds target rate and the relevant target ranges from
FRED. For monetary policy shock identification I utilize a series of the front
month federal funds futures contract listed on the CME. Finally, I use the
information on the Federal Reserve web page to create a series of the meeting
dates of the Federal Open Market Committee.

I denote the monthly continuously compounded yield of maturity n by
ynt . The logarithmic excess monthly return of maturity n bond is then given
by

rxnt+1 = −(n− 1)yn−1
t+1 +nynt − y1

t (1)

and the return between periods t and any t + h, rxnh,t+h, is given by the
sum over the one period excess returns.

3 Regression Evidence

I start by considering a simple regression of the form

rxnt+1 = α + βrxnt−h,t + εt+1 (2)

that is I regress the excess monthly return of an n maturity bond on the
excess return of an n maturity bond between periods t − h and t. When
calculating excess returns I hold maturity constant that is roll over the bond
each month. I focus on lookback horizons (h) of 1,3,6 and 12 months. The
results are given in table 1 and demonstrated further in figure 1.

The results are statistically significant for the return over the past month.
However, the results for longer horizon past returns are not significant.
Therefore, for the rest of this paper, I focus on the one month horizon. This
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is in contrast to Moskowitz et al. (2012) who focus on 1 year past returns.3

I also ignore the volatility scaling applied by Moskowitz et al. (2012) as it
can induce return predictability unrelated to raw momentum in returns as
discussed in Kim et al. (2016) and Huang et al. (2020).

The regression betas decline in bond maturity. Hence the term structure
of momentum coefficients is downward sloping. In the theoretical section I
argue that this is inconsistent with one factor interest rate models.

The results for the 1 month horizon have strong economic significance
illustrated in table 2 and figures 2 and 3. These show the mean excess returns
and annualized Sharpe ratios for different maturity bonds both for the full
sample and in two subsamples with positive and negative past month excess
returns for the same maturity bond. The mean returns and Sharpe ratios
are substantially higher following positive rather than negative past month
returns. The mean returns are increasing in bond maturity but Sharpe ratios
decreasing in maturity. The Sharpe ratios of short maturity bonds are over
0.8 for months following positive excess returns in the previous month.

Figure 10 provides an alternative way to look at the above momentum
patterns. It shows the share of total excess bond returns explained by excess
returns in months with positive past month excess returns. For all maturities
the bulk of returns comes from months with positive past month returns. For
many maturities this share is more than 100 per cent because average returns
in months with negative past month returns are negative. Because on average
only 56 % of months show positive excess returns, these relationships are
not mechanical. The appendix contains additional results concerning the
invesment performance of a simple momentum strategy.

Factor momentum Yields and bond returns are often found to exhibit
strong factor structures (see e.g. Cochrane and Piazzesi (2005)). Hence yield
curve momentum might also be captured well using a simple factors. I next
demonstrate that most of this momentum can indeed be catched using a
single factor.

Let us create a simple average of the different maturity bond returns as

r̄xt+1 =
1

10

∑
n∈N

rxnt+1, (3)

where N = {12,24,36,48,60,72,84,96,108,120}. I then run a regression

3Note that here the significance of 1 year past returns is somewhat better than for 3 and
6 month past returns.
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1 month lookback 3 month lookback

Mat. α t-value β t-value R2 α t-value β t-value R2

1 0.06 3.42 0.19 3.01 3.69 0.06 2.82 0.03 0.57 0.30
2 0.08 2.67 0.18 3.70 3.20 0.10 2.40 0.02 0.31 0.08
3 0.12 2.82 0.15 3.13 2.27 0.14 2.63 0.01 0.20 0.03
4 0.15 2.57 0.12 2.73 1.51 0.17 2.45 0.01 0.20 0.02
5 0.17 2.44 0.12 2.71 1.38 0.19 2.34 0.01 0.25 0.02
6 0.20 2.38 0.10 2.02 0.91 0.21 2.30 0.01 0.31 0.03
7 0.20 2.17 0.10 2.05 0.91 0.22 2.13 0.01 0.24 0.02
8 0.22 2.11 0.10 2.11 0.98 0.24 2.08 0.01 0.31 0.03
9 0.22 1.90 0.10 2.14 0.92 0.23 1.89 0.01 0.28 0.02
10 0.24 1.90 0.09 1.99 0.79 0.26 1.89 0.01 0.24 0.02

6 month lookback 12 month lookback

1 0.06 2.73 0.02 0.62 0.26 0.05 1.81 0.02 1.23 0.97
2 0.10 2.28 0.01 0.47 0.12 0.07 1.56 0.03 1.47 1.05
3 0.14 2.49 0.01 0.47 0.09 0.10 1.72 0.03 1.54 0.95
4 0.16 2.34 0.01 0.45 0.06 0.12 1.69 0.02 1.53 0.79
5 0.19 2.26 0.01 0.37 0.04 0.15 1.70 0.02 1.44 0.63
6 0.21 2.21 0.01 0.49 0.06 0.17 1.69 0.02 1.45 0.61
7 0.21 2.04 0.01 0.47 0.05 0.17 1.62 0.02 1.37 0.53
8 0.23 1.99 0.01 0.58 0.08 0.19 1.61 0.02 1.40 0.54
9 0.23 1.83 0.01 0.39 0.04 0.20 1.49 0.02 1.30 0.47
10 0.26 1.84 0.01 0.31 0.02 0.22 1.51 0.02 1.23 0.42

Table 1: shows the results from regressing the excess returns of different maturity
bonds (years) on the past return for the same maturity bond for lookback horizons
of 1,3,6 and 12 months. The t-values are based on Newey and West (1987) standard
errors and the lag selection procedure of Newey and West (1994)

6



2 4 6 8 10

Maturity

0

0.2

S
l
o
p
e
 
C
o
e
f
f
i
c
i
e
n
t

1 Month Lookback

2 4 6 8 10

Maturity

-0.05

0

0.05

0.1

S
l
o
p
e
 
C
o
e
f
f
i
c
i
e
n
t

3 Month Lookback

2 4 6 8 10

Maturity

0

0.05

0.1

S
l
o
p
e
 
C
o
e
f
f
i
c
i
e
n
t

6 Month Lookback

2 4 6 8 10

Maturity

0

0.02

0.04

0.06

S
l
o
p
e
 
C
o
e
f
f
i
c
i
e
n
t

12 Month Lookback

Figure 1: shows the slope coefficients and the relevant 95% confidence
bounds from regressing the returns of different maturity bonds (years) on
the past return for the same maturity bond for lookback horizons of 1,3,6
and 12 months.

Average excess returns (%)
Maturity 1 2 3 4 5 6 7 8 9 10
All months 0.07 0.10 0.15 0.17 0.20 0.22 0.22 0.25 0.24 0.26
Positive past month ret. 0.09 0.17 0.26 0.30 0.37 0.40 0.38 0.41 0.49 0.57
Negative past month ret. 0.04 0.01 0.00 0.01 -0.02 -0.01 0.03 0.05 -0.05 -0.11

Sharpe ratios (annual)

All months 0.57 0.43 0.44 0.40 0.38 0.36 0.33 0.33 0.29 0.29
Positive past month ret. 0.83 0.82 0.78 0.71 0.72 0.66 0.56 0.53 0.59 0.64
Negative past month ret. 0.26 0.04 0.00 0.02 -0.04 -0.01 0.04 0.06 -0.07 -0.12

Table 2: shows the mean excess returns and annualized Sharpe ratios for different
maturity bonds in both the full sample and in two subsamples: following positive
and negative past month excess returns.
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Figure 2: shows the mean returns for different maturity bonds both for the
full sample and in subsamples following positive and negative past month
returns.
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Figure 3: shows the annualized Sharpe ratios for different maturity bonds
both for the full sample and in subsamples following positive and negative
past month returns.
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Figure 4: shows the share of total excess returns of different maturity bonds
earned in months with positive past month excess returns.
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Mat. α t-value β t-value R2

1 0.06 3.58 0.04 2.37 3.16
2 0.09 2.68 0.08 2.75 2.73
3 0.13 2.84 0.09 2.57 2.04
4 0.15 2.56 0.09 2.43 1.31
5 0.17 2.43 0.11 2.45 1.22
6 0.19 2.37 0.14 2.65 1.46
7 0.19 2.14 0.15 2.59 1.42
8 0.21 2.08 0.17 2.55 1.33
9 0.21 1.85 0.17 2.45 1.17
10 0.23 1.85 0.18 2.27 1.05

Table 3: shows the results from regressing the returns of different maturity bonds
on the previous month average return of different maturity bonds. The t-values are
based on Newey and West (1987) standard errors.

rxnt+1 = α + βr̄xt + εt+1 (4)

The results are given in table 3. Using the average of excess returns
across different maturity bonds leads to only a minor loss in predictive
power relative to using the past return of a bond with the corresponding
maturity. For longest maturity bonds the R2 actually increases but this
improvement is small. I confirm this overall result in the next section by
showing that the momentum is driven by a change in the first principal
component of yields. Note that the loadings for the momentum factor are
still different for returns based on different maturity bonds.

