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Abstract

Mixed Nash equilibria are a cornerstone of game theory, but their empirical rel-

evance has always been controversial. We study in the laboratory two games whose

unique NE is in completely mixed strategies; other treatments include the matching

protocol (pairwise random vs population mean-matching), whether time is discrete or

continuous, and whether players can specify mixtures or only pure strategies. Compar-

ing point predictions, NE always does better than maximin and often does no worse

than Logit QRE. NE predicts better than Center (50-50 mixes) under mean-matching,

but otherwise not as well. By contrast, in a dominance solvable game, NE predicts bet-

ter than alternatives in all treatments. Qualitative and quantitative dynamic models

capture regularities across all treatments.
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“There he goes,” said Holmes, as we watched the [special train] carriage swing

and rock over the point. “There are limits, you see, to our friend’s intelligence.

It would have been a coup-de-mâıtre had he deduced what I would deduce and

acted accordingly.”

— Arthur Conan Doyle (1893)

1 Introduction

Generalized matching pennies games capture the essence of strategic situations (e.g., in hunt-

ing, warfare and sports) where the central task for each participant is to outguess opponents.

For example, in the epigraph above, Sherlock Holmes gloats that his own level-3 strategy of

exiting at Canterbury bested his archenemy Moriarty’s level-2 strategy of engaging a special

train, but Holmes recognizes that higher levels are possible. Since level-(k+ 1) beats level-k

for every positive k in generalized matching pennies, these games suffer from infinite regress,

a Gordian knot that blocked progress in game theory for centuries. Von Neumann (1928)

finally cut that knot with the idea of mixed strategy equilibrium.

Although mixed strategy equilibrium remains a cornerstone of game theory, it continues

to provoke theoretical and empirical controversies. We will see in the next section that

theorists have well reasoned doubts about the predictive power of mixed Nash equilibrium,

and have proposed alternatives. Applied economists typically focus on pure strategy Nash

equilibria when they exist, but turn to mixed NE in games (such as generalized matching

pennies) with no pure NE. The empirical evidence supporting those equilibria, however, is

itself mixed at best, as has been recognized for over 50 years.

The present paper is motivated by the following research questions. First, under what

conditions (if any) does mixed Nash equilibrium do a good job of predicting behavior in

generalized matching pennies games? Second, is there a better point prediction — perhaps

maximin, as von Neumann proposed, or quantal response equilibrium? Third, can qualitative

or quantitative dynamic models explain behavior when it departs from point predictions?

Given the importance and ubiquity of strategic interaction with a matching pennies flavor,

the answers to such questions have first order importance for applied social scientists and

biologists as well as for theorists.
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After reviewing some previous literature in Section 2 and some established theory in

Section 3, we describe in Section 4 a fresh laboratory examination of games with unique

equilibria in mixed strategies. Using a new graphical player screen display for 2x2 bimatrix

games, we present two different matching pennies games plus (as a control) a dominance

solvable game. Section 4 concludes with lists of testable hypotheses about competing point

predictions, about treatment effects on mean choices and on dispersion, and about adaptive

learning dynamics.

Section 5 collects results. Some of the point predictions do better than others in some

circumstances, but overall none of them predicts very well. We find that the data are

generally consistent with a qualitative directional learning model, and that a quantitative

regret-based version of directional learning captures some important regularities.

A concluding discussion in Section 6 summarizes our findings and suggests potential

implications for game theory and for applied research. Appendices include supplementary

data analysis, and instructions to subjects.

2 Previous literature

Early game theory emphasized two-player zero-sum bimatrix games, where Nash equilibrium

and maximin mixed strategies coincide, but recognized that these equilibrium mixes differ

in asymmetric matching pennies games (e.g., Solan et al., 2013). Early theoretical work on

fictitious play dynamics (Julia Robinson, 1951; George Brown, 1951) established convergence

in the zero-sum case, but Shapley (1964) found some non-zero-sum games with a unique NE

in mixed strategies to which such dynamics do not converge. Subsequent generations of

theorists have not reached consensus on dynamic stability: Stahl (1988), Crawford (1985)

and others showed that convergence to equilibrium generally fails for their favored dynamics

in asymmetric matching pennies games, while Hofbauer and Hopkins (2005), among others,

prove convergence for different sorts of dynamics.

These theoretical controversies, for point predictions as well as for dynamics, highlight

the need for empirical work. This was recognized long ago, but so far the empirical results

have been mixed at best. Rapoport & Orwant (1962) surveyed early laboratory experiments,
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and found that average play typically was closer to a uniform mix (e.g., 50-50) than to the

NE or maximin mix. O’Neill (1987) found that average empirical mixtures were surprisingly

close to the NE in a particular zero-sum 4x4 game, but his results were challenged by (James)

Brown and Rosenthal (1990). The subsequent controversy (e.g., Walker and Wooders, 2001;

Chiappori et al (2002); Palacios-Huerta, 2003) left many readers with the impression that

professionals closely approximate equilibrium mixed strategies but the usual undergrad lab

subjects cannot. A closer reading suggests that, outside their familiar environments, pro-

fessionals are typically no more successful than the usual subjects (Wooders, 2010; Levitt

et al, 2010), but that populations of the usual subjects can collectively, if not individually,

successfully implement equilibrium mixtures (e.g., Friedman, 1996; Binmore et al, 2001).

