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Abstract. Grossman’s health investment model has been one of the most important

developments in health economics. However, the model’s derived demand function for

medical care predicts the demand for medical care to increase if the individual’s health
status increases. Yet, empirical studies indicate the opposite relationship. Therefore,

this study improves the informative value of the health investment model by introducing
a reworked Grossman model, which assumes a more realistic Cobb-Douglas health in-

vestment function with decreasing returns to scale. Because we introduced uncertainty

surrounding individual’s health status the resulting dynamic utility maximization prob-
lem is tackled by optimal stochastic control theory.

1. Introduction. Since 1972, Michael Grossman’s health investment model [1, 2] has been
one of the most important developments in the theory of the demand for medical care. In
Grossman’s approach, direct outlays on medical services and opportunity costs of the time
invested in health are inputs to produce investments in a better health status. Despite
its importance, Grossman’s model is not without criticism [3]. Indeed, it is often argued
that the model fails to account for the uncertainty of one’s future health status and the
uncertainty of the health investment efficiency [4]. Beyond that, a central criticism lies
with the implications of the model’s demand function for medical care. According to this
demand function, the demand for medical care increases with an increasing health status.
Yet empirical studies that have tested the implications of Grossman’s model (see e.g., [5, 6])
indicate that people tend to demand more medical services if their health decreases, thus
implying a negative relationship between health and health care. Even if a variety of different
econometric methodologies and datasets is employed, this inconsistency between Grossman’s
theoretical implications and the empirical results seems to persist [9].

From this severe criticism, Zweifel [3] deduces only limited relevance of Grossman’s health
investment model to the practical work of health economists. Based on the current discussion
of Zweifel [3], Kaestner [7], and Laporte [10], we aim to underscore the practical relevance
of Grossman’s health investment model. Especially promising is reworking the health in-
vestment production function [7, 8], which is usually assumed to be of constant returns to
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scale. Thereby, in contrast to other studies (e.g.; [9, 10]) we keep Grossman’s standard
model assumptions but simply rework the functional specification of the health investment
production function. Further, we introduce uncertainty surrounding the health status in
order to come closer to a real-world individual health investment problem.

2. Grossman’s standard deterministic model assumptions. In this section we briefly
present the standard problem setting of Grossman’s deterministic health investment model
to introduce the notation contained in this paper. The basic assumption of Grossman’s
model is that utility is generated by the amount of healthy time h(t), as well as the
consumption of household commodities Z(t). For analytical convenience, an individual’s
lifetime utility function U(T ) is specified as being separable over time, together with the
assumption of additive separability of preferences. Thus, under conditions of certainty, the
individual’s utility function can be expressed as

U(T ) =

∫ T

0

U [Z(t), h(t)] e−ρt dt

where h(t) = φ(H(t)) and ∂U
∂Z > 0, ∂2U

∂Z2 < 0, ∂U
∂h > 0, ∂2U

∂h2 < 0. The functions U(T ) and
h(t) are assumed to be increasing, strictly concave, and continuously differentiable in their
arguments. The parameter ρ denotes the subjective discount rate. This utility function is
maximized subject to the restrictions set by health and wealth time paths, as well as the
production technology for the production of household commodities and health investments.
These restrictions are detailed below.

The stock of health capital H(t) depreciates on a progressive depreciation rate and can
be revalued upwards by investments in health capital [2]. Therefore, the equation of motion
in health is expressed as follows

Ḣ(t) = I(t)− δ(t)H(t)

with δ(t) > 0, δ̇(t) > 0 ∀t ∈ [0, T ], and the deterministic initial condition H(0) = H0.
Moreover, H(t) > Hmin ∀t 6= T . The variable I(t) indicates investments in health capital
and δ(t) is the depreciation rate of health capital. Investments in health are produced by
medical services M(t) and time invested in health m(t) subject to one’s level of knowledge
E(t). Under the condition of non-joint production functions, i.e. market goods and time
inputs can be additively split between separate production processes for health investments
and household commodities, the general form of the health investment function can be
expressed as

I(t) = fI (M(t),m(t);E(t))

with I(t) ≥ 0 ∀t ∈ [0, T ]. The consumer produces non-medical household commodities Z(t)
that are produced by non-medical market goods Q(t) and consumption time k(t) subject to
one’s level of knowledge E(t). These non-medical household commodities are produced by

Z(t) = fZ (Q(t), k(t);E(t)) .

