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Abstract

We evaluate and compare alternative monetary policy rules, namely average in-

flation targeting, price level targeting, and traditional inflation targeting rules, in a

standard New Keynesian model that features recurring, transient zero lower bound

regimes. We use determinacy and expectational stability (E-stability) of equilibrium

as the criteria for stabilization policy. We find that price level targeting policy, includ-

ing nominal income targeting as a special case, most effectively promotes determinacy

and E-stability among the policy frameworks, whereas standard inflation targeting

rules are prone to indeterminacy. Average inflation targeting can induce determinacy

and E-stability effectively, provided the averaging window is sufficiently long.
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1 Introduction

1.1 Motivation and Main Findings

The zero lower bound (ZLB) on interest rates has become a pervasive constraint on mone-

tary policy in several advanced economies. In some countries, notably Japan and the U.S.,

the ZLB is a recurring phenomenon, and some expect the ZLB to bind with increasing fre-

quency in the future.1 The ZLB on interest rates or, more generally, interest rate pegs,

can destabilize expectations, and it should worry policymakers. If interest rates become

constrained by the ZLB under a given interest rate rule, then the rule might induce mul-

tiple equilibria (“indeterminacy”). Some of the multiple equilibria subject the economy

to extraneous, beliefs-driven volatility, and therefore they might be viewed as undesirable.

In addition, it is important to understand whether agents can learn a particular equilib-

rium when they are assumed not to have rational expectations à la Evans and Honkapohja

(2001). Under adaptive learning, the ZLB and interest rate pegs more broadly can lead

to dynamically unstable inflation and inflation expectations (e.g., “deflationary spirals”).2

As a result, they are both widely associated with the non-existence of an expectationally

stable (“E-stable” or “learnable”) equilibrium, that is, a dynamically stable rational expec-

tations equilibrium (REE) that could emerge from an econometric learning process involving

imperfectly informed agents. When expectational stability (E-stability) conditions are not

satisfied, policymakers may fail to anchor expectations under learning–even if agents’ initial

expectations are close to policymakers’ target equilibrium.

Concerns about the recurrence of ZLB events have generated interest in alternative policy

frameworks such as average inflation targeting and price level targeting that may mitigate the

problems associated with the ZLB. For example, the Federal Reserve adopted an average

inflation targeting framework in August, 2020, after conducting its own policy strategy

1Many policymakers and economists have suggested that the ZLB could bind with increasing frequency
in the U.S. and other economies (e.g., see Bernanke et al. (2019)). Similarly, the New York Fed’s Survey
of Primary Dealers for the period of 2016 to 2019 indicate that market participants placed substantial
probability on the prospect of a second ZLB event in the U.S. economy.

2See Howitt (1992), Evans and Honkapohja (2001), Evans and Honkapohja (2003) and Evans and Mc-
Gough (2018) for evidence of instability under learning with interest pegs. Evans et al. (2008), Benhabib
et al. (2014), and Honkapohja and Mitra (2020), among others, document similar instabilities in nonlinear
New Keynesian models with a binding ZLB.
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review. Both average inflation targeting and price level targeting promise inflation in excess

of the inflation target following a period of below-target inflation. In principle, expectations

of higher future inflation can elevate and help anchor inflation expectations when interest

rates are at the ZLB.

The main contribution of this paper is to evaluate alternative policy rules, including

average inflation targeting and price level targeting rules, when interest rates are frequently

constrained by the ZLB. We ask whether these alternative policy rules help to rule out

multiple equilibria when the ZLB is a recurring phenomenon. In addition, we examine

whether agents can learn the equilibrium of the model under the alternative policy rules

using the criterion of E-stability. More generally, policymakers should consider determinacy

and E-stability desiderata for monetary policy when evaluating alternatives to the inflation

targeting status quo.

We conduct our analysis using a standard New Keynesian model with recurring, transient

ZLB events. Similar to Bianchi and Melosi (2017), our model features a persistent, possibly

recurring two-state demand shock that follows an exogenous Markov process, and a central

bank that sets interest rates with the ZLB binding when demand is low (i.e., following a

contractionary demand shock). Agents are uncertain about the future path of the demand

and monetary policy state, but form expectations that account for the possibility of ongoing

regime changes. In this framework, recurring ZLB regimes affect the stability of expecta-

tions. Thus, we investigate whether alternative monetary policy rules can preclude multiple

equilibria under rational expectations, and deflationary spirals under learning, given the ex-

pected duration and frequency of ZLB events.3 Specifically, we compare three simple interest

rate rules that describe three related policy strategies: (i) inflation targeting (a Taylor-type

rule); (ii) average inflation targeting; and (iii) price level targeting (a Wicksellian rule). Note

that nominal income targeting is a special case of the price level targeting rules when the

policy coefficients for price level and output are the same.

Our findings have important implications for stabilization policy in the current low in-

3Standard adaptive learning models can make strong, counterfactual predictions about the possibility
of deflationary spirals at the ZLB. In these frameworks, agents have linear forecasting models and do not
anticipate eventual escape from the ZLB. In contrast, the learning agents in our model form expectations
that account for the recurrence of ZLB and active monetary policy regimes. Expectations of future active
policy mitigate the potential for deflationary spirals.
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terest rate environment. We find that the model under a simple inflation targeting rule is

prone to indeterminacy, although under some empirically relevant assumptions about the

expected ZLB duration, simple Taylor rules can promote an E-stable REE. In contrast, the

model under price level targeting is almost certain to admit a unique, E-stable equilibrium,

as long as agents put an arbitrarily small, positive probability on the prospect of exiting

the ZLB regime. The average inflation targeting rule can also promote determinacy and

E-stability quite effectively, provided that the measure of average inflation is sufficiently

backward looking. For all these rules, we provide real-time learning simulations that demon-

strate the absence of deflationary spirals and the convergence of learning agents’ expectations

to rational expectations when the E-stability criterion is satisfied. These findings are also

applicable to a general setting of interest rate pegs.

After a brief literature review, the paper proceeds as follows. Section 2 describes our

model and the policy rules under consideration. Section 3 considers a version of the model

with flexible prices, thus providing intuitive reasoning for our numerical results. Sections 4

and 5 describe our numerical results for determinacy and E-stability, and related robustness

concerns. Section 6 concludes.

1.2 Literature Review

A number of papers have documented indeterminacy and E-instability of REE in standard

models with exogenous (or pegged) nominal interest rates. It is well-known that passive mon-

etary policy rules, including interest pegs, permit “local indeterminacy” of the target steady

state, i.e., the existence of multiple stable solution paths that converge to the steady state

with positive interest rates (see Woodford (2003)).4 Howitt (1992), Evans and Honkapohja

(2001), and Evans and McGough (2018) demonstrate E-instability of REE under interest

rate pegs when agents are learning; and Evans et al. (2008) document E-instability of the

low inflation steady state with the binding ZLB, and the possibility of deflationary spirals

4 See also Aruoba and Schorfheide (2013), Aruoba et al. (2018), Cochrane (2017), Armenter (2018)
Christiano et al. (2018), Bilbiie (2019), Holden (2020), and Mertens and Ravn (2014), for more on the
multiplicity of equilibria at the ZLB. We focus on “local determinacy” of the target steady state with
inflation equal to the inflation target, whereas Benhabib et al. (2001) studies “global indeterminacy”, i.e.,
existence of two steady states: the target steady state and a low inflation steady state.
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under learning at the ZLB. In most of the above-mentioned papers, the monetary policy

regime is expected to last forever, but a determinate equilibrium may exist in models with

an inflation targeting policymaker and persistent, transitory passive monetary regimes, as

shown by Cho (2016) and Barthélemy and Marx (2019), and earlier considered by Davig

and Leeper (2007).5 Similarly, Mertens and Ravn (2014) and Christiano et al. (2018) show

when expectations are stable under adaptive learning in economies that are subject to a

one-time transient ZLB regime; and McClung (2020) shows that Markov-switching models

with an inflation targeting central bank and recurring interest rate peg regimes can admit

E-stable REE if interest peg regimes are not expected to last too long.6 Therefore, the

ability of policymakers to manage expectations subject to interest peg regimes such as ZLB

events depends crucially on the expected duration and frequency of the interest peg regime.

This paper builds on this literature by examining the stabilization properties of alternative

monetary policy strategies given the expected ZLB duration and frequency.

Consequently, this paper also contributes to a broad literature on alternative policy frame-

works in low interest rate environments. Early works, including Svensson (2003), Eggertsson

and Woodford (2003), and Auerbach and Obstfeld (2005), argue that price level targeting or

policies that engineer temporary overshooting of the inflation target are approximately opti-

mal strategies during liquidity traps.7 Kiley and Roberts (2017) and Bernanke et al. (2019)

study the stabilization properties of lower-for-longer strategies, and Nakata and Schmidt

(2019), Nakata and Schmidt (2020), and Bianchi et al. (2020) focus on pathologies of and

policy strategies for recurring ZLB events. Other recent works focus on average inflation

targeting, including Mertens and Williams (2019), Budianto et al. (2020), and Amano et al.

(2020).

5A number of papers show how to restore determinacy under persistent interest rate pegs, including
Acharya and Dogra (2020), Bilbiie (2019), Gabaix (2020), Diba and Loisel (forth.), and Roulleau-Pasdeloup
(2020).

6McClung (2020) and this paper focus on REE. Self-confirming restricted perceptions equilibria of models
with regime-switching Taylor rules are studied by Airaudo and Hajdini (forth.) and Ozden and Wouters
(2020) .