4 Decompositions

What is driving the results obtained in the previous section? I next analyze
the sources of yield curve momentum using three decompositions. The
first is based on decomposing bond returns into a carry and yield change
component. The second decomposes returns into a risk premium and news
component. The third divides returns to a part that is spanned by yields and
to an unspanned residual component.

Carry-yield change decomposition To begin note that we can decompose
the excess return on a bond as
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rxnt+1 = −(n− 1)yn−1
t+1 +nynt − y1

t = (5)

−(n− 1)yn−1
t +nynt − y1

t︸                       ︷︷                       ︸
excess carry

− (n− 1)(yn−1
t+1 − y

n−1
t )︸                  ︷︷                  ︸

yield change

≡ cnt − ycnt+1, (6)

where (excess) carry and yield change are given by

cnt = −(n− 1)yn−1
t +nynt − y1

t

and

ycnt+1 = (n− 1)(yn−1
t+1 − y

n−1
t )

Here carry describes the excess return on a bond assuming the yield
curve would remain unchanged. This part of the return between t and t + 1
is observable already at time t. On the other hand, yield change represents
the effect of a change in the yield curve on the bond excess return. Therefore
for the covariance between current returns and past returns we have

Cov(rxnt+1, rx
n
t ) = Cov(rxnt+1, c

n
t−1 − yc

n
t ) = (7)

Cov(cnt , c
n
t−1) +Cov(−ycnt+1, c

n
t−1) +Cov(cnt ,−ycnt ) +Cov(−ycnt+1,−yc

n
t ) (8)

This implies that past bond returns can predict future bond returns either
because (i) past carry predicts current carry, (ii) past carry predicts future
yield changes, (iii) past yield changes predict current carry or (iv) past yield
change predicts future yield change.

Because current carry is observable one might argue that (i) and (iii) do
not constitute an economically interesting form of predictability. Moreover,
it is not clear that such covariance should be called ”momentum”. However,
an investor would certainly benefit from being able to predict future yield
changes. Moreover, especially covariance between future yield changes and
past yield changes would aptly be called momentum. Such separations
are not clear from standard treatments of time series momentum such as
Moskowitz et al. (2012).

Table 4 gives the covariance decomposition above. One can see that
covariance between future and past bond returns is mainly due to covariance
between future and past yield changes. I also test these dependencies using
the following regressions:
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Maturity Cov(cnt , c
n
t−1) Cov(cnt , yc

n
t ) Cov(ycnt+1, c

n
t−1) Cov(ycnt+1, yc

n
t )

1 5.3 -0.9 5.6 90.0
2 7.2 1.4 2.7 88.7
3 5.7 2.4 3.0 88.9
4 5.4 2.2 4.8 87.5
5 4.7 4.1 2.3 88.9
6 4.9 5.3 4.9 85.0
7 4.1 1.1 3.4 91.5
8 3.7 4.8 6.1 85.3
9 3.3 3.7 6.3 86.7
10 3.6 0.2 2.8 93.4

Table 4: shows the share of covariance between bond return and past month bond
return in per cent accounted by the four channels

cnt = α + βcnt−1 + εt+1 (9)

cnt = α + βycn−1
t + εt+1 (10)

ycnt+1 = α + βcn−1
t + εt+1 (11)

ycnt+1 = α + βycn−1
t + εt+1 (12)

The results are given in table 5.The coefficient for the past carry in
the carry prediction regression and the coefficient for past yield change in
the yield change prediction regression are statistically significant. On the
other hand, I do not find evidence of significant cross carry-yield change
predictability. Note that even though there is a statistically robust relationship
between past carry and future carry, because carry does that vary much its
contribution to the covariance between future and past returns is small.
Autocorrelation between yields appears to be strongest for shorter maturity
bonds, which explains why the relationship between past and future returns
is also strongest for these maturities.

Given these findings I now revisit the question about whether yield curve
momentum can be captured using a single factor. In particular I explore this
further using principal component analysis. I extract the first three principal

13



cnt on cnt−1 cnt on ycnt
Mat. α t-value β t-value R2 α t-value β t-value R2

1 0.01 3.76 0.85 28.79 72.59 0.07 10.38 -0.00 -0.14 0.01
2 0.01 2.59 0.92 42.82 83.68 0.09 9.77 0.00 0.33 0.04
3 0.01 2.43 0.90 27.50 81.06 0.13 12.01 0.00 0.61 0.13
4 0.01 2.57 0.93 44.80 85.66 0.14 11.89 0.00 0.58 0.11
5 0.01 2.42 0.93 48.49 87.18 0.16 12.05 0.01 1.21 0.41
6 0.01 2.48 0.94 52.78 88.38 0.18 12.52 0.01 1.45 0.53
7 0.01 2.57 0.93 48.16 87.18 0.17 11.92 0.00 0.34 0.03
8 0.01 2.40 0.94 55.93 89.14 0.19 12.02 0.00 1.44 0.59
9 0.01 2.37 0.94 51.06 88.21 0.18 11.19 0.00 1.38 0.39
10 0.01 2.28 0.95 57.19 89.75 0.19 10.97 0.00 0.08 0.00

ycnt+1 on cnt−1 ycnt+1 on ycnt

1 0.01 0.23 -0.07 -0.03 0.00 0.00 0.23 0.16 2.38 2.72
2 -0.02 -0.25 0.55 0.32 0.15 0.01 0.30 0.16 3.13 2.64
3 -0.00 -0.04 0.23 0.20 0.04 0.02 0.35 0.14 2.70 1.84
4 -0.06 -0.45 0.80 0.59 0.25 0.02 0.40 0.11 2.28 1.19
5 -0.10 -0.69 1.15 0.82 0.40 0.03 0.44 0.11 2.38 1.12
6 -0.16 -0.97 1.49 1.13 0.64 0.04 0.47 0.08 1.71 0.68
7 -0.05 -0.30 0.74 0.59 0.15 0.04 0.47 0.09 1.84 0.78
8 -0.22 -1.15 1.73 1.44 0.82 0.05 0.48 0.09 1.82 0.74
9 -0.26 -1.32 2.00 1.78 1.09 0.05 0.49 0.08 1.85 0.72
10 -0.06 -0.25 0.74 0.66 0.15 0.06 0.48 0.08 1.82 0.70

Table 5: shows the results of regressing carry cnt and yield change ycnt+1 on their
past values. The t-values are based on Newey and West (1987) standard errors.
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components using all the 120 maturities between 1 month and 10 years. I
then consider the following regressions:

rxnt+1 = α + β(pc1
t − pc1

t−1) + εt+1 (13)

rxnt+1 = α + β(pc2
t − pc2

t−1) + εt+1 (14)

rxnt+1 = α + β(pc3
t − pc3

t−1) + εt+1 (15)

rxnt+1 = α + β1(pc1
t − pc1

t−1) + β2(pc2
t − pc2

t−1) + β3(pc3
t − pc3

t−1) + εt+1 (16)

That is I explain returns using the change in the first three principal
components of yields, first individually and then including them all in one
regression. The principal components appear standard. The first principal
component explains roughly 98.5% of the variation in yields. While this
component is often called a level factor, the yield loadings decline slightly
in bond maturity. That is they drop from around 0.098 for 1 month yields to
0.082 for 10 year bonds.

This is important because a pure level shift in the yield curve does not
create variation in excess bond returns. The average contemporaneous
correlation between the change in this factor and excess bond returns is
-0.95. That is an increase in this factor is related to an upward shift in the
yield curve but also to negative excess returns on long-term bonds.

The second component has positive loadings on short term yields and
negative loadings on long term yields and could be called a slope factor. The
third component has positive loadings on short and long maturity yields
and negative loadings on mid-maturity yields. This component represents
curvature. The first three components together account for 99.97% of the
variation in yields.

The results for individual regressions are given in table 6. Here only
the change in the first principal component of yields is clearly significant,
though in some regressions changes in the curvature factor are significant
at a 10%-confidence level. The results for the regressions with all three
included at the same time are given in table 7. Again only the first principal
component is significant. This suggests that yield curve momentum is driven
by changes in a single factor.4

4These findings are related to those in Hoogteijling et al. (2021), who in contemporaneous
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pc1 pc2

Mat. α t-value β t-stat R2 α t-value β t-value R2

1 0.07 4.00 -0.02 -2.47 3.41 0.07 3.63 -0.02 -0.85 0.27
2 0.10 3.05 -0.03 -2.86 2.59 0.10 2.75 -0.01 -0.23 0.02
3 0.14 3.14 -0.04 -2.57 1.85 0.15 2.85 -0.01 -0.11 0.00
4 0.17 2.79 -0.04 -2.29 1.07 0.17 2.60 0.01 0.10 0.00
5 0.19 2.65 -0.05 -2.22 0.94 0.19 2.48 0.02 0.31 0.02
6 0.21 2.60 -0.06 -2.39 1.17 0.22 2.41 0.02 0.27 0.02
7 0.22 2.37 -0.07 -2.37 1.22 0.22 2.21 -0.01 -0.15 0.01
8 0.24 2.30 -0.07 -2.36 1.21 0.24 2.15 -0.04 -0.40 0.04
9 0.23 2.06 -0.07 -2.23 1.02 0.24 1.94 -0.02 -0.21 0.01
10 0.25 2.05 -0.08 -2.09 0.92 0.26 1.93 -0.03 -0.23 0.01

pc3

1 0.07 3.55 0.06 0.99 0.74
2 0.10 2.76 0.12 1.17 0.71
3 0.15 2.88 0.16 1.32 0.70
4 0.17 2.63 0.17 1.21 0.49
5 0.19 2.51 0.23 1.34 0.59
6 0.22 2.45 0.37 1.85 1.20
7 0.22 2.23 0.38 1.71 0.98
8 0.24 2.17 0.40 1.61 0.87
9 0.24 1.96 0.45 1.68 0.93
10 0.26 1.95 0.45 1.55 0.76