We know of only one previous empirical paper comparing maximin to Nash mixtures.

Ochs (1995) considers several treatments (including one that uses a set of 9 explicit mixtures)

but finds that neither Nash equilibrium nor maximin tracks the observed changes in average

play when game parameters change. Goeree, Holt and Palfrey (2003) find that quantal

response equilibrium with one free parameter (for logit precision) also fails to track such

changes, but adding a second parameter (for risk aversion) improves performance.

There is also an empirical literature on adaptive dynamics in matching pennies games.

Mookherjee and Sopher (1994) find that belief learning (responsive to payoffs that would have

been earned by strategies not employed) beats rote learning. Erev and Roth (1998) offer a

three parameter model to rehabilitate rote learning. Camerer and Ho (1999)’s EWA model

includes an extra parameter to hybridize belief learning (a la Friedman and Cheung, 1996)

with rote learning; the authors show that it is able to fit a variety of games, including some

matching pennies. Tang (1999) presents 3x3 bimatrix game data that favors the Selten (1991)

anticipatory dynamics model over the Crawford (1985) model. Stephenson (2019) reports

an experimental test of evolutionary models in coordinated attacker-defender games, which

include own-population effects (Friedman, 1991) not considered in our generalized matching

pennies games. His results are consistent with non-sign-preserving adaptive dynamic models.

In sum, despite important prior work by leading game theorists and experimentalists,

all three motivating research questions remain open.
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Name 8002 3117 IDDS

Bimatrix

 800, 0 0, 200

0, 200 200, 0

  300, 100 100, 300

100, 200 700, 100

  200, 500 0, 600

400, 300 200, 100


NE (0.5, 0.2) (0.33, 0.75) (0, 1)

Maximin (0.2, 0.5) (0.75, 0.67) (0, 1)

Table 1: Payoff bimatrices and equilibrium mixtures. The notation (a, b) refers to row

mixture aTop⊕(1− a)Bottom and column mixture bLeft⊕(1− b)Right.

3 Theory

Point predictions. Table 1 shows the specific bimatrix games that we will study. The first

two, named 8002 and 3117 after their row payoffs, are asymmetric matching pennies games.

The Appendix includes the straightforward computation of the unique Nash equilibrium

(NE) and maximin mixed strategies; these games were chosen in part to create separation

between those mixtures. The third game, named IDDS because it is dominance solvable, is

intended as a control; its unique NE is in pure strategies.

Figure 1 graphically displays the mixed extension of the 8002 game from the row player’s

perspective: at mixed strategy profile (a, b) ∈ [0, 1]2 her payoff is

fR(a, b) = (a, 1− a)

800 0

0 200

 b

1− b

 = 800ab+ 200(1− a)(1− b)

= 1000ab− 200a− 200b+ 200. (1)

These payoffs are displayed as colors in a “heat map;” the thermometer bar on the right

side shows the corresponding numerical values. These range bi-linearly from 0 at the corners

(a, b) = (0, 1), (1, 0) to 200 at (0,0) and to 800 at (1,1). Superimposed on the heatmap

are alternative point predictions of empirical average mixtures: Nash equilibrium (NE),

Maximin (MM), Center, and the arc of Logit quantal response equilibria (QRE) as the

precision parameter ranges from 0 (at Center) to ∞ (at NE).

At least since Nash (1951), game theorists have recognized two distinct interpretations

of equilibrium in 2-player games. In the first interpretation, two highly rational individuals,

fully aware of each other’s circumstances, make choices (possibly mixtures) that they have

no incentive to change. In the second, members of a large row player population match
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Figure 1: Heatmap for 8002 row player. The color at coordinates (x, y) indicates, via scaled

thermometer at right, the row player’s expected payoff at mixed strategy profile 100(a, 1− b). NE,

MM, Center respectively mark the coordinates of Nash equilibrium, maximin and Center profiles.

The arc connecting Center (x, y) = (50, 50) to NE includes all Logit quantal response equilibrium

(QRE) profiles.

anonymously with members of a large column player population, and the distribution of

action profiles remains unchanged as individual players adapt. Binmore et al. (2001), among

others, claim that the appropriate dynamic model of how players adapt their choices, and

thus the stability of an equilibrium profile, may depend on whether the game is played

individualistically or by populations. That claim motivates our mean-matching vs random-

pairwise treatments, explained below.

Sign preserving dynamics. In games where each player has only two pure strategies,

there is a broad class of adaptive dynamics that applies to both the individualistic and the

population interpretations (Friedman, 1991, Weibull, 1997, Friedman and Fung, 1996). The

idea is simply that players (individually or collectively) should increase the weight on the

pure strategy with currently higher payoff.

To formalize, let the time t (strictly) mixed strategy profile be (a(t), b(t)) for a bimatrix

game M = (MR;MC). For example, in the 8002 game, MR =

800 0

0 200

. For play

in continuous time, (ȧ(t), ḃ(t)) denotes time rate of change. The payoff difference between
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Figure 2: Classifying directional changes in 8002 Matching Pennies. The horizontal (column

player’s) axis is reversed to be consistent with the bimatrix form in Table 1.

pure strategies is denoted DR(t) = (1,−1)MR · (b(t), 1 − b(t)) for the row player(s) and

DC(t) = (1,−1)MC · (a(t), 1− a(t)) for the column player(s).

