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Abstract. Electricity is a peculiar economic good, the most important reason being that it needs to be 
supplied at the very moment of consumption. As a result, wholesale electricity prices fluctuate widely 
at hourly or sub-hourly time scales, regularly reaching multiples of their average, and even turn 
negative. This paper examines whether the demand for electricity responds to such price variations in 
the very short term. To solve the classical identification problem when estimating a demand curve, we 
use weather-driven wind energy generation as an instrument. Our robustness checks confirm that 
wind energy is indeed a strong and valid instrument. Using data from Germany, we estimate that a 
1 €/MWh increase in the wholesale electricity price causes the aggregate electricity demand to decline 
by 67–80 MW or 0.12–0.14%, contradicting the conventional wisdom that electricity demand is highly 
price-inelastic. These estimates are statistically significant and robust across model specifications, 
estimators, and sensitivity analyses. At average price and demand, our estimates correspond to a price 
elasticity of demand of about –0.05. Comparing situations with high and low wind energy (5–95th 
percentile), we estimate that prices vary by 26 €/MWh, and the corresponding demand response to 
wholesale electricity prices is about 2 GW, or 2.6% of peak load. Our analysis suggests that the demand 
response in Germany can be attributed primarily to industrial consumers.  
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1 Introduction 
The wind and solar challenge. Energy systems worldwide are undergoing a rapid transition toward 
wind and solar energy. However, further expansion of these variable renewable energy sources and 
their integration into energy systems and markets is impeded by the fact that they are not always 
available when electricity is needed. In addition to flexible generation, long-distance transmission, and 
energy storage, demand-side flexibility is hoped to be part of the solution to such intermittency. 
Electricity demand that dynamically responds to the availability of cheap renewable electricity would 
facilitate the transition to a low-carbon power system. 

Demand elasticity. While dedicated “demand response programs” exist in many power systems, they 
are often designed as emergency response mechanisms. During normal operation, the most important 
mechanism to coordinate supply and demand is represented by wholesale markets for electricity. 
Wholesale markets clear at high frequency, matching supply and demand at hourly or sub-hourly 
intervals. Economists refer to consumers adjusting the quantity of power consumed in response to 
prices as the “price elasticity of demand”; energy system researchers often refer to this as an (implicit) 
demand response. Conventional wisdom holds that electricity demand is very price-inelastic, which 
has profound implications for electricity markets. Cramton et al. (2013) summarized this as follows:  

One particularly notorious problem of electricity markets is low demand flexibility. Most 
customers are unaware of the real time prices of electricity, have no reason to respond to them, 
or cannot respond quickly to them, leading to highly price-inelastic demand. This contributes to 
blackouts in times of scarcity and to the inability of the market to determine the market-clearing 
prices needed to attract an efficient level and mix of generation capacity. Moreover, the 
problems caused by this market failure can result in considerable price volatility and market 
power that would be insignificant if the demand-side of the market were fully functional. 

While it is true for many jurisdictions that most consumers are unaware of hourly variations in real-
time prices, some large industrial consumers directly participate in wholesale markets. These 
consumers may indeed respond to hourly price changes. In this empirical paper, we study how much 
of such a short-term demand response exists today—that is, the price elasticity of electricity demand 
in the current power system. 

Exogenous variation. During windy or sunny times, the additional low-cost energy supply from wind 
turbines and solar photovoltaics reduces wholesale electricity prices, which, if the demand is price-
elastic, causes an increase in electricity consumption compared to the no-renewables counterfactual. 
Likewise, a lack of renewable generation may cause a decrease in consumption through higher 
wholesale prices. We can therefore use the exogenous weather-dependent electricity supply as an 
instrument for wholesale prices to estimate the responsiveness of aggregate (national) electricity 
demand price changes. This is the strategy we use to overcome the classical simultaneity problem 
when estimating demand curves from market outcomes. 

Time scales. There is a large body of literature on electricity demand elasticity. The vast majority 
examined how annual demand responds to changes in retail prices (for a review, see Labandeira et al., 
2017). Somewhat confusingly, this line of research identifies a “short-term” response if price changes 
affect demand in the same year, presumably a consequence of substitutions and geographical shifts in 
the production of energy-intensive goods (for recent examples, see Cialani and Mortazavi, 2018; 
Csereklyei, 2020). Accordingly, “long-term” price elasticity refers to responses over multiple years, 
possibly driven by investment patterns, such as the choice of heating systems in new buildings (Davis, 
2021). We are interested in much shorter time scales, such as hours. We address the question: by how 
much does the aggregate electricity demand respond to (very) short-term price fluctuations, if at all? 
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Short-term demand response potential. Many publications discuss the technical possibilities and 
theoretical potential of electricity loads to adjust consumption (for reviews, see Sauer et al., 2019; 
Kochems, 2020). Energy-intensive industries, such as the chemical, metal, and paper industries, can 
shut down production processes when high prices turn their margins negative (“load shedding”). Other 
processes may entail some flexibility to shift load toward hours with low prices while keeping the 
overall output constant. Such “load shifting” is particularly promising in heating and cooling, exploiting 
thermal inertia. Bottom-up studies on the theoretical demand response potential are often based on 
techno-economic models (e.g., Gils, 2014) or choice experiments (e.g., Olsthoorn et al., 2019). While 
these studies provide detailed insights into how demand could respond to prices, it remains unclear 
how much of this potential is exploited in today’s wholesale electricity markets. Such studies also often 
fail to convincingly estimate the costs of load shedding and shifting. 

Individual consumers. A number of empirical papers provide evidence of the actual demand response 
of individual consumers. Faruqui and Sergici (2013) summarized international evidence on the demand 
response of households from 34 experimental studies. Other studies have focused on industrial 
consumers, analyzing their (sub-)hourly consumption patterns (Patrick and Wolak, 2001; Hopper et al., 
2006; Zarnikau and Hallett, 2008; Choi et al., 2011). While these studies provide evidence that some 
consumers do respond to prices, it remains unclear how representative this is for a country and how 
well this extends beyond the quasi-experimental setting of some of these studies. What ultimately 
matters for electricity systems and markets is, of course, aggregate demand. 

Aggregate demand. This study estimates the price elasticity of aggregate (country-wide) electricity 
demand—the demand curve—on time scales of hours using wind energy as an instrumental variable. 
We are aware of only a handful of previous studies that have estimated the elasticity of aggregate 
demand. The first of these is that of Lijesen (2007), who used data from the Netherlands for 2003 to 
estimate an exponential demand curve and found a demand elasticity of −0.0014. A major concern 
with this paper is endogeneity because the lagged price is used as an instrumental variable. Given the 
strong serial correlation between high-frequency electricity system data and intertemporal 
relationships, such as energy storage, thermal inertia in technical systems, and expectations, the 
exogeneity assumption seems unlikely to hold.  

Bönte et al. (2015) estimated demand elasticity at −0.43, based on ask data from Germany’s leading 
electricity exchange, EPEX SPOT. However, the demand curve at the power exchange cannot be 
interpreted as the aggregate (national) demand curve for electricity. They are not identical because, 
on one hand, the power exchange captures neither volumes traded in bilateral agreements nor 
electricity produced by integrated generation-retailing companies (in our sample period, EPEX SPOT 
trading volumes were about half the German electricity demand). On the other hand, traded volume 
on the exchange includes energy that is traded several times across market stages (financial markets 
included, the churn rate of German electricity is around 5). Kulakov and Ziel (2019) used the same data 
and applied a decomposition, yielding an elasticity estimate of −0.0001. However, the paper does not 
use instrumental variables, and it is unclear whether endogeneity is adequately addressed. Similarly, 
Damien et al. (2019) used a hierarchical Bayesian model and data from Texas to regress demand on 
prices, ignoring endogeneity. They found a positive relationship between demand and prices, which 
we believe most likely describes the supply curve better than the demand curve: high demand 
increases prices because of increasing marginal costs.  

This leaves us with one paper, that of Knaut and Paulus (2016), which takes an approach similar to 
ours, using wind energy as an instrument. Using German data from 2015, the authors reported an 
elasticity of –0.02 to –0.13. Although we regard their approach as the most reliable one brought 
forward so far, the paper has never been published in a peer-reviewed journal, and we think it can be 

https://www.sciencedirect.com/science/article/pii/S0140988319301148
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extended in several ways—in particular, by responding to concerns about the validity of the 
instrument. 

Contribution. Our contribution includes five major aspects. First, we develop a theoretical framework 
for the causal identification of demand response, including an in-depth discussion of how prices impact 
load, given the institutional setup of the German electricity market. Second, we update and extend the 
scope of the analysis to five years (2015–2019). This is important for ascertaining the robustness of the 
analysis and time trends in demand elasticity. Third, we use different model specifications, including a 
purely linear specification (as in Knaut and Paulus, 2016), a log-linear specification, and specifications 
with nonparametric elements. This matters because there are many reasons to expect nonlinear 
relationships in electricity systems. The models are estimated using a 2-stage least squares (2SLS) and 
a 2-stage generalized additive models (2SGAM). This allows us to study the shape of the demand curve. 
Fourth, we study the heterogeneity of demand response across time, including the time of the day, 
day of the week, and season of the year, as well as across different regions, and compared the spatial 
heterogeneity to the uneven distribution of industrial load across Germany. Finally, we conduct a 
broad range of sensitivity analyses and robustness checks. Importantly, we perform a long list of tests 
and analyses concerning challenges to the exogeneity of the instrument, including using alternative 
and additional instruments and excluding extreme events. Other analyses, such as running the model 
on first differences, provide insight into the role of lagged effects in the context of the short-term price 
elasticity of electricity demand.  