Table 6: shows the results of predicting returns of different maturity bonds on the
change in the first three principal components separately. The t-values are based on
Newey and West (1987) standard errors.
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Mat. α t-value β1 (pc1) t-value β2 (pc2) t-value β3 (pc3) t-value R2

1 0.07 3.99 -0.02 -2.25 -0.01 -0.60 0.03 0.53 3.65
2 0.10 3.02 -0.03 -2.39 0.00 0.02 0.06 0.59 2.76
3 0.14 3.10 -0.04 -2.04 0.00 0.06 0.10 0.73 2.08
4 0.17 2.77 -0.04 -1.70 0.01 0.20 0.10 0.62 1.27
5 0.19 2.62 -0.04 -1.61 0.03 0.35 0.15 0.75 1.25
6 0.21 2.58 -0.05 -1.60 0.02 0.21 0.28 1.22 1.87
7 0.22 2.35 -0.05 -1.63 -0.01 -0.15 0.29 1.15 1.73
8 0.24 2.28 -0.06 -1.58 -0.04 -0.39 0.31 1.08 1.68
9 0.23 2.04 -0.06 -1.46 -0.03 -0.24 0.36 1.16 1.54
10 0.26 2.02 -0.06 -1.38 -0.03 -0.25 0.35 1.06 1.33

Table 7: shows the results of predicting returns of different maturity bonds on the
change in the first three principal components together. The t-values are based on
Newey and West (1987) standard errors.

Risk premium-news decomposition I next study the anatomy of yield
curve momentum using a variant of a well-known decomposition of returns
into a risk premium and news component. In particular we have

rxnt+1 = Et[rx
n
t+1]︸    ︷︷    ︸

Expectation

+rxnt+1 −Et[rx
n
t+1]︸              ︷︷              ︸

News

(17)

Therefore also

Cov(rxnt+1, rx
n
t ) = Cov(Et[rx

n
t+1],Et−1[rxnt ]) +Cov(Et[rx

n
t+1], rxnt −Et−1[rxnt ])

(18)

Here I used the fact that the news component should be uncorrelated
with information known when forming the expectation. The decomposition
implies that bond returns are correlated with past bond returns either due
to autocorrelation in bond risk premia or because the bond risk premium is
correlated with past unexpected shocks to the premium.

One benefit of the carry-yield change decomposition is that both components
can be easily measured in the data. However, risk premia are not directly
observable and must be approximated using a model. Here I consider a
simple linear predictive regression:

work find evidence that yield changes can predict bond returns. Using an annual rather
than monthly horizon, they also find evidence that changes in the slope and curvature
factors can forecast returns.
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rxnt+1 = A′Xt + εt+1 (19)

Note that such a form is implied by standard term structure models,
though the exact number of principal components depends on the number
of factors. I focus on yield curve factors as predictors.5 In particular I include
the first five principal components as well as their lagged values. Now we
have

Cov(rxnt+1, rx
n
t ) = Cov(A′Xt,A

′Xt−1) +Cov(A′Xt,εt)+ (20)
Cov(εt+1,A

′Xt−1) +Cov(εt+1,εt) (21)

The last two terms can be seen as the effect of approximation error of
the model, which arises if the model is not exactly correct or if principal
components are measured with error.

The results are given in table 8. We can see that for short maturity
bonds, momentum is mainly because unexpected past bond returns increase
the next period bond risk premium. However, for longer maturity bonds,
the two channels are roughly equally important. The approximation error
components are fairly small, with perhaps the exception of 5 and 6 year
bonds. This suggests that the model provides a reasonable approximation to
bond risk premia.

Spanning decomposition Past bond returns can predict future bond returns
either because i) past bond returns contain information about current yield
curve factors that predict future bond returns or ii) past returns contain
additional information relevant for future returns. Formally the first explanation
implies that past returns are spanned by current yields whereas the second
implies that they are not. As explained later standard term structure models
imply that the spanning condition holds so that yield curve momentum
should be explained by the first channel.

To test the relevant importance of the two channels consider a linear
projection of returns on the principal components of yields

rxnt+1 = A′P Ct + εt+1 (22)

5We could also include macroeconomic variables as predictors. However, yield factors
seem better at forecasting returns.
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Maturity Risk premia News Error
1 21.4 % 78.6 % 0.0 %
2 22.0 % 78.4 % -0.4 %
3 25.5 % 80.3 % -5.9 %
4 29.2 % 71.1 % -0.2 %
5 27.2 % 66.1 % 6.7 %
6 30.3 % 77.9 % -8.3 %
7 34.7 % 68.1 % -2.7 %
8 40.8 % 60.2 % -1.1 %
9 44.3 % 55.5 % 0.2 %
10 51.6 % 49.3 % -0.9 %

Table 8: shows the decomposition of covariance between the return of different
maturity bonds and their past value into the autocovariance of risk premia,
covariance between risk premia and past unexpected bond returns and covariance
between past returns and an approximation error component.

The autocovariance in bond returns can then be decomposed to spanned
and unspanned parts.

Cov(rxnt+1, rx
n
t ) = Cov(rxnt+1,A

′P Ct)︸                ︷︷                ︸
Spanned

+Cov(rxnt+1, rx
n
t −A′P Ct)︸                        ︷︷                        ︸

Unspanned

(23)

I apply seven principal components of yields as including further components
has minor effects on the results. The results are given in table 9 and
suggest that both the spanned and unspanned components of returns are
important to explaining yield curve momentum. For short maturity bonds
the unspanned components account for most of momentum but for longer
maturities the spanned component appears more important.

Testing Spanning Results from the spanning decomposition above suggest
that unspanned variation in returns is important to explaining yield curve
momentum. This appears true especially for short maturity bonds. I now test
this result more formally by including the first three principal components
into the predictive regression shown in table 1. The results are given by in
10. The table suggests that the past return is still significant. However, for
higher maturity bonds this significance is obtained only at the 10% level.

Higher principal components of yields can contain information useful for
predicting bond returns. Therefore in the appendix I extend this regression
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Maturity Spanned Unspanned
1 32.3 % 67.7 %
2 27.1 % 73.0 %
3 35.2 % 64.8 %
4 47.2 % 52.8 %
5 51.3 % 48.7 %
6 65.5 % 34.6 %
7 66.6 % 33.4 %
8 69.2 % 30.8 %
9 69.5 % 30.5 %
10 77.6 % 22.4 %

Table 9: shows the decomposition of covariance between the return of different
maturity bonds and their past value into a part spanned by yields and an unspanned
part.

Mat. β1 (rxt−1) t-stat β2 (pc1) t-stat β3 (pc2) t-stat β4 (pc3) t-stat R2

1 0.19 2.61 0.0012 1.63 0.00 -0.39 -0.03 -1.28 5.12
2 0.18 3.27 0.0014 1.15 -0.01 -0.82 -0.08 -2.22 5.02
3 0.15 2.86 0.0017 1.05 -0.02 -1.29 -0.11 -2.46 4.43
4 0.13 2.50 0.0016 0.77 -0.03 -1.64 -0.15 -2.58 3.93
5 0.12 2.51 0.0016 0.65 -0.04 -1.81 -0.17 -2.32 3.70
6 0.09 1.81 0.0013 0.47 -0.06 -2.12 -0.15 -1.80 3.00
7 0.09 1.81 0.0010 0.32 -0.07 -2.44 -0.15 -1.52 3.06
8 0.09 1.87 0.0013 0.34 -0.08 -2.67 -0.15 -1.29 3.24
9 0.09 1.90 0.0004 0.09 -0.09 -2.64 -0.13 -1.01 2.92
10 0.08 1.77 0.00 0.00 -0.10 -2.71 -0.13 -0.87 2.74

Table 10: shows the results of predicting returns of different maturity bonds on
the past return of the bond and the first three principal components of yields. The
t-values are based on Newey and West (1987) standard errors.
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by controlling for more information in the yield curve as well as potential
non-linearities. Here the past return is significant for shorter but not for
longer maturities. These results further confirm that, at least for short
maturities, the unspanned components of returns are important for explaining
yield curve momentum.

5 Momentum and Post-FOMC Announcement Drift

How are these findings related to monetary policy? Because especially the
short end of the yield curve tends to be tightly controlled by the Fed, yield
curve momentum might be induced by policy rate changes. This is also due
to recent findings related to post-FOMC announcement drift. Brooks et al.
(2019) find that longer term bond yields respond sluggishly to changes in
the federal funds target rate.6

I now study this relationship using data on the federal funds target rate.
I also utilize data on federal funds futures and the FOMC announcement
dates to construct a series of surprise changes in the federal funds rate as in
Kuttner (2001). The data period for the federal funds target rate begins in
October 1982 and the data for monetary policy surprises on October 1988.