7Woodford (2003) and Giannoni (2014) explore optimal monetary policy and price level targeting when
interest rates are not constrained by the ZLB. Similarly, Nessén and Vestin (2005) and Eo and Lie (2020)
examine the welfare implications of average inflation targeting as a makeup policy. Policymakers have drawn
considerable attention to these alternative policy frameworks and related academic findings (e.g., see Evans
(2012), Williams (2017), Bernanke (2017)).
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A strand of the literature studies the stabilization properties of these alternative policy

frameworks when agents are capable of learning. Our study is most closely related to that

of Honkapohja and Mitra (2020), who compare price level targeting with inflation targeting

in a liquidity trap with adaptive learning agents. They find that employing price level

targeting can guide the economy out of the ZLB, even if agents initially put little weight

on information about the price level target path when forecasting inflation. In contrast, we

study an environment with recurring ZLB events, and we find that deflationary spirals are

absent under price level targeting if learning agents put a small probability on exiting the

low demand state.8

A few recent works specifically examine price level targeting and determinacy at the

ZLB. Armenter (2018) documents multiple stable solution paths in a model with an optimal

price level targeting policy, including solutions for which the ZLB binds indefinitely. Thus,

price level targeting is no panacea. However, we can rule out analogous outcomes in our

model by assuming occasional active monetary regimes. Our results are more in line with

those of Holden (2020), who finds that price level targeting in a model with an occasionally

binding ZLB constraint ensures a unique perfect foresight path that converges toward the

intended steady state. In contrast to Holden (2020), we abstract from occasionally binding

constraints, and instead focus on a framework with stochastic, exogenous regime changes in

order to study the stability of expectations given the frequency and duration of ZLB events.

Our approach also considers both sunspot and fundamental equilibria, a broader class of

interest rate rules, and in some cases, adaptive learning agents. Thus, our work and that of

Holden (2020) are complementary.

2 Model and Equilibrium Concepts

Here we present a standard New Keynesian model with a discrete-valued preference shock

that induces the ZLB for our analysis. This section also introduces important concepts

related to equilibrium and stability of equilibrium, as well as the different models of expec-

tations formation considered in the remainder of this paper.

8See Mele et al. (2020) for a study on price level targeting and learning when the central bank is rational.
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2.1 Model Description

The model economy consists of a representative household, a continuum of monopolistically

competitive firms that face price-adjustment costs, and a monetary authority that adjusts

the (short-term) nominal interest rate in response to economic conditions. The government

balances its budget in each period using lump-sum taxes.

Households. The representative household maximizes its expected lifetime utility

E0

[∑
t≥0

βtexp(ξt)

(
C1−σ
t − 1

1− σ
− χ h

1+η
t

1 + η

)]
, (1)

subject to

PtCt +Bt = Wtht +Rt−1Bt−1 + PtDt − Tt, (2)

where Pt is the price level, Ct is consumption, Wt is the nominal wage, ht is hours worked,

Tt is lump-sum taxes, Rt is the nominal interest rate, Bt is nominal government debt, and

Dt is real dividends from the economy’s firms. Similar to Bianchi and Melosi (2017), the

preference shock ξt = ξst + εd,t is the sum of a continuous i.i.d. variable, εd,t, with mean-zero,

and a discrete-valued shock, ξst , with two realized shocks of ξ0 and ξ1. The regime variable

st ∈ {0, 1} follows a first-order Markov process according to the transition matrix

P =

 p00 1− p00

1− p11 p11

 (3)

where pij = Pr(st+1 = j|st = i) for i, j = 0, 1. The values of ξ0, ξ1, p00, and p11 are set

such that the unconditional mean of ξt is zero where ξ0 < 0 < ξ1. When the low value for

the preference shock ξ0 is realized, inflation and aggregate demand fall, which affects the

monetary policy stance, leading the nominal rate to hit the ZLB.9

Firms. Firm j uses labor as its only input in production. The production function is

9Our approach to motivating the ZLB using discrete-valued demand shocks is similar to that of Bianchi
and Melosi (2017), and is also related to the approaches of Eggertsson and Woodford (2003), Bilbiie (2019),
and Nakata and Schmidt (2019), among others.
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given by

Yt(j) = ht(j), (4)

where ht(j) denotes labor demand allocated to firm j. Firm j operates in a monopolistically

competitive market and faces the following downward-sloping demand curve

Yt(j) =

(
Pt(j)

Pt

)−εs,t
Yt, (5)

where Yt is aggregate output and εs,t is the elasticity of demand for each intermediate good,

which is a random i.i.d. variable with mean εs. Firm j chooses Pt(j) to maximize the

discounted present value of expected real profits, where real profits at t are given by

Dt =
Pt(j)Yt(j)

Pt
− Wtht(j)

Pt
− ACt(j) (6)

where ACt(j) is a price-adjustment cost term in the tradition of Rotemberg (1982)

ACt(j) =
γ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2

Yt (7)

and Π is the gross inflation rate in the steady state, which is consistent with the central

bank’s inflation target.

Aggregate Resource Constraint. All intermediate goods producing firms make iden-

tical choices so that the market clearing condition is given by

Ct = Yt −
γ

2

(
Pt

ΠPt−1

− 1

)2

Yt. (8)

For the stability analysis, we derive a log-linear approximation of the model around the

deterministic intended steady state (i.e., the steady state consistent with the central bank’s

policy objective) in the presence of a recurring ZLB, as in Bianchi and Melosi (2017). Under

rational expectations, the log-linearized equations that determine the inflation gap, π, and
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the output gap, y, are given by

πt = βEtπt+1 + κyt + vs,t (9)

yt = Etyt+1 − σ−1(it − Etπt+1) + ut + vd,t (10)

where ut = σ−1(ξt − Etξt+1), vs,t ∼ N (0, σ2
s) and vd,t ∼ N (0, σ2

d) are proportional to εs,t

and εd,t, respectively, and it is determined in conjunction with a policy rule for the nominal

interest rate. All variables are expressed in terms of percentage deviations from the steady

state. Because some of the policy rules under consideration here respond directly to the price

level rather than inflation, it is convenient to rewrite (9) and (10) by using πt = pt − pt−1

and Etπt+1 = Etpt+1 − pt as follows:10

pt =
β

1 + β
Etpt+1 +

κ

1 + β
yt +

1

1 + β
pt−1 +

1

1 + β
vs,t (11)

yt = Etyt+1 − σ−1(it − Etpt+1 + pt) + ut + vd,t. (12)

Monetary Authority. The monetary policymaker tacitly conducts monetary policy

using simple interest rate rules, i∗t , which will be presented later, subject to a lower bound

constraint,

it = max{i∗t ,−ī}

where it is the nominal policy rate and −ī < 0.11 We want to study how expectations behave

given the recurrence of the ZLB, and so we simply assume it = −ī in the low demand, low

inflation state (st = 0), and it = i∗t otherwise. Under this simplifying assumption we need not

worry about the values of ī and ξst , which turn out to be utterly irrelevant in our determinacy

and E-stability analysis.12 In turn, this allows us to focus on the consequences of agents’

10We implicitly define pt as the log deviation of the price level from some constant price level target, p∗.
We can allow for a time-varying price level target without altering our main results.

11 Here, it is a percentage deviation from the steady state. Assuming a zero inflation target, ī = 1/β − 1,
gives the ZLB constraint.

12 Our model’s determinacy and E-stability conditions do not depend on the calibration of the model’s
regime-switching intercept term (i.e., ī and ξst). The value of the intercept matters for the existence of
equilibria such that i∗t < −ī if and only if st = 0 (e.g. see Ascari and Mavroeidis (2021) for a general treatment
of related existence and multiplicity issues in models with occasionally binding constraints). However,
existence considerations are beyond the scope of this study, which focuses on the stability of expectations
given the frequency and persistence of ZLB events. See Appendices A.3-A.4 for more details.
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beliefs about the persistence and frequency of the low inflation, low interest rate regime (i.e.,

agents’ beliefs about p00 and p11) for determinacy and E-stability. Thus, we have a tractable

framework for analyzing the stability of expectations given recurring ZLB regimes.13

We consider three monetary policy rules, which are expressed below in terms of log-

linearized variables (after incorporating the above assumptions) and the regime indicator

st:

1. Inflation targeting (Taylor rule):

it = st(φππt + φyyt)− (1− st)̄i (13)

2. Price level targeting:

it = st(φppt + φyyt)− (1− st)̄i (14)

Note that the price level targeting rule coincides with a simple nominal income target-

ing rule when φy = φp. Thus, we use (14) to study closely related price level targeting

and nominal income targeting strategies.

3. Average inflation targeting:

it = st(φπ̄π̄t,t−m+1 + φyyt)− (1− st)̄i (15)

where π̄t,t−m+1 = 1
m

∑m−1
j=0 πt−j. We consider two values of φπ̄: (i) φπ̄ = φπ, such that

the central bank targets a simple average of inflation with a target window m; and

(ii) φπ̄ = φπm, such that the central bank targets the unweighted sum of the m most

recent inflation observations. Both interpretations assume that the policy rate depends

on a long history of inflation data. However, as shown later, the second formulation is

helpful for comparing outcomes under inflation targeting, average inflation targeting,

and price level targeting.

13Tractability comes at the expense of ignoring the possibility that i∗t < −ī when st = 1 given arbitrary
values of ī and ξst . However, in our numerical analysis of E-stable equilibria, we typically find ξst such that
i∗t < ī if and only if st = 0.

10



As presented previously, st is the two-state exogenous Markov process driving ξst accord-

ing to (3). Because it is the percentage deviation of the nominal interest rate from its steady

state, ī, the nominal interest rate is equal to zero when st = 0.

For each policy rule we consider, we can express our model in the following general form

xt = A(st)Etxt+1 +B(st)xt−1 + C(st) +D(st)vt (16)

where xt collects endogenous variables such as pt, yt, and it and their lagged variables

depending on the model, C(st) is a function of ut and ī, and vt = (vs,t, vd,t)
′.