Findings. We estimate that a 1 €/MWh increase in day-ahead electricity price in the wholesale markets 
causes the aggregate electricity demand in Germany to decline by 67–80 MW (linear estimates) or 
0.12–0.14% (log-linear estimates). At the average price and demand, these estimates correspond to a 
price elasticity of demand of about −0.05. Comparing situations with high and low wind energy (5–
95th percentile), we estimate that prices vary by 26 €/MWh, and the corresponding demand response 
is about 2 GW (or 2.6% of peak demand). Our estimates do not vary significantly across years or 
seasons. We find a strongly nonlinear demand curve during nighttime and a quite linear curve during 
daytime hours. Our estimates of the regional distribution of demand response match with the regional 
distribution of energy-intensive industries in Germany, matching our prior assumption that it is the 
industrial consumers who are in a position to respond to wholesale electricity prices in Germany. The 
results are statistically significant and robust across a broad range of model specifications, estimators, 
time periods, alternative instruments, and other sensitivity analyses. 

Relevance. Empirical estimates of the price elasticity of electricity demand are relevant for multiple 
reasons. First and foremost, many theoretical studies assume that demand is price-inelastic, and 
regulatory and policy recommendations are often made based on this premise. For example, 
government-mandated capacity mechanisms are often justified by a lack of demand response. Second, 
demand response is an important parameter in resource adequacy studies and power system planning. 
Essentially, if demand is reduced as prices peak, less generation capacity is needed for the same level 
of security of supply. Demand elasticity also matters for operational decisions. Short-term electricity 
price forecasting, dispatch planning, and grid modeling can all be improved based on more precise 
information about demand response. Finally, this parameter can be readily used in energy system 
models for long-term scenarios. 

Outline. We continue with introducing our dataset in Section 2 before explaining our identification 
strategy in Section 3. Section 4 shows the model specifications and estimators, and Section 5 presents 
the results. In Section 6, we discuss the results, including how they reflect the institutional setup of the 
German electricity market, and draw conclusions.  
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2 Data 
Variables considered. This section gives an overview of the data used to estimate the price elasticity 
of electricity demand. The main parameters are the hourly time series of the aggregate electricity 
demand and the wholesale electricity prices in Germany. To overcome the endogeneity between 
demand and price, wind energy generation is used as an instrument variable. The analysis controls for 
possible confounding influences exerted by other variables on the price-demand relationship, 
including solar electricity generation and temperature, as well as coal, gas, and carbon prices.  

Data sources and exclusion of holidays. Hourly time series for German wholesale electricity prices, 
electricity demand, wind and solar generation, ambient temperature, and other weather variables 
were obtained from the Open Power System Data platform (Wiese et al., 2019). This platform 
aggregates data from different primary sources, which are mentioned below. We exclude holidays, 
bridge days (days between holidays and weekends), and the Christmas vacation period (between 
Christmas and New Year) from the analysis, as the demand and price patterns on these days are distinct 
and not representative of the general relationship between prices and demand. 

2.1 Electricity demand  

Aggregate demand. We use the “Total Load” data series published by the European Network of 
Transmission System Operators (ENTSO-E) for measuring the aggregate electricity demand in Germany 
(for details, see Schumacher and Hirth, 2015; Hirth et al., 2018). This is calculated as “Net Generation 
– Exports + Imports – Absorbed Energy,” where the absorbed energy is the electricity used to charge 
storage.1  

Completeness of demand data. By definition, the “Total Load” data should include demand that is met 
by solar and industrial generators on consumption sites (self-generation or behind-the-meter 
generation). However, we are not entirely sure that this part of the load is completely and correctly 
estimated. We suspect that the data may be incomplete because of a gap between the annual sum of 
the “Total Load” time series by ENTSO-E and the annual “Final Consumption” statistics from 
EUROSTAT, although both follow the same definition for load/consumption. While the ENTSO-E time 
series are the best source we know for hourly demand data, the annual EUROSTAT data are 
presumably more complete. We expect the cause of this gap to be related to the load served by 
behind-the-meter generators, which can be distinguished into two groups: rooftop solar photovoltaics 
and industrial self-generation, the latter of which often comes with heat cogeneration. We discuss 
below how uncertainty regarding the self-generation of these two groups could affect our 
identification strategy. It should be mentioned, however, that the gap between the ENTSO-E and 
EUROSTAT data decreases over time.2 

Small-scale solar. Just like wind generation, solar energy depresses electricity prices and hence, in 
principle, could be used as an additional instrument. We have decided not to do so in our main 
specification for the following reason. Much of the solar capacity represents small-scale, decentralized 
generation. These generators are usually not metered at hourly resolution. To calculate “Total Load,” 
system operators estimate the hour-by-hour solar generation. Estimation errors that are correlated 
with prices could induce a relationship between prices and observed demand that is not due to the 
demand response. This would violate the exclusion restriction, inflating our estimates of demand 
elasticity. In all our regressions, however, we do control for solar to account for any possible correlation 

 
1https://transparency.entsoe.eu/content/static_content/Static%20content/knowledge%20base/data-
views/load-domain/Data-view%20Total%20Load%20-%20Day%20Ahead%20-%20Actual.html  
2 From about 50 TWh in 2015 to about 20 TWh in 2019. 

https://transparency.entsoe.eu/content/static_content/Static%20content/knowledge%20base/data-views/load-domain/Data-view%20Total%20Load%20-%20Day%20Ahead%20-%20Actual.html
https://transparency.entsoe.eu/content/static_content/Static%20content/knowledge%20base/data-views/load-domain/Data-view%20Total%20Load%20-%20Day%20Ahead%20-%20Actual.html
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with wind generation and demand. In addition, we run a sensitivity test of solar energy as an additional 
instrument (Section 5.5). 

Industrial self-generation. Industrial self-generation could be positively correlated with prices if 
industrial consumers decided to shut down their power plants at low prices and buy from wholesale 
markets instead. If this was not properly accounted for in the total load data, such a dispatch decision 
on self-generation would introduce an upward bias in our demand-response estimates. Because the 
gap between the ENTSO-E and EUROSTAT data decreases over time, while our estimates remain 
consistent over the years (see Section 5.2), we are confident that the demand responsiveness that we 
are measuring is not entirely due to industrial self-generation. In addition, we conducted the following 
analysis: the German regulator (Bundesnetzagentur) maintains a public list of power plants containing 
1,980 units. A manual review resulted in 366 units that could potentially be industrial behind-the-
meter plants, according to the reported names of the operators. Of those, 28 have a nameplate 
capacity of 100 MW or larger, meaning they should report hour-by-hour generation on the ENTSO-E 
Transparency Platform. We were able to identify such time series for nine units. On the aggregate of 
these nine time series, we ran the same 2SLS model as the one we present and apply below for our 
main analysis. In doing so, we found that a 1 €/MWh price increase leads to a 2.6 MW increase in 
production, with a confidence interval of 2.0 MW to 3.3 MW. Scaling the estimated price response of 
our sample by the total annual output of industrial self-generation in Germany3 yields a price response 
of the German-wide industrial self-generation of around 8 MW per €/MWh, just above a tenth of the 
price elasticity we estimate in our main analysis. In other words, this assessment suggests that 90% of 
our main estimate of demand response is actually an adjustment of consumption processes, while 10% 
reflects industrial behind-the-meter generators. 

Temporal patterns in aggregate demand. Figure 1 illustrates the temporal patterns of the aggregate 
German electricity demand used in our analysis. There are two distinct diurnal peaks in electricity 
consumption, one in the morning at 11 a.m. and the other in the evening at 6 p.m., and demand is 
significantly lower on weekends compared to weekdays, reflecting lower commercial and industrial 
demand. Electricity consumption is also higher during the winter months compared to other times of 
the year. The aggregate demand for Germany was relatively stable across the years considered in our 
analysis. There is only a marginal underlying positive trend from 2015 to 2018 and a decline in 2019. A 
linear least squares model with demand as the dependent variable shows that the hourly, monthly, 
weekday, annual, and time trends together explain 83% of the variation in hourly aggregate demand 
in Germany.  

 
3 The nine plants have a joint annual output of about 8 TWh compared to the total industrial self-generation of 
about 25 TWh (according to the German Association of Energy and Water Industries). 



7 
 

 

Figure 1: Boxplots of the electricity demand by year, month, weekday, and hour4  

2.2 Electricity prices  

Day-ahead wholesale prices. We use data from the German day-ahead auction at the EPEX power 
exchange to measure electricity prices. In Germany, the EPEX day-ahead auction is the primary 
wholesale market for the physical delivery of electricity. The auction clears supply and demand for 
each hour of the next day separately, yielding electricity prices at an hourly resolution. Although not 
all electricity consumed is traded in the day-ahead market, the day-ahead prices are the relevant 
benchmark for bilateral trades and self-generation because they reflect the opportunity costs of not 
trading in the power exchange. Furthermore, our analysis based on day-ahead prices will capture 
demand response to market prices at other lead times, such as intraday and balancing prices, to the 
extent that these prices are correlated with the day-ahead prices. 