Over one’s entire lifetime, expenditures on medical care and other market goods are
restricted by the period’s initial wealth plus the periodical wealth surplus. Wealth A(t)
develops over the whole lifetime according to the following equation of motion

Ȧ(t) = w(t)l(t) + r(t)A(t) + y(t)− pQ(t)Q(t)− pM (t)M(t) (1)

with A(0) = A0, A0 > 0, and A(T ) ≥ 0. The labor time l(t) is valued by the wage rate w(t),
market inputs Q(t) are valued by market prices pQ, and medical services M(t) are valued
with the market prices for medical care pM . Further, the consumer receives other income
y(t) and interest revenues given the interest rate r(t). Besides the constraint on wealth, an
individual’s time is also constrained. This time constraint is given by

Ω(t) = l(t) +m(t) + k(t) + s(t) (2)
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with Ω(t) − s(t) = h(t). Hence, total time Ω(t) available in each period t has to be fully
divided into labor time l(t), time invested in gross health investments m(t), consumption
time k(t), and sick time s(t).

3. Minimum short-run costs of producing health investments. Since the customer’s
utility function is assumed to be inter-temporally separable, the customer solves two sepa-
rate optimization problems: an inter-temporal utility maximization problem and an intra-
temporal cost minimization problem. Beginning with the intra-temporal cost minimization
problem, the customer determines those input bundles that minimize the short run costs
of attaining each unit of health investment I(t) and household commodities Z(t) subject
to the constraints imposed by the respective production functions and the given level of
knowledge.

Regarding the functional form of the health investment production function, there is
still little empirical evidence to support the selection process [9, 14]. However, productions
in the human capital-dependent field of health investments provide sufficient justification
for decreasing returns to scale because of reasonably less automation and rationalization.
Despite this fact, the majority of theoretical studies that utilize Grossman’s pure investment
model to derive a demand function for health care apply a health investment production
function with constant returns to scale (e.g., [2]). However, inspired by the basic theoretical
remarks of Ehrlich and Chuma [7], in this analysis health investments are assumed to be
subjected to decreasing returns to scale.

Proposition 3.1. Minimizing a linear short-term cost function of health investments subject
to a Cobb-Douglas health investment production function with decreasing returns to scale
yields a dual health investment cost function with increasing marginal costs.

Proof of Proposition 3.1. Let the short-term cost function CI(t) = M(t)p
M

(t) + m(t)w(t)
with CI(t) ≥ 0 ∀t ∈ [0, T ] be minimized subject to a Cobb-Douglas health investment

production function I(t) = E(t) (M(t))
k

(m(t))
µ

with some k + µ < 1 and α = 1
k+µ .

The constants k and µ are the output elasticities of market inputs and time for health
investments, respectively. The parameter α stands for the inverse scale elasticity. Since

θI(t) > E(t) (θM(t))
k

(θm(t))
µ

with a scaling factor θ > 0, our health investment produc-
tion function is of decreasing returns to scale. Then by Lagrange multiplier method there
exists a local extreme with the resulting cost-minimizing factor inputs of the forms

M∗(t) =

(
k

µ

) µ
k+µ

p
− µ
k+µ

M w(t)
µ
k+µE(t)−

1
k+µ I(t)

1
k+µ , (3)

m∗(t) =

(
k

µ

)− k
k+µ

p
k

k+µ

M w(t)−
k

k+µE(t)−
1

k+µ I(t)
1

k+µ ,

and the dual cost function for health investments of the form

C∗I (t) = πH(t)I(t)α, (4)

π
H

(t) =

[(
k

µ

) µ
k+µ

+

(
k

µ

)− k
k+µ

]
p

k
k+µ
M w(t)

µ
k+µE(t)−

1
k+µ .

Due to
∂C∗I (t)
∂I(t) > 0 and

∂2C∗I (t)
∂I(t)2 > 0, we have positive increasing marginal costs of health

investments.