Figure 5 shows the correlation between changes in yields and changes
in the federal funds target rate. It does so in two samples: the full sample
starting in 82 and a subsample of months with a non-zero change in this
policy rate. Excluding months with no rate changes this correlation is close
to 0.8 at the short end of the yield curve but only around 0.3 at the long
end. The decline in correlation for longer maturity bonds is natural since the
federal funds rate is an overnight rate. All of these correlations are somewhat
smaller in the full sample; overall roughly 30% of months included changes
in the policy rate.

I now consider the following regressions

rxnt+1 = α + β∆FFTRt + εt+1. (24)

rxnt+1 = α + β∆UEFFTRt + εt+1. (25)

That is I explain the returns of different maturity bonds on the raw
change of the past month federal funds target rate as well the unexpected
change in this rate. These regressions are related to those considered by

6There is a similar drift pattern in equity markets after rate changes, see Neuhierl and
Weber (2018).
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FFTR change ycn

Mat. α t-value β t-value R2 α t-value β t-value R2

1 0.08 6.23 -0.21 -3.08 3.80 0.08 6.33 -0.17 -3.02 5.38
2 0.13 4.58 -0.33 -2.47 1.87 0.08 6.25 -0.16 -3.36 4.99
3 0.19 4.31 -0.39 -1.92 1.02 0.08 6.07 -0.14 -3.24 3.94
4 0.23 3.97 -0.42 -1.57 0.64 0.08 5.96 -0.12 -3.16 3.15
5 0.27 3.71 -0.43 -1.28 0.43 0.08 5.90 -0.11 -3.02 2.45
6 0.31 3.60 -0.32 -0.82 0.17 0.08 5.80 -0.10 -2.61 1.98
7 0.34 3.39 -0.12 -0.27 0.02 0.08 5.75 -0.09 -2.50 1.58
8 0.38 3.34 -0.15 -0.28 0.02 0.08 5.71 -0.09 -2.30 1.37
9 0.39 3.12 -0.11 -0.19 0.01 0.08 5.69 -0.09 -2.28 1.21
10 0.43 3.09 -0.11 -0.17 0.01 0.08 5.69 -0.09 -2.21 1.07

Unexpected FFTR change

1 0.09 4.27 -0.26 -1.32 2.04
2 0.14 2.49 -0.49 -1.54 1.08
3 0.19 2.23 -0.96 -1.87 1.73
4 0.22 1.99 -1.45 -2.08 2.20
5 0.25 1.86 -1.84 -2.11 2.41
6 0.28 1.83 -2.28 -2.16 2.76
7 0.31 1.81 -2.52 -2.02 2.60
8 0.34 1.78 -2.76 -1.95 2.54
9 0.35 1.72 -3.02 -1.95 2.55
10 0.39 1.78 -3.43 -2.05 2.85

Table 11: shows the results from regressing the returns of different maturity bonds
(years) on the previous change in federal funds target rate, change in the previous
yield for the same maturity bond and the previous month unexpected change in
the federal funds target rate (Kuttner, 2001). The t-values are based on Newey and
West (1987) standard errors.
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Figure 5: shows the correlation between the change in the Federal funds
target rate (FFTR) and the change in the yield of different maturity (in
months) bonds in two subsamples: full and months with non-zero FFTR
changes.

Cook and Hahn (1989) and Kuttner (2001) except that I consider the past
rather than the contemporaneous change in the policy rate.7

The results are given in table 11. Here I also show the results from
regressing bond returns on the change in the previous month change in the
corresponding yield for the same period when the target rate is available.
Results when using the federal funds target rate and bond yield are similar
for shorter maturities, which is perhaps not surprising since these yields are
highly correlated with the target rate. However, for longer maturities the
target rate change is not significant while the yield change is. Therefore it
seems that yield curve momentum is closely related but still separate from
post-FOMC announcement drift.

Table 11 also shows the results when the independent variable is the
past surprise change in the federal funds rate. Interestingly the results are
not significant for 1 and 2 year bonds but become significant for longer
maturities. Therefore long maturity bonds seem to have a stronger drift
pattern after surprise changes in the federal funds rate. The sample period
for these regressions is somewhat shorter though.

7Cook and Hahn (1989) and Kuttner (2001) also look at yield changes rather than excess
returns.

23



Maturity FFTR effect Other
1 47.3 % 52.7 %
2 31.0 % 69.0 %
3 20.3 % 79.8 %
4 21.3 % 78.8 %
5 17.1 % 82.9 %
6 13.6 % 86.4 %
7 5.3 % 94.7 %
8 7.4 % 92.6 %
9 4.8 % 95.2 %
10 4.8 % 95.2 %

Table 12: shows the decomposition of covariance between the return of different
maturity bonds and their past value into a part explained by change in the federal
funds target rate and a residual component.

Monetary policy is related to the news part of the return decomposition
analyzed in the previous section. The average correlation between target rate
changes and the news component of returns is −0.3 with higher absolute
values for short maturity bonds. Bond return shocks are related but not fully
driven by changes in the policy rate.

We can also analyze the contribution of target rate changes to yield curve
momentum using a decomposition. I project bond returns on contemporaneous
changes in the federal funds rate as follows:

rxnt = α + β∆FFTRt + εt. (26)

Using this projection, I can then decompose bond return autocovariance
into an effect caused by changes in the federal funds target rate and a residual
component:

Cov(rxnt+1, rx
n
t ) = Cov(rxnt+1,β∆FFTRt)︸                      ︷︷                      ︸

FFR effect

+Cov(rxnt+1,εt)︸          ︷︷          ︸
Other

(27)

The results are given in table 12. This simple decomposition suggests that
target rate changes are an important contributor to momentum for shorter
maturities but less so for longer maturities.

Overall, yield curve momentum is therefore connected with but not
identical to post-FOMC announcement drift. Past month yield hikes predict
low returns in the following month. These yield changes can be partly but
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not fully explained with same month movements in the policy rate. For
example the momentum coefficients are still significant in the subsample
of months with no policy rate changes. The appendix contains additional
discussion concerning the post-FOMC announcement drift.

Finally, note that the above discussion is unlikely to fully capture the
broad relationship between monetary policy and yield curve momentum.
Yields tend to fluctuate also in periods without any formal monetary policy
decisions. However, this does not imply that such changes are unrelated to
monetary policy. These fluctuations might for example still reflect changes
in the market participants’ views about future monetary policy actions.

6 Momentum and Affine Term Structure Models

How to account for the above empirical findings in a term structure model?
I start by introducing a baseline affine term structure model and 8 discussing
minimal requirements implied by the data. It is seen that especially the
violation of the spanning condition implies strong restrictions for such a
model.

Assume that bond prices are a function of an m×1 dimensional factor Xt.
This factor follows:

Xt = µ+φXt−1 + vt, (28)

where vt is multivariate Gaussian vt ∼ N (0,V ). The log nominal discount
factor is a linear function of the factors

Mt+1 = exp
(
−δ0 − δ′1Xt −

1
2
λ′tVλt −λ′tvt+1

)
λt = λ0 +λ1Xt

We can then solve bond prices recursively using

p1
t = logEt(Mt+1) (29)

pnt = logEt(Mt+1 exp(pn−1
t+1 )) (30)

8See e.g. Ang and Piazzesi (2003) and Cochrane and Piazzesi (2009)

25



In this model prices and yields take an affine form.

pnt = An +B′nXt (31)

here

A0 = 0, B0 = 0

Bn+1 = −δ0 +B′nφ
∗

An+1 = −δ1 +An +B′nµ
∗ +

1
2
B′nVBn

Here the risk neutral parameters are given by

φ∗ = φ−Vλ1

µ∗ = µ−Vλ0.

The model implies an analytical expression for the momentum slope coefficient
given in the following proposition:

Proposition 1. The slope coefficient in the momentum regression is given by

βn,m =
Cov(rxnt+1, rx

n
t )

V ar(rxnt )

Here

Cov(rxnt+1, rx
n
t ) =

(n− 1)2B′n−1φVBn−1 − (n− 1)B′n−1φ
2Σ(nBn −B1)

−(n− 1)(nB′n −B′1)VBn−1 + (nB′n −B′1)φV (nBn −B1)

and

V ar(rxnt ) =

(n− 1)2B(n− 1)′VB(n− 1)− 2(n− 1)B(n− 1)′φV (nB(n)−B(1))+
(nB(n)′ −B(1)′)V (nB(n)−B(1))
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Proof: see appendix.

What type of affine term structure model can generate momentum? I
first discuss the general restrictions imposed by the empirical findings. To
begin note that in order to generate yield curve momentum, one needs a
model with time-varying bond risk premium:

Remark 1. The momentum slope coefficient is zero in a model with a constant
(but possibly maturity specific) risk premium λ1 = 0.

The proof of the remark follows from the decomposition of bond returns
into a risk premium and news component. The news component cannot
be forecasted with past returns by definition. Now also the best forecast of
the risk premium is a constant so the slope coefficient in the momentum
regression would be zero.