Price exposure. Most electricity consumers in Germany are not directly exposed to variations in day-
ahead market prices. Instead, retail suppliers of electricity purchase electricity in the wholesale 
markets for them. These consumers can freely choose between retail suppliers and tariffs that reflect 
wholesale prices in day-head markets to varying degrees: from not at all (constant price during a year) 
to real-time pricing (prices change hourly). In Germany, constant prices are the most common option, 
and only a few large industrial consumers and some household consumers opt for real-time pricing. In 
addition, some large electricity consumers from energy-intensive industries (such as metal and 
chemicals) also procure electricity directly from the wholesale market and are fully exposed to 
variations in the day-ahead wholesale price of electricity. Therefore, our estimates of the elasticity of 
electricity demand to wholesale market prices must only reflect the response of consumers who are 
exposed to such price variations, although we cannot identify the role of individual consumers or types 
of consumers. 

Temporal patterns in electricity prices. The nature of the time-series data of day-ahead spot prices in 
electricity markets has been previously studied (Knittel and Roberts, 2005; Kosater and Mosler, 2006; 
Huisman et al., 2007; Liebl, 2013). Usually, time series of electricity spot prices are assumed (i) to have 
deterministic annual variations and also monthly, weekly, and hourly patterns, (ii) to show price-
dependent volatilities, and (iii) to be stationary (after controlling for seasonal patterns). These 
temporal trends are clearly visible in our data as well (Figure 2). The average spot price of electricity 
changes over time in our data, with prices falling slightly in 2016 from 2015 before increasing to a peak 

 
4 The black lines in the middle of the boxes indicate the median; the boxes extend from the first to the third 
quartile (inter-quartile range), and the whiskers include the 5–95% confidence interval of the observations. 
Observations outside of this confidence interval are depicted as black dots, and the white points represent the 
mean of the distribution. 
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in 2018 and sharply falling in the first quarter of 2019. Besides this trend over the years, there are the 
expected intra-annual patterns. Electricity prices change over the course of the year, depending on the 
month. Prices are higher during the weekdays and lower over the weekends, reflecting lower demand 
from industrial and commercial activity. Over the course of a day, there are two distinct peaks: a 
morning and an evening peak around 8 a.m. and 7 p.m., respectively. Fitting a nonparametric 
generalized additive model (GAM) to electricity prices reveals that the nonlinear coal and gas prices 
and the seasonal time patterns together explain about 48% of the variation in the hourly spot price of 
electricity. The residuals spot prices, once the deterministic seasonal and time trends are accounted 
for, seem stochastic.  

 
 Figure 2: Boxplots of the electricity price by year, month, weekday, and hour5 

Correlation with fuel prices. The monthly averages of wholesale electricity prices reflect the 
underlying cost of electricity generation, closely following the prices of natural gas and coal (Figure 3).6 
We therefore include monthly fuel prices converted to EUR/MWh as control variables in our models. 
In some of our model specifications, we also control for a nonparametric time trend (see Section 4).  

 

Figure 3: Day-ahead prices in wholesale markets in Germany vs. global prices of coal and gas 

 
5 Note that some extreme prices are not visible because they exceed the limits of the ordinate. See Footnote 3 
for an explanation of the boxplot elements. 
6 We use the data series “Global price of Coal, Australia, U.S. Dollars per Metric Ton, Monthly, Not Seasonally 
Adjusted” and “Global price of Natural gas, EU, U.S. Dollars per Million Metric British Thermal Unit, Monthly, Not 
Seasonally Adjusted” published by the International Monetary Fund for coal and gas prices, respectively. 
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2.3 Other data series 

Wind and solar generation. Our time series for wind and solar energy originate from the ETNSO-E 
Transparency Platform. They represent actual electricity generation, which has two implications. First, 
renewable energy is traded in the day-ahead market based on forecasts such that it is the predicted 
rather than the actual electricity generation that impacts day-ahead prices. We argue, however, that 
the actual electricity generation can still be used as an explanatory variable for day-ahead prices, given 
the high correlation with predicted values. Second, the actual generation may differ from the potential 
generation due to curtailment at negative electricity prices or grid congestion. What curtailment 
means for our identification strategy is discussed in Section 3.2. Furthermore, part of the solar 
generation is not individually metered at hourly resolution, which may introduce estimation errors. 
Therefore, we decided to use wind energy only as an instrument and to include solar energy only as a 
control variable. The temporal patterns of wind energy are displayed in Figure 4. 

 
Figure 4: Boxplots of the wind energy generation by year, month, weekday, and hour7 

Further control variables. In addition to fuel prices, we use the daily price of European Union 
Allowances (EUAs) for carbon emissions issued via the European Union Emissions Trading Scheme, 
which we retrieved from the Intercontinental Exchange (ICE).8 Furthermore, we use hourly time series 
for ambient temperature from renewables.ninja.9 They provide population-weighted averages of 
spatial temperature data across Germany. For the linear models, we derived the hourly heating and 
cooling degrees from the ambient temperature using 15°C as a threshold. 

3 Causal inference 
Price elasticity of demand. We are interested in estimating the price elasticity of electricity—that is, 
the causal effect of the wholesale electricity price from the day-ahead market (treatment) on the 
aggregate electricity demand (outcome) at very short time scales, such as hours. We do this by using 
hourly data on the day-ahead price of electricity in the wholesale markets and the hourly aggregate 
demand for electricity in Germany.  

 
7 Note that some extreme prices are not visible because they exceed the limits of the ordinate. See Footnote 3 
for an explanation of the boxplot elements. 
8 https://www.theice.com/  
9 https://www.renewables.ninja/ 

https://www.theice.com/
https://www.renewables.ninja/
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3.1 How prices impact demand 

Direct procurement and real-time pricing. As discussed in Section 2.2., there are two ways in which 
consumers can be exposed to variations in wholesale electricity prices in Germany. On the one hand, 
some large electricity consumers procure electricity directly from the wholesale market (the direct 
causal path between wholesale prices and demand in Figure 5). On the other hand, some consumers 
have real-time tariffs that reflect the wholesale price variation (the indirect causal path between prices 
and demand in Figure 5). Using hourly day-ahead prices in the wholesale markets enables us to 
estimate the aggregated response of consumers with direct procurement and with real-time pricing.  

 
Figure 5: Main causal relationships 

Time-of-use pricing. Some retail tariffs feature deterministic time-of-use pricing in the sense that the 
price of electricity changes in predetermined ways to reflect recurring diurnal trends in the wholesale 
electricity markets.10 For example, consumers may pay higher prices for the electricity consumed 
during the day than at night. Such tariffs do not reflect the stochastic part of the variation in wholesale 
prices caused by, for example, the stochasticity of wind speed. Although electricity demand may 
respond to such time-of-use prices, our instrumental regression using wind energy as an instrument 
does not capture such a response. 

Additional price components. For all electricity consumers, the price of energy is only one part of what 
they pay as the electricity price. What comes on top are network fees, taxes, and statutory levies 
(renewable energy financing costs, metering costs, retail margins, etc.). We refer to these as additional 
price components. Typically, these price components are independent of fluctuations in the wholesale 
price of electricity. This has two implications for our research. First, while fluctuations in wholesale 
electricity prices may be fully passed through to the consumer in absolute terms, the relative variation 
in prices will be smaller. As our model is based on prices in absolute terms, this should not affect our 
estimates. Second, these price components may incentivize certain behaviors. For example, industrial 
network fees often comprise hefty capacity payments that are calculated based on consumption 
during the hour with the highest demand during the year. Therefore, the marginal cost of consumption 
during such hours, on top of the wholesale price and other taxes and levies, is very high. To minimize 
such payments, industrial consumers may try to avoid consumption peaks, even if the wholesale 
market prices are low. The restriction that capacity payments and other regulated price components 
impose on how electricity demand can respond to wholesale prices will be reflected in our estimates. 

 
10 In Germany, time-of-use pricing is rare and mostly applies to night storage heating. We can think of time-of-use pricings as 
a causal path between the time variables and retail electricity prices (Figure 5). 
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Put differently, our estimates of the price elasticity of demand are conditional on the current 
regulation of additional price components in Germany. 

3.2 Identification strategy 

Instrument variable. There is a long tradition in economics of applying instrument variables for 
estimating supply and demand curves and the price elasticity of demand for various products. Because 
the supply and demand curves shift over time, the observed data on quantities and prices reflect a set 
of equilibrium points on both curves. Due to the simultaneity problem, ordinary least squares cannot 
be used to determine either the supply or the demand curve (Angrist and Krueger, 2001; Wooldridge, 
2013). To isolate the demand curve and estimate the price elasticity of demand from time series data, 
we use the quantum of hourly wind energy generation as an instrument for electricity prices. To be a 
valid instrument, wind energy must fulfill three conditions: it must be exogenous and relevant and 
fulfill the exclusion restriction. 