The dynamic process is sign preserving if, at all interior profiles (a(t), b(t)) ∈ (0, 1)2,

we have ȧ(t)DR(t) > 0 unless DR(t) = 0, and ḃ(t)DC(t) > 0 unless DC(t) = 0. That is,

for both row and column players, the weight a(t) or b(t) on the first pure strategy strictly

increases (resp. decreases) whenever it has a strictly higher (resp. lower) payoff than the

alternative strategy. This is a minimal property of learning and evolution, satisfied by all

standard adaptive dynamics including replicator and perturbed best response.

To see the implications, suppose that dynamics are continuous and sign preserving.

Draw the isoclines DR = 0 and DC = 0, i.e., the lines for which, respectively, row players

and column players are indifferent between their pure strategies. These isoclines divide the

state space in (a(t), b(t)) ∈ [0, 1]2 into regions, each with its own implied direction of change.

Figure 2 illustrates for the 8002 game. From equation (1), DR = f(1, b) − f(0, b) =

800b − (200 − 200b) = 1000b − 200, so the isocline DR = 0 is the vertical line b = 0.2.
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Similar calculations show that DC = 200 − 400a so the isocline DC = 0 is the horizontal

line a = 0.5. These isoclines necessarily intersect at the NE point, and they chop the state

space into four rectangles. For example, in the Northeast rectangle a > 0.5, b < 0.2, we have

DR < 0, DC < 0, so sign preserving dynamics imply a trajectory with ȧ < 0, ḃ < 0, that

is, moving clockwise towards the Southeast rectangle a < 0.5, b < 0.2. Similarly, in that

Southeast rectangle, sign preserving dynamics imply ȧ < 0, ḃ > 0, moving clockwise towards

the Southwest rectangle. Indeed, straightforward calculations show that sign preserving

dynamics for the 3117 game as well as the 8002 game imply clockwise moves from each

rectangle to the next.

Of course, human subject behavior is noisy, so sign preserving dynamics predicts only

that clockwise (CW) will, at least in some treatments in matching pennies games, be the

most common direction of change from one observation to the next. Figure 2 depicts the

other three possible directions: counterclockwise (CCW), diagonal (DD) towards the Nash

equilibrium mix, and counterdiagonal (CD) towards the nearest corner of the state space.

Directional learning model. We now construct a more quantitative model of adaptive

dynamics called regret-based directional learning. Let sit ∈ [0, 1] denote player (or player

population) i’s mixture at time (subperiod or tick) t, and let fi(sit, s−it) be the corresponding

payoff. For example, for row players in the 8002 game, fi(sit, s−it) = fR(a(t), b(t)). Regret is

defined as the normalized shortfall from maximal payoff,1 Rit = fi(ŝit,s−it)−fi(sit,s−it)
max0≤x,y≤1 fi(x,y)

≥ 0 for

ŝit ∈ argmaxxfi(x, s−it). The model predicts the change in mixture 4sit = si,t+1 − sit as a

sign-preserving linear function of regret,

4 sit = β1Ritsign(ŝit − sit) + εit. (2)

The sign function is sign(x) = +1 if x > 0; = 0 if x = 0; and = −1 if x < 0. When

argmaxxfi(x, s−it) includes some values larger than sit and other values smaller than sit,

then the convention is that sign{ŝit − sit} = 0.

Alternative specifications we consider in the Appendix include best response learning

4 sit = β1(ŝit − sit) + εit (3)

1 The normalization assumes that maximal payoff is positive, as is the case in the bimatrix games used

in the present paper. In other cases, the normalization could be dropped, or else all payoffs shifted upward.
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and pure directional learning

4 sit = β1sign(ŝit − sit) + εit (4)

4 Laboratory Implementation

4.1 Treatment variables

Our experiment has four treatments. The first is the payoff bimatrix: as noted earlier,

we consider two generalized matching pennies games, denoted 8002 and 3117, as well as a

dominance solvable game denoted IDDS. A second treatment is the action set. In condition

P, subjects use radio buttons to select one of two pure strategies, and the display highlights

the current payoffs to both players. In condition M, subjects use a vertical slider to select a

mixture of the two strategies, as illustrated in Figure 3, and the heatmap display indicates

the resulting payoffs.

The third treatment concerns time. In the standard discrete time (D) condition, sub-

jects’ choices are updated simultaneously at regular time intervals, here 6000 ms. In the

continuous time (C) condition, subjects update choices asynchronously in real time, with an

imperceptible latency of around 50 ms, and data are recorded every 500 ms. In both con-

ditions, payoffs are accumulated over time, as illustrated in the lower right graph in Figure

3 in condition C. In condition D, the blue area representing payoffs consists of adjoining

rectangles of width 6 seconds and height given by the payoff at the chosen profile.