Table 1 shows that the regression slope coefficient is decreasing in bond
maturity. This effectively rules out models in which the coefficient is constant
across maturities. In particular we have the following remark:

Remark 2. The momentum slope coefficient is constant across maturities in a
one factor model.

Proof: see appendix.

This result is related to fact that in one factor interest rate models all
bond yields are perfectly correlated (see e.g. Vasicek (1977)).

In the empirical part I established that yield curve momentum is primarily
driven by the change in the first principal component of yields. But does this
imply that one could capture most of momentum using a single factor term
structure model? This reasoning is incorrect as this finding rather suggests
that the model should include information about both the first principal
component and its past value rather suggesting a minimum of two factors.

Our empirical results suggest that momentum should be explained by
a model in which past returns are not spanned by information in current
yields. As discussed in the next section this observation poses difficulties
for standard models. These models tend to imply that the same model
factors that forecast bond returns also drive variation in yields. Therefore
controlling for sufficiently many yields is equivalent to controlling for the
factors and no other variable should contain additional information for
forecasting bond returns. However, similarly to Joslin et al. (2014), we can
generate a violation of this spanning condition by parametrizing the model
to a knife-edge case for which an invertibility condition condition holds.
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Remark 3. Past bond returns can predict future returns conditional on the
information in the term structure today only if the following condition holds:
[Bn(1),Bn(2), ...,Bn(m)] is not invertible for any m n(i) ∈ [1, . . . ,m].

Proof: see appendix.

The intuition for this result is that if an invertibility condition fails,
controlling for the yields is not generally equivalent to controlling for the
factors. Now some factors can predict returns and yield changes but not be
priced in the current term structure of yields.

To conclude remarks 1-3 put constraints on the model that can explain the
key empirical findings. In particular they imply that we need a multifactor,
unspanned term structure model with a time-varying risk premium.

6.1 Spanning Puzzle and Problem with Standard Models

The finding that past returns can predict future returns controlling for
information in the yield curve today poses difficulties for standard models.
These models imply that bond returns and yields are both described by the
same small set of factors. The models do not naturally generate a violation
of the invertibility condition described in remark 3. I next discuss some of
these models:

Macrofinance Models I first consider the three main macrofinance models
used to explain asset returns: the long run risk model, the habit model
and the disarters model. In the long-run risk model (see e.g. Bansal and
Shaliastovich (2012)) bond yields take an affine form in the economic state
variables. Therefore this model is of the form discussed in the previous
section and for standard parametrizations cannot generate momentum
conditional on information in the term structure today.

In the habit model, bond yields are a generally non-linear function of
habit (see e.g. Wachter (2006)). Therefore the argument of the previous
section is strictly valid only up to a first order approximation of the underlying
model. However, as discussed in the appendix one can generalize Remark
3 to any well-defined function yt = g(Xt) so that there is no conditional
momentum after controlling for the generally non-linear relationship between
past yields and returns. The results obtained in section 4 suggest that
controlling for non-linearities also does not alter the key conclusions.

Also the disasters model of Gabaix (2012) implies that yields are of the
form yt = f (Xt) for state variables Xt. This is also true for any Markovian
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model such as standard DSGE models. For example Rudebusch and Swanson
(2012) offer a macroeconomic interpretation of term premia using a DSGE
model with Epstein-Zin preferences. Therefore the general results apply to
this model subject to excluding knife-edge cases in which an invertibility
condition fails.

Models with Financial Frictions Vayanos and Woolley (2013) posit that
momentum might be explained by frictions in delegated asset management.
Because the equilibrium is linear in state variables, the model can only
generate unconditional momentum. Similarly the preferred habitat term
structure model of Vayanos and Vila (2020) takes a standard affine form and
hence is unable to generate conditional momentum.

Behavioral Models I now turn to behavioral models and models with
heterogenous beliefs. Cieslak (2017) argues that short rate forecast errors
can explain bond return predictability. To explain the findings she estimates
an affine model using survey data. Because survey forecasts generally
differ from rational predictions, the coefficients of the model are generally
different than under rational beliefs. However, because the model is still
of the standard affine form, it cannot create momentum conditional on the
information in the term structure today.

Granziera and Sihvonen (2020) assume that agents have sticky rather than
perfectly rational expectations concerning short rates. This slow updating
creates a drift pattern in bond returns following short rates changes.9 Hence
the model naturally generates unconditional momentum. In this model
biased beliefs enter as new state variables but again the model takes a
standard affine form, which is inconsistent with conditional momentum.

In Xiong and Yan (2010) yields are a generally non-linear function of
the beliefs of different types of investors. Again this model cannot generate
conditional momentum controlling for non-linear dependencies between
returns and past yields.

The classic momentum model of Hong and Stein (1999) features only one
asset. The authors solve for an linear equilibrium. It is not obvious how to
extend the model to multiple assets but assuming such an extended model
were still linear the problems discussed above apply.

9Brooks et al. (2019) also argue that a similar model can explain the post FOMC
announcement drift.
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6.2 Accounting for Momentum in a Term Structure Model

I next discuss how to account for momentum in a term structure model. I
consider a five factor model with the state variable [pc1

t ,pc
2
t ,pc

3
t ,pc

4
t ,pc

1
t−1].

That is the state variables consist of the first four principal components of
yields and the lag of the first component of yields. The demeaned factor
dynamics are given by VAR(1) model in companion form with a coefficient
matrix

φ =


φ11 φ12 φ13 φ14 φ15
φ21 φ22 φ23 φ24 0
φ31 φ32 φ33 φ34 0
φ41 φ42 φ43 φ44 0
1 0 0 0 0

 (32)

These dynamics are otherwise standard but the first principal component
depends also on its second lag. I estimate the coefficient matrix directly from
the data using least squares. I estimate the market price of risk parameters
Λ1 and the short rate sensitivity paratemeters δ1 to minimize the following
loss criterion:

Θ
1
N

1
T

N∑
n=1

T∑
t=1

(yn,mt − ynt )2 + (βm − β)′(βm − β) + (βm,c − βc)′(βm − βc)

The first term is essentially identical to the penalty function in Cochrane
and Piazzesi (2009), the sum of squared deviations between model implied
and actually observed yields.10 The second term is new: the sum of squared
deviations between model implied and observed momentum betas. The
third term is also new: the squared deviations between model implied and
observed momentum betas conditional on information in the yield curve.
Finally Θ is a scaling parameter between the first and the two other moment
conditions. Overall, we can view this as a GMM-type estimator with a
weighting matrix 

Θ
N 0 0
0 I 0
0 I

 (33)

To generate a violation of the spanning condition, I assume the market
prices of risk parameters corresponding to the lagged first principal component

10Here for the model implied yield we have yn,mt = −An+BnXt
n .
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pc1
t−1 are zero. Because this lag is not priced in the term structure today,

the yield factor coefficients are of the form [B1(n),B2(n),B3(n),B4(n),0]. This
implies that as in Remark 3, this lag cannot be inferred from the current
yield curve, which results in non-zero values for the conditional momentum
betas.
Figure 6 shows the resulting population momentum betas and conditional
momentum betas along with the values measured from the data.11 Overall
one can see that the model is able to replicate yield curve momentum in
the data quite accurately. The root mean squared error between model
implied and actual yields is 0.3%. Fit could be further improved by including
additional factors to the model.

6.3 Spanning Puzzle and Measurement Error

Joslin et al. (2014) find evidence that some macroeconomic variables can
forecast bond returns conditional on the information in the term structure
today. They argue that the data should be explained by a term structure
model in which these macroeconomic variables are not spanned by current
yields. Similarly I argue that the empirical observations documented in this
paper must be explained by a model in which past bond returns are not
spanned by current yields.12

However, Bauer and Rudebusch (2017) argue that the empirical evidence
presented by Joslin et al. (2014) is rather due to measurement error in yields.
They estimate standard term structure models and show that introducing a
measurement error can explain why some macroeconomic variables appear
to forecast bond returns even after controlling for yields.

To study whether measurement error can account for my findings, I
estimate a spanned version of the 4 factor term structure model discussed
in the previous section to match average yield errors and momentum betas.
Here I impose a VAR(1) structure on the yields and assume all factors
are generally priced. I then simulated the regression slope coefficients
controlling for all yield curve information. Similarly to Bauer and Rudebusch
(2017), I introduce a normally distributed noise term to yields with the
standard deviation based on the yield measurement error found by Liu and
Wu (2020).

The simulated 5 per cent critical values for the momentum betas when
controlling for all yield curve information are between 0.07 - 0.1. Because for

11I set Θ = 1. I estimate δ1 and Λ1 with respect to a restricted version of Φ (with φ15 = 0)
measured from the data using with OLS.

12See also Feunou and Fontaine (2014).
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Figure 6: shows the plain and conditional momentum coefficients observed
in the data and those implied by the estimated term structure model.
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short maturities the empirically observed values are above these thresholds,
measurement error does not appear to explain the violations of the spanning
hypothesis documented in this paper.

Of course I cannot fully rule that there exists some spanned term structure
model that is consistent with my empirical results after accounting for the
effects of measurement error. However, I have not found much support
for the measurement error explanation. Note that in addition to Joslin
et al. (2014), for example Moench and Siavash (2021) argue that unspanned
variables are important to explaining yield curve dynamics.