2.2 Rational Expectations Equilibrium

For our rational expectations analysis, we assume that agents possess complete, homogeneous

information of the economy and form true mathematical expectations, Etxt+1, conditional

on complete time-t information.14 A rational expectations solution is any stochastic process

{xt} that solves the model (16) under the above-mentioned assumptions. In general, there

can be two types of solutions: (i) minimal state variable (MSV) solutions, which express xt

as a function of fundamental predetermined variables, xt−1, C(st), st, and no other variables;

and (ii) non-fundamental (sunspot) solutions, which express xt as a function of xt−1, C(st),

st, and extraneous variables that do not appear in (16). An REE is a mean-square stable

rational expectations solution.15 If a unique REE of (16) exists, then it assumes the MSV

form:

xt = Ω(st)xt−1 +Q(st)vt + Γ(st) (17)

14Note that agents do not know st+j for any j ≥ 1 at time t.
15 Mean-square stability is the most widely used stability concept in the Markov-switching dynamic

stochastic general equilibrium (DSGE) literature. Intuitively, a stochastic process is mean-square stable
if it has finite first and second moments. Interested readers are referred to Farmer et al. (2009), Cho (2016),
and Cho (2021) for more on mean-square stability. Note that Barthélemy and Marx (2019) provide conditions
for the uniqueness of a boundedly stable REE.
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where

Ω(st) =

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1

B(st) (18)

Q(st) =

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1

D(st) (19)

Γ(st) =

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1(
C(st) + A(st)

∑
st+1

pstst+1Γ(st+1)

)
. (20)

Numerous methods have been developed to obtain solutions of the form (17); here we

use the forward method of Cho (2016).16 After obtaining an MSV solution (17), we assess

the uniqueness of the equilibrium using the determinacy conditions in Cho (2016) and Cho

(2021), which are tractable conditions that depend only on A(st), B(st),Ω(st), p00, and p11.

These determinacy conditions, when satisfied, ensure that the MSV solution (17) is the

unique REE of the model (16). Thus, if a given MSV solution (17) satisfies the conditions in

Cho (2021), then all non-fundamental solutions of (16) and all other MSV solutions of (16) are

mean-square unstable. If the determinacy conditions fail, and the MSV solution we obtain is

mean-square stable, then we have indeterminacy.17 In order to apply the solution approach

and determinacy conditions of Cho (2016) and Cho (2021) to a model of the form (16),

which contains a regime-switching intercept term, we need to make slight modifications to

the model (see Appendix A.3 for more details).

2.3 Adaptive Learning Framework

As an alternative to rational expectations, we consider the adaptive learning approach in

the spirit of Evans and Honkapohja (2001). This approach relies on more realistic assump-

tions about information availability than does rational expectations. For example, adaptive

learning agents are not assumed to know the full structure of the economy when forming

expectations of aggregate variables that matter for their decisions related to optimal pric-

16 Alternative solution techniques for Markov-switching DSGE models are developed by Foerster et al.
(2016), Maih (2015), and Farmer et al. (2011), among others.

17 We always obtain at least one mean-square stable solution for any calibration of the model we consider
in this study. Therefore, we can always determine whether our model is determinate or indeterminate.
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ing for firms, and optimal savings, labor and consumption for households. These learning

agents form expectations using a subjective forecasting model for the aggregate variables,

often referred to as a “perceived law of motion” (PLM) for the aggregate variables, which

they estimate in real time (e.g., using the recursive least squares method). In each period,

households and firms make decisions contingent on these forecasts. After the markets clear,

the aggregate implications of these decisions are summarized by the Euler equation and the

Phillips curve, given the learning agents’ inflation and output forecasts.18

A primary focus of this study is to identify policy rules (13)–(15) that select an equilibrium

that is “E-stable” or “stable under (adaptive) learning.” Intuitively, adaptive learning agents’

PLM (and therefore the actual learning equilibrium law of motion) may converge to the

REE law of motion in real time if the E-stability conditions are satisfied. Importantly, if

the learning equilibrium converges to the (mean-square stable) REE then inflation is mean-

square stable in the learning equilibrium. Thus, a deflationary spiral (i.e., a situation such

that E0πt → −∞ as t→∞) does not occur under learning if agents learn an E-stable REE.

More generally, E-unstable REE cannot be the outcome of an adaptive learning process, and

therefore E-instability is a warning signal that inflation expectations can become severely

de-anchored. Consequently, we should avoid policies that do not promote E-stability.

To derive the E-stability conditions (i.e., the conditions under which an REE is locally E-

stable),19 we first establish the information set, It, available to adaptive learning agents when

forming expectations at time t. We assume that agents have “contemporaneous information”:

(P, xt, st, vt) ∈ It.20 We also assume that learning agents recursively estimate the coefficients,

(a(st), b(st), c(st)), of the following PLM:

xt = a(st) + b(st)xt−1 + c(st)vt + ε̃t, (21)

18 In keeping with much of the adaptive learning literature, we assume that the Euler equation and the
Phillips curve describe the evolution of equilibrium output and inflation given adaptive learning forecasts.
However, a large body of literature studies an alternative approach in which agents’ decisions, and hence
economic outcomes, depend on their long-horizon expectations. See Preston (2005), Eusepi and Preston
(2011), Evans et al. (2013), and Bullard and Eusepi (2014) for more on infinite-horizon learning.

19We stress that in models with lagged endogenous variables, the E-stability conditions are “local” condi-
tions in the sense that E-stability only predicts the convergence of adaptive learning beliefs to REE beliefs
if the initial beliefs are in some neighborhood of the REE beliefs.

20Later we discuss implications of excluding xt from It.
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where ε̃t is the perceived i.i.d. noises; xt = (πt, yt)
′ if the model is given by (9), (10) and

(13) for inflation targeting; xt = (pt, yt)
′ if the model is given by (11), (12) and (14) for

price level targeting; and xt = (πt, . . . , πt−m+2, yt)
′ if the model is given by (9), (10) and

(15) for average inflation targeting. It is important to recognize a couple of facts about the

agents’ PLM and our model of adaptive learning. First, (21) has the same functional form

as the MSV solution (17). That is, we assume agents use a correctly-specified econometric

model, but do not know the parameter values. Second, because agents know st, they do not

need sophisticated Markov-switching VAR techniques to estimate the coefficients of (21);

they need only estimate two linear models in real time (one for each regime) using standard

techniques such as the least squares method.21

Under the assumption of contemporaneous information, agents form expectations in real

time as follows:22

Êtxt+1 =
∑
st+1

pstst+1 {a(st+1)t−1 + b(st+1)t−1xt}

where a(st)t−1, b(st)t−1 and c(st)t−1 denote agents’ estimates of a(st), b(st) and c(st), respec-

tively, using all information available at the end of t−1. In what follows, we suppress the t−1

subscripts in the agents’ PLM and let (a(st), b(st), c(st)) represent (a(st)t−1, b(st)t−1, c(st)t−1).

If agents make decisions contingent on these forecasts (i.e., if we substitute Êtxt+1 into (16)),

then the equilibrium at time t is given by

xt =

(
I − A(st)

∑
st+1

pstst+1b(st+1)

)−1

(B(st)xt−1 +D(st)vt)

+

(
I − A(st)

∑
st+1

pstst+1b(st+1)

)−1(
C(st) + A(st)

∑
st+1

pstst+1a(st+1)

)
. (22)

After observing xt, agents update their estimates of a(st), b(st) and c(st) using standard

techniques such as least squares, holding fixed their beliefs about a(j), b(j), c(j) where

j 6= st. From (22), it is apparent that the agents’ beliefs, a(st), b(st), and c(st), are self-

21Recursive approaches to estimating (21) are briefly discussed in section 5.2 and also McClung (2020).
22 Here, and throughout the paper, we use Êt to denote (potentially) non-rational expectations formed

under adaptive learning. Et denote rational expectations.
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confirming only if

b(st) =

(
I − A(st)

∑
st+1

pstst+1b(st+1)

)−1

B(st) (23)

c(st) =

(
I − A(st)

∑
st+1

pstst+1b(st+1)

)−1

D(st) (24)

a(st) =

(
I − A(st)

∑
st+1

pstst+1b(st+1)

)−1(
C(st) + A(st)

∑
st+1

pstst+1a(st+1)

)
. (25)

Note that these conditions are identical to (18)-(20). Therefore, learning agents’ beliefs only

converge to self-confirming values under adaptive learning with correctly-specified PLM (21)

if the agents learn the coefficients of an REE (17). Formally, we say that adaptive learning

agents learn the MSV solution (17) if (a(st), b(st), c(st)) → (Γ(st),Ω(st), Q(st)) as t → ∞.

Proposition 1 of McClung (2020) derives the E-stability conditions under which agents may

learn an MSV solution (17) by estimating (21) in real time and making forecasts contingent

on these estimates using contemporaneous information. When the E-stability conditions fail

(i.e. “E-instability” obtains), agents will not learn the MSV solution. For convenience, the

E-stability conditions are presented in Appendix A.4.

2.4 The Relationship between Determinacy and E-stability

McClung (2020) also shows that determinacy implies the E-stability of the unique mean-

square stable equilibrium when agents have contemporaneous information.23 Therefore, if

the model (16) is determinate, then the unique mean-square stable REE (17) is E-stable.

However, the converse is not true; E-stability may select an equilibrium that the determinacy

criterion would not select. Therefore, the regions of the model parameter space that generate

E-stable MSV solutions are larger than those of the parameter space that generate a unique

mean-square stable REE. In fact, McClung (2020) shows that the E-stability conditions for

models of the form (16) can be significantly weaker than the determinacy conditions.