The remaining treatment is the matching protocol. There are always two distinct popu-

lations: row players match only with column players and vice-versa. In the standard random

pairwise (rp) protocol, each subject interacts directly with only one matched opponent, and

subjects are randomly rematched at the beginning of each new period. In the mean match-

ing (mm) protocol, each subject plays against the average choice of all subjects in the other

population or, equivalently for bimatrix games, gets the mean payoff over matches with all

subjects in the other population. In terms of notation introduced earlier, s−it is the time-t

action of a particular randomly assigned opponent in rp, while in mm it is the time-t mean

action of all possible opponents.
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Figure 3: Main features of oTRw screen for MCrp 8002 game. The subjects uses slider at left

to adjust her mixture (horizontal line); vertical line shows matched players’ current mix. Heatmap

color at intersection of these lines codes her current flow payoff; thermometer sets scale. Graph

at lower right shows how her flow payoffs accumulate (blue area); black line is matched players’

(average) flow payoff. Graph in upper right shows evolution of own and matched players’ mixtures.

Small red heatmap in upper left shows matched players’ payoff function.

4.2 Design

The data analyzed below come from 8 sessions detailed in Table 2. The oTRw software for

conducting the experiment is a hybrid of oTree (Chen et al, 2016) and LEEPS lab’s Redwood

suite, illustrated for the most distinctive treatments in Figure 3. Subjects are recruited from

the LEEPS lab subject pool using a local implementation of ORSEE (Greiner, 2015). Each

session lasts for around 90 minutes, with a 20-minute instruction/practice stage, 60-minute

game play stage and 10-minute payment/closing stage. Average payment is about US $17.

4.3 Testable Hypotheses

Our design transforms the original research questions into the following testable hypotheses.
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Date Treatment Block Size # Subjects

4/4/2019 PCrp 6 x 90s periods 8

4/4/2019 MDrp 6 x 90s periods 10

4/5/2019 PDrp 6 x 90s periods 12

4/5/2019 MCrp 6 x 90s periods 8

4/11/2019 PDmm 4 x 150s periods 8

4/11/2019 MCmm 4 x 150s periods 10

4/16/2019 PCmm 4 x 150s periods 8

4/16/2019 MDmm 4 x 150s periods 12

Table 2: Experiment Design. P=pure, M=mixed strategy choice; C=continuous, D=discrete

time; rp=random pairwise, mm=mean matching protocol. The following sequence of bimatrices is

used in the 5 blocks of each session: 8002, 3117, IDDS, 8002, and 3117.

H1: The time-average observed profile will closely approximate: (H1a) Nash equilibrium,

or (H1b) Maximin, or (H1c) Center (.5, .5) , or (H1d) logit quantal response equilibrium for

some positive precision parameter.

H2: The time-average observed profile will be closer to Nash equilibrium: (H2a) under

mean matching than under random pairwise matching protocol; (H2b) with mixed strategies

allowed than with only pure strategies; and (H2c) in continuous time interaction than in

discrete time. For other versions of H2, replace the Nash equilibrium point prediction by an

alternative such as Maximin.

H3: There will be less dispersion around the time average observed profile: (H3a) under

mean matching than under random pairwise matching protocol; (H3b) with mixed strategies

allowed than with only pure strategies; and (H3c) in continuous than in discrete time.

We operationalize dispersion as the geometric mean interquartile range. That is, for dR

= 75th percentile - 25th percentile of Row mixes in the sample, and dC similarly defined

for Column mixes, dispersion is defined as dG = d0.5R d0.5C . Alternative dispersion measures

explored in the Appendix include the harmonic mean, dH = (d−1
R /2 + d−1

C /2)−1 = 2dRdC
dR+dC

and

the arithmetic mean dR+dC
2

. All measures explored give qualitatively similar results.

H4: In terms of qualitative dynamics, the most frequently observed direction of change will
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be clockwise (CW) in all treatments in generalized matching pennies games. In pure strategy

discrete time (PD) treatments, diagonal (DD) will also be frequently observed.

H5: In the quantitative learning model (2), the coefficient estimate β1 will be significantly

positive in all treatments. That estimate will be more positive for mean matching than

for random pairwise matching, and also more positive for pure than for mixed strategy

treatments.

5 Results

To gain perspective before reporting hypothesis tests, we examine a few examples raw data.

Each panel in Figure 4 displays the time path of action profiles for one instance of each

treatment combination in the 8002 bimatrix game. Panel a shows the pure strategy choices

of a pair of players in discrete time, the treatment combination most common in previous

lab studies. In this instance, the players always best respond to the previous period profile,

resulting in a clockwise tour of the four corners of state space. Thus average play is close

to the Center, and dispersion is maximal. In Panel b, time is continuous and the (pure)

strategy profile is recorded twice per second. The short vertical segments of the time path

indicate episodes where both players stayed with their previous strategies, but again the

most common change is a clockwise move to the next corner of the state space. In a handful

of episodes, both players switch strategies in the same half-second interval and so make

a diagonal (DD) move. In panel c, the players can choose explicit mixtures in discrete

time, and there is far less dispersion, but it is unclear whether average play is closer to

the Center or to NE in this instance. The player pair in Panel d appears to usually move

clockwise, sometimes wandering around NE and sometimes wandering away. The next four

panels of Figure 4 come from mean-matching (population game) sessions. They all have

less dispersion than their random-pairwise counterparts. In particular, the mixed strategy

discrete time profile path shown in Panel g is usually in the vicinity of NE.