6.4 Economic Interpretations

I have argued that the empirical results of this paper are problematic for
standard theories that do not naturally generate a violation of the spanning
condition. But what is the economic reason that the spanning condition is
not satisfied? Why are past returns important for predicting future returns
but not be priced in the term structure of interest rates today?

Answering this question is challenging because unspanned models still
lack a full structural interpretation. However, one explanation is behavioral.
The unspanned model presented above is consistent with a situation where
the true dynamics for the first principal component are AR(2) yet agents
price bonds as if the dynamics are AR(1). That is agents ignore longer
term dependencies in the state variable process. Note that assuming AR(1)
dynamics is also fairly common in the term structure literature. The results
of this paper show that relaxing this assumption has important implications
for bond return dynamics.

7 Conclusion

I analyze time series momentum along the Treasury term structure. I find
that past returns predict future bond returns largely because of autocorrelation
in yield changes. This autocorrelation is further due to both autocorrelation
in bond risk premia and correlation between bond risk premia and past
unexpected bond returns. Because Treasury yields are correlated with the
federal funds rate, yield curve momentum is partly driven by post-FOMC
announcement drift. Finally, past returns are not spanned by information in
the current term structure of interest rates.

The last finding is particularly problematic for standard theory models,
which predict that yield curve momentum should vanish after controlling
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for sufficiently many yields. However, I show that the results are consistent
with a term structure model with unpriced longer term dependencies.

8 Appendix

8.1 Controlling for More Yield Curve Information

The main text shows the result from predicting bond returns using past bond
returns and the first three principal components of yields. I now extend
these results using the following regression:

rxnt+1 = α + β1rx
n
t +

∑
i∈S

βsy
i
t + εt+1, (34)

where the selected yields are the 1 month and 1 to 10 year rates. Note that
this is equivalent to controlling for the 1 month rate and the corresponding
10 forward rates and spans the tent-shaped factor discussed by Cochrane
and Piazzesi (2005). The results are shown in table 13. The coefficient on the
past return is statistically significant for shorter maturities though less so
for longer maturities. This suggests that at least for shorter maturities yield
curve momentum exists after controlling for the information in the yield
curve today.

In some models, for example in the habit model of Wachter (2006), yields
affect future returns non-linearly. We now test this possibility by considering
the more general partially linear regression

rxnt+1 = β1rx
n
t + f (yt) + εt+1. (35)

As explained later, assuming an invertibility condition, any Markovian
model of yields implies that

rxnt+1 = f (yt) + εt+1. (36)

Therefore these models imply that β1 = 0. However, the challenge is
that f is generally unknown. I tackle this using two approaches. The
first approach is to estimate the model using the semiparametric approach
described by Wood (2011). Here the standard errors are calculated using
quasi-maximum likelihood.13 The second approach is to simply add the
squared yields, on top of the yields, to the regression. The results are given in
table 14, which shows the results for the β1 parameter. For the first approach

13To avoid problems with overfitting I only include yields of every second year.
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Mat. (y) 1 2 3 4 5 6 7 8 9 10
α -0.02 -0.01 -0.05 -0.10 -0.22 -0.27 -0.39 -0.59 -0.77 -0.99
t-value -0.42 -0.10 -0.32 -0.49 -0.86 -0.89 -1.15 -1.49 -1.70 -2.01
β1 (rx1

t ) 0.16 0.16 0.13 0.12 0.11 0.08 0.07 0.08 0.07 0.06
t-value 2.41 2.97 2.64 2.30 2.24 1.54 1.56 1.60 1.52 1.42
β2 (y1

t ) -0.23 -0.41 -0.63 -0.92 -1.11 -1.19 -1.38 -1.61 -1.72 -1.91
t-value -4.42 -3.94 -4.27 -4.52 -4.66 -4.51 -4.70 -4.70 -4.62 -4.70
β3 (y12

t ) 0.51 0.64 1.32 1.95 2.33 2.53 2.88 3.35 3.60 3.95
t-value 2.68 1.74 2.59 2.85 2.96 2.84 3.06 3.22 3.30 3.37
β4 (y24

t ) -0.44 -0.18 -1.40 -1.33 -1.25 -1.46 -1.76 -2.14 -2.56 -3.08
t-value -0.92 -0.22 -1.24 -0.94 -0.75 -0.77 -0.86 -0.99 -1.16 -1.33
β5 (y36

t ) 0.46 0.01 0.53 -1.74 -1.67 -0.95 -0.57 -0.50 0.38 1.15
t-value 0.51 0.01 0.28 -0.83 -0.69 -0.34 -0.19 -0.16 0.11 0.32
β6 (y48

t ) -0.22 0.49 1.51 3.90 1.56 1.10 1.30 1.79 0.31 -0.00
t-value -0.18 0.23 0.57 1.28 0.43 0.28 0.30 0.36 0.05 -0.00
β7 (y60

t ) -1.19 -2.39 -3.71 -4.14 -2.37 -5.23 -6.47 -7.15 -5.49 -5.67
t-value -1.64 -1.95 -2.17 -1.86 -0.89 -1.43 -1.45 -1.39 -0.94 -0.91
β8 (y72

t ) 1.39 2.84 4.04 4.59 5.71 9.15 9.01 9.79 9.93 11.31
t-value 1.83 2.00 2.05 1.80 1.88 2.31 1.93 1.89 1.78 1.94
β9 (y84

t ) -0.05 -0.83 -1.57 -2.23 -2.34 -2.88 -1.71 -3.35 -4.43 -6.18
t-value -0.11 -1.02 -1.29 -1.28 -1.06 -1.06 -0.46 -0.78 -0.95 -1.23
β10 (y96

t ) 0.01 0.22 0.41 0.33 -0.80 -0.04 0.02 0.89 -0.97 -1.36
t-value 0.03 0.26 0.32 0.18 -0.36 -0.01 0.00 0.20 -0.20 -0.26
β11 (y108

t ) -0.28 -0.81 -1.26 -1.32 -0.89 -2.21 -2.52 -2.56 -1.04 -1.80
t-value -0.52 -0.89 -0.96 -0.79 -0.43 -0.76 -0.66 -0.57 -0.21 -0.35
β12 (y120

t ) 0.02 0.41 0.76 0.87 0.81 1.15 1.17 1.47 1.97 3.60
t-value 0.08 0.83 1.11 1.02 0.77 0.86 0.65 0.69 0.85 1.44
R2 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Table 13: shows the results of predicting returns of different maturity bonds on the
past return of the bond and the yields of 1 month bill and 1 to 10 year bonds. The
t-values are based on Newey and West (1987) standard errors.
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Semipar. Squares

Mat β1 t-value β1 t-value
1 0.22 4.51 0.20 2.23
2 0.25 5.09 0.22 2.62
3 0.23 4.63 0.18 2.40
4 0.20 4.12 0.16 2.02
5 0.19 3.98 0.14 1.90
6 0.16 3.27 0.10 1.42
7 0.14 2.87 0.09 1.42
8 0.12 2.65 0.08 1.25
9 0.11 2.42 0.06 1.02
10 0.11 2.40 0.06 0.93

Table 14: shows the slope coefficient on past return when explaining excess bond
returns on past excess bond returns on an arbitrary non-linear function of yields,
estimated using a semiparametric method, as well as a linear regression with yields
and squared yields. The t-values for the first regression are obtained using quasi-
maximum likelihood (Wood, 2011). The t-values for the second regression are based
on Newey and West (1987) standard errors.

β1 is always significant. However, the model produces a high in sample
fit and might achieve low standard errors by overfitting. For the second
approach, the slope coefficient is significant for shorter but not for longer
maturity bonds. These exercises suggest that accounting for non-linearities
does not strongly alter the main conclusions of this paper.

8.2 Predicting Bonds Returns with Carry and Yield Change

The results of the main section suggest that including information about
both past carry and yield change might be beneficial to predicting bond
returns. I now test this prediction by including both variables separately
into the predictability regression.

rxnt+1 = α + β1c
n
t + β2yc

n
t + εt+1 (37)

Note that because period t carry is observable we include this rather than
the previous period carry into the regression. The results are given in table
15. For most maturities both carry and past yield change are significant.
There is a small increase in R2 relative to a regression with past return.
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Maturity α t-value β1 (cnt ) t-value β2 (ycnt ) t-value R2

1 0.01 0.19 0.97 2.50 0.16 2.39 5.17
2 -0.02 -0.29 1.29 2.40 0.16 3.06 5.02
3 -0.00 -0.03 1.15 1.40 0.14 2.63 3.18
4 -0.06 -0.46 1.54 2.19 0.11 2.19 2.95
5 -0.09 -0.66 1.74 2.51 0.10 2.23 2.98
6 -0.15 -0.95 2.06 2.75 0.08 1.56 2.84
7 -0.06 -0.34 1.58 2.05 0.09 1.81 1.83
8 -0.21 -1.15 2.35 2.94 0.08 1.66 2.97
9 -0.25 -1.33 2.71 3.13 0.08 1.69 3.23
10 -0.07 -0.30 1.66 1.97 0.08 1.80 1.63

Table 15: shows the results of predicting returns of different maturity bonds on
carry and past yield change. The t-values are based on Newey and West (1987)
standard errors.