23See Propositions 1 and 2 of McClung (2020) for details. Branch et al. (2013) also studies uniqueness
and E-stability of (regime-dependent) REE in a class of purely forward-looking regime-switching models.
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3 Analysis with a Simplified Model

Before exploring a fully fledged New Keynesian model, we first study (in)determinacy and

E-(in)stability in a simplified version of the model (11)-(12). In the simplified model, as in

Davig and Leeper (2007), prices are assumed to be fully flexible (i.e., as κ → ∞ such that

yt = 0 for all t). However, we study a variety of targeting rules at the ZLB, while Davig and

Leeper (2007) examine the equilibrium properties of recurring active and passive monetary

regimes in the context of a Taylor-type rule. With flexible prices (and also assuming vt = 0

for exposition), the model reduces to the Fisherian model:

it = Etpt+1 − pt + σut. (26)

To characterize the equilibrium dynamics of inflation, we need only pair the Fisher equa-

tion (26) with one of the interest rate rules from (13)–(15). Analytical determinacy results

are available, which help develop our predictions and intuition for the numerical analysis

presented in Sections 4 and 5.

First, consider inflation targeting (13) with the Fisher equation (26), yielding the follow-

ing Markov-switching expectational difference equation for inflation:

φπstπt = Etπt+1 + (1− st) ī+ σut (27)

where φπ > 0 and yt = 0 for all t is imposed in (13) with flexible prices.

Proposition 1 considers determinacy and E-stability under inflation targeting in the sim-

plified model with recurrent ZLB events.

Proposition 1 Consider a simple model of inflation (27) that combines the Fisher equa-

tion (26) and inflation targeting (13), and assume φπ ≥ 0. Then, (27) is indeterminate and

the MSV solution is E-unstable for any finite value of φπ > 0.

Proof: See Appendix A.1. �

Proposition 1 suggests that inflation targeting is always ineffective as stabilization pol-

icy in our simplified model with recurring ZLB events, regardless of their frequency and
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duration.24

It is instructive to consider an alternative interest rate rule, and here we the consider

price level targeting rule (14). If we substitute (14) into (26), then we arrive at the following

Markov-switching expectational difference equation for the price level, pt:

pt = (1 + φpst)
−1Etpt+1 + (1 + φpst)

−1 ((1− st) ī+ σut) . (28)

Proposition 2 shows that we have determinacy and E-stability under price level targeting,

provided that interest rates can respond to prices some of the time, even if policy is only

unconstrained on an extremely infrequent basis.

Proposition 2 Consider a simple model of inflation (28) that combines the Fisher equa-

tion (26) and price level targeting (14), and assume φp ≥ 0 and p00 + p11 > 1. Then, (28) is

determinate and the unique REE is E-stable if and only if φp > 0 and p00 < 1.

Proof: See Appendix A.2. �

According to Proposition 2, all that is required for determinacy under price level targeting

is that the ZLB regime must be transitory (p00 < 1) and monetary policy must be expected

to respond to the price level following exit from the ZLB regime (φp > 0).25 Importantly,

there are no restrictions on p11, apart from p00 + p11 > 1. Thus, price level targeting in a

simplified model leads to determinacy even if the ZLB can be recurring (i.e., p11 < 1) and

occuring more frequently than the unconstrained monetary regime (i.e., p11 < p00).

Average inflation targeting rules of the form (15) with φπ̄ = φπm are an intermediate

case between inflation targeting and price level targeting. For example, if we set m = 1,

then average inflation targeting (15) collapses to inflation targeting (13). For m ≥ 1, we can

24 In the absence of ZLB events (i.e., st = 1 for all t), and assuming φπ ≥ 0, the simplified model
with inflation targeting is a determinate model of inflation if and only if the Taylor Principle, φπ > 1, is
satisfied. If the model is indeterminate, such that multiple rational expectations equilibria exist, there will
always be a unique MSV solution. The MSV solution of the simplified model is unique owing to the lack
of lagged endogenous variables in the model. Therefore, it is apparent that a zero interest rate policy or,
more generally, interest rate pegs (i.e., φπ = 0), does not promote determinacy or E-stability in the simple
Fisherian model (26) with inflation targeting.

25 In the absence of ZLB events (i.e., st = 1 for all st), and assuming φp ≥ 0, the simplified model with
price level targeting is a determinate model if and only if φp > 0 is satisfied. Woodford (2003), Giannoni
(2014), and Honkapohja and Mitra (2020) show this result in more general models. Furthermore, the unique
MSV solution is E-stable if φp > 0. Hence, a permanent interest rate peg (i.e., φp = 0) is on the boundary
of the determinacy and E-stability region of the simple price level targeting model’s parameter space.
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rewrite the average inflation targeting rule (15) with φπ̄ = φπm in terms of the price level,

pt (assuming φy = ī = 0 for the sake of exposition):

it = φπ̄stπ̄t,t−m+1

= φπmstπ̄t,t−m+1

= φπst {(pt − pt−1) + (pt−1 − pt−2) + . . .+ (pt−m+2 − pt−m+1)}

= φπst (pt − pt−m+1) .

In the limit m→∞, we have:

it = φπst (pt − p0)

where p0 is some arbitrary initial condition. If we normalize p0 = 0, then the average

inflation targeting rule with φπ̄ = φπm clearly becomes the price level targeting rule when

m → ∞. Thus, we expect an increase in m to yield determinacy results that are closer to

the prediction of Proposition 2 for price level targeting than they are to that of Proposition

1 for inflation targeting. Section 4 considers a fully fledged New Keynesian model and shows

that this is generally the case.

4 Rational Expectations and Determinacy

This section considers the New Keynesian model described by (9) and (10), and examines the

determinacy properties for each policy rule. For each policy rule, we consider a benchmark

calibration that is well within the range of calibrations studied in the literature: β = 0.9975,

κ = 0.05, σ = 2, φπ = 2, and φy = 0.5/4 for inflation targeting (13) and average inflation

targeting (15), and φp = 0.25 and φy = 0.5/4 for (14), loosely following Williams (2010).

Robustness concerns related to the calibration are discussed throughout this section.26 As

mentioned in Section 2, there is no need to calibrate ī or ξst . The irrelevance of ξst underscores

the fact that the persistence and frequency of passive monetary spells is what matters for

26Note that σd and σs are irrelevant for determinacy and E-stability analysis (e.g. see Cho (2021) and
McClung (2020)).
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the stability of beliefs under rational expectations or adaptive learning.

For each rule, we consider a range of transition probability calibrations that imply a

transient (p00 < 1) and recurring (p11 < 1) ZLB regime. We use the average duration of

each regime, k, which is given by (1 − pkk)−1, for k = 0, 1, to identify reasonable values of

(p00, p11). Recent works estimate the expected duration of the binding ZLB regime for the

U.S. economy for the period of 2008 to 2015. For example, Swanson and Williams (2014)

find that the Blue Chip expectation of the ZLB duration fluctuated between two and five

quarters prior to the Fed’s calendar-based forward guidance in 2011, when the expected

duration increased to seven or more quarters and the median expected duration in the New

York primary dealer survey increased to nine quarters.27 Kulish et al. (2017) estimate the

path of expected durations of the ZLB and obtain similar results, ranging from three to 12

quarters. In our model, p00 = 0.75 corresponds to an expected duration of four quarters;

p00 = 0.8 corresponds to five quarters; p00 = 0.9 corresponds to 10 quarters; p00 = 0.917

corresponds to 12 quarters; and p00 = 0.95 corresponds to 20 quarters.

4.1 Inflation Targeting

The baseline model with inflation targeting is formed by (9), (10) and (13). We first examine

the determinacy properties of the model as a function of the transition probabilities p00 and

p11, with all other parameters set at their benchmark values. Panel (a) of Figure 1 shows

that the benchmark calibration model with recurring ZLB episodes and inflation targeting

is indeterminate for all empirically plausible values of p00 and p11. However, panels (b)

and (c) of Figure 1 show that the determinacy region in the (p00, p11)-space expands as

the Phillips curve flattens (κ decreases) or as risk aversion increases (σ increases), holding

all other parameters at the benchmark values. Intuitively, a lower κ or higher σ reduces

the positive, expectations-destabilizing feedback from the expectations to the equilibrium

outcomes which give rise to extraneous self-fulfilling fluctuations. A lower κ reduces the

sensitivity of inflation to the output expectations because πt = κ
∑

k≥0 β
kEtyt+k; and a

higher σ reduces the sensitivity of output to the real interest rate expectations because

27The forecast horizon in the Blue Chip consensus expectation of the ZLB duration is only six quarters.
See Swanson and Williams (2014) for more.
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Figure 1: Determinacy and Inflation Targeting (the Taylor rule)
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Note: The REE for inflation targeting rules is depicted with respect to p00 and p11 as follows. The red
(circle) area denotes determinacy; and the white area denotes indeterminacy. Other model parameters are
given by β = 0.9975, φπ = 2, and φy = 0.5/4 throughout this exercise unless noted otherwise.

yt = −σ−1
∑

k≥0(it+k − Etπt+k+1). For brevity, Figure 1 does not depict the effects of

reducing β. However, a lower β also reduces positive expectational feedback, thus enlarging

the determinacy regions. Furthermore, aggressive active monetary policy (i.e., higher φπ)

can enlarge the determinacy regions when κ is sufficiently low and σ is sufficiently high (see

panel (d) of Figure 1). Finally, panels (b)–(d) of Figure 1 show that the low frequency (a

high value of p11) and short duration (a low value of p00) of ZLB events are key to ensuring
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Figure 2: Determinacy and Price Level Targeting
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Note: The REE for a price level targeting rule is depicted with respect to p00 and p11 in panel (a) and
with respect to φp and φy in panel (b) as follows. The red (circle) area denotes determinacy; the white area
denotes indeterminacy. The black square in panel (b) depicts the benchmark calibration, and the red line is
the set of points satisfying the nominal income targeting restriction φp = φy. The model parameters are set
at the benchmark values throughout this exercise unless noted otherwise.

a unique REE.

We conclude that inflation targeting under a Taylor-type rule is prone to indeterminacy

in a model subject to recurring ZLB events. However, this problem of indeterminacy is

mitigated provided the Phillips curve is sufficiently flat, monetary policy is very active away

from the ZLB, or agents are very risk averse.