Exogeneity. To fulfill the exogeneity condition, wind generation must be unaffected by electricity 
prices and demand. The potential wind power supply is driven by weather conditions—more precisely, 
wind speed, which is certainly unaffected by electricity markets. Indeed, because of its natural 
stochasticity, weather variables have a long history of being used as instruments to estimate the 
demand elasticity of other goods, such as oil and fish (e.g., Wright, 1928; Graddy, 2006). We can also 
assume that wind generation is strictly exogenous in the sense that current wind generation is 
unaffected by past electricity market outcomes, which is important for causal inference with time 
series. 

Wind generation vs. speed. Instead of using wind speed directly, we include wind generation in the 
main model specification. This is because the relationship between wind speed and wind generation 
is nonlinear due to the underlying S-shaped power curves of single wind turbines. Furthermore, wind 
turbines shut down at very high wind speeds, which may compromise the condition that the 
relationship between the instrument and the endogenous variable must be monotonous. However, 
we use wind speed as an instrument for sensitivity analyses, and we exploit the nonlinear relationship 
between wind speed and wind energy to perform a zero-first-stage test, finding supporting evidence 
for the validity of our instrument (see Section 5.6 below). 

Curtailment. In contrast to the purely physically determined potential wind power supply, the actual 
supply may be affected by the decision not to produce, even though the wind is blowing. This may be 
due to two reasons: negative wholesale electricity prices or congested networks. The marginal cost of 
generating wind energy is virtually zero, and many wind generators receive, on top of wholesale 
revenues, additional income for each MWh produced (e.g., in the form of contracts-for-difference or 
tradable green certificates). Because of the opportunity costs related to this additional income, they 
will stop producing only if the wholesale price turns steeply negative. This is the case during only a few 
hours of the year. Transmission network congestion mostly occurs when both wind speeds and 
electricity demand are high. Hence, conditional on high wind speeds, the wind power supply may be 
somewhat lower when demand is high. In such situations, day-ahead prices may be relatively high 
because of the high demand,11 which could cause us to underestimate demand elasticity. Nevertheless, 
we conduct two sensitivity analyses to address endogeneity concerns: one in which we exclude hours 
with negative prices from the dataset and one using wind speed instead of wind generation as an 

 
11 Note that day-ahead prices are determined without accounting for grid congestion such that the day-ahead 
price will not be affected by the lower wind supply due to curtailment. 
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instrument. As our estimates are robust in both cases (see Sections 5.5 and 5.7 below), we conclude 
that the endogeneity of wind energy is not an issue. 

Relevance. To fulfill the relevance condition, wind power must be correlated with electricity prices. In 
economic terms, increased wind generation is a supply shock that affects the electricity price by 
shifting the electricity supply curve outward. An increase in wind energy generation, ceteris paribus, 
leads to a decrease in electricity prices, while a decrease in wind energy generation causes electricity 
prices to increase. Indeed, wind energy has a high explanatory power for price variations that cannot 
be explained by other covariates (see Section 5.1 below). In statistical terms, the partial R² of wind 
energy in the first stage of our two-stage least squares regression is high. Hence, wind energy is a 
relevant instrument for the wholesale electricity price. 

Exclusion restriction. To fulfill the exclusion restriction, wind power must not affect the electricity 
demand other than through the wholesale electricity price. The wind energy supply is naturally 
stochastic because of the underlying weather patterns. Nevertheless, there are three broad concerns 
about the exclusion restriction: concomitant seasonality in wind speeds and electricity consumption, 
correlation between wind generation and temperature, and the direct impact of winds on electricity 
demand through heating demand or interruptions. These are discussed in the following paragraphs. 

Seasonality. Both wind speeds and electricity demand feature diurnal and annual seasonality. The root 
causes for these are different: winds are driven by atmospheric physics, while demand seasonality 
reflects patterns of human life and business activity (of course, at a fundamental level, they are both 
caused by the Earth’s rotation). Nevertheless, this correlation could bias our estimate of the price 
elasticity of demand. To correct for this, we control for time of day and time of year in our regressions, 
using hourly and monthly dummy variables, as well as nonlinear time trends in electricity demand and 
prices.  

Temperature. Beyond seasonality, electricity demand is impacted by weather, particularly ambient 
temperature, because electricity is used for heating and cooling. Hence, the degree to which wind 
speeds and temperature are physically correlated may bias our estimate of the price elasticity of 
demand. To address this issue, we control for the ambient air temperature using heating and cooling 
degrees or nonparametric specifications. 

Wind sensitivity of heating and cooling. We can think of two ways through which wind speeds may 
directly impact electricity demand (other than through prices): wind-sensitive demand for space 
heating and cooling and interrupting electricity-consuming services. Wind speeds affect the apparent 
temperatures and heat losses of buildings, implying that heating and cooling demand may be a 
function of not only temperature but also wind speed directly (Huang et al., 1990; Sholahudin and Han, 
2016). Thus, wind speed could directly affect electricity demand through heating and cooling, and we 
would expect the sign of the effect to depend on the season: wind would increase heating and 
electricity demand during winter and decrease cooling and electricity demand during summer. Hence, 
these wind effects could lead to an overestimation of the price elasticity of demand during winter 
because demand increases in times of high wind speeds are related not only to low prices but also to 
the direct positive link between wind and demand. The potential bias would be reversed during 
summer (and probably smaller because there is less electric cooling than heating in Germany). To 
control for this causal path, in a sensitivity analysis, we run separate regressions using observations 
from only one season (see Section 5.2 below). Because our estimates remain unchanged, we conclude 
that our findings on price elasticity are not substantially biased by direct wind-heating or wind-cooling 
effects. 
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Wind-related demand disruption. Storms may lead to interruptions of services, such as the operation 
of electric railways, and hence lower electricity consumption. This lower demand in times of high wind 
supply and, hence, low electricity prices would lead us to underestimate the price elasticity of demand; 
therefore, this is not a challenge to our identification strategy. However, to explore this possible effect, 
we conduct another sensitivity analysis excluding hours with very high wind speeds from our dataset 
(see Section 5.7 below). As our estimates remain virtually unchanged, we conclude that our exclusion 
restriction holds. 

4 Model specification and estimation approach 
Overview. This section presents our five main model specifications (Table 1). All specifications 
comprise two equations: one for price as a function of supply and one for demand as a function of 
price. For all models, we use wind as a supply-side instrumental variable to address the simultaneity 
problem of price and demand. The models differ in their assumptions of the linearity of relationships. 
The first two specifications assume a linear and a log-linear relationship between demand and price, 
with linear control variables (Section 4.1). The other specifications assume a linear, a log-linear, and a 
nonparametric demand–price relationship, while including nonparametric smooth functions for 
control variables (Section 4.2). 

Table 1: Overview of our five main model specifications 

Model 1 2 3  4 5 
Model class Parametric models Nonparametric models 
Specification of controls Linear Linear/Nonparametric 
Estimator Two-stage least squares 

(2SLS) 
Two-stage generalized additive model 

(2SGAM) 
Demand–price relationship Linear Log-linear Linear Log-linear Nonparametric 

 

4.1 Parametric models 

Linear specification. For the purely linear specification, we define the simultaneous equation model 
as 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝐼𝐼𝑡𝑡 + 𝜶𝜶𝟐𝟐𝑪𝑪𝒕𝒕 + 𝜶𝜶𝟑𝟑𝑫𝑫𝒕𝒕 + 𝑣𝑣𝑡𝑡         (1) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝜷𝜷𝟐𝟐𝑪𝑪𝒕𝒕 + 𝜷𝜷𝟑𝟑𝑫𝑫𝒕𝒕 + 𝑢𝑢𝑡𝑡        (2) 

where 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 Wholesale price of electricity at hour t 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 Electricity demand at hour t 
𝛽𝛽1 Price elasticity of demand 
𝐼𝐼𝑡𝑡  Instrument (wind energy) 
𝑪𝑪𝒕𝒕 Controls (solar power, heating and cooling degrees, and EUAs) 
𝑫𝑫𝒕𝒕  Dummy controls (hour of the day, weekday, month of the year, and year)  
𝛼𝛼,𝛽𝛽  Modeled linear coefficients 
𝑢𝑢, 𝑣𝑣  Error terms 

and bold letters indicate vectors of multiple variables or coefficients. Note that some of the control 
and dummy variables (e.g., hour of the day) are necessary to fulfill the exclusion restriction because 
both wind energy and electricity demand feature diurnal patterns (see Section 3.2). Other variables 
are included simply to improve the model fit (e.g., weekdays); they explain demand patterns but are 
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uncorrelated to wind speeds. The second model specification uses the logarithm of demand in the 
second stage. The coefficient of price (𝛽𝛽1) can then be interpreted as the relative change in demand 
per absolute change in price. Taking the logarithm of price to estimate the dimensionless elasticity 
parameter with the typical log-log specification is not possible because hourly electricity prices become 
zero and even negative. 

2SLS estimator. Because of the simultaneity of Eqs. (1) and (2), the key regressor (price) is correlated 
with the error term of Eq. (2), implying that ordinary least squares estimates are biased. Hence, we use 
the 2SLS model with Eq. (1) as the first stage and Eq. (2) as the second stage. In the first stage, the price 
is regressed on our exogenous instrument (wind energy). In the second stage, the price is replaced by 
the predicted price based on Eq. (1).  