8.3 Post Announcement Drift: Further Analysis

This section provides some further results related to the post-FOMC announcement
drift. Figure 7 shows the changes in different maturity yields per one basis
point change in the federal funds target rate. Shorter maturity yields show a
clear drift pattern after target rate changes.

In this particular sample long maturity yields do not exhibit similar drifts.
However, as explained by Brooks et al. (2019) results for long maturities are
stronger when considering unexpected target rate changes. This can explain
why are regression results are stronger for long maturity bonds when using
unexpected rather than plain changes in the target rate.

Figure 8 plots the historical development of different maturity yields
along with that for the target rate. One can see that all the yields share
the same broad developments. However, the contemporaneous correlation
between yield changes and changes in the federal funds target rate is far
from perfect. Post-FOMC announcement drift seems to contribute to this
correlation being fairly low. However, this is likely not the only reason.
For example theoretically longer maturity yields should reflect expectations
about the long run path of future short rates and also anticipate target rate
changes.14

14Also yield levels reflect the cumulative effect of yield changes and hence tend to be
more correlated.
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Figure 7: shows the change in different maturity yields after a change in the
federal funds target rate (FFRT). Changes are measured per one basis point
change in the FFRT. Days after announcement are measured using trading
days.
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Figure 8: shows the historical development of 1,5 and 10 year yields along
with the federal funds target rate.
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Mat α t-value β t-value R2

1 0.06 3.31 0.19 3.12 3.77
2 0.09 2.86 0.17 3.39 2.83
3 0.12 2.70 0.14 3.12 2.02
4 0.15 2.59 0.12 2.78 1.46
5 0.18 2.49 0.10 2.47 1.08
6 0.20 2.38 0.09 2.19 0.83
7 0.22 2.28 0.08 1.94 0.65
8 0.23 2.17 0.07 1.69 0.51
9 0.25 2.08 0.06 1.46 0.39
10 0.26 1.99 0.05 1.23 0.29

Table 16: shows the results from regressing the excess returns of different maturity
bonds on their past returns using the atlernative data from Gürkaynak et al. (2007).
The t-values are based on Newey and West (1987) standard errors.

8.4 Robustness with Respect to Gürkaynak et al. (2007) data

Liu and Wu (2020) construct the yield curve using a novel procedure that
results in lower pricing errors compared to standard procedures such as the
Svensson (1994) method applied by Gürkaynak et al. (2007). How does this
affect the key results of this paper?

Table 16 replicates the results in table 1 for the 1 month lookup using
the Gürkaynak et al. (2007) data updated on the Federal reserve webpage.
The sample period is as before. While this alternative data yields somewhat
smaller coefficients for long maturity bonds, overall the results are fairly
similar across the two datasets.

8.5 Robustness with Respect to German Data

Are the results robust to data from other developed countries? Next I study
this using data on the German government yield curve available on the
Bundesbank webpage. These curves are constructed using the interpolation
procedure of Svensson (1994). Because standard interpolation procedures
often have large pricing errors for short maturity yields (Liu and Wu, 2020),
I focus on actual rather than excess returns that do not require specifying a
1 month risk-free rate.

I replicate the exercise of explaining the return of different maturity
bonds on their return in the prior month. The results are given in table
17 and are fairly similar for both countries. The R2 is quite high for short
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Germany USA
Mat. α t-value β t-value R2 α t-value β t-value R2

1 0.23 5.10 0.40 3.86 15.65 0.26 7.55 0.42 7.31 17.28
2 0.28 7.76 0.35 5.47 12.59 0.37 9.53 0.24 4.46 5.82
3 0.35 8.22 0.27 4.56 7.68 0.43 9.12 0.18 3.27 3.16
4 0.39 8.22 0.25 4.66 6.17 0.48 8.18 0.13 2.67 1.77
5 0.43 7.88 0.22 4.52 5.01 0.50 7.32 0.12 2.59 1.46
6 0.47 7.44 0.20 4.13 3.92 0.54 6.58 0.09 1.91 0.90
7 0.50 7.01 0.17 3.60 2.95 0.55 6.01 0.09 1.88 0.85
8 0.54 6.61 0.15 3.02 2.14 0.56 5.52 0.10 1.95 0.91
9 0.57 6.26 0.12 2.45 1.45 0.56 5.04 0.09 1.94 0.81
10 0.61 5.93 0.09 1.86 0.87 0.59 4.80 0.08 1.78 0.68

Table 17: shows the results from regressing returns of different maturity bonds on
their past returns in both Germany and US. The t-values are based on Newey and
West (1987) standard errors.

maturity bonds in both countries as their returns are strongly related to
short-term yields that are highly autocorrelated. This suggests that the
results are robust to the German yield curve though this curve might be
measured with larger pricing errors.

8.6 Time Series vs Cross-Sectional Momentum

The literature on equity momentum (e.g. Chan et al. (1996)) has focused
on a cross sectional strategy that goes long stocks with relatively high past
returns and short stocks with relatively low past returns. Could a similar
strategy be applied with different maturity government bonds?

The finding that time series momentum is largely associated with a single
factor suggests that such a strategy is unlikely to provide high returns. I now
demostrate this further by considering a simple cross-sectional momentum
strategy. I consider the returns of bonds with maturities from 1 to 10 years.
As in Lewellen (2002) assume the weight of each bond is given by wi =
(ri,t − rp,t)/10, where ri,t is the return of the bond and rp,t is the return of
an equal weighted portfolio of all the ten bonds. The mean return of this
strategy can be decomposed as follows:

E[rs,t] =
1

10

10∑
i=1

(ρi +E[ri,t]
2)− (ρm +µ2

m).
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E[rs,t]
1

10
∑10
i=1ρi

1
10

∑10
i=1E[ri,t]2 −ρm −µ2

m
0.0003 0.0044 0.0033 -0.0041 -0.0032

Table 18: shows a decomposition of the mean return from a cross sectional
momentum strategy (%)

Here ρi and ρp are the autovariances of the individual bonds and the
equally weighted portfolio of bonds respectively. Moreover, µi and µp are
the bonds’ unconditional mean returns.

The results from this decomposition are given in table 18. The strategy
yields a 0.0003 per cent monthly return with a modest annualized Sharpe
ratio of 0.087. This is largely because the mean autocovariance of the bonds
is close to the autocovariance of an equally weighted portfolio of the bonds.
This zero net investment strategy cannot benefit from time series momentum
related to shifts in a single factor that manifests itself somewhat similarly
for all the different maturity bonds.

8.7 Investment Performance

The results of this paper suggest that an investor could gain using momentum
strategies in Treasury bonds. But how big are these gains? Answering
this question is complicated because such momentum strategies can be
implemented in multiple ways. While more sophisticated strategies might
provide higher returns, for transparency I focus on a particularly simple
strategy. In particular assume an investor buys a bond assuming its past
month excess return was positive. On the other hand, if this past return
was negative, assume the investor instead chooses to hold short term bills
earning her zero excess returns.

Figure 9 shows the Sharpe ratios from this simple momentum strategy
along with those for a buy and hold strategy that passively holds given
maturity bonds. One can see that the momentum strategy earns higher
Sharpe ratios for all maturities. The average Sharpe ratio of the momentum
strategy is 0.51 compared to 0.38 for the buy and hold strategy. This
momentum stategy also enjoys a positive average skewness of 1.27 compared
to 0.22 for the buy and hold strategy. The Sharpe ratios for an equally
weighted portfolio of simple momentum strategies would be 0.50 compared
to 0.36 for an equally weighted buy and hold strategy. Here the improvement
in Sharpe ratio is therefore 39%.

Figure 3 conveys an interesting additional point. The mean excess
returns are fairly close to zero following months with negative past month
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Figure 9: shows the annualized Sharpe ratios for different maturity bonds
for a simple momentum strategy and a buy and hold strategy.
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returns. Hence it is not clear that an investor could benefit from twisting
our momentum strategy by also going short bonds after such months. This
long short strategy would improve mean returns for some maturity bonds
but not all. Moreover, because this improvement in mean returns is fairly
small but such a strategy involves higher volatility, the Sharpe ratios for this
long-short strategy are lower for all maturities.15

Finally note that a more comprehensive analysis of the investment performance
of yield curve momentum strategies should take into account the broader
constitution of the investor’s portfolio and other signals used. For example
Hurst et al. (2017) notes that trend followers can clearly improve Sharpe
ratios by diversifying exposures to momentum strategies for different asset
classes. They also show that momentum returns tend to survive after
controlling for reasonable estimates of transaction costs.

8.8 Results for a Bond Index

The key results of this paper are based on a yield curve constructed using
a numerical approximation scheme. A possible concern is that these errors
contribute to the key findings regarding yield curve momentum. I next
demonstrate that these errors are unlikely to invalidate the main regression
results of this paper.

In particular, I use the excess returns on the Bloomberg Aggregate
Treasury bond index, available from 1973, that is a few years before the
start of our main data. This index is calculated directly using Treasury bonds
and hence represents tradable returns. It serves as perhaps the most widely
followed benchmark index for Treasuries. However, the results obtained
with this index are not fully comparable with our main results because of
two reasons. First, this index is based on coupon paying bonds, while our
main results are for zero coupon bonds. Second, this index represents a
broad portfolio of different maturity Treasury bonds.