4.2 Price level targeting

Now we consider determinacy under a price level targeting rule of the form (14). The result

is stark, and consistent with the findings from the simple Fisherian model with price level

targeting (i.e., Proposition 2): for sufficiently small φy, we have determinacy for all (p00, p11),

provided p00 < 1. We have determinacy even if ZLB events are more frequent and persistent

than are the unconstrained policy regimes (i.e., p11 < p00). Figure 2 (a) illustrates the

basic result for the benchmark calibration. Furthermore, in line with Proposition 2, we

could instead set φp = 0.0001 and φy = 0 and also obtain the same determinacy region as
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depicted in Figure 2 (a). Finally, when φp = φy such that the price level targeting rule (14)

implements nominal GDP targeting policy, we again find the determinacy region depicted

in Figure 2(a).28 Therefore, nominal income targeting policy is a highly effective means of

stabilizing expectations when the ZLB is expected to bind frequently.

Proposition 2 and the numerical results presented in this section indicate that policymak-

ers can almost always manage rational expectations under price level targeting or nominal

income targeting in an economy subject to ongoing ZLB events. However, there is a caveat:

policymakers may destabilize the economy when responding too aggressively to output rel-

ative the price level in (14). Figure 2 (b) shows that large values of φy (relative to φp) may

lead to indeterminacy for a calibration of p00 that matches the persistence of the U.S. ZLB

episode of 2008 to 2015. This result suggests that central banks targeting the price level

should respond only mildly to output.

4.3 Average inflation targeting

In this section, we examine the model incorporating the average inflation targeting rule (15),

the New Keynesian Phillips curve (9), and IS curve (10). We consider three measures of

average inflation, indexed by m = 5, 9, 25, that vary in the degree of history-dependence.

These values of m correspond to a target that averages over the past year, two years, and

six years of inflation data, respectively. As mentioned in Section 2.1, we also consider two

interpretations of the average inflation targeting rule. First, we set φπ̄ = φπ, such that

the central bank targets a simple average of the most recent m quarters of inflation data.

Second, we set φπ̄ = φπm and interpret the target as an unweighted sum of the most recent

m quarters of inflation. In this policy framework, average inflation targeting with φπ̄ = φπm

converges to (14) as m→∞, as argued in Section 3.

As shown in Figure 3, under both interpretations of the rule, a higher m expands the

determinacy region in the (p00, p11)-space. Thus, we have the smallest determinacy region for

inflation targeting (13), which is equivalent to (15) with m = 1, and the largest determinacy

region for the price level targeting rule, (14), which can be obtained from (15) as m → ∞.

28 We explored determinacy regions in the model with many values of φp ∈ [0.0001, 100] given small ψy
and also φp = φy ∈ [0.0001, 100]. We invariably obtain the determinacy region depicted in Figure 2(a).
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Figure 3: Determinacy and Average Inflation Targeting
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(a) Simple Average Target (φπ̄ = φπ).
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(b) Unweighted Target (φπ̄ = φπm).

Note: The REE for average inflation targeting with various target windows of m is depicted with respect
to p00 and p11. The black (circle) region is the determinacy region for m = 5; the determinacy region for
m = 9 consists of the black and blue (asterisk) regions; the determinacy region for m = 25 consists of the
black, blue, and red (plus) regions; and the white region denotes indeterminacy. The model parameters are
set at the benchmark values throughout this exercise unless noted otherwise.

In addition, as expected, the determinacy regions under the unweighted sum interpretation

(φπ̄ = φπm) are strictly larger than those under the simple average inflation target interpre-

tation (φπ̄ = φπ), because the former generates a more active response to inflation during

unconstrained regimes.

Figure 4 demonstrates the effects of varying κ, σ, β, and φπ under the simple average

inflation target interpretation (φπ̄ = φπ) when m = 5. As we found in our determinacy

analysis with inflation targeting, a lower κ, higher σ, lower β, and higher φπ enlarge the

determinacy regions under average inflation targeting. The same intuition as before applies

to the average inflation targeting case.

5 Adaptive Learning and E-stability

This section considers the New Keynesian model of Section 2.1, and examines the E-stability

properties for each policy rule. We also demonstrate useful applications of E-stability, and

consider robustness issues.
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Figure 4: Determinacy and Average Inflation Targeting under Alternative Parameterizations
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Note: For various parameterizations, the REE for an average inflation targeting rule with m = 5 is depicted
with respect to p00 and p11 as follows: red area (determinacy) and white area (indeterminacy). This figure
assumes the simple average inflation targeting rule in (15) with φπ̄ = φπ. The model parameters are set at
the benchmark values throughout this exercise unless noted otherwise.

5.1 (In)Determinacy and E-(in)stability

Our discussion in Section 2.4 predicts the first basic conclusion of our E-stability analysis

under the model of adaptive learning: a determinate equilibrium is E-stable. However,

while determinacy implies E-stability, the converse is not true. This implies that using E-

stability as a criterion instead of determinacy/indeterminacy may alter the evaluation of

alternative policy rules. Therefore, we can think of the E-stability criterion as a minimal

requirement for stabilization policy. We examine this possibility using our fully fledged New
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Keynesian model developed in Section 2.1. Figure 5 (a) shows that inflation targeting (13)

is capable of generating a unique E-stable MSV solution, despite model indeterminacy over

the entire parameter space of (p00, p11). Similarly, Figure 5 (b) shows that indeterminate

models with the average inflation targeting rule (15) admit E-stable solutions. Finally,

because price level targeting (14) generates determinacy regions that virtually exhaust the

model parameter space (assuming φy is not too large), we find that E-stability regions also

exhaust the policy parameter space. In short, while inflation targeting can be associated with

E-stability for some parameter region that is associated with indeterminacy, and average

inflation targeting has a larger parameter region of E-stability than that for determinacy,

price level targeting always leads to determinacy and E-stability for the entire parameter

space considered (assuming φy is not too large). Therefore, price level targeting is the most

effective stabilization policy according to our determinacy and E-stability analysis.29

5.2 E-stability and Deflationary Spirals

It has been well-established that deflationary spirals may occur under adaptive learning when

interest rates are pegged at zero (e.g., see Evans et al. (2008)). This section illustrates how

and why deflationary spirals are absent at the ZLB when agents are learning adaptively but

are sufficiently optimistic about the possibility of escaping the current liquidity trap (i.e.,

they forecast regime changes, and p00 (p11) is sufficiently low (high) to deliver an E-stable

REE). For the purpose of this analysis, we define a deflationary spiral as

lim
t→∞

E0πt = −∞.

The usual mathematical expectation operator E0 denotes model-consistent expectations

(which may not coincide with agents’ expectations).

29We also considered the following lagged information assumption: (P, xt−1, st, vt) ∈ It, but xt /∈ It. Our
numerical E-stability results for the model (9)-(10) and any one of the policy rules from (13)-(15) are the
same under this alternative lagged information assumption as those under the contemporaneous information
assumption. Also note that it is quite uncommon for indeterminate models to yield an E-stable REE in
standard linearized models under assumptions analogous to those in Section 2. For example, the model
given by (9), (10), and (13) without regime switching admits an E-stable (and dynamically stable) solution
if and only if the model is determinate. See Bullard and Mitra (2002) and Evans and McGough (2005) for
more details.
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Figure 5: Determinacy and E-stability

.75 .8 .85 .9 .95 1
.75

.8

.85

.9

.95

1

E-stable and Indeterminate

(a) Inflation Targeting

.75 .8 .85 .9 .95 1
.75

.8

.85

.9

.95

1

Determinate
E-stable and Indeterminate

(b) Avg. Inflation Targeting (φπ̄ = φπ)

Note: The REE for inflation targeting and average inflation targeting are depicted with respect to p00 and p11

in panels (a) and (b), respectively. The red (circle) area denotes determinacy and E-stability; the blue (plus)
area denotes E-stability and indeterminacy; and the white area denotes E-instability and indeterminacy.
Average inflation targeting has the target window of m = 9 for all the simulations.

5.2.1 E-stability and Convergence to REE

First, we demonstrate numerically that E-stability can predict convergence of the learning

equilibrium law of motion to the mean-square stable REE law of motion. Formally, con-

vergence obtains in real time if (a(st)t, b(st)t, c(st)t) → (Γ(st),Ω(st), Q(st)) for st = 0, 1 as

t→∞, given (a(st)0, b(st)0, c(st)0) in some suitable neighborhood of the REE. If the learning

equilibrium law of motion converges to the REE law of motion in real time then deflationary

spirals will not occur because mean-square stability ensures that limt→∞E0πt is finite (e.g.,

see Cho (2016) for details).

To demonstrate convergence in practice, we suppose agents update Φ(k)t = (a(k)t, b(k)t, c(k)t)
′

using the recursive estimator

Φ(k)t = Φ(k)t−1 + ψ(k)tR(k)−1
t zt(xt − Φ(k)′t−1zt)

′ (29)

R(k)t = R(k)t−1 + ψ(k)t(ztz
′
t −R(k)t−1) (30)
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where zt = (1 x′t v
′
t)
′, ψ(k)t = 1/tαk if st = k and 0 otherwise, tk is the number of periods

such that st = k, α ∈ (0, 1] and k = 0, 1.30 Intuitively, (29)-(30) is a recursive (weighted)

least squares estimator of the two linear regime-dependent PLMs.

Under contemporaneous information,31 time-t equilibrium is determined as follows.

Step 1 At the end of t − 1, agents update Φ(k)t−1 using time-t − 1 information and

(29)-(30).

Step 2 At time-t, temporary equilibrium is given by substituting Φ(k)t−1 into (22).