Remark 1. For simplicity and because we are not interested in the household commodity
production, we assume the household commodity production to be of constant returns to
scale.
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Proposition 3.2. Minimizing a linear short-term cost function of commodities subject to
a Cobb-Douglas commodity production function with constant returns to scale yields a dual
commodity cost function with constant marginal costs.

Proof of Proposition 3.2. Let the short-term cost function CZ(t) = Q(t)p
Q

(t) + k(t)w(t)
with CZ(t) ≥ 0 ∀t ∈ [0, T ] be minimized subject to a Cobb-Douglas commodity production

function Z(t) = E(t) (Q(t))
ζ

((k(t))
ϑ

with some ζ + ϑ = 1 The constants ζ and ϑ are
the output elasticities of market inputs and time for commodity production, respectively.

Since θZ(t) = E(t) (θQ(t))
ζ

(θk(t))
ϑ

with a scaling factor θ > 0, our commodity production
function is of constant returns to scale. Then by Lagrange multiplier method there exists a
local extreme with the dual cost function for commodity production of the form

C∗Z(t) = π
Z

(t)Z(t), (5)

π
Z

(t) =

[(
ζ

ϑ

)ϑ
+

(
ζ

ϑ

)−ζ]
pζ
Q
w(t)ϑE(t)−1.

Due to
∂C∗Z(t)
∂Z(t) > 0 and

∂2C∗Z(t)
∂Z(t)2 = 0, we have positive constant marginal costs of commodity

production.

Integrating the time constraint (2), the dual cost function of health investments (4), and
the dual cost function of household commodities (5) into the wealth constraint (1), the
full-wealth constraint of Grossman’s problem setting can be written as

Ȧ(t) = r(t)A(t) + w(t)h (t) + y(t)− π
H

(t)I(t)α − π
Z

(t)Z(t).

4. Optimal stochastic control of health investments. Now, the inter-temporal utility
maximization problem can be solved. In this regard, the individual chooses the trajectories
of health investments and household commodities that maximize the present value of utility
subject to the restrictions imposed by the model. However, individual’s health is generally
subject to sudden health shocks, which have an increasing likelihood of occurrence with age.
This means that health develops with some kind of uncertainty.1 Therefore, we model health
capital as a linear generalized Brownian motion with drift (or Ito stochastic differential
equation). Hence, in this model illness affects health capital in the sense of an extraordinary
depreciation of the health stock. We now consider the probability space (Θ,F ,P), where Θ
is the non-empty space of health outcomes, F denotes the σ-algebra (or σ-field) of subsets
of Θ, and P is the probability measure defined on F , i.e. P: F → [0, 1], which fulfills
the axioms of Kolmogorov [15]. Health capital H(t) develops by a stochastic process that
shows a stochastic differential equation in the sense of Ito. The stochastic noise process
W is a Wiener process caused by random shocks to the health capital. A Wiener process
{W (t), t ∈ [0, T ]} is a continuous-time dependent stochastic process on the probability space
(Θ,F ,P) with following properties 2

(i) W (0) = 0,
(ii) for 0 ≤ t1 ≤ ... ≤ tn, the increments W (ti)−W (ti−1) with i = 1, ..., n are independent

random variables,
(iii) for 0 ≤ s < t, the increment W (t)−W (s) has a normal distribution N(0, t− s),
(iv) W is continuous with respect to the time t ≥ 0, and
(v) the path W (t) for t ≥ 0 is nowhere differentiable.

It follows from (iii) that the variance of W (t)−W (s) increases linearly with the length of the
time interval [s, t]. Further, with the Wiener process {W (t), t ≥ 0} defined on probability
space (Θ,F ,P), the random variable {W (s), 0 ≤ s ≤ t} produces the σ-algebra Ft, where
Ft = σ {W (s) : 0 ≤ s ≤ t}. Ft contains all past realizations of the Wiener process. Hence,

1The authors do not consider the terminology differences between risk and uncertainty.
2For more information on these properties, see for example Malliaris and Brock [16].
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it is assumed that the consumer knows all the available past information generated by
the Wiener process. As time goes on, consumer information increases because the consumer
observes additional realizations of the random variable. In the stochastic case, health capital
is assumed to develop as a Brownian motion with drift given by

dH(t) = [I(t)− δ(t)H(t)] dt+ σ(t,H(t), I(t))dW (t)

and wealth develops over time according to

dA(t) = [rA(t) + y(t) + wh(t)− π
H

(t)I(t)α − π
Z

(t)Z(t)] dt.

