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Abstract

Automation affects workers because it affects the task content of their occupations. I
propose a model which takes two important labor market features into account: (i) automation
happens to tasks and (ii) workers with bundled skills work in occupations with bundled tasks.
Equilibrium skill returns vary across occupations, and the impact of automation on skill returns
is occupation-specific. Using my framework, I find that skill returns in the automated task
decline if tasks are gross complements, consistent with much previous literature. Inequality
increases in the occupation that is least intensive in the automated task, consistent with
the development in Sweden 1985 - 2013. More generally, the model allows exploring how
automation of one task affects the task content of occupations, returns to tasks, workers’
earnings and inequality.
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1 Introduction

Is automation good or bad for workers? Automation improves productivity, but it displaces labor
in automated tasks. However, workers are not employed directly in tasks. Rather, workers are
employed in occupations to perform multiple tasks. Furthermore, they bring a bundle of skills
– not just one skill – to their occupation. Although a large literature argues that automation
affects tasks, which changes the task content of occupations, precisely how this affects workers is
yet to be demonstrated. This paper seeks to answer the following question: How does automation
affect workers who have bundled skills and who work in occupations which consist of bundles of
tasks?

Bundling of skills and tasks are salient features of real-world labor markets. Bundling of skills is
due to the fact that workers cannot be in two places at the same time. Bundling of tasks means
that a worker is required to perform multiple tasks in her job. A used-cars salesperson uses her
interpersonal skills to impel a customer to purchase a car. She uses cognitive skills to compute
profit margins, and manual skills when demonstrating the cars to customers. A different occupation
– for instance, a teacher or a plumber – also uses some combination of interpersonal, analytical
and manual skills, but to varying degrees as they perform a different bundle of tasks compared
to the salesperson. Even though skills are useful in multiple occupations, skill bundling means
skill returns may not equalize across these occupations. Rather, occupation-specific skill returns
depend on, among other things, the task content of occupations. Therefore, it is not obvious how
automation of a subset of tasks will affect skill returns and hence wages across occupations. My
goal in this paper is to build a general equilibrium model that can speak to these issues.

I provide a unified framework which embeds two important features of the labor market: (i)
automation happens at the task level and (ii) workers with bundled skills work in occupations
with bundled tasks. Consequently, I connect two important strands of literature: the task-based
models of automation1 and the “tasks-within-occupations” literature, which deals with occupations
as (potentially time varying) bundles of tasks.2

Automation affects workers because it displaces labor from tasks, implying that the task content
of production changes.3 I consider two large task groups: routine and non-routine tasks. Routine
tasks are tasks that can be “accomplished by following explicit rules” (Autor et al. 2003). They can
be manual – such as assembling parts along an assembly line – or cognitive – e.g. computing VAT
payments on sales. Non-routine tasks, on the other hand, are not easily programmable. They may
be analytical, interpersonal or manual – for instance, solving a complicated engineering problem,
teaching students or cleaning a hotel room. Up until recently, almost exclusively routine tasks
were automated.4 However, in recent years, new technology such as voice and face recognition
and machine learning has enabled and continues to enable automation of many non-routine tasks,
ranging from airport passport controls to self-driving vehicles. This development means both the
routine and non-routine task groups experience automation of some portions of their content.

Additionally, both routine and non-routine tasks are found in many occupations, since occupations
1E.g. Autor et al. (2003), Acemoglu & Autor (2011), Goos et al. (2014), Cortes (2016), Acemoglu & Restrepo

(2018b, 2018a, 2019).
2E.g. Spitz-Oener (2006), Gathmann & Schönberg (2010), Autor & Handel (2013), Atalay et al. (2020).
3Acemoglu & Restrepo (2019) models this. In their model, labor is pushed out of tasks and into new ones. The

production side of my model nest theirs, and while I focus on automation only (they also focus on creation of new
tasks), I add to their analysis by considering occupations consisting of bundles of tasks.

4In fact, Autor et al. (2003) define routine tasks as those susceptible to automation.
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consist of packages or bundles of tasks (see e.g. Gathmann & Schönberg 2010 and Autor & Handel
2013).5 In my model, each occupation produces a distinct good or service by combing tasks
at varying intensities. For instance, the in the used-cars sales occupation, interpersonal, routine
cognitive and non-routine manual tasks are combined to produce occupational output – the service
of selling of used cars.

Apart from the empirical observation that occupations consist of bundles of tasks, there is the-
oretical justification for this view of occupations and tasks: coordination costs between workers
who perform interdependent tasks coupled with a need to respond to current information induce
bundling (Dessein & Santos 2006; Becker & Murphy 1992).

Lastly, bundling of skills in workers means workers supply all their skills to one occupation. The
used-cars salesperson has some level of skills in each potential task she might be asked to do. She
provides them as a package to one occupation, since she cannot be a used-cars salesperson and a
teacher and a plumber at the same time. This implies skill returns will, in general, vary across
occupations, since an occupation can attract workers by compensating relatively low payments to
one skill by relatively high payments to another. A worker who maximizes income will choose
occupation based on her relative skill endowments and the relative payments to those skills in dif-
ferent occupations, suggesting a Roy model of comparative advantage.6 The used-cars salesperson
has picked that specific occupation because the relative returns to her skills are better there than
in any other occupation.

Using my framework, preliminary results indicate that skill returns in the automated task decline
if tasks are gross complements, consistent with much previous empirical literature.7 Inequality
increases in the occupation that is least intensive in the automated task, consistent with the de-
velopment in Sweden 1985 - 2013. More generally, the model allows exploring how automation of
one task affects the task content of occupations, returns to tasks, workers’ earnings and inequal-
ity. In contrast to a model with unbundled skills and tasks, my model allows investigating how
automation affects the within-occupation inequality.

I plan on calibrating the model to US data to quantify the contribution of automation induced
changes in task content and skill returns on inequality.

I add to the several strands of literature: Mainly, I connect to the literature that models and
empirically investigates the effects of labor replacing automation in task frameworks, where Autor
et al. (2003), Acemoglu & Autor (2011), Cortes (2016), Acemoglu & Restrepo ( 2018a, 2018b, 2019)
have made substantial advances. While my model is most closely related to that of Acemoglu &
Restrepo (2018a, 2018b), who also consider the effect of automation on the task content, I add to
their insights by providing a framework in which workers with bundled skills sort into occupations
that are bundles of tasks.

A broader literature on routine-biased technological change looks at reasons for and effects of
demand shifts in favor of non-routine workers (Goos et al. 2014). One indication of this demand

5Gathmann & Schönberg (2010) find that workers who move between occupations that are close in the “task
space” lose less than those who move far, indicating that the task vectors of occupations capture something empiri-
cally relevant. Autor & Handel (2013) note that “tasks are a high-dimensional bundle of activities, the elements of
which must be performed jointly to produce output” (p.S64).

6Autor & Handel (2013) also conjecture that this is an appropriate model for the labor market in the presence
of bundled tasks and thus varying skill returns.

7E.g. Cortes (2016) find that “routine” workers’ wage premia decline. Other work in the routine-biased techno-
logical change or job polarization literature find similar results (e.g. Goos et al. 2014). Theoretical literature mainly
consider relative wages, for instance between routine and non-routine workers.
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shift is the growth in returns to non-cognitive skills, as found for Sweden and the US by Edin et al.
(2017) and Deming (2017), respectively. Both papers emphasize that the level and development of
returns differ across occupations – something my model speaks to.

Another related literature deals with the changing task content of occupations (e.g. Spitz-Oener
2006, Gathmann & Schönberg 2010, Deming & Kahn 2018 and Atalay et al. 2020). Relatedly,
matching multidimensional skills to multidimensional tasks is studied by Yamaguchi (2012), Autor
& Handel (2013) and Lindenlaub (2017).

Lastly, I relate to the theory around factor bundling, see e.g. Rosen (1983) and Heckman &
Scheinkman (1987). In a simultaneous but independent project, Edmond & Mongey (2020) model
workers who apply a bundle of skills to a bundle of tasks. I complement their work by modelling
automation.

In the next section (2), I present some empirical observations that motivate my model. Section 3
lays out the model and equilibrium. In section 4, I present the comparative statics, and section 5
contrasts my model to an unbundled version. Section 6 concludes.

2 Automation, occupations and inequality

In this section, I present three observations regarding automation, task content and occupa-
tions.

First observation. Routine tasks have been automated to a larger degree than non-routine
tasks. Occupations differ in their use of routine and non-routine tasks.

Second observation. Skills are differently rewarded in different occupations.