We can repeat Steps 1 and 2 to solve for temporary equilibrium at t+ 1 and so on. Figure 6

illustrates convergence to the REE law of motion in cases where E-stability conditions are

satisfied, and divergence in cases where the conditions are not satisfied. Each panel of the

figure illustrates the maximum distance between agents’ current estimate of any of the K

coefficients of Φ(k)t for k = 0, 1 (i.e., bj,t for j = 1, . . . , K) and the true REE value of

that coefficient (i.e., b̄j). Convergence occurs if maxj |bj,t − b̄j| → 0 as t increases. In each

panel we assume that initial beliefs, Φ(k)0, are different from the true REE beliefs, and then

simulate each model 50 times. Further, we set p11 = 0.975 and consider two different values

of p00 to generate both E-stable and E-unstable models. Particular attention is paid to

p00 = 0.965, which ensures an expected ZLB duration equal to the duration of the 2008-2015

U.S. ZLB event.32 The other value is given by p00 = 0.99, which leads to a longer expected

duration of the ZLB than p00 = 0.965. All other parameters are set at the benchmark

values as discussed in Section 4. Across the simulations, we observe convergence to REE

when E-stability is obtained and Φ(k)0 is sufficiently close to the REE, and divergence when

E-stability conditions are not satisfied.

As depicted in Figure 6, the coefficients in the simulation with inflation targeting for both

values of p00 diverge away from their REE coefficients, whereas those for price level targeting

30We also consider cases with constant gain (i.e. ψ(k)t = ψ ∈ (0, 1]) as noted below.
31The qualitative results reported in this section hold if agents do not contemporaneously observe xt.
32The discrete-valued shocks are calibrated so that E(i∗t |st = 0) < −ī and E(i∗t |st = 1) > −ī where i∗

denotes the shadow rate in the REE. To keep the speed of learning high in the simulations, we impose

ψ(k)t = max{1/t2/3k , .04}, though convergence would occur more gradually under the alternative assumption
of decreasing gain (ψ(k)t = 1/tαk ). Finally, we impose σd = σs = 0.0001 to ensure that R(k)t is nonsingular
in simulations.
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Figure 6: Learning and Convergence to the REE
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Note: The convergence results for various targeting rules are plotted for simulations. Convergence occurs if
maxj |bj,t− b̄j | → 0 as t increases where bj,t in (29) is the agents’ current estimate of the coefficient b̄j in the
REE. The transition probability of p00 indicates the probability that the economy remains at the ZLB in
the next period. Average inflation targeting has the target window of m = 9 for all the simulations. Some
plotted simulations feature flat line segments that are a consequence of off-equilibrium beliefs being fixed.
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converge to their REE values. This shows that price level targeting can promote real-time

learning of REE more effectively than inflation targeting. In addition, the simulation for

average inflation illustrates the importance of beliefs about transition probabilities; under

p00 = 0.965 and average inflation targeting, beliefs converge to the REE values, but they

diverge away from the REE if p00 = 0.99. The optimistic expectations of a shorter ZLB

duration help promote E-stability. Following the same intuition, we find that the optimistic

expectations (i.e., a shorter expected duration of the ZLB event such as p00 = 0.965) are

associated with a quicker convergence for price level targeting, and a slower divergence for

inflation targeting compared to the cases involving a longer expected ZLB duration such as

p00 = 0.99. These simulation results confirm our findings in Section 5.1.

5.2.2 Expectations-Driven Liquidity Traps

If initial beliefs are sufficiently “local” to the rational beliefs, then E-stability predicts conver-

gence to REE. However, if agents’ initial inflation expectations are very low (“pessimistic”)

relative to the rational expectations then the ZLB may endogenously bind under learning

in a state of the world where the REE interest rate would be positive. In such cases, the

E-stability conditions may still prove useful for predicting the dynamic stability of inflation

at the ZLB.

To illustrate this point, we set up a simple experiment in the model (9)-(10) paired with

one of the policy rules, in which agents’ initial pessimistic beliefs (i.e., not the fundamental

shock to demand) causes the ZLB to bind at time t = 0. In this experiment, we shut

down all fundamental shocks (i.e., vt = ut = 0) to isolate the role that regime-switching

expectations play in preventing a deflationary spiral under learning. Thus, we restrict our

attention to an “expectations-driven liquidity trap” which occurs because expectations are

initially unanchored from rational expectations and not because of some fundamental shock

to the economy.33 Under these assumptions, the model can be cast in the form:

xt = A(st)Êtxt+1 +B(st)xt−1 + C(st) (31)

33Our notion of expectations-driven liquidity trap should not be confused with the expectations-driven liq-
uidity traps studied by Mertens and Ravn (2014) or Nakata and Schmidt (2020) which occur as a consequence
of sunspots in a REE.
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where st = 0 if the ZLB binds at time-t and st = 1 otherwise. To pin down st without

fundamental shocks we must clarify the timing of temporary equilibrium: in the beginning

of t agents assume st = 0 (st = 1) when forming time-t expectations, unless they observed

positive (zero) interest rates at the end of t − 1. We use s̃t = st−1 to denote the agents’

subjective beliefs about st. The agents believe the ZLB regime has persistence p00 < 1 and

the unconstrained regime has persistence p11 = 1. We assume the PLM:

xt = a(s̃t)t−1 + Ω(s̃t)xt−1 + εt (32)

where Ω(st) is from the REE law of motion and a(st)t evolves according to a version of

(29)-(30):34

a(k)t = a(k)t−1 + ψ(k)R(k)−1
t (xt − Ω(k)xt−1 − a(k)t−1) (33)

R(k)t = R(k)t−1 + ψ(k)(1−R(k)t−1) (34)

where ψ(k) = ψ ∈ (0, 1) if st = k and 0 otherwise, and k = 0, 1. We assume that ψ is

constant for exposition’s sake. We set a(0)−1 to a non-zero (pessimistic) value which causes

the ZLB to initially bind at t = 0, and we assume a(1)−1 is the zero vector which implies

that agents believe the economy will eventually return to the intended steady state with

positive interest rates if the (perceived) transient ZLB event ends. Note that a(0)−1 6= 0 is

not rational since the absence of fundamental shocks implies that the economy is always in

the intended steady state in the corresponding REE.35

After agents form time-t expectations using beliefs a(k)t−1, equilibrium interest rates are

set according to max{i∗t ,−ī}, and this determines st. The temporary equilibrium is therefore:

xt =
(
I − A(st)ÊtΩ(s̃t+1)

)−1 (
A(st)Êta(s̃t+1)t−1 +B(st)xt−1 + C(st)

)
.

34Conventional adaptive learning models assume that agents learn Ω(st). However, in the models we now
consider, learning the intercept term is a far more demanding task for learning agents, and so we simplify
the analysis and abstract from the role of initial beliefs about Ω(st) by assuming it is known by the agents.
Without much loss of generality, one may assume the REE is the unique, mean-square stable MSV solution.

35In this section and throughout the paper, we abstract from the possibility that rational agents coordinate
on the second steady state equilibrium with permanently binding ZLB.
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Note that in our setup, st = s̃t when the economy is at the ZLB and in all periods after

lift-off from the ZLB. Only in the period of lift-off will s̃t = 0 and st = 1. Under these

assumptions we ask: will a deflationary spiral take place in real time?

Through substitution we can reduce the law of motion for a(0)t during the ZLB regime

to a simple VAR(1) process:

a(0)t =
(
I + ψR(0)−1

t (p00F (0)− I)
)
a(0)t−1 +

ψR(0)−1
t

(1− p00)F (0)a(1)t−1 +

(
I − A(0)

1∑
j=0

p0jΩ(j)

)−1

C(0)


F (0) = (I − A(0)(p00Ω(0) + (1− p00)Ω(1)))−1A(0).

Since R(0)t → 1 almost surely and a(1)t = a(1)−1 = 0 is fixed while agents are updating

beliefs at the ZLB, a(0)t converges if the eigenvalues of p00F (0) are inside the unit circle. By

inspecting (31)-(33) jointly, we can deduce two implications of convergence of a(0)t. First,

since a(1)t is fixed at the ZLB, xt will converge if a(0)t converges. Second, xt can converge

towards levels of inflation and output for which the ZLB no longer binds if agents have

sufficiently high expectations for long-run levels of inflation and output in the unconstrained

monetary regime (e.g. if a(1)−1 is the zero vector). Thus, the economy avoids a deflationary

spiral and can escape the expectations-driven liquidity trap for any a(0)−1 if the eigenvalues

of p00F (0) are strictly inside the unit circle.36 As it turns out, this condition on p00F (0) is

a special case of the E-stability conditions applied to a model with ZLB regime persistence

equal to p00 and an absorbing positive interest rate regime, which one can verify from the

general E-stability conditions stated in Appendix A.4.37 Therefore, E-stability is useful for

predicting the possibility of diverging inflation dynamics under learning at the ZLB–even

if agents’ initial pessimism causes the ZLB to bind for an indefinite period of time. Figure

7 illustrates expectations-driven liquidity traps assuming the benchmark calibration and

36Note that if p00F (0) has eigenvalues outside the unit circle then the economy can still escape the
endogenous liquidity trap, but only for some initial conditions on a(0)−1 (e.g. see Mertens and Ravn
(2014)). Also note that agents’ initial beliefs about Ω(st) introduce additional initial conditions that affect
convergence (see section 5.2.1).

37From Appendix A.4., E-stability obtains if the real parts of the eigenvalues of p00F (0) and F (1) =

(I −A(1)Ω(1))
−1
A(1) are less than one. For our calibration, the eigenvalues of F (1) are inside the unit

circle.
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Figure 7: Learning in an Expectations-Driven Liquidity Trap
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Note: The vertical axis represents the percentage deviation (e.g., 0.01 equals 1% quarterly inflation rate).
Blue (red) lines depict E-stable (E-unstable) calibrations. In the E-stable simulations, the economy escapes
the expectations-driven liquidity trap, whereas deflationary spirals occur in the E-unstable simulations.
Note that PLT, AIT, IT denote price level targeting, average inflation targeting and inflation targeting,
respectively.

p00 = 0.965. As expected, price level targeting rules and average inflation targeting rules

with long averaging window outperform the simple inflation targeting rule. Deflationary

spirals occur under inflation targeting and average inflation targeting with short averaging

window.