In testing point predictions, it is appropriate to focus on settled behavior, so subsequent

analysis drops first period in each block, and first 18 seconds (or 3 subperiods) of each period.

For the remaining part of each remaining period in a given matching, we collapse the time

path to its time average profile (mR,mC), and look at the distribution over all instances for
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Figure 4: Sample time paths of action profiles. The horizontal plane is the state space, the

(a, b) square. The vertical axis is time remaining, so the time paths begin at the top and spiral

downward, reaching the bottom plane at the end of the period. Point predictions are time-invariant

and therefore appear as vertical lines.
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a given treatment combination.

Figure 5 displays the mean and standard deviation of these time averages. For example,

the light green box (for the mixed strategy discrete time mean matching data from the

3117 bimatrix) in Panel a easily contains the column NE mix of 0.75 between the mean

minus the standard deviation (about 0.55) and the mean plus the standard deviation (about

0.90), while the row NE mix of 0.33 is also within a standard deviation of the row time

average mean (roughly 0.2 to 0.55). Comparisons across panels a and b and the various

other treatment combinations suggest that maximin is seldom the best predictor of central

tendency, while NE predicts well in some cases. More often Center is best, especially in

treatment combinations that have large boxes, indicating heterogeneity across instances. By

contrast, panel c shows that the IDDS data under all treatments cluster much closer to

the NE=MM point (0,1) than to the Center point (.5, .5). Another version of the Figure

using median and interquartile instead of mean and standard deviation range appears in the

Appendix. It gives qualitatively similar impressions.

5.1 Point Predictions

Table 3 summarizes tests of Hypotheses 1 and Table 4 summarizes tests of Hypotheses 2 and

3; robustness checks using both mean and median profiles can be found in the Appendix.

Excluding the initial periods and seconds as noted earlier, for each instance (matching and

period) τ , we compute the time average profile (aτ , bτ ) and its Euclidean distance

[(aτ − ap)
2 + (bτ − bp)

2)]0.5 from a given point prediction (ap, bp). For example, the first

line of the Table 3 shows that for mean matching instances in the 3117 game (pooling over

Continuous and Discrete time, and over Pure and Mixing action sets), the mean distance in

the action space between the time-average profile and the NE prediction is just 0.157, and

according to the two sample t-test, this is significantly less than 0.224, the mean distance

between those same time average profiles and the Center point. The same line in the table

shows that the mean distance to the maximin prediction, 0.398, is significantly larger.

Thus the first lines of Panels A and B in Table 3 support Hypothesis H1a, that NE is the

best point prediction, for mean-matching treatments in generalized matching pennies games.

Consistent with Hypothesis H1c, Center is best in all other treatments in these games, with

13



Figure 5: Data summary of population average in 3 games colored by treatments. Dots are

mean data. Rectangles are shaped by mean +- standard deviation.
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Distance to NE Distance to Center Distance to MM

Panel A: 3117 games

mm 0.157 <∗∗ 0.224 <∗∗∗ 0.398

rp 0.313 >∗∗∗ 0.124 <∗∗∗ 0.295

Mixed 0.242 >∗∗∗ 0.135 <∗∗∗ 0.339

Pure 0.268 >∗∗∗ 0.188 <∗∗∗ 0.328

Continuous 0.301 >∗∗∗ 0.181 <∗∗∗ 0.330

Discrete 0.208 >∗∗∗ 0.142 <∗∗∗ 0.337

Panel B: 8002 games

mm 0.150 <∗∗∗ 0.255 <∗∗∗ 0.463

rp 0.247 >∗∗∗ 0.115 <∗∗∗ 0.321

Mixed 0.211 >∗ 0.159 <∗∗∗ 0.352

Pure 0.210 > 0.176 <∗∗∗ 0.397

Continuous 0.263 >∗∗∗ 0.156 <∗∗∗ 0.375

Discrete 0.159 < 0.179 <∗∗∗ 0.374

Panel C: IDDS games

mm 0.219 <∗∗∗ 0.521 >∗∗∗ 0.219

rp 0.283 <∗∗∗ 0.479 >∗∗∗ 0.283

Mixed 0.241 <∗∗∗ 0.517 >∗∗∗ 0.241

Pure 0.277 <∗∗∗ 0.472 >∗∗∗ 0.277

Continuous 0.244 <∗∗∗ 0.496 >∗∗∗ 0.244

Discrete 0.274 <∗∗∗ 0.494 >∗∗∗ 0.274

Table 3: Mean distance to predictions of time average profiles. Subscripted asterisks indicate

p-values of .10, .05 and .01 for t tests of equality between adjacent columns.

the possible exception of discrete 8002, where NE is insignificantly better. In Panels A and

B, there is no support for the maximin hypothesis H1b. Panel C confirms that the pure

strategy NE (which coincides here with maximin) is a better point prediction than Center

in all treatments for the dominance solvable game.