Third observation. Inequality increased more for those occupation that use non-routine tasks
intensively. A significant share of this inequality is within narrowly defined occupations.

Firstly, automation varies across tasks. Figure 1 shows how automation levels varies over time for
routine and non-routine tasks, relative to the baseline 1950 level. While routine tasks have been
heavily automated, the automation level of non-routine tasks have been fairly stable.8

At the same time, we know that occupations differ in the intensity of their use of these tasks.
Figure 2 shows that high-skilled occupations and services are relatively intensively using non-
routine tasks, whilst administrative, manufacturing and elementary occupations, among others,
are more intensive in routine tasks. However, both tasks are performed in all occupation, and
to a non-trivial degree. Even the least routine-intensive occupations consist of a notable portion
routine tasks.

Next, I divide occupations into high-routine and low-routine occupations at the mean non-routine-
to-routine ratio 0.47. Note how I emphasize that there are no “routine only” occupations and no
“non-routine only” occupations. Instead, all occupations perform both tasks, but to varying degree.

8Perhaps a slight regression in automation can be discerned in non-routine tasks, at least from the 1970s until
2000. This is probably due to many new tasks being introduced on the non-routine task interval, as argued by
Acemoglu & Restrepo (2019). Although I do not explicitly model this, it is not at odds with my model that tasks
on the unit interval are exchanged for new tasks.
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Figure 1: Automation levels of routine and non-routine tasks (bR and bNR) relative to 1950
Notes: Estimated from the Atalay et al. (2020) data on occupations and task content in US occupations (details in
appendix section A.2). Tasks are aggregated according to the classifications used by Spitz-Oener (2006).

I compare the returns to two different skills between these occupational groups. Figure 3 shows
that low-routine occupations have higher returns to both cognitive and psychological skills.

Finally, in each occupational group, I look at total variance and the within-occupation variance.9

Occupation, in this context, is a four-digit occupation – for example, Bartenders (5132), Process
Operators (pulp) (8172) and Opticians (2284). Panel 4a demonstrates that low-routine occupations
exhibit larger inequality than high-routine occupations, and the low-routine occupations have seen
variances increase. Panel 4b shows that a significant share of total variance occurs within narrowly
defined occupations, and within-occupation inequality also increased somewhat among low-routine
occupations.

To explore these patterns in a model, we need to account for the fact that automation happens at
the task level, that occupations differ but that all tasks are performed in all occupations. That is,
tasks are bundled. Furthermore, to achieve a within-occupation wage distribution and task returns
that vary across occupations we need to consider bundled labor. In the next section, I will outline
a model that enables discussion of these phenomena.

3 Model setup and equilibrium

Brief overview The economy consists of consumers who are workers, occupational firms and
final good firms. The consumers supply labor to occupational firms, who produce a differentiated
good Ym and pay wages to households. The differentiated good Ym is purchased by final good
firms, who convert it into a final good Y . They convert some of this final good to capital K, which
they rent back to occupational firms. The rest is sold as consumption to households. Both types
of firms are competitive and owned by households.

9The between-variance can be found in Appendix section H.
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Figure 2: Task weights in different occupations, normalized
Notes: Estimated from the Atalay et al. (2020) data on occupations and task content in US occupations, matched
to Swedish occupational classifications (details in appendix section A.2). Task weights are normalized to sum
to one within an occupation. Tasks are aggregated according to the classifications used by Spitz-Oener (2006).
Occupations are at the 1-digit level in SSYK 2012 classifications, and their labels are slightly shortened and simplified.
Occupations are sorted according to their ratio of non-routine to routine tasks. The routine intensive occupations
are thus to the left in the panel. The mean non-routine-to-routine ratio is 0.47. The occupational labels are, from
left to right (SSYK 2012 1-digit code in parentheses): Administration and customer service clerks (4), Mechanical
manufacturing and transport workers, etc. (8), Building and manufacturing workers (7), Elementary occupations (9),
Agricultural, horticultural, forestry and fishery workers (6), Occupations requiring higher education qualifications
or equivalent (3), Service, care and shop sales workers (5), Occupations requiring advanced level of higher education
(2), Managers (1).

3.1 Worker earnings and occupational choice

Each worker (consumer) is endowed with a vector of skills in T different tasks: li = {l1i , l2i , ..., lTi }.10

Here, I consider two task groups (T = 2), and I call them R and NR – think about routine and
non-routine tasks.11 Skills are bundled, which means a worker cannot supply individual skills to
different occupations. Her occupational choice is therefore a discrete choice of an occupation m

from the set M = {m1,m2, ...,mM}. For ease of exposition, I consider two occupations (M = 2).
Each unit of skill (or effective labor) is paid its marginal product in each occupation,12 so worker
i’s earnings are

Wim =
∑
τ

wτml
τ
i (1)

Where wτm is the return to worker skills in task τ employed in occupation m. As posited by Autor
& Handel (2013), and as explained in Heckman & Scheinkman (1987), there is no single skill price

10We can think of these skills in tasks as effective labor in tasks: If there are S skills and T tasks, the mapping
L : RS → RT . lτi thus represents worker i’s effective labor in task τ .

11These can easily be exchanged for other task groupings, including those with more than two tasks.
12See section 3.3 for more on why this is so.
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(b) Returns to psychological skills

Figure 3: Returns to skills in different occupations in Sweden
Notes: The figure plots bins of residualized log of real wages (2014 SEK) on test scores for military draft cognitive
and psychological tests, normalized by cohort scores. Real wages are residualized using a weighted regression of
real wages on gender, whether or not born in Sweden and age. Weights are as recommended by Statistics Sweden.
Routine occupations are those with non-routine-to-routine ratio below 0.47, namely (SSYK 2012 in parentheses)
Administration and customer service clerks (4), Mechanical manufacturing and transport workers, etc. (8), Building
and manufacturing workers (7), Elementary occupations (9), Agricultural, horticultural, forestry and fishery workers
(6). Non-routine occupations are the rest: Occupations requiring higher education qualifications or equivalent (3),
Service, care and shop sales workers (5), Occupations requiring advanced level of higher education (2), Managers
(1).The number of observations is 10,495,545.
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(a) Total variance
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(b) Within occupation

Figure 4: Residual wage inequality in low-routine and high-routine occupations in Sweden
Notes: The figure plots the variance of residualized real wages (SEK) for a large, representative sample of the
Swedish workforce (Wage Structure Statistics, details to come), divided into high- and low-routine occupations.
The variance is scaled by 10−8. High real wages (above 99.5th percentile) are top-coded as being equal to the real
wage at the 99.5th percentile. Real wages are then residualized using a weighted regression of real wages on gender,
whether or not born in Sweden and age. Weights are as recommended by Statistics Sweden.Routine occupations
are those with non-routine-to-routine ratio below 0.47, namely (SSYK 2012 in parentheses) Administration and
customer service clerks (4), Mechanical manufacturing and transport workers, etc. (8), Building and manufacturing
workers (7), Elementary occupations (9), Agricultural, horticultural, forestry and fishery workers (6). Non-routine
occupations are the rest: Occupations requiring higher education qualifications or equivalent (3), Service, care and
shop sales workers (5), Occupations requiring advanced level of higher education (2), Managers (1).The within and
between variances are computed within and between SSYK 2012 four-digit occupations.

across the economy since labor is bundled. Skill returns depend on the task and occupation in
which skills are employed.
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For there to be positive employment in all occupations, no occupation can have skill returns that
strictly dominate those in another occupation – an occupation with higher returns to routine skills
than another occupation must have lower returns to non-routine skills. If it were not so, the
occupation that had lower returns to both R and NR would not get any workers.13 In order to
demonstrate the workers’ choice graphically below, I assume occupation 1 pays relatively more to
non-routine skills (think of a service occupation, like shop attendant) and occupation 2 has high
returns to routine skills (think of a machine operator). Assumption 1 in section 3.6 states this
assumption in terms of model parameters.

Workers will choose the occupation m in which Wim ≥ Wim′ for all m′ 6= m ∈ M. In the case
with two tasks, R and NR, workers can be characterized on a line representing their ratio of
effective labor lRi /lNRi . Given assumption 1, we can characterize the workers’ choice graphically as
follows:

occ 1 occ 2
lRi
lNR
i

The cutoff between occupations 1 and 2 is defined by14

u ≡ wNR1 − wNR2
wR2 − wR1

(2)

since workers on the cutoff are indifferent between occupation 1 and 2, i.e. they have

wR1 l
R
i + wNR1 lNRi = wR2 l

R
i + wNR2 lNRi

In accordance with assumption 1, moving rightward along the line, wRm increases, but wNRm de-
creases. That ensures both numerator and denominator are positive in (2). Workers with relatively
high routine skills will choose an occupation that has relatively higher returns to those skills – a
“high-routine” occupation. We can think of the high-routine occupation 2 as machine operator,
and the “low-routine” occupation 1 as a service occupation, for instance a shop attendant.