2SLS standard errors. Our input data feature strong serial correlation, and so do the error terms 𝑣𝑣𝑡𝑡 
and 𝑢𝑢𝑡𝑡 in Eqs. (1) and (2). To account for this, we calculate heteroscedasticity and autocorrelation 
(HAC) robust standard errors of the estimates. More precisely, we calculate kernel standard errors 
using the Bartlett kernel with automatic bandwidth selection as implemented in the linearmodels 
Python package. Related to this, Section 5.4 presents a sensitivity regression based on first differences, 
which significantly reduces serial correlation in the residuals. 

4.2 Nonparametric models 

Nonparametric specifications. A priori, there is no reason to believe that the relationship between 
demand and price should be linear. For example, consumers may respond only to very high prices 
when they decide to ramp down their industrial production processes. To allow for the determination 
of such possible nonlinear effects of predictors on the response variable in Eqs. (1) and (2), we use a 
GAM:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = 𝛼𝛼0 + s𝛼𝛼,1(𝐼𝐼𝑡𝑡) + 𝐬𝐬𝜶𝜶,𝟐𝟐(𝑪𝑪𝒕𝒕𝒔𝒔) + 𝜶𝜶𝟑𝟑𝑫𝑫𝒕𝒕 + 𝑣𝑣𝑡𝑡                                    (3) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝐬𝐬𝜷𝜷,𝟐𝟐(𝑪𝑪𝒕𝒕𝒔𝒔) + 𝜷𝜷𝟑𝟑𝑫𝑫𝒕𝒕 + 𝑢𝑢𝑡𝑡                         (4) 

where 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 Wholesale price of electricity at hour t 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡  Electricity demand at hour t 
𝛽𝛽1 Price elasticity of demand 
𝐼𝐼𝑡𝑡  Instrument (wind energy) 
𝑪𝑪𝒕𝒕𝒔𝒔  Nonparametric controls (solar power, temperature, EUA and time) 
𝑫𝑫𝒕𝒕  Dummies (hour of the day, weekday, month of the year, and year)  
s(∙)  Nonparametric smooth functions 
𝛼𝛼,𝛽𝛽  Modeled linear coefficients 
𝑢𝑢, 𝑣𝑣  Error terms 

The terms 𝑠𝑠1(𝑥𝑥1) … 𝑠𝑠𝑝𝑝�𝑥𝑥𝑝𝑝� denote smooth, nonparametric functions, which, depending on the 
underlying patterns in the data, may be nonlinear. The GAM structure allows for the parametric and 
nonparametric terms to be combined additively, allowing for the usual interpretation of the 
parametric terms. The expected value of the dependent variable is 𝑔𝑔(𝐸𝐸(𝑌𝑌)) = 𝛼𝛼 + 𝑠𝑠1(𝑥𝑥1) + ⋯+
𝑠𝑠𝑝𝑝�𝑥𝑥𝑝𝑝�, where 𝑌𝑌 is the dependent variable, 𝐸𝐸(𝑌𝑌) denotes the expected value of the dependent 
variable, and 𝑔𝑔(𝑌𝑌) denotes a link function (for example, a linear or logarithmic function), which links 
the expected value to the predictor variables 𝑥𝑥1, … 𝑥𝑥𝑝𝑝. In addition, we run two more model 
specifications with nonparametric dummies that differ in the demand–price relationship: a log-linear 
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model and one with a nonparametric demand response, obtained by replacing 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 in Eq. (4) with 
𝑠𝑠(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡). 

2SGAM. As in the case of the linear specification, the presence of a simultaneous relationship between 
demand and price can lead to inconsistent estimates of Eq. (4). To address this issue, we use the 
2SGAM approach laid out by Marra and Radice (2011). For the endogenous variable, the price, 
consistent estimates of 𝛼𝛼, and 𝑠𝑠(∙) are obtained by fitting the GAM corresponding to Eq. (3). Then, we 
estimate the value of the residuals 𝑣𝑣𝑣𝑡𝑡 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − (𝛼𝛼𝛼0 + ŝ(𝐼𝐼𝑡𝑡) + 𝐬𝐬𝐬(𝑪𝑪𝒕𝒕𝒔𝒔) + 𝜶𝜶𝜶𝟑𝟑𝑫𝑫𝒕𝒕), which captures the 
endogenous variation in the price variable. Next, a GAM defined by equation Eq. (4) that includes an 
additional term 𝑠𝑠(𝑣𝑣𝑣𝑡𝑡) is calculated to flexibly account for the endogenous variation in the price 
variable. In doing so, the linear/nonlinear effects of price can be estimated consistently. Note that 
𝑠𝑠(𝑣𝑣𝑣𝑡𝑡) will contain a mixture of effects, which makes it not interpretable. However, this is not 
problematic, since all that is required is to account for the presence of endogeneity (see Marra and 
Radice, 2011). In practice, the 2SGAM estimator can be implemented using GAMs represented via any 
penalized regression spline approach. The 2SGAM approach described in this section is fitted using the 
gam function in the R package mgcv. The mgcv package fits the 2SGAM estimator using penalized 
likelihood, which can be maximized by penalized iteratively reweighted least squares (P-IRLS) (Marra 
and Radice, 2011; Zanin et al., 2015; Wood, 2017).  

2SGAM confidence intervals. Confidence intervals for the components of a GAM can be constructed 
using Bayesian confidence intervals (Wood, 2006; Marra and Wood, 2012; Gu, 2013). Because the 
second stage of 2SGAM cannot account for the additional source of variability introduced via the 
residuals calculated in the first step, the intervals for the components in the second-step model will be 
too narrow, leading to poor coverage probabilities. This can be rectified via posterior simulation (Zanin 
et al., 2015). Intuitively, samples from the posterior distribution of each first-step model are used to 
obtain samples from the posterior of the quantities of interest 𝑣𝑣𝑡𝑡. Then, given that the Nb vector 
replicates for each 𝑣𝑣𝑡𝑡, Nd random draws from the Nb posterior distributions of the second-stage model 
are used to construct approximate intervals for the smooth functions. Marra and Radice (2011) 
suggested that Nb = 25 and Nd = 100 yield good coverage probabilities. These settings were used to 
construct 95% intervals for the function estimates obtained using the 2SGAM.  

5 Results 
Outline. In this section, we first present the main results on demand elasticity for all five model 
specifications (Section 5.1). We then conduct a series of sensitivity and robustness analyses: we split 
the dataset into seasons, day/night, etc., report regional differences, analyze lagged effects, test 
additional instruments and zero first stage, and exclude extreme weather (Sections 5.2–5.7). Finally, 
we check the plausibility of the control and dummy variables in our main model specifications 
(Section 5.8). 

5.1 Demand elasticity 

First stage. The results of the first-stage regressions are reported in Table 2. The first stage is 
independent of whether the demand–price relationship is assumed to be linear, log-linear, or 
nonparametric, but it does differ between the 2SLS and GAM estimation. As expected, we find that 
wind energy has a significant negative effect on prices in both model specifications (at the 0.001% 
level). Furthermore, in the linear model, the partial R² of wind energy and the F-statistic of the excluded 
instrument are very high. The F-statistic exceeds the critical values 13.91 and 16.38 for weak 
instrument tests based on max. 5% 2SLS bias and max. 10% 2SLS size, respectively (Stock and Yogo, 
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2005). The first-stage partial F statistic calculated using bootstrapped standard errors is calculated as 
14,669, much higher than even more stringent criteria (Lal et al., 2021).  Therefore, we conclude that 
wind energy generation is a strong instrument. The results from the nonparametric models are similar 
to those of the linear specification. The relationship between price and wind generation is largely 
linear, with a slightly concave shape at higher shares (Figure 6). The relationship between price and 
other coefficients turns out to be nonlinear, as detailed below. 

Table 2: First-stage regression of the endogenous price variable on the instrument wind power and controls 

 2SLS GAM 
Adjusted R² 0.76 0.79 
Partial R² of wind energy 0.46 - 
Partial F-statistic 930 - 
Wind energy (GW) −0.94 *** 

[−1.01, −0.88] 
Spline*** 

Solar energy (GW) −1.12 *** 
[−1.19, −1.05] 

Spline*** 

Heating degrees (°C) 0.36 *** 
[0.22, 0.49] 

- 

Cooling degrees (°C) 0.45 *** 
[0.33, 0.58] 

- 

Temperature (°C) 
 

- Spline*** 

EUAs (€/t) 1.08 *** 
[0.84, 1.32] 

Spline*** 

Coal price (€/MWh) 1.67 *** 
[1.33, 2.01] 

Spline*** 

Gas price (€/MWh) 0.35 *** 
[0.12, 0.57] 

Spline*** 

Hour Dummies Dummies 
Weekday Dummies Dummies 
Month Dummies Dummies 
Year Dummies Dummies 
Time - Spline*** 
95% confidence intervals are reported in brackets; significance levels: *** 0.001 ** 0.01 * 0.05. 
The significance of the dummy variables can be found in Figure A1 in the Appendix. 
The partial F-statistic is the F-statistic of the excluded instrument (wind energy). 