Testing Hypothesis H1d is potentially more complicated, since there is a whole arc of

QRE that connect NE to Center, not just a single point prediction. However, as shown in

the Appendix and Figure 1, that arc usually bends away from the mean profiles, and the

closest point on the arc is typically very close to either NE or Center in all treatments. We

therefore conclude that our data do not support Hypothesis H1d.
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For the same empirical time average profiles, Table 4 shows the results of regressing treat-

ment dummies and their interactions on prediction error and on dispersion. Hypothesis H2

asserts that relevant predictions are more accurate for certain treatments. The first column

of Table 4 supports Hypothesis H2a, that NE is more accurate under mean matching than

under random pairwise matching. Conclusions regarding H2b and H2c are more nuanced

due to significant interactions: the direct effect of pure strategies and of mean matching both

reduce NE prediction error while continuous time increases prediction error, but these are

largely offset by the interactions of mean matching with continuous and pure. The upshot

is that NE predicts especially well in mixed mean-matching treatments, confirming the im-

pression from the previous Table. The entries in the second column confirm that maximin

prediction errors are large in all treatments. Many treatments and interactions have opposite

signs in the first and third columns, suggesting that they shift the observed behavior away

from NE and towards Center, or the reverse.

Hypothesis 3 concerns dispersion. The last column of Table 4 reports the geometric mean

of row dispersion (IQR) and column dispersion (IQR) as defined in the previous section. The

second line of the Table supports H3b, that dispersion is less with mixed strategies. The

significantly negative coefficient in line 8 offers limited support for H3a: mean matching

reduces dispersion in pure strategy treatments but perhaps not in general. The Table does

not support H3c; dispersion seems to be about the same for Continuous as for Discrete time

treatments.

5.2 Qualitative Dynamics

The large constant term in the last column of Table 4 suggests that behavior typically does

not settle down to a behavioral equilibrium. Does that mean that players wander aimlessly,

or is there some regularity such as clockwise cycles?

To investigate, recall how Figure 2 classified profile moves ∆st = (∆sRt,∆sCt) =

(sRt+1 − sRt, sCt+1 − sCt) 6= 0 as clockwise (CW), diagonal (DD), counterclockwise (CCW),

or counter diagonal (CD). Figure 6 shows how the classifications change over time in random

pairwise matching sessions. For example, in the top panels we see that in the 15 six-second

Discrete subperiods (14 moves since the cyclical behavior is determined by two consecutive
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Distance to NE Distance to Maximin Distance to Center Dispersion

Treatment DVs:

continuous 0.10±0.026*** -0.04±0.024 0.02±0.018 -0.09±0.079

pure -0.06±0.026** -0.06±0.024** 0.05±0.018*** 0.50±0.079***

mm -0.18±0.028*** 0.02±0.026 0.11±0.020*** 0.03±0.086

8002 -0.06±0.026** -0.01±0.024 0.04±0.018** 0.06±0.079

continuous pure 0.06±0.027** 0.01±0.025 0.04±0.019* -0.07±0.083

continuous mm -0.10±0.028*** 0.06±0.026** 0.02±0.020 -0.00±0.086

continuous 8002 0.01±0.027 0.01±0.025 -0.06±0.019*** 0.06±0.083

pure mm 0.15±0.028*** 0.11±0.026*** -0.04±0.020** -0.19±0.086**

pure 8002 -0.03±0.027 0.05±0.025** -0.04±0.019* -0.00±0.083

mm 8002 0.06±0.028** 0.04±0.026 0.04±0.020** -0.08±0.086

Constant 0.28±0.021*** 0.34±0.019*** 0.08±0.015*** 0.48±0.063***

Observations 128 128 128 128

R-squared 0.630 0.538 0.611 0.493

Table 4: Coefficients (and standard errors) for regressions of distance to predictions and of

dispersion on treatment dummy variables and interactions. Nominal significance levels 1, 5,

and 10% denoted ∗∗∗,∗∗ ,∗.

subperiods), there is a preponderance of CW moves (in red), a fair number of DD moves,

no CD moves (impossible in Pure treatments), rather few CCW moves, and perhaps 10 -

30% Stay (∆st = 0). Indeed, in all treatments CW is more common than other moves,

as predicted by sign preserving dynamics. It is no surprise that Stay is far more common

and DD is relatively rare in Continuous treatments, since the time interval there is just

half a second. CCW is especially rare in Pure Continuous sessions. CD is rare even in

mixed treatments. DD is not uncommon in discrete time treatments, where it may indicate

anticipatory behavior in the sense of Selten (1991). There seem to be no strong trends in

behavior within periods, nor major differences between 8002 and 3117 games. There is,

however, considerable heterogeneity across matched pairs, as can be seen from the by-pair

breakdown in Appendix Figure 10.