The supply of a skill in each occupation is simply the sum of skills of those who choose to work in
each occupation15, namely

Lτm =
∫
i∈m

lτ (i)di

We might call this the “occupational labor supply” of skill τ in occupation m.

3.2 Occupational firms: Production

The differentiated good Ym, which is produced by firms in each occupation (“occupational firms”),
is produced by combining task groups in a constant elasticity of substitution (CES) production
function.

Ym =
[
β1/σ
m X

R σ−1
σ

m + (1− βm)1/σX
NR σ−1

σ
m

] σ
σ−1 (3)

13This is akin to proposition 1 from Autor & Handel (2013). In proposition 2 of the same paper, we read that
there cannot be uniformly positive cross-occupation covariance between task returns for all task pairs, which, for
the case of two occupations, means the same as proposition 1.

14The lower cutoff for occupation 2 is the same as the upper for occupation 1, and if there were more occupations,
these cutoffs would be defined similarly.

15To solve the model given some distribution of labor we need to reformulate this integral, see Appendix section
B.1 for details.
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where σ is the elasticity of substitution between task groups R and NR. The parameter βm
represents the importance of routine tasks in occupation m.

The routine and non-routine task groups consist of a continuum of smaller, intermediate tasks.
For instance, the routine task group may include such tasks as typing, operating machinery in
a predictable manner, counting, recording, etc. The non-routine task group may include such
tasks as cleaning, managing, planning, childminding, etc. Each task group is an aggregate of these
smaller, intermediate tasks.

XR
m =

[ ∫ 1

0
xRm(j)

η−1
η dj

] η
η−1

(4)

and similarly for task group NR. A fraction (bRt , bNRt ) of task groups R and NR respectively can
be performed by machines, and the rest must be performed by labor. For now, let (bRt , bNRt ) be
constant over time, and drop the time subscript. In the intermediate tasks that can be performed
by machines, capital and labor are perfect substitutes. Thus, intermediate task j in task group R
is produced as follows:

xRm(j) =

λkRm(j) + lRm(j) if automatable, i.e. j ∈ [0, bR]

lRm(j) otherwise, i.e. j ∈ (bR, 1]
(5)

and similarly for intermediate tasks in task group NR. λ is a capital augmenting productivity
factor. Intermediate tasks are symmetric, so xτm(j) = xτm ∀j ∈ [0, 1]. If firms automate all
automatable tasks, task group R is produced as follows:

XR
m =

[
bR 1/η(λKR

m)
η−1
η + (1− bR)1/ηL

R η−1
η

m

] η
η−1 (6)

where capital letters LRm,KR
m denote the total amount of labor and capital, respectively, that

occupation m employs in task group R, i.e.

LRm = (1− bR)lRm(j) ∀j ∈ [bR, 1] (7)

KR
m = bRkRm(j) ∀j ∈ [0, bR] (8)

3.3 Occupational firms: Firm problem

There are many firms within each occupation m, meaning that occupational firms are price takers.
Capital is supplied by final good firms at the constant rate r.

Labor is – or skills are – provided to occupations in bundles, as in Heckman & Scheinkman (1987).
Remuneration to labor will therefore depend on the occupation. However, individual firms within
each occupation treat the wage to labor in each task as exogenous.

Now, allow firms to automate up to the technological frontier. Denote a firm’s optimal automation
level as b̃τm and the technological frontier as bτ .

9



Firms are symmetric within an occupation, so we can treat them as one representative firm. Firms
choose capital, labor and the degree of automation, i.e. what share of tasks they want to produce
using capital.

max
Kτ
m,L

τ
m,b̃

τ
m

pmYm − r(KR
m +KNR

m )− wRmLRm − wNRm LNRm

s.t. Ym =
[
β1/σ
m X

R σ−1
σ

m + (1− βm)1/σX
NR σ−1

σ
m

] σ
σ−1

Xτ
m =

[ ∫ b̃τm

0
(λkτm(j))

η−1
η dj +

∫ 1

b̃τm

lτm(j)
η−1
η dj

] η
η−1

b̃τm ≤ bτ

where τ = R,NR and, as before, lτm(j) = Lτm/(1− b̃τm) and kτm(j) = Kτ
m/b̃

τ
m for all j. The amount

of labor and capital in each small task j is the same for all j because of the symmetry of small tasks
in equation 4. The last constraint means that firms are free to automate up until the technological
limit bτ , which is the same for the whole economy.

The first order conditions for capital, labor and b̃τm are given by

r = pm

(
βmYm
XR
m

)1/σ(
b̃Rmλ

η−1XR
m

KR
m

)1/η
(9)

wRm = pm

(
βmYm
XR
m

)1/σ( (1− b̃Rm)XR
m

LRm

)1/η
(10)

µRm = pm

(
βmYm
XR
m

)1/σ(
X
R 1/η
m

η − 1

)[(
λKR

m

b̃Rm

) η−1
η

−
(

LRm
1− b̃Rm

) η−1
η
]
, (11)

and similarly for NR. µτm is the Lagrange multiplier attached to the inequality constraint b̃τm ≤ bτ .
First, consider the case when µτm = 0. This suggests that the chosen level of automation b̃τm may
be below the constraining bτ . Solving for b̃τm gives

b̃τm = λKτ
m

λKτ
m + Lτm

(12)

Firms will automate up until the point where the automated share of tasks equals the share of
effective capital inputs. If instead µτm > 0, then the ratio of capital inputs to total inputs will be
larger than bτ . This means occupational firms want to automate more than technology allows, and
the constraint binds. There will be complete automation of automatable tasks: b̃τm = bτ .

3.4 Consumption

There is a unit interval of consumers i. They derive utility from consumption only, which they
purchase from final good firms at price P̃ using their income Ii. Their problem is thus

max
Ci

Ci

s.t. P̃Ci ≤ Ii

10



so that the optimal consumption level for consumer i is Ci = Ii/P̃ , meaning that total demand for
the consumption good is

C = I

P̃

where C =
∑
i Ci and I =

∑
i Ii. All consumers are workers, and they own all firms, all of which

have zero profits. Their income Ii is therefore Ii =
∑
τ w

τ
m(i)l

τ
i , where m(i) is the occupation

chosen by worker i.

3.5 Final good firms

Final good firms purchase occupational output Ym from occupational firms at price pm. They
convert it into the homogenous final good Y via the following CES aggregate, where ε is the
elasticity of substitution between goods from different occupations:

Y =
[ M∑
m=1

Y
ε−1
ε

m

] ε
ε−1

The final good firms then convert this final good into capital at the fixed rate γ or to the con-
sumption good C at rate 1. They rent the capital back to occupational firms at rate r and sell the
consumption good to consumers at price P̃ . Their firm problem is thus

max
K,C,Ym

rK + P̃C −
∑
m

pmYm (13)

s.t. Y =
[ M∑
m=1

Y
ε−1
ε

m

] ε
ε−1

(14)

Y ≥ C + K

γ
(15)

Defining the optimal price index as P =
[∑

m p
1−ε
m

] 1
1−ε

, the first order conditions imply that

the price for the consumption good P̃ = P .16 The first order conditions define the demand for
occupational goods Ym and the supply of capital K as follows:

pm =
(
Y

Ym

)1/ε
P (16)

r = P

γ
(17)

Let us set the final consumption good as the numeraire in the model, meaning we define P =
1.

16The first order conditions are as follows:

∂L
∂K

= r − µ/γ = 0

∂L
∂C

= P̃ − µ = 0

∂L
∂Ym

= −pm + µ

(
Y

Ym

)1/ε
= 0

where constraint 14 is inserted to 15, and µ represents the Lagrange multiplier attached to that constraint. Now,

defining P =
[∑

m
p1−ε
m

] 1
1−ε

, it is clear that P̃ = P .