These stochastic differential equations are defined by the corresponding integral equations

H(t) = H(0) +

∫ t

0

[I(τ)− δ(τ)H(τ)] dτ +

∫ t

0

σ (τ,H(τ), I(τ)) dW (τ),

A(t) = A(0) +

∫ t

0

[rA(τ) + y(τ) + wh(τ)− π
H

(τ)I(τ)α − π
Z

(τ)Z(τ)] dτ,

for all t with a probability of 1, where the admissible controls are adapted processes so
that the above integrals are defined. The behavior of the continuous time stochastic process
H(t) is characterized by the sum of a Lebesgue integral and an Ito integral. Under the
assumption that health capital develops in an Ito stochastic process, the expected value and
variance of the health increment consecutive to any decision I(t) are known. The expected
value of H(t) is given by

E[H(t)] = E[H(0)] + E
[∫ t

0

[I(τ)− δ(τ)H(τ)] dτ

]
since E[dW ] = 0. The variance of H(t) is given by Var[H] = σ2dt. Hence, the prob-
ability of downward shocks in the sense of unexpected illness and upward shocks in the
sense of unexpected recovery from different kinds of illness increases with age t. For this
application, E[I(t) − δ(t)H(t)] is the expected instantaneous drift rate of the Ito process,
and σ(t,H(t), I(t)) is the instantaneous diffusion rate. Here, the linear structure of the
deterministic drift rate is mirrored by a linear diffusion rate of the form σ(t,H(t), I(t)) =
β + σ

H
H(t) + σ

I
I(t).

Theorem 4.1. (Bismut’s approach) Suppose that I∗(t), Z∗(t), H(t), and A(t) solve

max
I,Z

E
∫ T

0

U [Z(t), h(t)] e−ρt dt (6)

subject to

dH(t) = [I(t)− δ(t)H(t)] dt+ σ(t,H(t), I(t))dW (t), (7)

dA(t) = [rA(t) + y(t) + wh(t)− π
H

(t)I(t)α − π
Z

(t)Z(t)] dt, (8)

I(t) = fI (M(t),m(t), E(t)) , (9)

Z(t) = fZ (Q(t), k(t), E(t)) , (10)

H(0) = H0, T fix, (11)

A(0) > 0, A(T ) ≥ 0, (12)

I ∈ [0,∞]. (13)

Then the resulting Hamiltonian is given by

H = U [Z(t), h(t)] e−ρt

+ ϕA(t) [rA(t) + y(t) + wh(t)− π
H
I(t)α − π

Z
(t)Z(t)]

+ ϕH(t) [I(t)− δ(t)H(t)] +B(t)σ(t,H(t), I(t)).

(14)
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Given ϕHH(t) = ∂ϕHH(t)
∂H(t) , the following relations hold for optimal values of I(t) and Z(t):

dH(t) = [I(t)− δ(t)H(t)] dt+ σ(t,H(t), I(t))dW (t), (15)

dA(t) = [rA(t) + y(t) + wh(t)− π
H

(t)I(t)α − π
Z

(t)Z(t)] dt, (16)

∂H
∂Z(t)

=
∂U

∂Z
e−ρt − ϕA(t)π

Z
(t) = 0, (17)

∂H
∂I(t)

= −ϕA(t)απ
H
I(t)α−1 + ϕH(t) +B(t)σI = 0, (18)

dϕA(t) = [−ϕA(t)r] dt, (19)

dϕH(t) =

[
−e−ρt ∂U

∂h

∂h

∂H
− ϕA(t)w

∂h

∂H
+ ϕH(t)δ(t)−B(t)σH

]
dt (20)

+B(t)dW (t)

with the transversality conditions ϕ
H

(H(T ), T ) = 0, ϕ
HH

(H(T ), T ) = 0, ϕ
A

(A(T ), T ) =
0 with ∂H

∂T < 0.