Figure 7 presents similar evidence for mean matching sessions, where ∆st represents

population profile moves rather than individual pair moves. Not surprisingly, with mean

matching we see fewer Stay and more CW moves in most treatments. DD becomes more

common while CD and CCW remain rare.
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Figure 6: Relative frequency over time of directional moves in random pairwise sessions.
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Figure 7: Relative frequency over time of directional moves in mean matching sessions.
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Row-Continuous Row-Discrete Col-Continuous Col-Discrete

β1 0.12±0.021*** 1.14±0.099*** 0.26±0.028*** 1.06±0.111***

pure 0.47±0.067*** -0.14±0.116 0.55±0.078*** -0.02±0.131

mm 0.24±0.050*** -0.16±0.218 -0.04±0.051 0.33±0.267

8002 -0.03±0.025 -0.22±0.134 -0.17±0.032*** -0.62±0.120***

IDDS 0.04±0.057 0.07±0.244 -0.24±0.031*** 0.28±0.319

pure mm -0.03±0.153 0.75±0.292** -0.18±0.151 0.35±0.345

pure 8002 0.10±0.090 0.22±0.155 -0.14±0.087 0.17±0.147

pure IDDS -0.21±0.123* 0.98±0.335*** -0.20±0.123 1.12±0.406***

mm 8002 -0.03±0.066 0.00±0.316 0.06±0.061 0.17±0.303

mm IDDS -0.13±0.099 -0.12±0.368 0.06±0.055 -0.35±0.450

pure mm 8002 -0.34±0.195* 0.24±0.390 -0.10±0.164 -0.75±0.384*

pure mm IDDS 0.53±0.314* -0.36±0.472 0.36±0.217* -0.26±0.626

Observations 79,145 4,995 79,145 4,995

R-squared 0.213 0.337 0.251 0.253

Number of Pairs 415 345 415 345

Table 5: Directional Learning Model (5) coefficient estimates (± standard error) for Row and

Col(umn) player actions in Continuous and Discrete time. Least squares with pair and tick fixed

effects. Nominal significance levels 1, 5, and 10% denoted ∗∗∗,∗∗ ,∗ .

The data shown here (and in the Appendix, e.g., Tables 8 and 9) thus support Hypothesis

H4. Overall, CW moves are indeed the most prevalent, representing up to half of total

observations. DD often ranks second, and other directional moves are relatively rare. Move

types have similar distributions in the two generalized matching pennies bimatrices and (if

we ignore Stay) in continuous time and discrete time. The distributions also seem roughly

similar in pure and mixed strategy conditions and in mean matching and random pairwise.

5.3 Fitted Dynamic Model

To test the more quantitative dynamic hypothesis H5, we fit the regret-based learning model

(2) allowing for fixed effects and for treatment-specific response to regret,

4 sit = (β1 +
∑
k

βkDk)Ritsign{ŝit − sit}+ bi + ct + εit. (5)
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Table 5 collects the results. The first row clearly supports H5: the baseline response to

regret β1 is very significantly positive. Remaining rows show that this support is not reversed

by any treatment or interaction considered. H5 also predicts that response is stronger in

pure strategy treatments (since moves there must be to corners, not just incremental), and

the continuous time data clearly support this prediction, but the impact is insignificant in

discrete time. The remaining part of H5 predicts stronger response in mean matching than

in random pairwise matching. This prediction is supported for Row players in continuous

time sessions, but elsewhere the impact is insignificant.

Other entries in the Table mostly seem reasonable upon reflection. Since continuous

time data are sampled twelve times as frequently as discrete time data, it is natural for the

continuous time coefficients to be much smaller in absolute value. Column players adjust

more slowly in 8002, perhaps because of the greater asymmetry in that game than in the

3117 baseline. Adjustment is faster in IDDS in discrete time with pure strategies, perhaps

due to the strategic clarity of that treatment combination. The Appendix reports regressions

for related specifications (3) and (4), with results generally consistent with those of Table 5.

To complement the hypothesis tests, we ran simulations of equation 5 using the co-

efficient estimates reported in Table 5 with error terms set to zero. Figure 8 (cf the 3D

version, Figure 11 in the Appendix) shows that, according to the fitted models, players (or

populations) move in clockwise cycles that very gradually contract towards a limit cycle sur-

rounding the Nash equilibrium. Thus the data suggest that, practically speaking, there will

never be convergence to any point prediction, but rather that (a) cycles will persist for a very

long time, and (b) Nash equilibrium is a crude approximation of the long-run time-average

profile.

6 Discussion

The hypothesis test results suggest answers to the broad research questions concerning gener-

alized matching pennies, i.e., concerning strategic situations with equilibrium only in mixed

strategies. First, we find that mixed Nash equilibrium is a reasonably good predictor of

behavior in population games. That is, when players interact with entire groups of other

players, not just a single player, our results for matching pennies games suggest that the
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Figure 8: Long time horizon simulation of 5 with parameters fitted for continuous time mixed

strategy 8002 games; panel A is for random pairwise matching and B is for mean matching.

players tend to sort themselves out so that overall realized strategies approximate the Nash

equilibrium mixture.

Second, popular alternative point predictions, such as maximin or Quantal Response

Equilibrium (for a fixed precision parameter) did not improve on Nash equilibrium in any

of our treatments. However, the atheoretic prediction Center (all actions equally likely) pre-

dicts time-average behavior better than Nash equilibrium under most treatments involving

pairwise matches, especially in discrete time and with pure strategy choices only.

Another negative result deserves emphasis. None of the point predictions does well in

predicting behavior at a given moment of time in pairwise matchings, due to persistent

dispersion around the time average behavior.