11



3.6 Equilibrium

Given some joint distribution of skills in all different tasks, lτi , an equilibrium is an alloca-
tion {Lτm,Kτ

m}m=1,2,τ∈{R,NR} and a set of prices {pm, wτm}m=1,2,τ∈{R,NR}, automation levels
{b̃τm}m=1,2,τ∈{R,NR} and a cutoff {u} such that individuals (workers who are also consumers)
and firms (final good and occupational) optimize and markets clear subject to the production
functions and the bundling constraint. It is characterized by the following equations:

r = pm

(
βmYm
XR
m

)1/σ(
b̃Rmλ

η−1XR
m

KR
m

)1/η
(18)

r = pm

(
(1− βm)Ym

XNR
m

)1/σ(
b̃NRm λη−1XNR

m

KNR
m

)1/η
(19)

wRm = pm

(
βmYm
XR
m

)1/σ( (1− b̃Rm)XR
m

LRm

)1/η
(20)

wNRm = pm

(
(1− βm)Ym

XNR
m

)1/σ( (1− b̃NRm )XNR
m

LNRm

)1/η
(21)

pm =
(
Y

Ym

)1/ε
P (22)

Lτm =
∫
i∈m

lτ (i)di (23)

u = wNR1 − wNR2
wR2 − wR1

(24)

b̃τm =


λKτ

m

λKτ
m+Lτm

if this ratio < bτ

bτ otherwise,
(25)

where I use the equations below to find the quantities {Xτ
m, Ym, Y, C,K}, the price index P (which

I set to one to make the final good C the numeraire), and the price of capital r (which is fixed).
With two task groups and two occupations, we have 19 unknowns and 19 equations.

Xτ
m =

[
b̃τ 1/η
m (λKτ

m)
η−1
η + (1− b̃τm)1/ηL

τ η−1
η

m

] η
η−1 (26)

Ym =
[
β1/σ
m X

R σ−1
σ

m + (1− βm)1/σX
NR σ−1

σ
m

] σ
σ−1 (27)

Y =
[∑

m

Y
ε−1
ε

m

] ε
ε−1

(28)

C =
∑
m

∑
τ

wτmL
τ
m/P (29)

K =
∑
m

∑
τ

Kτ
m (30)

P =
[∑

m

p1−ε
m

] 1
1−ε

(31)

r = P/γ (32)

(33)

I compute the equilibrium using the algorithm described in B.2.

I assume:
Assumption 1. β1 < β2 .
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This means that the machine operators (occupation 2) use routine tasks more intensively, while
shop attendants (occupation 1) use the non-routine tasks more intensively, and will, in equilibrium,
lead to higher returns to routine skills in machine operating, and higher returns to non-routine skills
in shop attending. The exception is when returns to skills equalize across occupations, which may
happen despite assumption 1 on importance. If returns to skills equalize, workers are indifferent
between the two occupations and there is no cutoff defined by equation 2. In the next section, I
investigate the possibility of equalizing skill returns.

3.7 Can marginal productivities of labor equalize across occupations?

One of the motivating observations for this paper is that returns to skills are not, in fact, equal
across occupation. That is, the law of one price for skills does not hold. Therefore, I introduced
skill bundling in my model in order to create a wedge between skill returns in different occupa-
tions.

Because as Heckman & Scheinkman (1987) state, if input factors are bundled there is, in general,
not equalization of factor productivities and thus factor prices across occupations17. However, it
is possible that marginal productivities of labor (or skills) equalize even when skills are bundled.
This happens if the optimal allocation of labor is in the interior of the feasible set. That is, the
constraint posed by bundling does not bind at the optimum.

To understand this, consider the first-order conditions for the social planner problem with unbun-
dled skills.

MPLτm = µτ

MPKτ
m = 1/γ

where µτ is the Lagrange multiplier for the total labor supply constraint Lτ ≥ Lτ1 + Lτ2 . The
decentralized problem is analogous, where the prices of labor and capital are wτ = µτ and r = 1/γ,
respectively. There are eight equations and eight unknowns, so it is, in general, possible to find
an optimal allocation {Lτm,Kτ

m}m=1,2,τ=R,NR. But if labor is bundled, there are more constraints
than unknowns, since the labor in each occupation has to satisfy the bundling constraints:

LA1 =
∫
i∈1∗

lA(i)di

LB1 =
∫
i∈1∗

lB(i)di

where 1∗ is the set of workers placed in (or choosing to be in) occupation 1. The workers who
are in occupation 1, and only those workers, supply both skills to occupation 1. If the unbundled
(unconstrained) equilibrium,18 by chance, satisfies the bundling constraints – i.e. is in the feasible
set – marginal productivities and thereby skill returns can equalize across occupations.

17They use industries rather than occupations.
18Note that in this section, I consider only unbundledskills. If tasks, too, were to unbundle (as in section 5, then

all R skills would be employed in the occupation that only produced R tasks, and vice versa for NR.
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Or, equivalently, if the bundled (constrained) equilibrium described in section 3.6 is in the interior
of the feasible set, then the bundling constraint does not bind, and skill returns can equalize across
occupations.

To explore this possibility, I plot the feasible set of allocations in an Edgeworth box, given some
distribution of labor (the parameters can be found in Table 1). The left and lower axes represent
the amount of R and NR skills allocated to occupation 1, and the right and upper axes represent
the corresponding skill allocation to occupation 2. The lens represents the feasible allocations:
they satisfy the bundling constraint.

First, note that the ∗ marked allocations are the solutions to the unbundled (unconstrained)
problem. They are outside the feasible set, indicating that they cannot be an equilibrium allocation
in the constrained problem.

Second, the plotted o marked allocations are the equilibrium allocations from the bundled (con-
strained) problem. These allocations come from my comparative static exercise in section 4 –
evidently, all of these are on the upper border of the lens, suggesting that the bundling constraint
binds. Consequently, if skills are bundled, and if the parameters are as in table 1, skill returns
vary across occupations.
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Figure 5: The feasible set in an Edgeworth box
Notes: The total endowment of (LR, LNR) in the economy is (0.893, 0.893). The o marked allocations are equi-
librium allocations depicted in section 4. The ∗ marked allocations are equilibrium allocations for the unbundled
problem, as described in section F.3. Parameters are specified as in Table 1 and bR varies from 0.1 and 0.9.

In Appendix section F I provide the computation of the lens (adapted from Edmond & Mongey
2020), as well as an illustrative example of the bundling constraint.
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Routine Non-routine

Skill distribution family lτi ∼ Weibull
Skill distribution scale 1 1
Skill distribution shape 3 3
Importance of routine tasks in occ 1 β1 0.3
Importance of routine tasks in occ 2 β2 0.7
Automation of non-routine tasks bNR 0.1
Rental rate r 0.02
Capital augmenting factor λ 4
Price of final good P 1
Elasticity of substitution (EoS) between occupational
goods Ym in final good production

ε 0.2

EoS between task groups XR
m, X

NR
m in occupational

production
σ 0.4

EoS between smaller tasks in task production η 0.9

Table 1: Parameters
Notes: The βs are set so that occupation 1 uses NR intensively, and occupation 2 uses R intensively. The elasticities
of substitution are set such that the substitutability increases the “deeper down” in the layers you go. Goods are
very complementary (see ε), reflecting that e.g. consumers like variety. Task groups are slightly easier to substitute
(see σ), but not much, reflecting the fact that occupations need both types of tasks. The smaller tasks, within task
groups, though, are easier to substitute (see η), although they are still gross complements. This reflects the fact
that they are less differentiated since they belong to the same task group. Acemoglu & Restrepo (2018a) state that
the firm-level elasticity of substitution between labor and capital is estimated to be between 0.4 - 0.7, so σ being in
the lower span of this seems about right. The two types of labor lRi and lNRi are independently distributed.

4 Comparative statics

Comparative statics are computed by varying bR between 0.2 and 0.9.19 All other parameters are
kept at their initial levels, as given in table 1. First, I investigate the response in skill returns.
Thereafter, I compute the implied earnings and mobility responses to automation. Lastly, I look
at inequality.

Note that firms are free to automate less than technologically feasible. Figure 6 shows that in this
parametrization, both occupations automate fully up until routine tasks are 90 % automatable –
at that point, occupation 1 chooses to automate slightly less (here, b̃R1 = 0.885).