Remark 2. All price data is assumed to be constant.

Bismut’s approach [17] is based on Pontryagin’s Maximum Principle [13, 21]. The adjoint
variables ϕH(t) and ϕA(t) are in the nature of Lagrange multipliers of the states H(t)
and A(t), respectively. As such, they measure the shadow prices of the associated state
variables at a particular point in time. In the stochastic case the marginal value of health

capital at time t is given by ϕH(t) = ∂
∂H(t)E

{∫ T
t
U [Z(τ), h(τ)] e−ρτdτ |Ft

}
, which is the

partial derivative of the conditional expectation of the utility function from time t to T
with respect to H(t) and with I(t) being the optimal policy. Bismut’s random variable

B(t) corresponds to ∂ϕH(t)
∂H(t) σ(t,H(t), I(t)) and provides one’s instantaneous attitude towards

risk. This variable is positive if the individual is risk taking and negative if the individual
is risk averse. From equation (7) it follows B(t)dW (t) = ϕHH [dH − (I(t)− δ(t)H(t)) dt].
Therefore, in line with the general definitions of Malliaris and Brock [16], B(t)dW (t) is a
correction term in the evolution of the marginal value of health capital, which evaluates in
terms of ϕH(t) the difference between dH and E[dH], where E[dH] = [I(t)− δ(t)H(t)] dt.

From (18) and η(t) = ϕH(t)
ϕA(t) , the flow equilibrium condition for health investments can be

derived

η(t) = απ
H
I(t)α−1 +

1

ϕA(0)
B(t)σI , (21)

with optimal health investment in period t

I∗(t) =

(
η(t)

απ
H

− B(t)σI
απ

H
ϕA(0)

) 1
α−1

.

Suppose that η(t) is defined as the relative shadow price of health capital. Then, if
−B(t) > 0, i.e. assuming that the consumer is risk-averse, condition (21) implies that the
consumer will invest in his health up to the point where the expected relative shadow price
of health capital equals the marginal investment costs in health, minus the marginal risk of
health investment valued at its costs. Because the risk-averse consumer fears health capital
losses, he will tend to invest more in his health with the same η(t) as he would, if no risk is
involved. This result complies with the results of the static model setting of Dardanoni and
Wagstaff [11] and the simplified retirement version of Picone et al. [12]. In Figure 1, the
optimal health investment in the stochastic case is achieved at I∗(t)s, which is higher than
the optimal investment in the deterministic case I∗(t)d at the same η(t), i.e. I∗(t)s > I∗(t)d,
which provides a cushion against the effects of a health shock.
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I∗(t)d I∗(t)s I(t) 

1

φA (0)
𝔼 BσI  απHI(t)α−1 

𝔼 η t  

Figure 1. Optimal investment of a risk-averse consumer

From η = ϕH(t)
ϕA(t) it follows that

dϕH(t) = dη(t)ϕA(t) + η(t)ϕ̇A(t)dt, (22)

E [dϕH(t)] = E [dη(t)ϕA(t) + η(t)ϕ̇A(t)dt] . (23)

Substituting (19),(22)-(23) in (20) and taking the expected value, a continuous stock
equilibrium condition for H(t) can be derived as follows:

E[η(t)]

[
δ(t) + r − E[dη(t)]

E[η(t)]dt

]
=

1

ϕA(0)
e(r−ρ)tE

[
∂U

∂h

∂h

∂H

]
+ wE

[
∂h

∂H

]
+

1

ϕA(0)
ertE [B(t)σH ] .

(24)

According to equation (24) the stock of health capital is optimal in each t if the expected
marginal cost of health capital is equal to the expected marginal efficiency of health capital
minus the marginal risk of health, which is discounted and normalized with the shadow price
of tangible assets at t = 0. Thereby, the expected marginal cost of holding an additional unit
of health capital in period t considers interest earnings forgone by holding an additional unit
of health capital, the health capital depreciation costs from holding an additional unit of
health capital, and the expected offsetting capital gain from buying the investment good at
time t instead of waiting until time t+dt. The expected marginal efficiency of health capital
consists of two parts: the expected additional labor income from an infinitesimal increase
of health capital and the expected direct marginal utility of health capital, discounted and
normalized with the shadow price of wealth at t = 0.