 

  
Figure 6: Estimated nonparametric wind–price relationship from the GAM. The Y-axis shows the change in price 

at different levels of wind generation while holding all the other variables constant.  
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Second stage. The results of the second stage are presented in Table 3. For all model specifications, 
we find the coefficient of price to be statistically significant at the 0.001 level of significance. For a 
1 €/MWh increase in the day-ahead electricity price, the electricity demand is estimated to decrease 
by about 67–80 MW (linear estimates) or 0.12–0.14% (log-linear estimates). The nonparametric 
specifications yield about 10% smaller estimates than the linear specifications. The confidence 
intervals reported for the 2SLS model in Table 3 were calculated using HAC standard errors to correct 
for serial correlation in errors (see Appendix B for treatment of serial correlation). We also use 
bootstrap methods and calculate the Anderson-Rubin confidence intervals for the IV coefficient, as it 
is robust to arbitrarily weak instruments (Lal et al., 2021). Both the bootstrapped and the Anderson-
Rubin confidence intervals do not diverge much from our 2SLS estimates. The 95% confidence interval 
obtained using bootstrap methods [-83.98, -75.10] is smaller than the one obtained using HAC 
standard errors for the linear specification of 2SLS. Further, the Anderson-Rubin confidence [-84.02, -
75.14] is also smaller than the confidence interval that we report for the 2SLS model. We conclude that 
our 2SLS estimates are robust to the choice of estimation method and biases arising from presence of 
a weak instrument. Table 3 also reports Bayesian confidence intervals for 2SGAM calculated using 
posterior simulation (see section 4.2)  

Table 3: Second-stage regression of demand and log(demand) on price and other covariates 

 Linear  Log-linear a 
 2SLS GAM  2SLS GAM 
Adjusted R² 0.89 0.94  0.90 0.94 
Price (€/MWh) −79.6 *** 

[−91.3, −67.8] 
−67.3 *** 

[−72.2, −62.7] 
 −0.14 *** 

[−0.16, −0.12] 
−0.12 *** 

[−0.13, −0.11] 
Solar energy (GW) −125.3 *** 

[−153.6, −97.1] 
Spline  −0.14 *** 

[−0.19, −0.10] 
Spline 

Heating degrees (°C) 310.9 *** 
[279.8, 342.0] 

-  0.55 *** 
[0.49, 0.61] 

- 

Cooling degrees (°C) 149.9 *** 
[113.0, 186.8] 

-  0.32 *** 
[0.25, 0.38] 

- 

Temperature (°C) 
 

- Spline ***  - Spline *** 

EUAs (€/t) 98.1 *** 
[37.5, 158.7] 

Spline ***  0.19 *** 
[0.06, 0.31] 

Spline *** 

Coal price (€/MWh) 299.8 *** 
[221.0, 378,7] 

Spline ***  0.53 *** 
[0.37, 0.68] 

Spline *** 

Gas price (€/MWh) 14.1 
[−39.4, 67.7] 

Spline ***  0.03  
[−0.08, 0.14] 

Spline *** 

Hour Dummies Dummies  Dummies Dummies 
Weekday Dummies Dummies  Dummies Dummies 
Month Dummies Dummies  Dummies Dummies 
Year Dummies Dummies  Dummies Dummies 
Time - Spline ***  - Spline *** 
a All estimated parameters of the log-linear model are reported as percentages.  
95% confidence intervals are reported in brackets; significance levels: *** 0.001 ** 0.01 * 0.05. 
The significance of the dummy variables can be found in Figure A2 in the Appendix. 

Nonparametric demand curve. In the fifth model specification, we allow for a nonparametric 
relationship between price and demand. Here, we find a statistically significant and generally negative 
relationship between price and demand (Figure 7). Furthermore, the estimated relationship is also 
significantly nonlinear; the estimated degrees of freedom (EDF) for the price variable are equal to 
8.758. At high and low prices, the relationship appears to be largely linear and negative, although 
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demand seems largely insensitive to price changes between 20 and 50 €/MWh. However, Figure 7 also 
reveals a wide variation in the values of demand around the estimated relationship. 

  

Figure 7: Estimated nonlinear demand curve in the GAM 

5.2 Temporal differences  

Approach. So far, we have presented results based on the entire 5-year dataset. In the following 
paragraphs, we run the same model specifications on the temporal subsets of the data. These subsets 
separate the data along four dimensions: into different years, different seasons, weekdays and 
weekend, and day and night. There are two motivations for doing so. First, we want to explore the 
robustness of our estimates against changes in the data sample, in part because previous studies used 
a single year of data. Second, we want to investigate whether the estimated elasticity varies over time 
and whether consumers respond differently to price changes during the day/night or on weekends. 
This helps building hypotheses which types of consumers are responding to prices. 

Linear estimates. Figure 8 shows the linear price coefficients for the different subsets. Across years, 
the 2SLS estimates are very stable, with a decrease in demand of 61–82 MW per 1 €/MWh increase in 
price. The results from the GAM show somewhat higher variation but remain highly significant in all 
years. We cannot identify a consistent year-to-year trend in the price elasticity of demand. While the 
seasonal variation in the GAM estimates is difficult to explain, it is reassuring to see that the 2SLS 
estimates are fairly stable across seasons. This is an important finding because it suggests that heating 
and cooling are not challenges to our identification (see Section 3.2). Finally, we find that the linear 
estimates for demand response from both the 2SLS model and GAM are larger during weekdays and 
daytime hours (8 a.m. to 8 p.m.) than during weekends and nighttime hours. This seems plausible, as 
it correlates with (industrial) demand and economic activity in general. 
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Figure 8: Estimates of linear demand elasticity based on the dataset being split into years, seasons, weekdays, 
weekends, and daytime and nighttime hours compared to the estimate based on the entire dataset (“all”). The 

whiskers indicate the 95% confidence interval.  

Nonparametric estimates. The log-linear estimates are very similar to the linear specification and 
highly robust for both estimators (see Figure A3 in the Appendix). The nonparametric estimates show 
distinct patterns for day and night: during daytime hours, the demand curve is almost linear, but during 
nighttime hours, it shows a distinct level around the mean price (Figure 9). Similarly, we observe an 
almost linear curve for weekdays but a nonlinear shape for weekends. The nonlinearity of the demand 
curve estimated for the total data (Figure 7) seems to be driven by the nonlinearities during nighttime 
hours. This is confirmed by model diagnostics (see Figures A4-6 in the Appendix).  

  
Figure 9: Estimates of the nonlinear demand curve based on the dataset being split into daytime (left) and 

nighttime hours (right) 

5.3 Regional differences  

Approach. The previous results are based on the aggregated electricity demand for Germany as a 
whole. Germany is served by four transmission system operators (TSOs) that report load data for their 
respective service areas: 50Hertz, Amprion, TennetT, and TransnetBW. We ran the linear and log-linear 
specification with regional demand as the dependent variable in the second stage to test whether 
regional elasticities vary (since Germany has one national wholesale electricity price, the first stage is 
identical across regions).  

Results. Figure 10 displays the results for the linear (left) and log-linear (right) 2SLS models. The linear 
specification reveals how the absolute per-€/MWh demand elasticity is distributed to different 
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regions. While demand in the areas of 50Hertz and TransnetBW is virtually inelastic, roughly two thirds 
of the national elasticity occur in the Amprion and one third in the TenneT area. The log-linear model 
yields similar results: the estimate for relative change in demand is close to zero for 50Hertz and 
TransnetBW, similar to the national estimate for TenneT, and about twice as large for Amprion. This is 
revealing because the Amprion region is home to most of Germany’s heavy industry. This finding 
matches well with our expectation that it is the industrial consumers who are able to respond to 
variations in electricity prices in the wholesale markets. 

 

Figure 10: Estimates of linear (left) and log-linear (right) demand elasticity obtained using the 2SLS model 
based on demand data from single TSOs compared to the estimates based on the aggregated German demand 

(“DE”). The whiskers indicate the 95% confidence interval.  

5.4 Lagged effects 

Lagged effects. A change in the electricity price at one hour may affect demand not only during that 
same hour but also in subsequent hours. Moreover, because prices can be reasonably well predicted 
at short horizons, the (anticipated) electricity price in one hour may also affect demand in the 
preceding hours. Thinking of electricity as a heterogeneous good across time, one can interpret such 
a response as intertemporal cross-price elasticity (Hirth et al., 2016; Mier and Weissbart, 2020). 

Load shifting vs. inertia. The sign of such intertemporal cross-price elasticity of electricity demand is 
ambiguous a priory: if load is shifted away from hours with high prices toward preceding or subsequent 
hours with lower prices, the intertemporal cross-price elasticity may be positive (demand increases 
with higher preceding and subsequent prices). By contrast, if consumption processes are subject to 
inertia, which means that load is adjusted only if prices are low for several hours in a row, the 
intertemporal cross-price elasticity may be negative (demand decreases with higher preceding and 
subsequent prices). 

Interpretation of our main estimates. Our main estimates of demand elasticity partly reflect such 
intertemporal cross-price elasticity of demand, in addition to response to prices in any particular hour, 
because prices are serially correlated. Put differently, our main model estimates the demand response 
to an increase in the day-ahead price, given that day-ahead prices with temporal proximity will also be 
higher due to serial correlation. 