4.1 Skill returns and earnings

In figure 7 I plot the log of the skill returns in each occupation as routine tasks are automated. In
both occupations, returns to non-routine increase and returns to routine decrease. Routine skill
returns fall slightly more in occupation 2 which is intensively using routine tasks. The return to non-
routine skills converge when routine tasks become highly automated. This is because the economy
is approaching unbundling: as routine skills become almost worthless (the returns approach zero),
all workers will choose occupation by comparing non-routine skill returns. Occupations converge in

19When bR = 0.1, automation levels for R and NR are the same. Since distributions of R and NR skills
are identical, the occupations become equivalent when both automation levels equalize. Marginal productivities
equalize and there is no cutoff – workers are indifferent between occupations. For now, I leave this scenario out of
my comparative statics exercise.
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Figure 6: Chosen automation level b̃τm
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.Firms are free to set b̃τm ≤ bτ . This
plots firms’ optimal choice of automation level, given the constraining bτ . bNR = 0.1 throughout, and firms indeed
choose to automate 10% of non-routine tasks throughout. bR goes from 0.1 to 0.9, and firms choose that maximum
level of automation, except for occupation 1 (low-routine occupation, shop attendants) who automate slightly less
at the final stage (b̃R1 = 0.885 when bR = 0.9).

their payment to non-routine skills (that is, occupation 2 converges to occupation 1) in order to keep
employment positive. The economy approaches the law of one price for non-routine skills.
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Figure 7: Logged skill returns wτm
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.
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To explore these skill returns in detail, consider that they are, in equilibrium, determined by the
following product of marginal productivities:

wτm = ∂Y

∂Ym

∂Ym
∂Xτ

m

∂Xτ
m

∂Lτm

Therefore, we can decompose figure 7 into these different components. In figure 8 I present one
figure for each skill return.

One qualitative difference between the returns to routine skills in occupations 1 and 2 is that
∂Y/∂Ym increases in the low-routine occupation 1 (panel 8a), but it decreases in the high-routine
occupation 2 (panel 8c). The low-routine occupational good (a shop attendant’s services) becomes
more productive, and the high-routine occupational good (machine operating services) become
less productive. This is because machine operators now produce a lot more of their good (since
they can employ machines to perform more and more important routine tasks), so that the good’s
marginal productivity declines.
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Figure 8: Decomposition of skill returns (all in logs)
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.

Productivity and displacement effects vary across occupations Let us relate these find-
ings to the lessons we learn from Acemoglu & Restrepo (2019), namely that automation brings
about two opposing forces: a displacement effect and a productivity effect.
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The displacement effect means labor is pushed out of tasks they were previously performing. This
“always reduces the labor share” (Acemoglu & Restrepo 2019:10), meaning that labor gets a
smaller share of the surplus of production. As the routine task group is automated, routine skills
are pressed into a smaller set of routine tasks, meaning their marginal productivity declines – i.e.
∂XR

m/∂L
R
m declines.

The productivity effect, on the other hand, comes from the increasing value added, which leads
firms to demand more labor for the remaining tasks. This affects both tasks: occupational firms
can now produce routine tasks cheaper, since they can use relatively cheap capital instead of
relatively expensive labor in more tasks. The occupational firm therefore wants to produce more
routine tasks, and in total, the output of both occupations will increase. In particular, the high-
routine, machine operating occupation 2’s output increases relative to the shop attendants’ (see
panel 19a). This leads the occupational firms to demand more labor, and, in particular, more
machine operators.

In figure 8, we note that the wNRm in panels 8b and 8d experience no changes in labor productivity at
the task level (∂XNR

m /∂LNRm is constant). No labor is displaced, but they do not experience higher
productivity because of ocucpational firms’ cost saving, either. In panels 8a and 8c, however,
we see that the productivity effect dominates at the early stages of automation – ∂XR

m/∂L
R
m

increases, especially in the routine-intensive occupation 2. This is because early on, there are large
cost savings to be reaped by occupational firms when they replace high-paid R labor by cheaper
machines. At the later stages of automation, however, the displacement effect dominates. Now,
labor is so cheap so that increased automation no longer saves large amounts.

In my framework, these effects vary across occupations depending on their initial intensities of
task usage. This means that workers close to either side of the border between two occupations,
who have very similar skill ratios but work in different occupations, are affected differently by
automation.

Earnings To further illustrate how automation, via occupation specific skill returns, affects
individual workers, let us follow three types of individuals. I simulate 10,000 workers from the
distribution specified in table 1, and I draw three types: The first type has no routine skills (1st
percentile) but high non-routine skills (75th percentile) – call this type (no R, high NR). The
second type is at the median of both skills’ distributions: (medium R, medium NR). The third
type has high routine skills (75th percentile) and no non-routine skills (1st percentile), and is
consequently called (high R, no NR). I let them choose occupation according to the model rules,
and I apply the resulting skill returns on their skill bundles to produce their earnings.

Figure 9 demonstrates that the higher a worker’s non-routine skills are, relative to routine skills,
the more they gain from automation of routine tasks.

Mobility is also induced by automation. In this simulation, the (medium R, medium NR)
worker switches from occupation 2 to 1 as automation goes from 0.2 to 0.3. (low R, high NR)
works in occupation 1 throughout, while (high R, low NR) stays in occupation 2. That is, the
middle worker switches from machine operator to shop attendant when the routine task goes from
20 to 30 percent automation.

18



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Automated share of routine task (bR)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Lo
gg

ed
 e

ar
ni

ng
s

(no R, high NR)
(medium R, medium NR)
(high R, no NR)

Figure 9: Earnings for three types of workers as R is automated

Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.The types [(no R, high NR),
(medium R, medium NR), (high R, no NR)] are drawn from the following percentiles of the R and NR skill sample
distributions: [(1st, 75th), (50th, 50th), (75th, 1st)].

4.2 Inequality

Using my model, I can explore inequality within and between occupations. To do so, I use the
simulated 10,000 workers from section 4.1.

In figure 10, we see that the variances increases mostly in occupation 1 – the low-routine occupation
(think about the shop attendants). This reminds us of the pattern we saw in the data in figure
4.20

Earnings for different percentiles in the two occupations can be found in figure 20.

5 Unbundling skills and tasks

My model nests a simpler model with unbundled skills and unbundled tasks. Firstly, removing
the bundling constraint 23 means workers are able to supply their different skills to different
occupations, since the skills are now unbundled. This implies that skill returns will equalize across
occupations, such that there is no cutoff 2 between occupations. This version of the model is
discussed in section 3.7 and appendix section F.

Secondly, setting β1 = 0 and β2 = 1 implies that each occupation will consist of one task only.
Output from occupation 1 – the service occupation – will be produced by non-routine tasks only,

20However, note that the parametrization, and in particular the distribution of skills, is not estimated from data.
The reader is advised to take this simply to mean that the model is able to account for varying patterns of inequality
both within and between occupations. It is possible to discuss inequality using the model, and a future aim is to
relate the model more clearly to data.
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Figure 10: Variance in earnings within each of the two occupations
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.The number of simulated workers is
10,000.

and the output from occupation 2 – the machine operation occupation – will be produced by
routine tasks only. Tasks are thus unbundled.

In this equilibrium, automation affects skill returns similarly to in the bundled model. However,
while total inequality (as measured by the variance in log earnings) increases, within-occupation
inequality is not affected by automation. Consider that inequality can stem from either composition
or price effects. By composition effects, I mean the impact from changing skill endowments in the
workforce, and by price effects, I mean the impact from changing skill prices. In the unbundled
model, within-occupation inequality is only affected by composition. Since the same price is paid
to the one skill applied in each occupation, any skill price changes will proportionally scale earnings
in each occupation.

In this comparative statics exercise, I keep total composition fixed, and since there is no mobility
(all R skills are applied in occupation 2 and allNR in occupation 1), the within-occupation variance
is unaffected by the skill return changes induced by automation.

Total variance increases with automation, since skill returns diverge. Those with routine skills
become poorer, and those with non-routine skills become richer.

6 Discussion and conclusion

I started from some empirical observations: people have bundles of skills that they supply to one
occupation, which, in turn, consists of a bundle of tasks. Automation occurs at the task level, while
workers get their earnings from and make mobility decision regarding occupations. I incorporated
these two features into a rich but yet standard, nested CES structure, complementing related
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Figure 11: Some comparative statics in the unbundled model
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.

work such as Acemoglu & Restrepo (2019).21 Although a similar model is being independently
and simultaneously developed by Edmond & Mongey (2020), my model differs in that I allow for
labor replacing technologies in tasks within occupations. As a result, I can discuss how occupation
specific task returns and inequality are affected by automation.

I find that skill returns are indeed occupation specific. I also find that they evolve differently across
occupations in response to automation, although in both occupations, routine skill returns decline
and non-routine increase when automation happens.

It is also possible to explore inequality, both within and between occupations. For the chosen
parametrization, the within-occupation variance increases more in the low-routine occupation,
consistent with the pattern observed in Swedish data.