The condition on p00F (0) reveals that agents’ beliefs about the persistence of the ZLB,

i.e., p00, matter for stability under learning at the ZLB, and not the actual duration of the

ZLB events per se. This result is a consequence of a basic self-referential feature of the model:

today’s beliefs influence temporary equilibrium, which in turn, influences future beliefs. For

instance, low inflation expectations are confirmed by low equilibrium inflation in the absence

of active monetary policy, which can result in even lower future inflation expectations, and

eventually, a deflationary spiral. However, this self-referential feature of the model is dimin-

ished by the expectation that the economy may escape the ZLB (i.e., p00 < 1). To see this,

consider (9)-(10) and (13), and note that Êt(xt+1|st = 0) = p00a(0)t−1+(1−p00)a(1)t−1 under

the correctly-specified PLM (21), where a(1)t−1 is fixed while st = 0. Only a(0)t−1 evolves

at the ZLB, and ∂xt/∂a(0)t−1 = A(0)p00, so that the actual economy, xt, is more respon-
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Figure 8: Learning the Transition Probability
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Note: ITcrit and PLTcrit denote the maximum value of p00 that delivers an E-stable REE under inflation
targeting and price level targeting, respectively. The solid red (blue) line shows learning dynamics when
ψ = 0.1 (ψ = 0.01); dashed blue show dynamics for values of ψ ∈ [0.01, 0.1].

sive to changes in beliefs, a(0)t−1, for higher values of p00. Thus, we mitigate destabilizing

feedback from expectations to reality and therefore to future expectations by decreasing the

expected ZLB duration, p00. This intuition also rationalizes why persistent (a high value of

p11) and frequent (a low value of p00) active monetary regimes are key to the existence of

E-stable REE, and suggests that a good monetary policy should promote determinacy and

E-stability over the largest possible set of transition probabilities, (p00, p11). Therefore we

can conclude that the price level targeting rule (14) dominates inflation targeting (13) and

average inflation targeting (15) in terms of stabilizing the economy.

5.3 Learning the Persistence of the ZLB

Our analysis indicates that agents’ beliefs about the persistence of the ZLB are an important

determinant of E-stability, and as a starting point, we assumed fixed beliefs about p00 and

p11. However, agents could be expected to revise their transition probability beliefs, for

example, if they experience a particularly deep and persistent liquidity trap. Therefore, we
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relax the assumption of the fixed transition probability belief. In this thought experiment,

agents are allowed to revise their beliefs about the transition probability using the following

recursive estimator:

p̂kk,t = p̂kk,t−1 + ψ(k)t−1(ξ(k)t − p̂kk,t−1) (35)

where ψ(k)t−1 > 0 if st−1 = k and 0 otherwise, and ξ(k)t = 1 if st = k and 0 otherwise. In

each period, agents also update their beliefs about the coefficients in their PLM (21) using

(29)-(30), and time-t expectations are formed using recent estimates of the PLM coefficients

and also p̂kk,t−1.38 During a very prolonged liquidity trap, such as the episodes featured in

Figure 7, agents’ estimates of p00 could increase to levels where the E-stability conditions fail

and inflation becomes dynamically unstable in real time. Figure 8 illustrates the evolution

of beliefs about p00 according to (35) for different constant-gain parameters, ψ(kt) = ψ ∈

[0.01, 0.1] and given an initial belief equal to 0.67 in a ZLB event that lasts more than 100

consecutive quarters. The figure displays the maximum value of p00 that gives an E-stable

REE under the inflation targeting and price level targeting rules, respectively, assuming the

benchmark calibration and p11 = 1. Once the agents’ estimate of p00 exceeds these maximum

values, dynamically unstable dynamics may arise at the lower bound. It is evident from the

figure that an inflation targeting rule poses risks to instability under learning about the

transition probability. If agents have a high gain parameter (e.g., ψ = 0.1) then unstable

inflation dynamics may arise at the ZLB in fewer than 10 quarters. On the other hand, the

price level targeting rule ensures stable inflation for arbitrarily high values of p00 < 1, and

hence evolving beliefs about the persistence of the ZLB will never pose a threat to stability

under price level targeting. Again, our results are in favor of the price level targeting rule

over its alternatives.

38From the perceived transition probability law of motion, (35), pkk,t is entirely determined by st, and
therefore we can study the evolution of perceived transition probabilities in isolation from the remaining
equations in the model.
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6 Conclusion

This study evaluates policy rules that respond to average inflation and price level as well

as output instead of the period inflation rate (a standard Taylor rule) using the criteria of

determinacy of an REE and the learnability of the equilibrium in a standard New Keynesian

model subject to persistent, recurring ZLB episodes. Our results are strongly in favor of the

price level targeting framework as effective stabilization policy, which gives a unique, learn-

able equilibrium in models even with extremely persistent ZLB events. Thus, under price

level targeting, policymakers should be less worried about sunspots, and deflationary spirals

under learning. Nominal income targeting can be understood as a special case of the price

level targeting rules when the reaction coefficients on price level and output are the same. We

also find that average inflation targeting rules can promote determinacy and E-stability very

effectively, provided that the measure of average inflation is sufficiently backward looking.

However, standard Taylor rules that implement a simple inflation targeting policy are prone

to indeterminacy and possibly E-instability. These findings have important implications for

stabilization policy in the current low interest rate environment.

Several avenues for future work are available. For instance, we take the frequency of ZLB

events as given in order to show that the expected duration and frequency of these events

are key determinants of determinacy and E-stability under various policy rules. Future work

might instead investigate whether some policy rules help to avoid liquidity traps altogether,

or minimize their welfare costs when they do occur under learning. Future work should also

address E-stability under the infinite-horizon learning approach of Preston (2005).
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Appendices

A.1. Proof of Proposition 1

Consider a slightly modified version of the Taylor rule (13):

it = s̃t(φππt + φyyt)− (1− s̃t)̄i

where s̃t = ε if st = 0 and ε is some arbitrarily small positive constant; and s̃t = 1 other-

wise. We introduce s̃t to ensure that the inflation process is well defined when we combine

the modified Taylor rule with (26), yielding the following Markov-switching expectational

difference equation for inflation:

πt = (φπs̃t)
−1Etπt+1 + (φπs̃t)

−1 ((1− s̃t) ī+ σut) (36)

where φπ > 0 and yt = 0 for all t is imposed in (13) with flexible prices.

Assume φπ ≥ 0 and p00 + p11 > 1. From Cho (2021),39 (36) is determinate if and only if

r(F ) = r

p11(φπ)−2 p10(φπ)−2

p01(ε)−2 p00(ε)−2

 < 1

where p10 = 1 − p11, p01 = 1 − p00, and r(F ) denotes the spectral radius of the matrix F .

The eigenvalues of F , λ1 and λ2, are the roots of the following quadratic equation:

f(λ) = λ2 − (p00(ε)−2 + p11(φπ)−2)λ+ (p11 + p00 − 1)φ−2
π ε−2 = 0

39See Appendix A.3 for further details.
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As demonstrated on p. 28 of LaSalle (1986), both eigenvalues, λ1 and λ2, are inside the unit

circle if and only if

|(p11 + p00 − 1)φ−2
π ε−2| < 1

|p00ε
−2 + p11φ

−2
π | < 1 + (p11 + p00 − 1)φ−2

π ε−2.

The first condition for determinacy, |(p11 +p00−1)φ−2
π ε−2| < 1, is surely violated for φπ <∞

as ε→ 0. Hence, the model (36) is indeterminate when ε ≈ 0.

From McClung (2020), we obtain E-stability of the MSV solution to (36) if

re(A) = re

p11(φπ)−1 − 1 p10(φπ)−1

p01(ε)−1 p00(ε)−1 − 1

 < 0,

where re(A) denotes the maximum of the real parts of the eigenvalues of A. Because the

trace of A, tr(A) = p11(ε)−1 + p00(φπ)−1 − 2 > 0 for small ε, at least one eigenvalue of A is

positive as ε approaches zero. Hence, the MSV solution is E-unstable.

A.2. Proof of Proposition 2

Consider (28) and assume φp ≥ 0 and p00 + p11 > 1. Then, (28) is determinate and the

unique REE is E-stable if and only if φp > 0 and p00 < 1. From Cho (2021),40 (28) is

determinate if and only if

r(F ) = r

p11(1 + φp)
−2 p10(1 + φp)

−2

p01 p00

 < 1

40See A.3 for further details.
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where p10 = 1 − p11, p01 = 1 − p00, and r(F ) denotes the spectral radius of the matrix F .

The eigenvalues of F , λ1 and λ2, are the roots of the following quadratic equation:

f(λ) = λ2 − (p00 + p11(1 + φp)
−2)λ+ (p11 + p00 − 1)(1 + φp)

−2 = 0

As demonstrated on p. 28 of LaSalle (1986), both eigenvalues, λ1 and λ2, are inside the unit

circle if and only if

|(p11 + p00 − 1)(1 + φp)
−2| < 1

|p00 + p11(1 + φp)
−2| < 1 + (p11 + p00 − 1)(1 + φp)

−2,

which holds provided that p00 + p11 − 1 > 0, φp > 0, and p00 < 1. From McClung (2020),

E-stability of the MSV solution to (16) is obtained if

re(A) = re

p11(1 + φp)
−1 − 1 p10(1 + φp)

−1

p01 p00 − 1

 < 0

where re(A) denotes the maximum of the real parts of the eigenvalues of A. Because the

trace of A is negative (i.e., tr(A) = p11(1 +φp)
−1 + p00− 2 < 0), and the determinant of A is

positive (i.e., det(A) = (1− p00)(1− 1/(1 + φp)) > 0) under the assumptions in Proposition

2, both eigenvalues of A have negative real parts. Thus, we have E-stability of the MSV

solution to (28).