First differences. As an alternative to our main model specification, this section explores an estimation 
of the price elasticity of demand based on first differences. The time-related dummy variables remain 
as level variables. Taking the first differences allows us to exclude the effect of lagged prices and, 
hence, identify the response of the demand in one hour to a change in price in the same hour. 
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Results and interpretation. The 2SLS results based on the first-differenced time series are displayed in 
Figure 11. The magnitudes of both the linear and loglinear estimates of demand response increase 
substantially. These results suggest that on an average the demand response to change in prices in the 
same hour is even larger than our main estimates, which partly include intertemporal cross-price 
elasticities. It also suggests that in our dataset intertemporal cross-price elasticity is positive, i.e., load 
shifting (positive cross-price elasticity) is larger than load inertia (negative cross-price elasticity).  

 

Figure 11: Estimates of linear (left) and log-linear (right) demand elasticity obtained using the 2SLS model 
based on first differences compared to the main estimates based on levels. The whiskers indicate the 95% 

confidence interval.  

We also note that the serial correlation in the residuals of the first differences model is lower than in 
the model with level variables. Additionally, the model fit for the first stage also decreases, although 
the F-statistic is still above the acceptable threshold (see Appendix B). 

5.5 Other instruments 

Other instruments. To further assess the robustness of our estimates, we repeated our analysis with 
different instruments (using the non-differentiated time series), using wind speed and solar generation 
as instruments. 

Wind speed. First, we use wind speed as an instrument instead of wind energy. We do this to address 
endogeneity concerns: wind energy, in contrast to wind speed, may be affected by economic or grid 
curtailment (see Section 3.2). Wind speed, a purely meteorological variable, is clearly exogenous.  We 
calculate wind speed as the population-weighted average wind speed across Germany. Substituting 
the instrument hardly changes our estimates (see Figure 12). We take this as an indication that the 
potential endogeneity of wind energy generation is not an issue.  

Solar energy. As a second robustness check, we use solar energy as a second instrument (in addition 
to wind energy). We refrained from using solar energy as an instrument in our main specification 
because of concerns that solar energy might be inaccurately estimated, violating the exclusion 
restriction (see Section 2.1). Figure 12 suggests, however, that including solar energy as an additional 
instrument does not substantially change our estimate. If anything, including solar as a second 
instrument reduces the size of the estimate, in contrast to our concern that it might inflate it. This 
suggests that solar energy is also a valid instrument.  
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Figure 12: Estimates of linear (left) and log-linear (right) demand elasticity obtained via the 2SLS model using 
wind speed and wind and solar energy generation as instruments compared to the main estimates obtained 
using wind energy as an instrument. The whiskers indicate the 95% confidence interval.  

5.6 Zero-first-stage test 

National power curve. As explained in Section 3.2, we expect the relationship between wind speed 
and wind energy to be nonlinear because of the S-shaped power curve of wind turbines and the 
shutdown of turbines at very high wind speeds. This is also evident at the national level (Figure 13).  

 

Figure 13: Wind energy in Germany compared to wind speed. For every observation (hour), the x-axis shows the 
90% quantile of all locations sorted by wind speed. This is because wind turbines tend to be located at windy 
locations. The solid black line indicates the local average wind energy per 0.1 m/s wind speed. The dashed black 
line indicates the threshold below which observations are considered for the zero-first-stage test. 

Test setting. We make use of this nonlinearity to check the validity of our instrument in a zero-first-
stage test (van Kippersluis and Rietveld, 2018; Lal et al., 2021). In the first step, we limit our dataset to 
observations for which the wind speed is below 5 m/s (about 8% of the data). For this subset, we do 
not expect a change in wind to have a significant effect on wind energy because the power curve is 
very flat in this range (zero first stage), and we want to reject that a change in wind speed still has a 
significant effect on electricity demand in the reduced-form equation. Because a direct relationship 
between wind speed and electricity demand can be suspected in populated areas, we use the 
population-weighted wind speed for these significant tests. This is the same wind speed variable we 
used as an instrument in Section 5.5 based on the entire dataset, yielding the same demand elasticity 
estimate as for wind energy as an instrument. 

Test results. Compared to the full dataset, the first-stage effect of mean wind speed on electricity 
prices in the subsample decreases by a factor of four and becomes statistically insignificant. All other 
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coefficients remain qualitatively unchanged. In the reduced-form equation, the effect of the mean 
wind on load also becomes statistically insignificant. This indicates the exclusion restriction holds—
that is, wind affects load only through prices. 

5.7 Extreme events 

Extreme events. Two types of situations may give some reason for concern regarding the exogeneity 
and exclusion restriction of our instrument: hours with negative prices and hours with extremely high 
wind speeds. We exclude those observations in turn. 

Negative prices. We exclude negative prices because they could lead to the curtailment of wind 
energy, breaking the exogeneity requirement for wind energy as an instrument. As our estimate does 
not change substantially (Figure 14), we conclude that wind energy does fulfil the exogeneity 
requirement.  

Storms. The exclusion of extreme wind speeds is due to the concern that storms could interrupt 
electricity demand from services such as railways, thereby reducing demand through another channel 
than electricity prices. This would violate the exclusion restriction (see Section 3.2). We exclude 
observations corresponding to the highest 1% wind speeds based on different aggregations of the 
spatially resolved wind speed time series across Germany (population-weighted mean, median, 90% 
quantile, maximum). Our estimates are robust to these changes in the dataset.  

 

Figure 14: Estimates of linear (left) and log-linear (right) demand elasticity obtained using the 2SLS model 
excluding hours with negative prices and the 1% highest wind speeds from the dataset compared to the main 
estimates based on the entire dataset. The whiskers indicate the 95% confidence interval.  

5.8 Control variables  

Overview. This section briefly discusses the estimated linear coefficients of our control and dummy 
variables in the first and second stages. We also present the estimated nonparametric effects of our 
main control variables, solar energy and ambient temperature. Overall, the estimated coefficients and 
nonparametric relationships are plausible, which increases our confidence in the validity of our main 
results on the price elasticity of demand. 

First-stage solar and temperature effects. In the first stage, the effect of solar power is very similar to 
that of wind energy for both linear and nonparametric specifications (compare Table 2, Figure 6, and 
Figure 15a). This makes sense, as wind and solar power equally constitute additional supply at low 
variable costs, shifting the supply curve outward and leading to a decline in prices. The linear 



24 
 

coefficients of the heating and cooling degrees are both positive, which is in line with our expectation 
that prices increase with heating and cooling due to an increase in demand. The nonparametric 
specification suggests a nonlinear relationship, with the effect of temperature on price being higher at 
temperatures above 20°C and below 0°C, which may reflect that both heat pumps and air conditioning 
become less efficient at more extreme temperatures (Figure 15b).  

 

Figure 15: Nonparametric covariates in the first stage: solar (left) and temperature (right) 

First-stage fuel and carbon price effects. The coefficients of the EUA in both linear and nonparametric 
specifications indicate that electricity prices increase by about 1 €/MWh per 1 €/t increase in carbon 
prices, which seems plausible given that the specific emissions of European power plants are in the 
range of 0.4–1.2 t/MWh (Ruhnau et al., 2022). The relationship between fuel and power prices 
depends on the efficiency of different power plants and the share of hours when those plants are 
marginal, price-setting plants. The efficiency of coal-fired power plants is in the range of 38–46% (Hirth 
et al., 2021), such that we would expect that a 1 €/MWh increase in coal prices would cause a 
2.4 €/MWh increase in electricity prices during those hours when coal-fired power plants are setting 
the price. The fact that our estimate is lower (about 1.7) seems reasonable because coal-fired power 
plants were setting the prices only during some hours of our observed period. Our estimated 
coefficient for the gas price is even smaller (0.35), which may reflect the fact that modern gas-fired 
power plants are more efficient (up to 60%) and that gas-fired power plants were setting electricity 
prices during fewer hours of our observed period. The nonparametric specification for coal and gas 
prices also shows a plausible positive relationship with electricity prices. 

Time dummies and trends in the first stage. The estimated dummies for hour, week, month, and year 
in the first-stage regression are displayed in the Appendix (Figure A1). Both the 2SLS model and the 
GAM match well with the temporal price patterns described in Section 2. The nonparametric time 
trend in the GAM is also significant, capturing exceptional price movements, such as the spike at the 
beginning of 2017 (Figure 3).  

Second-stage solar and temperature effects. In the second stage of the 2SLS model, solar has a 
negative effect on demand. This supports the hypothesis that our demand data may not fully include 
demand that is served by behind-the-meter solar; therefore, an increase in behind-the-meter 
production may appear in our demand data as a decrease in demand. The GAM indicates that this 
effect is most pronounced at low solar levels (Figure 16a). The coefficients of heating and cooling 
degrees are both positive, as expected, with the coefficient of heating being larger than that of cooling. 
This matches well with the U-shape of the estimated nonparametric relationship between 
temperature and demand. The vertex of the curve coincides with our assumed heating and cooling 
threshold of 15°C (Figure 16b). In the range of 0–10°C, the spline is almost linear, with a slope that is 

a b 
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similar to the 2SLS estimate (310 MW/°C). Below 0°C, the slope increases (but fewer observations are 
available). 