The parametrization is, of course, not innocuous. Different types of distributions of labor work
and give similar intuitions - e.g. uniform distribution, different versions of truncated extreme value
and truncated log-normal.22 The common, necessary feature is that they have to be bounded.23

Another set of parameters that may influence results are the elasticities of substitution. A more
elaborate description of how I view them can be found in appendix section E. In short, σ seems

21More on the connection with Acemoglu & Restrepo (2019) in appendix section G
22Although so far, solutions when using truncated log-normal are imprecise.
23Exploring different assumptions on the distribution of labor is still work in progress. I also want to incorporate

correlation between skills among workers.
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to be important. When σ is low (as in the baseline model above, where σ = 0.4), tasks are very
complementary in each occupation’s production. When σ becomes larger, tasks become better
substitutes. This leads to task returns declining less (or increasing) with automation. This makes
sense: when tasks are more substitutable, the productivity of routine tasks does not diminish as
quickly. Returns to both R and NR benefit from the increased production of task XR

m. I

Remaining and ongoing work includes calibrating the model to US data, and investigating whether
automation is quantitatively important in accounting for observed increases in inequality, both
within and between occupations, as documented by Edmond & Mongey (2020).

I also plan on providing some micro evidence that may support some of the predictions of the model
– for example, that the labor share declines and then recuperates in routine-intensive occupations,
as explained in appendix section D. I will also estimate occupation-specific returns to skills from
Swedish micro data.

Lastly, one extension of the model may be to include a non-employment alternative for workers,
enabling exploring the employment responses to automation.

In all, the proposed model is meant to capture important features in the labor market – the
bundling of skills and tasks – and relate them to automation. As such, it complements a vivid
literature on the impact of automation on workers.
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A Empirical work

A.1 Data

Task importance and automation are estimated from a regression using task content data
from Atalay et al. (2020) (data availability 1950 - 2000), see details in appendix section A.2. Atalay
et al. (2020) collect 7.8 million job vacancy listings from New York Times (1940 - 2000), Wall Street
Journal (1940 - 1998) and Boston Globe (1960 - 1983) and classify them by occupation. They elicit
task information by counting task words using various text analysis methods, and they verify their
measures, partly by comparing them to existing, cross-sectional measures such as the O*NET and
the DOT.

A.2 Estimating the parameters of the task content of occupations

When we think about the task content of occupations, we think about how much of each task is
needed in production, and how much of that task is performed by labour. This naturally lends
itself to a nested CES structure as the one presented in section 3. Substituting for XR

m and XNR
m

(as presented in equation (6) in Ym (equation 3) gives the following equation:

Ym =
[[
γKR 1/η
m (λKR

m)
η−1
η + γLR 1/η

m L
R η−1

η
m

] η
η−1

σ−1
σ +

[
γKNR 1/η
m (λKNR

m )
η−1
η + γLNR 1/η

m L
NR η−1

η
m

] η
η−1

σ−1
σ

] σ
σ−1

where

γKRm = β
η−1
σ−1
m bR (34)

γLRm = β
η−1
σ−1
m (1− bR) (35)

and similarly for task group NR. This suggests that the gammas can be interpreted as the impor-
tance of capital and labor, respectively, in each task, taking into account the task’s importance in
production. In short, it is the share of a day’s production performed by some task, multiplied by
the share of that task that is done by capital or labour.

Our notion of automation is that the bR, bNR change over time. Putting time subscripts on the
bRt , we can rewrite equation 35 in logs

lnγLRmt = η − 1
σ − 1 lnβm + ln(1− bRt ) (36)

If we have a time series of task content for several occupations, we can estimate equation 36 by
running the logged task content on occupation and time dummies.

ln(TCRmt) = αm + δt + umt (37)

Meaning that I can construct
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bRt = 1− exp{δ̂t}

βm = exp

{
α̂m −

η − 1
σ − 1

}

for some values of η, σ. I normalize βm to be in [0, 1].24 See figures 1 and 2 for the resulting bτt
and βm.

B Solving the model: Details

B.1 Labor supply in each occupation

The effective labor is jointly distributed according to some pdf f(lRi , lNRi ) with some finite upper
bound. Given the cutoff described in section 3.1, we can compute the labor supply of effective task
labor to each occupation as the double integrals

LR1 =
∫ ∞

0

∫ ulNRi

0
lRi f(lRi , lNRi )dlRi dlNRi (38)

LNR1 =
∫ ∞

0

∫ ∞
lR
i
/u

lNRi f(lRi , lNRi )dlNRi dlRi (39)

LR2 = LR − LR1 (40)

LNR2 = LNR − LNR1 , (41)

where there are two occupations and Assumption 1 holds.

B.2 Algorithm for solving the decentralized problem

1. I set parameters in accordance with table 1

2. I guess that firms automate fully – i.e. set b̃τm = bτ for both tasks and both occupations.

3. I guess skill returns wτm and feed into a function which does the following:

(a) Given skill returns wτm, constructs cutoff u using equation 2,

(b) Given cutoff u and labor distribution parameters, constructs occupational labor supply
Lτm using equations 38 and 39,

(c) Given skill returns wτm, occupational labor supply Lτm, rental rate r, automation bτ ,
capital augmenting factor λ, finds capital level in each occupation in each task Kτ

m,
using the ratio of first order conditions 9 and 10,

24I run regression 37 for both routine and non-routine task content. Then I construct β̃Rm from the routine task
content and β̃NRm from the non-routine task content. Then I normalize each of these as follows:

βm =
β̃Rm

β̃Rm + β̃NRm

1− βm =
β̃NRm

β̃Rm + β̃NRm
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(d) Given occupational labor Lτm, capital Kτ
m, automation b̃τm, capital augmenting factor

λ, finds task output Xτ
m (equation 26), and then sequentially occupational output Ym

(equation 27), final output Y (equation 28), occupational prices pm (equation 22),

(e) Writes down first order conditions for labor (equation 10).

4. Given the initial guess, fsolve finds the skill returns which sets the first order conditions
equal to zero.

5. Now, I check whether the level of automation is consistent with optimal automation. Consider
equation 12. If the automation level is below or equal to the ratio λKτ

m/(λKτ
m + Lτm), then

firms do indeed automate fully. Intuitively, capital is plentiful, so firms want to automate as
much as they can. If so, then I record the solution as the equilibrium.

6. If, instead, automation is above the ratio λKτ
m/(λKτ

m + Lτm), then firms want to reduce
automation. Intuitively, capital is scarce, so firms would rather use labor. Then, I set
automation levels (for the task and occupation in question) equal to the ratio λKτ

m/(λKτ
m +

Lτm, and solve the problem again from 3.

B.3 Algorithm for solving the social planner problem

1. I set parameters in accordance with table 1

2. I guess a cutoff u, capital levels Kτ
m, optimal automation levels b̃τm. I restrict the guesses to

be non-negative, and the automation levels to be feasible, given the technological constraint
(i.e. b̃τm ≤ bτ ). I feed the guess into a function which does the following:

(a) Given cutoff u and labor distribution parameters, constructs occupational labor supply
Lτm using equations 38 and 39,

(b) Given capital levels Kτ
m, finds aggregate capital K (equation 30),

(c) Given occupational labor Lτm, capital Kτ
m and K, automation b̃τm, capital augmenting

factor λ, finds task output Xτ
m (equation 26), and then sequentially occupational output

Ym (equation 27), final output Y (equation 28), and consumption C (equation 15 holding
with equality).

3. I minimize negative consumption using fmincon.

C Social planner’s problem

The social planner seeks to maximize consumption C subject to the available resources and technol-
ogy in the economy. The social planner also faces the constraint that labor is bundled in workers,
and that tasks are bundled in occupations.

The social planner does not have to ensure that workers want to stay in their occupation. She
could, in theory, construct multiple cutoffs along the lRi /lNRi line, dividing workers into many small
intervals of occupation 1 and 2 workers. However, the social planner wants to put workers where
they are most productive. This leads to a single cutoff between the occupations.
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Therefore, we can represent the social planner’s problem in the following way:

max
{Kτ

m,b̃
τ
m}m=1,2,τ=R,NR,u

C

s.t. C = Y −K/γ

Y =
[ M∑
m=1

Y
ε−1
ε

m

] ε
ε−1

Ym =
[
β1/σ
m X

R σ−1
σ

m + (1− βm)1/σX
NR σ−1

σ
m

] σ
σ−1

Xτ
m =

[
b̃τ 1/η
m (λKτ

m)
η−1
η + (1− b̃τm)1/ηL

τ η−1
η

m

] η
η−1

LR1 =
∫ ∞

0

∫ ulNRi

0
lRi f(lRi , lNRi )dlRi dlNRi

LNR1 =
∫ ∞

0

∫ ∞
lR
i
/u

lNRi f(lRi , lNRi )dlNRi dlRi

LR2 = LR − LR1
LNR2 = LNR − LNR1

b̃τm ≤ bτ

We make assumption 1. The first-order condition for the cutoff u has the following structure:∑
m

∑
τ

∂Y

∂Ym

∂Ym
∂Xτ

m

∂Xτ
m

∂Lτm

∂Lτm
∂u

= 0

The rest of the first-order conditions follow those of the decentralized problem. Since there are
no market imperfections, the social planner and the decentralized solutions are equal. I solve the
social planner’s problem using the algorithm in section B.3.