A.3. Regime-Switching Model with Intercept

The model (16) contains a regime-switching intercept term, C(st). Although recent works

(e.g., Bianchi and Melosi (2017)) have solved Markov-switching DSGE models with regime-

switching intercept terms, those that discuss the determinacy properties of Markov-switching

models typically assume C(st) = 0, for all st. Here, we show one way to handle the intercept
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term when solving the model using the forward method of Cho (2016), and we argue that

the determinacy conditions of Cho (2016) and Cho (2021) can be applied to a model with

C(st) 6= 0. Throughout the appendix we assume vt = 0 but the same result obtains if vt 6= 0.

A.3.1. Solution Method

The model (16) assumes the form:

xt = A(st)Etxt+1 +B(st)xt−1 + C(st).

If a unique REE exists, it assumes the MSV form:

xt = Ω(st)xt−1 + Γ(st).

The forward method of Cho (2016) obtains a solution for Ω(st). Refer to the original work

for details. The intercept term, Γ(st), must satisfy:

Γ(st) =

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1(
C(st) + A(st)

∑
st+1

pstst+1Γ(st+1)

)
(37)

Define F (st) =
(
I − A(st)

∑
st+1

pstst+1Ω(st+1)
)−1

A(st),

G(st) =
(
I − A(st)

∑
st+1

pstst+1Ω(st+1)
)−1

C(st), G = (G(0)′ G(1)′)′, Γ = (Γ(0)′ Γ(1)′)′, and

ΨF =

p00F (0) p01F (0)

p10F (1) p11F (1)

 .

Then, given Ω(st), the solution for Γ is unique and given by

Γ = (I −ΨF )−1G
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assuming (I −ΨF ) is non-singular.41

A.3.2. Determinacy

Consider the class of Markov-switching DSGE models that assumes the form:

xt = A(st)Etxt+1 +B(st)xt−1 (38)

where xt is an n × 1 vector of endogenous variables, st is an (S + 1)-state Markov Chain,

and pij = Pr(st+1 = j|st = i) is the (i, j)-th element of the transition probability matrix, P .

From Cho (2016) or Farmer et al. (2011), we can express any REE of (38) as

xt = Ω(st)xt−1 + wt (39)

wt = F (st)Etwt+1, (40)

where wt is any stochastic process satisfying (40) and

Ω(st) =

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1

B(st) (41)

F (st) =

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1

A(st). (42)

Thus, any REE of (38) can be represented as the sum of an MSV component, xt = Ω(st)xt−1,

and a non-fundamental process, wt. To assess whether (38) admits a unique mean-square

stable REE (i.e., whether (38) is “determinate”), Cho (2016) and Cho (2021) propose the

41 If (I −ΨF ) is singular, then ΨF has a unit eigenvalue. McClung (2020) shows that the real parts
of ΨF must be less than one for the underlying equilibrium to be E-stable (in our numerical analysis, the
eigenvalues of ΨF are always inside the unit circle when E-stability is satisfied). Furthermore, we can show
that the underlying model is indeterminate if r(ΨF ) ≥ 1. Thus, we do not encounter singular (I −ΨF ) in
cases where the REE is E-stable or the model is determinate.
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following useful matrices:

Ψ̄Ω⊗Ω =


p00Ω(0)⊗ Ω(0) . . . pS0Ω(0)⊗ Ω(0)

...
. . .

...

p0SΩ(S)⊗ Ω(S) . . . pSSΩ(S)⊗ Ω(S)



ΨF⊗F =


p00F (0)⊗ F (0) . . . p0SF (0)⊗ F (0)

...
. . .

...

pS0F (S)⊗ F (S) . . . pSSF (S)⊗ F (S)

 .

Theorem 1 gives the determinacy criterion for (38).

Theorem 1 Consider the model (38) and suppose Ω(st) exists and is real-valued. Then,

(38) is a determinate model if and only if:

1. r(Ψ̄Ω⊗Ω) < 1

2. r(ΨF⊗F ) ≤ 1.

Proof: see Propositions 1 and 2 in Cho (2021). �.

Intuitively, r(ΨF⊗F ) < 1 ensures that wt = 0 and that Ω(st) is the only fixed point of (41)

that gives a mean-square stable solution of (38); and r(Ψ̄Ω⊗Ω) < 1 ensures that the MSV

solution, xt = Ω(st)xt−1, is mean-square stable. Hence, if r(ΨF⊗F ) < 1 and r(Ψ̄Ω⊗Ω) < 1

then the MSV solution, xt = Ω(st)xt−1, is the unique mean-square stable solution of (38).42

We examine a closely-related model, given by (16), which is reproduced here:

xt = A(st)Etxt+1 +B(st)xt−1 + C(st).

42Note that Theorem 2 technically applies to a particular MSV solution (“minimum-of-modulus” (MOD)
solution). However, if r(ΨF⊗F ) < 1 and r(Ψ̄Ω⊗Ω) < 1 then the MSV solution, xt = Ω(st)xt−1, is the MOD
solution. Moreover, if B(st) = 0, then the MSV is unique (and therefore the MOD solution by default). See
Cho (2021) for more information.
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Following Farmer et al. (2011), we can recast the model in the form

x̃t = Ã(st)Etx̃t+1 + B̃(st)x̃t−1, (43)

where x̃t = (x′t, zt)
′, zt is a dummy variable satisfying z0 = 1 and zt = zt−1, and

Ã(st) =

A(st) 0n

0n 0n


B̃(st) =

B(st) C(st)

0n×1 1

 .

Given the form of (43) and following Farmer et al. (2011) or Cho (2016), any REE of (43)

(and therefore any REE of (16)) can be expressed as

x̃t = Ω̃(st)x̃t−1 + w̃t (44)

w̃t = F̃ (st)Etw̃t+1 (45)

where w̃t is any stochastic process satisfying (40) and

Ω̃(st) =

(
I − Ã(st)

∑
st+1

pstst+1Ω̃(st+1)

)−1

B̃(st) (46)

F̃ (st) =

(
I − Ã(st)

∑
st+1

pstst+1Ω̃(st+1)

)−1

Ã(st).

Given the restrictions on B̃(st) and Ã(st), one can now recast the solution (44) and (45),

and therefore any REE of (16), as:

xt = Γ(st) + Ω(st)xt−1 + wt (47)

wt = F (st)Etwt+1 (48)
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where wt is any stochastic process satisfying (48) and Ω(st) and Γ(st) satisfy (41) and (42),

respectively. Then xt = Ω(st)xt−1 + Γ(st) is a mean-square stable solution of (16). Define

r(ΨF⊗F ) and r(Ψ̄Ω⊗Ω) in terms of Ω(st) and Γ(st) as above, and r(ΨF̃⊗F̃ ) and r(Ψ̄Ω̃⊗Ω̃) in

terms of Ω̃(st) and Γ̃(st). After disregarding the unit root associated with the definitional

equation for zt in r(Ψ̄Ω̃⊗Ω̃), we can show r(ΨF⊗F ) = r(ΨF̃⊗F̃ ) and r(ΨΩ⊗Ω) = r(ΨΩ̃⊗Ω̃).

Thus, we can apply the methods of Cho (2016) and Cho (2021) to the transformed model

(43) to determine whether (17) is the unique REE of (16).

We have now demonstrated one approach to applying Cho’s conditions to assess the deter-

minacy of (16); below, we demonstrate an alternative approach. Suppose xt = Ω(st)xt−1 +

Γ(st) is not the unique mean-square stable solution of (16), but that r(ΨF⊗F ) < 1 and

r(ΨΩ̃⊗Ω̃) < 1. Then there must exist another mean-square stable solution:

xt = Γ∗t + Ω(st)xt−1 (49)

where Γ∗t is some time-varying intercept term. We place no restriction on Γ∗t other than it is

n × 1 and that it depends on information available to the agents at time t.43 Importantly,

r(ΨF⊗F ) < 1 implies that Ω(st) is the unique lagged REE coefficient matrix in any REE of

(16). Now, define Γ̂t = Γ∗t − Γ(st). Then, by substituting (49) into (16) and rearranging, we

have

Γ∗t = F (st)EtΓ
∗
t+1 +

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1

C(st)

Γ̂t + Γ(st) = F (st)Et

(
Γ̂t+1 + Γ(st+1)

)
+

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1

C(st),

where F (st) is defined in (42). Substituting (37) into the last equation yields

Γ̂t = F (st)EtΓ̂t+1.

43Note that Γ∗t could depend on an arbitrary number of lags of the Markov state, st.

48



It follows from r(ΨF⊗F ) < 1 that Γ̂t = 0. Hence, Γ∗t = Γ(st), and there is a contradiction.44

We conclude that Theorem 2 also ensures determinacy of (16).

A.4. E-stability Conditions: Contemporaneous Infor-

mation

Consider (17) and define

F (st) =

(
I − A(st)

∑
st+1

pstst+1Ω(st+1)

)−1

A(st)

where all matrices are from the model (16) and the model equilibrium (17) under study.

Under the contemporaneous information assumptions discussed in section 2, (17) is E-stable

if the real parts of the eigenvalues of

ΨΩ′⊗F =

p00Ω(0)′ ⊗ F (0) p01Ω(0)′ ⊗ F (0)

p10Ω(1)′ ⊗ F (1) p11Ω(1)′ ⊗ F (1)


ΨF =

p00F (0) p01F (0)

p10F (1) p11F (1)


are less than one. See Proposition 1 of McClung (2020) for a formal proof.45

44Note that r(ΨF⊗F ) < 1 implies r(ΨF ) < 1 and this specifically precludes the existence of non-
fundamental regime-switching intercept terms. See McClung (2020) for more details.

45Note that the proof of Proposition 1 of McClung (2020) assumes C(st) = 0. However, it is straightforward
to show that C(st) 6= 0 does not affect any E-stability computations in the proof. Therefore, the value of
the regime-switching intercept is irrelevant to E-stability.
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