 

Figure 16: Nonparametric covariates in the second stage: solar (left) and temperature (right) 

Time dummies and nonparametric time trends in the second stage. As in the first stage, the second-
stage time dummies are displayed in the Appendix (Figure A2) and reflect the time temporal patterns 
presented in Section 2. The nonparametric time variable features very large confidence intervals, 
indicating weak time trends on top of the yearly, monthly, daily, and hourly variations. 

6 Discussion and conclusion 
Summary. We estimate that a 1 €/MWh increase in German wholesale prices triggers a reduction in 
aggregate demand of 67–80 MW (linear estimates using the 2SLS/2SGAM) or 0.12–0.14% (log-linear 
estimates). In the following, we put these numbers into perspective, compare them with estimates in 
the literature, discuss their relevance, and draw some conclusions.  

Absolute demand response. While our estimated demand elasticity in terms of €/MWh might seem 
small at first glance, it should be noted that wholesale electricity prices fluctuate widely over short 
time scales. To put this into perspective, we derive the absolute price response to the expected range 
of wind-induced fluctuations in wholesale prices. We focus on wind-induced variation to reflect that 
our estimation technique only captures the response to price changes that can be explained by wind 
energy. As an example, we consider the 5–95th percentile of wind energy generation, which 
corresponds to a range of 27 GW. Using our (first-stage) estimate of a 0.94 €/MWh decrease in 
wholesale electricity prices per 1 GW increase in wind energy generation, 27 GW of wind variation 
corresponds to a 26 €/MWh variation in wholesale prices. Using the demand response estimates from 
our linear model specification, this means that the absolute demand response to wind-induced 
changes in wholesale prices is about 2 GW. This is 2.6% of peak demand and is quite high, given the 
widespread assumption that electricity demand is inelastic in the very short term. 

Regulatory framework. When interpreting our estimates, two more points are worth keeping in mind. 
First, only a fraction of customers in Germany are currently exposed to wholesale prices. The 
percentage change in demand per €/MWh of the exposed consumers must be higher than our 
estimates, given that the responsiveness of those with flat retail tariffs is zero. Second, our estimates 
are conditional on the current regulatory situation in Germany. Industrial customers receive a discount 
on grid fees if they consume a constant amount of electricity from the grid, which likely dampens their 
response to wholesale prices (Richstein and Hosseinioun, 2020). If more customers were exposed to 
wholesale prices and regulatory barriers to flexibility were reduced, the price responsiveness of the 
aggregate demand would likely increase. 

a b 
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Dimensionless elasticity parameter. To make our results comparable to previous literature, we derive 
a dimensionless elasticity parameter. Recall that directly estimating this parameter from a log-log 
specification of the demand–price relationship is impossible due to negative prices. At a specific point 
on the linear demand curve, the dimensionless elasticity can be derived as follows: 

𝜀𝜀 = 𝛽𝛽1 ∙
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
            (5) 

Hence, while the dimensionless elasticity is constant in a log-log specification, it depends on the price 
and demand levels in the linear model. For average price and demand, the derived elasticities for the 
2SLS model and the GAM are −0.051 and −0.045, respectively.  

Literature comparison. This is the parameter most often reported in previous publications. Our 
estimates are consistent with those of Knaut and Paulus (2016) of −0.02 to −0.13, who used a similar 
method. Bönte et al. (2015) found an elasticity that is an order of magnitude larger (−0.43), which is 
likely explained by the fact that they looked at ask bids at the power exchange, not aggregate demand. 
The estimate from Lijesen (2007) is an order of magnitude smaller (−0.0014), which might be the result 
of a bias introduced by a violation of the exclusion restriction of the instrument used. Kulakov and Ziel 
(2019) and Damien et al. (2019) also found smaller or even positive estimates, possibly because the 
simultaneity problem of price and demand was not properly addressed.  

Further research. We focused on the demand response to hourly fluctuations in wholesale prices. 
Further research may expand on this by analyzing the demand response at different time scales. For 
example, the recent increase in fuel prices may be used as an instrument to analyze price elasticity at 
a monthly resolution. In addition, future could look at estimating intertemporal price elasticity of 
demand. We take the first steps towards that using our first differenced approach but a more thorough 
treatment is beyond the scope of this paper and should be explored in future research.    
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Appendix A 

 

Figure A1: 2SLS time dummies in the first stage (year, month, weekday, and hour) 

 

Figure A2: 2SLS time dummies in the second stage (year, month, weekday, and hour) 

 

Figure A3: Estimates of log-linear demand elasticity based on the dataset being split into years, seasons, 
weekdays, weekends, and daytime and nighttime hours compared to the estimate based on the entire dataset 

(“all”). The whiskers indicate the 95% confidence interval.  
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Figure A4: Model diagnostics for the linear model specification in 2SLS for daytime hours. The model overall 
shows a good fit: the residuals exhibit normal distribution, the residuals vs. fitted values plots appear randomly 

scattered and the predicted vs. actual plots are as expected.  

 

Figure A5: Model diagnostics for the linear model specification in 2SLS for nighttime hours. The model fir is 
considerably weaker compared to daytime hours: the residuals are left-skewed, the residuals vs. fitted values 

plots appear show distinct pattern and the QQ plots show large deviances.  

 

Figure A6: Model diagnostics for the nonparametric model specification in 2SGAM for nighttime hours. The 
model overall shows a better fit: the residuals exhibit normal distribution, the residuals vs. fitted values plots 

appear randomly scattered, the QQ plot shows lower deviance and the predicted vs. actual plots are as 
expected.   



29 
 

Appendix B 
Serial correlation. The time series data for electricity price, demand, wind energy and our weather-
related control variables show serial correlation. This serial correlation can arise on account of both 
seasonal patterns in the time series data, and correlation between hourly and daily values of these 
data. Although we control for seasonal dummy variables, the residuals from 2SLS models are also 
serially correlated. Figure A7 displays the serial correlation in residuals from the first and (linear) 
second stage of the 2SLS model without any correction for serial correlation. Presence of serial 
correlation can result in incorrect standard errors. To correct for serial correlation, all confidence 
intervals reported for the 2SLS estimates in Table 3 are based on HAC standard errors that are robust 
to serial correlation and heteroscedasticity. The HAC confidence intervals (95% CI = [−91.3, −67.8]) 
are wider than those from the 2SLS model (95% CI = [−83.6, −75.5]) but are statistically significant. 
We also calculated the confidence intervals using the Cochrane–Orcutt (CORC) estimator, which results 
in a confidence interval that is higher than that obtained from the HAC standard errors (95% CI = 
[−125.1, −98.2]). The estimates reported by us in Table 3 are thus conservative.  

  

Figure A7: ACF plots for the linear first stage specification (left) and the linear second stage specification (right). 
As expected, serial correlation shows a strong 24-hour seasonality. The residuals of the loglinear second stage 

behave similarly to the linear second stage. 

First differences. Another way to address persistence in the linear specification of the 2SLS models is 
the first differences approach, which is presented in Subsection 5.4. Figure A8 confirms that the serial 
correlation in the residuals of the model with first differences is lower than the model with level 
variables. Note that, however, the adjusted R² is also lower: 0.45 instead of 0.76 for the first stage and 
0.69 instead of 0.89 for the linear second stage (0.73 instead of 0.90 for the loglinear second stage). 
The partial R² of wind energy in the first stage is also lower (0.03 instead of 0.46), but the corresponding 
F-statistic has a value of 115, which is still above the thresholds below which wind energy would be 
considered a weak instrument. 
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Figure A8: Autocorrelation of the 2SLS residuals with the differenced first stage specification (left) and the 
differenced linear second stage specification (right). The residuals of the differenced loglinear second stage 

behave similarly to the differenced linear second stage. 

Seasonally differenced estimates. In addition to the first differences approach explained above, we 
differenced each by different lags: 24th lag (corresponding to the number of observations in a day), 
168th lag (corresponding to the number of observations in a week) and 8736th lag (corresponding to 
the number of observations in 52 weeks of a year). We take the differences of all the time series 
variables with the 24th lag, leaving the time-related dummy variables as level variables. Differencing 
with the 24th lag, the 168th lag, and the 8736th lag results in estimates of −76, −71, and −65 
respectively, which are close to the estimate from the main model specification. The residuals from 
the 24th lag difference estimate show high serial correlation up to the fourth lag and the overall pattern 
is similar to that shown for the main specification in Figure A7 except that the cyclical peaks in 
correlation occur around the 20th lag and not the 24th lag.  The residuals from the 168th and the 8736th 
lag difference estimate show a very high degree of correlation even up to the 50th lag.   

These results indicate that, in addition to the seasonal patterns captured by the time dummy variables 
in the main model specification, there is no persistence in the series arising from seasonality 
(correlation in time series data across 24 hours, over the week or the year) that significantly affects 
our estimates. However, the serial correlation arising from persistence between consecutive hours is 
mitigated by taking the first differences. However, since the estimates from the first difference model 
are actually higher than those from our main model specification, our main results continue to remain 
conservative.  
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