D Labor share

The labor share is the total wage bill divided by the total value added in the economy:

wL

PY
=
∑
m

∑
τ
∂Y
∂Ym

∂Ym
∂Xτm

∂Xτm
∂Lτm

Lτm

Y
(42)

=
∑
m

∑
τ

∂Y

∂Ym

Ym
Y︸ ︷︷ ︸

weight of occ m
in the economy

∂Ym
∂Xτ

m

Xτ
m

Ym︸ ︷︷ ︸
weight of task
τ in occ m

∂Xτ
m

∂Lτm

Lτm
Xτ
m︸ ︷︷ ︸

labor share in
task τ in occ m

(43)

Where the second equality is obtained by multiplying and dividing the expression by Ym and Xτ
m.

The labor share is thus computed as the labor share in task τ in occupation m, multiplied by
τ ’s weight in occupation m, multiplied by m’s weight in the whole economy. The weights are
the elasticities, and are clearly closely related to the marginal productivities. As before, P is
normalised to one.

Figure 12, plots the labor share within each occupation, and the total labor share in the economy.
The labor share drops in the early stages of automation, after which it stabilizes and slightly
increases at the later stages of automation. Figure 13 shows the labor share decomposed into its
numerator, the wage bill, and denominator, the value added. In the beginning, there are large
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benefits to firms when they are able to use cheap capital rather than (expensive) labor in more
tasks. This means their value added increases more than proportionally to the wage bill, and the
labor share declines. As automation in task R becomes high, returns to R (wRm) become small.
Thus, the cost saving of using capital instead of labor in more tasks is smaller, and value added
does not increase as before.25
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Figure 12: Labor share for both occupations and in total
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.The labor share is computed as wage
bill divided by value added.

25You might ask why firms in occupation 2 keep automating after bR = 0.2, since their value added shrinks here.
But consider that this is a general equilibrium outcome. Firms automate up to the point where b̃τm = λKτm

λKτm+Lτm
so

long as this is lower than or equal to the technological limit bτ . Given that the technological limit increases, and
capital and labor are reshuffled between occupations, it might well be that value added decreases for firms in one
occupation. Profits are still, of course, zero.
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Figure 13: Log wage bill and log value added for both occupations
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.

In occupation 2, which is routine intensive, the labor share falls more than in occupation 1. Figure
14 explores the decompositions of the labor shares (as given in equation 43). In both occupations,
the labor share in routine tasks and the weight of routine tasks in the occupation shrinks, because
of displacement and complementarity between factors, respectively.26

The higher importance of routine tasks in occupation 2 means the impact of automation is larger in
this occupation.27 In occupation 1 – the service occupation – the weight of routine tasks approaches
zero from an initially low level. The labor share therefore stabilizes quickly.

For machine operators – occupation 2 – the fall in the labor share is larger, but it recuperates
somewhat after passing 40% automation. This is because NR tasks are now more important than
R, as evident from figure 14b. As the weight of NR tasks in occupation 2 continues to rise, more
weight is put on the large within-non-routine-task labor share, leading to a slight increase in total
labor share in occupation 2.

26When R is automated, this unambiguously leads to lower labor share in R. This is the displacement effect.
To understand the impact on the weight of R in occupation m, consider that it is given by

∂Ym

∂XR
m

XR
m

Ym
=
(
βmYm

XR
m

)1/σXR
m

Ym

= β
1/σ
m

(
Ym

XR
m

) 1−σ
σ

As R is automated, the quantity produced XR
m increases relative to occupational output Ym (due to complementarity

between R and NR). This reduces the weight of R in occupation m, since σ < 1.
27This might be clearer when considering a Cobb-Douglas set up as in appendix section E.1. In the Cobb-Douglas

case, the labor share in occupation m is simply βm(1− bR) + (1− βm)(1− bNR). Here, it is clear that the weights
of tasks R and NR are fixed at βm and (1 − βm). Automation only changes the occupational labor share via the
within-task labor share. The labor share within task R is (1 − bR), and the reason for the steeper decline in the
occupational labor share in occupation 2 as compared to 1 is simply that the (fixed) weight on R is higher in 2.
That is, β2 > β1.
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(a) Decomposition of the labor share in occupation 1
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(b) Decomposition of the labor share in occupation 2

Figure 14: Decompositions of labor shares in each occupation
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.The weight of task τ is the elasticity
of occupational output Ym w.r.t. the task Xτ

m, i.e. ∂Ym
∂Xτm

Xτm
Ym

. labor share in task τ is the elasticity of task Xτ
m

w.r.t. labor Lτm, i.e. ∂Xτm
∂Lτm

Lτm
Xτm

.

E Elasticities of substitution

Clearly, the degree of complementarity between factors matters. Recall that they are parametrized
to (ε = 0.2, σ = 0.4, η = 0.9) in the baseline solutions presented in section 4. If all three elasticities
of substitution (ε, σ, η) approach unity, production is Cobb-Douglas throughout. This scenario
is depicted below in section E.1, and exhibits uniformly increasing returns to both tasks in both
occupations.
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It seems to be σ that drives the qualitative pattern of the result most. Low values of σ (0.2)
produce similar results as the baseline above (i.e. where σ = 0.4). Higher values of σ means task
returns increase more and more. For σ = 1.1, all task returns increase throughout.

Varying η between 0.2 and 1.1 or varying ε between 0.4 and 0.8, preserves the qualitative pattern
of skill returns.
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(a) Task returns for ε = 0.4
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(b) Task returns for ε = 0.6
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(c) Task returns for ε = 0.8
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(d) Task returns for σ = 0.2
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(e) Task returns for σ = 0.8
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(f) Task returns for σ = 0.95

Figure 15: Task returns for different variations of the elasticities of substitution
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(g) Task returns for σ = 1.1
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(h) Task returns for η = 0.2
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(i) Task returns for η = 0.6
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(j) Task returns for η = 1.1

Figure 15: Task returns for different variations of the elasticities of substitution

Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.Unless otherwise stated in
the caption of each panel, (ε = 0.2, σ = 0.4, η = 0.9). Whenever the scale for bR ends at 0.8, there were no
solutions for the model when bR = 0.9.

E.1 Cobb-Douglas

Here, the model is Cobb-Douglas, meaning ε = σ = η = 1. Clearly, all task returns increase
throughout, which contrasts with the case of non-unity elasticities of substitution in the different
layers of production.
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Figure 16: Logged skill returns wτm in the Cobb-Douglas case
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.The only difference is that all
elasticities of substitution ε, σ, η go to one. The scale for bR end at 0.8 since there were no solutions for the model
when bR = 0.9.

A note on optimal automation under Cobb-Douglas There is always complete automation
under Cobb-Douglas. To see this, consider the firm’s first-order conditions presented in section
3.3. Consider 11:

µτm = ∂Y

∂Ym

∂Ym
∂Xτ

m

∂Xτ
m

∂bτm
(44)

Where µτm is the Lagrange multiplier on the constraint bτm ≤ bτ . Say µτm = 0, so that bτm is free to
be anywhere ∈ [0, bτ ].

None of the first two marginal productivities in the product 44 are zero. In the Cobb-Douglas
case, ∂X

τ
m

∂bτm
= 0 only if Kτ

m = Lτm. Thus

bτm


= 0 if Kτ

m < Lτm

∈ [0, bτ ] if Kτ
m = Lτm

= bτ if Kτ
m > Lτm

(45)

Consider the first possible case: bR1 = 0 but all other bτm = bτ > 0. From the first-order conditions
for capital and labour we know that

bR1 = (1/γ)KR
1

(1/γ)KR
1 + λRLR1

(46)
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Where λR is the Lagrange multiplier attached to the labour supply constraint LR1 + LR2 ≤ LR. In
order for 46 to hold for bR1 = 0, Either KR

1 = 0 or λR →∞. But if KR
1 = 0, its marginal product

approaches infinity. Then, KR
1 will increase from zero. If, on the other hand, λR approaches

infinity, the marginal productivity of LR1 must approach infinity, meaning that LR1 → 0. But the
same goes for LR2 – this, too must approach infinite productivity and therefore must be zero. But
this is impossible: by complementary slackness, if LR1 = 0 and λR 6= 0, then LR2 = LR > 0. So
we have ruled out both possibilities that could result in bR1 = 0 alone. Similar arguments preclude
that any of the bτm = 0 on their own or simultaneously.