5. Sufficient condition for a global maximum.

Theorem 5.1. The necessary conditions (15)-(20) are sufficient for the existence of the
global maximum.

Proof. The Hamiltonian (14) is maximized with respect to the admissible controls for any t
from [0, T ] and regarding any trajectory of the introduced stochastic process, i.e. for every
t the given trajectories evolve into a deterministic optimization problem with probability 1.
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With ∂2H
∂I2 < 0, ∂2H

∂Z2 < 0 and using Arrow’s theorem, the conditions of the maximum prin-
ciple are also sufficient for the global maximum. To check the Arrow sufficiency condition,
some definitions are needed. Let the maximized Hamiltonian function H0 be the value of
the Hamiltonian when evaluated at the maximizing controls

H0(t,H,A, ϕA, ϕH) = F (t,H,A, I∗, Z∗)

+ ϕAfA(t,H,A, I∗, Z∗) + ϕHfH(t,H,A, I∗, Z∗).

If H0(t,H,A, ϕA, ϕH) is a concave function of H and A, then I∗, Z∗, H∗, and A∗ will

maximize (6) subject to (7)-(13). Since
∂C∗I (t)
∂I(t) > 0 and

∂2C∗I (t)
∂I(t)2 > 0, it follows that the dual

cost function of health investments C∗I (t) = π
H
I(t)α with α > 1 is a monotonic increasing

function of health investments. Therefore, we are able to derive I(t)∗ =
[

1
απH

ϕH(t)
ϕA(t)

] 1
α−1

.

Thus, since marginal utilities ϕH(t) ≥ 0, ϕA(t) ≥ 0, the production parameter α > 0, and
πH > 0, it follows that I∗(t) ≥ 0. Because of equation (17) ∂U

∂Z e
−ρt − ϕA(t)π

Z
(t) = 0

and the assumption that ∂U
∂Z > 0, ∂2U

∂Z2 < 0 an inverse function of UZ(t) exists of the

form Z∗(t) = UZ(t)
′−1 (eρt, ϕA(t), πZ(t)). Hence, the maximized deterministic Hamiltonian

function according to Arrow’s Theorem can be written as

H0 = U
[
UZ(t)

′−1
(
eρt, ϕA(t), πZ(t)

)
, h(t)

]
e−ρt

+ ϕA(t)

[
rA(t) + y(t) + wh(t)− π

H

([
1

απ
H

ϕH(t)

ϕA(t)

] 1
α−1

)α

− π
Z
UZ(t)

′−1
(
eρt, ϕA(t), πZ(t)

)]
+ ϕH

[[
1

απ
H

ϕH(t)

ϕA(t)

] 1
α−1

− δ(t)H(t)

]
,

with |D| =
[
H0
AA H0

AH

H0
HA H0

HH

]
and |D0| =

[
H0
HH H0

HA

H0
AH H0

AA

]
whose principal minors are |D1| = 0,

|D2| = 0, |D0
1| < 0 and |D0

2| = 0. If |D1| and |D0
1| are referred to |Ď1| whereas |D2| and

|D0
2| are referred to |Ď2|, then the test for semi-definiteness is as follows: |Ď1| ≤ 0 and

|Ď2| = 0. In conclusion, the quadratic form involved is negative semi-definite, meaning that
the maximized Hamiltonian H is concave for every t and with probability 1. Hence, I∗(t),
Z∗(t), H∗(t) and A∗(t) maximize (6) subject to (7)-(13).