I replicate the key regression of this paper by explaining one month
excess return on this index by its past value. The slope coefficient is 0.11,
which is close to the slope coefficients for longer maturity bonds in table
1. The corresponding t-value is 2.67 and hence the results are strongly
significant.

I also replicated the investment strategy that holds bonds only in months
following positive past month excess returns. The Sharpe ratio for this

15This point is somewhat nuanced though. If the unconditional bond risk premium
represents rational compensation for risk, going short following months with negative
returns might hedge macroeconomic risk and is not necessarily suboptimal.
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strategy is 0.55 compared to 0.44 for a buy and hold strategy. Note that
because the strategy is effectively implemented for a portfolio of bonds, it
cannot benefit from any individual time series predictability for different
maturity bonds.

Note however that while measurement error is unlikely to drive these
basic regression results, I have argued that such errors plausibly affect the
regression results when controlling for all the yield curve information. This
is because, as discussed e.g. by Bauer and Rudebusch (2017), higher order
principal components of yields tend to be measured with error.

8.9 Stability Analysis

Is yield curve momentum stronger during some periods than others? I now
analyze potential structural breaks in the relationship between current and
past returns. I consider a simple 10 year rolling regression. Figure 10 plots
the results when one month return is explained with the one month return
in the past month. One can see that the slope coefficients are fairly stable
overall but clearly fall after the financial crisis.

Explaining this break is beyond the scope of the paper. However, the
period is characterized by extraordinarily low interest rates and unconventional
monetary policies. For example an effective lower bound on yields can
alter the relationship between current and past bond returns. The Fed
policies during the period pushed yields down and led to high bond returns.
However, if yields are close to an effective floor, these high bond returns do
not predict similar elevated returns going forward.

As discussed in the section on investment performance, bond excess
returns tend to be close to zero following months with negative returns.
Effectively the negative momentum effect is offset by a substantial unconditional
bond risk premium. On the other hand, following positive months the
positive momentum effect increases expected bond returns on top of the
unconditional risk premium. Because high bond returns are associated
with increasing interest rates, momentum strategy returns tend to be higher
during subperiods with declining rather than increasing interest rates.

8.10 Predicting Yield Changes: the Longer Run

In this section I study the longer run effects of a shock to bond yields. I
consider a regression of the form

∆ynt+h = α + β∆ynt + εt+h (38)

45



Figure 10: Momentum slope coefficient in a rolling 10 year sample for
different maturity bonds
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Figure 11: shows the slope coefficients on a regression of bond yield change
on future bond yield changes

for different horizons h. That is I predict yield changes between t + h and
t + h− 1 by the change in the same maturity bond yield between t and t − 1.
As in the local projection method of Jordà (2005), the slope coefficients can
be interpreted as a type of impulse response function.

The resulting slope coefficients along with the 95% confidence intervals
are shown in figure 11. The coefficients are high for the horizon of one month
and then again high for the 11 month horizon. Many of the coefficients in
between are negative though not statistically different from zero. These
results can explain why the 1 month horizon works best in the regressions
reported in table 1.

The slope coefficients for different horizons sum to numbers sligthly
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smaller than the coefficient for the first year. Therefore the total effect to
yields after a year is positive but fairly small. Put alternatively, assume
there is an increase in bond yields at period t. Because of short horizon
autocorrelation in yields this predicts a further increase in yields in the next
month. The longer horizon autocorrelations large offset each other so that
on average yields after a year remain sligthly below but close to the level
after a month following the yield change (t + 1).

8.11 Proof of Proposition 1

We have

rxnt+1 = −(n− 1)yn−1
t+1 +nynt − y1

t =
−(n− 1)(A(n− 1) +B(n− 1)′Xt+1) +n(A(n) +B(n)′Xt)− (A(1) +B(1)′Xt) =
−(n− 1)B(n− 1)′Xt+1 + (nB(n)′ −B(1)′)Xt − (n− 1)A(n− 1) +nA(n)−A(1)

Cov(rxnt+1, rx
n
t−1) =

Cov(−(n− 1)B′n−1Xt+1,−(n− 1)B′n−1Xt) +Cov(−(n− 1)B′n−1Xt+1, (nB
′
n −B′1)Xt−1)+

Cov((nB′n −B′1)Xt,−(n− 1)B′n−1Xt) +Cov(nB′n −B′1)Xt, (nB
′
n −B′1)Xt−1) =

(n− 1)2B′n−1φVBn−1 − (n− 1)B′n−1φ
2V (nBn−1 −B1)− (n− 1)(nB′n −B′1)VBn−1+

(nB′n −B′1)φV (nBn −B1)

V ar(rxnt ) =

(n− 1)2B′n−1VBn−1 − 2(n− 1)B′n−1φV (nBn −B1)+
(nB′n −B′1)V (nBn −B1)

The regression slope coefficient is given by the ratio of the covariance
and variance terms.

In the next section I show that expected excess return is of the form

Et[rx
n
t+1] = Ã(n) + B̃(n)Xt, (39)

Hence the covariance between this period and last period risk premium
is
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B̃(n)φV B̃(n). (40)

This is used when also matching the share explained by autocovariance
in risk premia.

8.12 Proof of Remark 2

Due to normality, the standard pricing formula applies:

pnt = −y1
t +Et[p

n−1
t+1 ] +

1
2
V art(p

n−1
t+1 ) +Covt(mt+1,p

n−1
t+1 )

Hence

rxnt+1 = pn−1
t+1 − p

n
t − y1

t = pn−1
t+1 −Et[p

n−1
t+1 ]−Covt(mt+1,p

n−1
t+1 )− 1

2
V art(p

n−1
t+1 )

rxnt+1 = Bn−1vt+1 +Bn−1Vλt −
1
2
B′n−1VBn−1

Therefore

V ar(rxnt+1) = B2
n−1V ar(vt+1 +Vλt)

and

Cov(rxnt+1, rx
n
t ) = B2

n−1Cov(vt+1 +Vλt,vt +Vλt−1)

and the slope coefficient in the momentum regression (this is given n ≥ 2, if
n = 1, excess returns are always zero and the coefficient undefinedq) is

V ar(rxnt+1) = B2
n−1V ar(vt+1 +Vλt)

and

Cov(rxnt+1, rx
n
t )

V ar(rxnt+1)
=
Cov(vt+1 +Vλt,vt +Vλt−1)

V ar(vt+1 +Vλt)

which is independent of bond maturity.
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8.13 Proof of Remark 3

Excess return of an n maturity bond is given by

rxnt,t+1 = −(n− 1)yn−1
t+1 +nynt − y1

t = (41)

−(n− 1)(An−1 +B′n−1Xt+1) +n(An +B′nXt)− (A1 +B′1Xt). (42)

This implies the expected excess return is of the form

Et[rx
n
t,t+1] = Ãn + B̃nXt, (43)

where

Ãn = −(n− 1)An−1 +nAn −A1

and

B̃n = −(n− 1)Bn−1φ+nBn −B1.

Now consider an m dimensional collection of yields ŷt. Note that we have

ŷt = Â+ B̂Xt,

where Â are B̂ simply collect the relevant An and Bn for the corresponding
maturities. If B̂ is invertible:

Xt = B̂−1(ŷt − Â)ŷt.

Therefore we have

Et[rx
n
t,t+1] = Ãn + B̃nB̂

−1(ŷt − Â)ŷt, (44)

now we can write the conditional expectation for the excess return as a
linear (affine) function of the yields ŷt. Therefore we can write the excess
returns as

rxnt+1 = Ãn + B̃nB̂
−1(ŷt − Â)ŷt + εt+1, (45)

where εt+1 is independent white noise. Now conditional on the yields ŷt,
no other variable like past returns or previous period returns should forecast
excess returns.

50



However, the argument fails if B̂ is not invertible. Then controlling
for current yields is not generally equivalent to controlling for the factors.
Then past bond returns can also predict future returns conditional on the
information in the yield curve today.

Remark 3: The Effect of Nonlinearities Remark 3 assumes that yields
are an affine function of state variables. However, it can be generalized to
arbitrary functions. Now assume excess returns are of the form

ynt = gn(Xt).

and that

Xt+1 = χ(Xt) + εt+1

for some gn and χ. We can view this as a generalized Markovian model.
Now pick any m yields stacked into a vector ỹt. Moreover, define g̃ as

ỹ = g̃(Xt),

where this function simply collects the relevant elements using gn. The
assumption that the yields are not perfectly correlated is replaced with the
assumption that g̃ is invertible. Then we can solve

Xt = g̃−1(ỹ).

Now note that we have

rxnt,t+1 = −(n− 1)yn−1
t+1 +nynt − y1

t = (46)

−(n− 1)gn−1(f (Xt+1)) +ngn(Xt)− g1(Xt) (47)

Excess returns are of the form

rxnt,t+1 = fn(Xt) = fn(g̃−1(ỹ)).

Now no other variable should predict excess returns controlling for
fn(g̃−1(ỹ)).
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