Therefore, unless Kτ
m = Lτm exactly, firms (or the social planner) will always automate up until

the technological frontier bτ .

F Can marginal productivities of labor equalize across oc-
cupations? Details

F.1 A simplified example

First, let us look at a simplified example to illustrate the bundling constraint: Here, there is no
capital, and all production functions are Cobb-Douglas.28 Figure 17 depicts four panels, each with
a different amount of discrete workers, for illustration.

The brown dots show the feasible allocations of labor, given the endowments of each worker. It
is clear that the number of allocations increase with number of workers. The set of potential
allocations will converge to a convex set as the number of workers goes to infinity.

The blue curve is the contract curve - where the marginal rates of substitution between R and NR
labor equalizes across occupations. The social planner optimum,which coincides with the market
solution, where marginal productivities of labor are equalized across occupations, is marked with
a blue dot along the contract curve.

If the blue, unbundled, optimal allocation is in the set of feasible allocations, then it can obtain as
an equilibrium in the case with bundled skills. Whether or not it is in the set of feasible allocations
depend on the distribution of labor among workers.

28That is, they are special cases of the CES production functions I have described, where all the elasticities of
substitution ε, σ, η go to one.

Y = Y
1/2

1 Y
1/2

2

Ym = XR βm
m X

NR (1−βm)
m

Xτ
m = Lτm
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(a) Two workers - 4 allocations
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L
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(b) Three workers - 8 allocations
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L
B 2

(c) Four workers - 16 allocations
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L
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LA2

L
B 2

(d) Five workers - 32 allocations

Figure 17: Potential allocations of labor
Notes: The brown dots represent the potential allocations of labor when labor is bundled. The blue line represents
the contract curve in the problem with unbundled labor. Note that the allocations need not be unique - that is,
a single point may have several different combinations of workers, depending on the distribution of labor bundles
among the workers.

F.2 Drawing the lens

Edmond and Mongey (2020) use a clever method to draw up this convex lens.

First, solve the unbundled problem to produce a candidate solution.29 Take the candidate LR cand
1

and think about what the minimum level of LNR1 that goes with your candidate LR1 , as fol-
lows:

Order the interval of workers i so that lR/lNR is increasing over the interval. Given LR cand
1 , the

minimum amount of LNR1 is achieved by starting from the highest lRi /lNRi and going down to some
imin. At this imin, we have achieved LR cand

1 quickly, without adding much LNR1 , since we added
the workers with high R relative to NR labor first.

imax imin
i

29If you solve a Cobb-Douglas problem, you only have to find the labor Lτm since it is independent of capital and
automation levels.
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Analytically (or numerically), we find this imin by solving30

LR cand
1 =

∫ 1

imin

lR(i)di (47)

for imin, and we use this imin to find the minimum LNR1 associated with our LR cand
1 . Call this

B(LR1 ).

B(LR1 ) =
∫ 1

imin(LR1 )
lNR(i)di (48)

Similary, we find the maximum amount of LNR1 associated with LR cand
1 . Call this B̄(LR1 ).

B̄(LR1 ) =
∫ imax(LR1 )

0
lNR(i)di (49)

B(LR1 ) and B̄(LR1 ) are the borders of the lens, as depicted in figure 5. If the candidate solution is
inside the lens, i.e. if LNR cand

1 ∈ [B(LR cand
1 ), B̄(LR cand

1 )], then the undbundled solution is the
optimal one. That is, the bundling constraint does not bind, and solving the bundled problem will
give the same solution as solving the unbundled.

F.3 Unbundled problem

As suggested in figure 5, the equilibria I find in my comparative statics, using parameters from
Table 1, are all constrained by the bundling constraint. The unbundled problem gives equilibrium
allocation outside the feasible set, as evident in figure 5. These allocations are produced by letting
the social planner freely choose (Lτm,Kτ

m, b̃
τ
m) subject to the aggregate labor market constraints

Lτ =
∑
m L

τ
m and the technological constraint b̃τm ≤ bτ .

The comparative statics from that exercise are found in figure 21.

G Relating to Acemoglu & Restrepo (2019)

My model is, in part, equivalent to the model presented in Acemoglu & Restrepo (2019).

Y = Π(I,N)
(

Γ(I,N)1/σ(ALL)
σ−1
σ + (1− Γ(I,N))1/σ(AKK)

σ−1
σ

) σ
σ−1

where Γ is the economy wide equivalent of my parameter 1−bτ , namely the (labor) task content of
production, and the σ used by Acemoglu & Restrepo (2019) is equivalent to my η - the elasticity of
substitution between tasks (and the derived elasticity of substitution between capital and labor).
In my model, both Π and AL are set to one, and AK is represented by λ.

30When we solve this numerically or analytically, we need to reformulate the problem in terms of labor distribu-
tions, rather than integrating over persons i. Then, we also reformulate the imax and imin accordingly.
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The labor share in Acemoglu & Restrepo (2019) is

WL

Y
= 1

1 + 1−Γ(I,N)
Γ(I,N)

(
R/AK

W/AL

)1−σ

and in my model, the labor share of value added within a task within an occupation is the corre-
sponding expression:

wτmL
τ
m

pτmX
τ
m

= 1

1 + bτ

1−bτ

(
r/λ

η−1
η

wτm

)1−η

where pτm is the (shadow) price of task A in occupation m.31 Thus, my model takes the CES
structure presented by Acemoglu & Restrepo (2019), but treats it as one occupation, from which
individuals can move their bundle of skills. The labor share for Acemoglu & Restrepo’s (2019)
whole economy is thus the labor share for one occupation in my economy.

31The labor share of production of task A in occupation m is derived as follows (where it is also clear that this is
an elasticity):

wτmL
τ
m

pτmX
τ
m

=
∂Y
∂Ym

∂Ym
∂Xτm

∂Xτm
∂Lτm

Lτm
∂Y
∂Ym

∂Ym
∂Xτm

Xτ
m

=
∂Xτ

m

∂Lτm

Lτm
Xτ
m

= (1− bτ )1/η
(
Xτ
m

Lτm

) 1−η
η

Substitute for Xτm
Lτm

=
[
bτ1/η

(
Kτm
Lτm

) η−1
η + (1 − bτ )1/η

] η
η−1 , and then for the combined first-order conditions from

the firm problem: Kτm
Lτm

=
(
wτm
r

)η bτ

(1−bτ )λ
η−1.
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H Auxiliary graphs
0

.5
1

1.
5

1985 1990 1995 2000 2005 2010

Low-routine occupations High-routine occupations

Figure 18: Between-occupation variance in real wages in low-routine and high-routine occupations
Notes: The figure plots the variance of residualized real wages (SEK) for a large, representative sample of the
Swedish workforce (Wage Structure Statistics, details to come), divided into high- and low-routine occupations.
The variance is scaled by 10−8. High real wages (above 99.5th percentile) are top-coded as being equal to the real
wage at the 99.5th percentile. Real wages are then residualized using a weighted regression of real wages on gender,
whether or not born in Sweden and age. Weights are as recommended by Statistics Sweden.Routine occupations
are those with non-routine-to-routine ratio below 0.47, namely (SSYK 2012 in parentheses) Administration and
customer service clerks (4), Mechanical manufacturing and transport workers, etc. (8), Building and manufacturing
workers (7), Elementary occupations (9), Agricultural, horticultural, forestry and fishery workers (6). Non-routine
occupations are the rest: Occupations requiring higher education qualifications or equivalent (3), Service, care and
shop sales workers (5), Occupations requiring advanced level of higher education (2), Managers (1).The between
variance is computed between SSYK 2012 four-digit occupations.
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Figure 19: Comparative statics
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Figure 19: More comparative statics from the decentralised problem in section 4
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.
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Figure 20: Earnings at percentiles 10, 50 and 90
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.
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Figure 21: Comparative statics in the undbundled problem in section F.3
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Figure 21: Comparative statics from the unbundled problem in section F.3
Notes: bNR = 0.1 throughout, and the parameters are as specified in Table 1.The bundling constraint is not
imposed.
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