6. Optimal demand for medical care. Given the optimality conditions (21) and (24),
the structural demand function for medical care can be derived to constitute the model’s
theoretical predictions. However, since the majority of influencing effects on the demand for
medical care remain ambiguous in sign [18], it is preferable to deal with submodels. Further,
estimating sub-models avoids using non-linear estimation methods [1, 5]. Grossman himself
stresses the pure investment model, i.e. the marginal utility of healthy days ∂U

∂h is set to
zero [2]. Applying the pure investment model, the equilibrium condition for health capital
(24) can be reduced to the logarithmic form

logE[ηi(t)] + log δi(t)− logE[Ψ1i(t)] = logwi(t) + logE
[
∂hi(t)

∂Hi(t)

]
+ logE[Ψ2(t)], (25)

with Ψ1(t) = δ(t)

δ+r− E[η̇(t)]
E[η(t)]dt

and Ψ2(t) = 1 +
1

ϕA(0)
ertE[BσH ]

wE[ ∂h(t)∂H(t) ]
. The subscript i denotes reference

to the i-th individual. The constructed variable Ψ1(t) indicates the share of the depreci-
ation rate in the adjustment factor of the marginal health capital costs. The constructed
variable Ψ2(t) is employed as a health risk indicator on expected wage income. According
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to Grossman [2] and Wagstaff [5] we assume the following specifications

hi(t) = Ω− β1Hi(t)
−β2 , (26)

log δi(t) = log δ0 + β3ti + β4X1i, (27)

log Ψ1i(t) = β9ti, (28)

E(t) = eβ6Ě , (29)

with β1 > 0, β2 > 0, β3 > 0, β6 > 0, β9 > 0 and hi(Hmin(T )) = 0. Variable X(t) indi-
cates some individual’s characteristic with β4 > 0 if this characteristic is health damaging.
Further, we assume the health risk indicator to be of the form

Ψ2(t) = β7B̌i(t)σH + β8t, (30)

with β7 > 0, β8 > 0 and assuming some B̌i(t) < 0 indicating a risk-averse consumer.
Given the functional specifications (4) and (26)-(30) and the stock equilibrium condition

(24), the structural demand equations of the pure investment model can be derived. Hence,
the optimal expected demand for health investments is given by

logE[I∗i (t)] = β01 −
β5α

α− 1
log p

M
+

β5α

α− 1
logwi(t) +

β6α

α− 1
Ěi +

β9 + β8 − β3

α− 1
ti

− β4

α− 1
X1t −

1 + β2

α− 1
logE[Hi(t)]− β7 logE[B̌i(t)σH ] + u1i, (31)

with the constant β01 =

(
− log

[(
k
µ

) µ
k+µ

+
(
k
µ

)− k
k+µ

]
+ log β1β2 − logα

)
/(α− 1), coeffi-

cient β5 = k and error term u1i = − 1
α−1 log δ0. Substituting (31) in (3) yields the structural

demand function for medical care with

logE[M∗i (t)] = β02 −
(

1 +
β5α

α− 1

)
log p

M
(t) +

(
1 +

β5α

α− 1

)
logwi(t)

+
β6α

α− 1
Ěi(t) + (β9 + β8 − β3)

α

α− 1
ti −

β4α

α− 1
X1i

− (1 + β2)
α

α− 1
logE[Hi(t)]− β7α logE[B̌i(t)σH ] + u2i,

(32)

with the constant β02 = (1− β5α) ln
(

β5
1
α−β5

)
+ αβ01 and the error term u2i = αu1i.

According to the parameter settings for α and β’s, this inquiry provides a demand function
for medical care in which the expected demand for medical care in t increases with an
increasing wage rate and an increasing educational level, but it decreases with increasing
prices of medical services. These results are in line with common results of general household
production models and demand theory. Further, −(1 + β2) α

α−1 < 0 and −β7α < 0 imply
that the expected demand for medical care in t increases with an expected worsening health
status in t and an expected higher health associated risk for that t, respectively. These
theoretically predicted relationships are substantially confirmed by empirical evidence.

7. Conclusions. The hitherto criticized empirical inconsistency of the standard health
investment model is no longer valid if the health investment production function is specified
to be of decreasing returns to scale. Hence, our stochastic modification offers reasonable
predictions, provided that the functional forms are properly specified. For future research,
it is suitable to assume spill-over effects on other person’s survival as done by Kuhn et al.
[19] for a simplified deterministic individual life-cycle model based on Yaari [20].
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