The corresponding positive result is that there is order beneath the dispersion. Although

it is easier to see in some treatments (e.g., mixed strategies or population means in continuous

time) than in others, there is a clear tendency for play to cycle in generalized matching

pennies games. Typically one player (or player population) has a stronger incentive to switch

strategies, and doing so gives the same incentive to the other player population, creating

(with our sign conventions) clockwise cycles. In discrete time treatments we saw some
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evidence that players tried to anticipate and exploit these regularities, but they nevertheless

persist, especially in continuous time and in population games.

Possible future lab experiments involve mixed strategy elicitation and convergence im-

provements. In our experiments, subjects explicitly choose their mixed strategies and are

paid by the expected payoff given the strategy profiles, which removes the need to random-

ize actions dynamically. Conversely, Romero and Rosokha (2018) elicit subjects’ history-

dependent actions in repeated prisoners’ dilemma. That elicitation allows a closer look at

subjects’ repeated game strategies and could be applied to matching pennies games. An-

other direction is to seek new treatments that facilitate convergence to Nash equilibrium or

other point predictions. In pilot sessions, we tried adding indicators showing best and worst

possible payoffs and slowing adjustment speed in continuous time, but found little impact.

We hope that our work encourages game theorists to take adaptive dynamics more

seriously, and to model how they respond to different sorts of treatments such as those con-

sidered in this paper. Even more, we hope that our results encourage applied researchers to

work in a more nuanced fashion with mixed strategy equilibrium. Biologists since Lotka and

Volterra (Lotka, 1925) have recognized that dynamics are crucial to understanding general-

ized matching pennies interactions such as between predators and prey. Social scientists may

benefit from similar thinking. For example, ’hot spot’ dispatch of law enforcement resources

(e.g., Lazzati and Menichini, 2016) is a generalized matching pennies population game, and

our work suggests how adaptive dynamics could supplement equilibrium analysis.
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7 Appendix

Computation of NE, Maximin and QRE for 8002 games

In this section we use 8002 games as an example to show the computation of NE, Maximin

and QRE curve in Table 1 and Figure 1.

To calculate Nash equilibrium, recall from sign preserving dynamics that we calculated

DR(t) and DC(t), which show the payoff difference between pure strategies for row and

column players, respectively. By definition, the unique mixed Nash equilibrium can be

solved by

DR(t) = 1000b− 200 = 0 (6)

DC(t) = 200− 400a = 0 (7)

As a result, (aNE, bNE) = (0.5, 0.2).

To calculate Maximin for row players, recall fR(a, b) from equation (1).

fR(a, b) = 1000ab− 200a− 200b+ 200

The Maximin problem for row players is the following:

max
a
min{fR(a, 1), fR(a, 0)} (8)

For these linear functions of a, the max must occur where fR(a, 1) = fR(a, 0), yielding

aMM = 0.2. Similarly, we can construct the optimization problem for column players and

get bMM = 0.5.

To calculate QRE curve for both players, the logit payoff response function is 8002 games

is as follows.

a =
exp(λfR(1, b))

exp(λfR(1, b)) + exp(λfR(0, b))
(9)

b =
exp(λfC(a, 1))

exp(λfC(a, 1)) + exp(λfC(a, 0))
(10)

When λ → 0, we have (a, b) = (.5, .5). When λ → ∞, we have (a, b) = (aNE, bNE) =

(.5, .2). The arc curve between two extreme cases in shown in Figure 1
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Point prediction details

Figure 9: Data summary of population average in 3 games colored by treatments. Dots are

median data. Rectangles are bounded by 1st and 3rd quantiles.
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Mean of by-period Mean Summary Table

Treatments row median column median To NE p-value To Center p-value To MM Harmonic Disp Geometric Disp

Panel A: 3117 games

mm 0.371 0.632 0.157 0.011 0.224 0.000 0.398 0.297 0.601

rp 0.523 0.519 0.313 0.000 0.124 0.000 0.295 0.331 0.669

p-value 0.000 0.000 0.000 - 0.000 - 0.000 0.451 0.442

Mixed 0.461 0.558 0.242 0.000 0.135 0.000 0.339 0.214 0.443

Pure 0.472 0.565 0.268 0.006 0.188 0.000 0.328 0.422 0.844

p-value 0.705 0.813 0.433 - 0.009 - 0.674 0.000 0.000

Continuous 0.498 0.529 0.301 0.000 0.181 0.000 0.330 0.287 0.583

Discrete 0.434 0.593 0.208 0.001 0.142 0.000 0.337 0.349 0.704

p-value 0.027 0.034 0.005 - 0.052 - 0.763 0.143 0.147

Panel B: 8002 games

mm 0.605 0.289 0.150 0.000 0.255 0.000 0.463 0.306 0.616

rp 0.501 0.440 0.247 0.000 0.115 0.000 0.321 0.378 0.761

p-value 0.000 0.000 0.000 - 0.000 - 0.000 0.086 0.080

Mixed 0.512 0.396 0.211 0.057 0.159 0.000 0.352 0.248 0.507

Pure 0.568 0.371 0.210 0.121 0.176 0.000 0.397 0.453 0.906

p-value 0.014 0.380 0.953 - 0.460 - 0.069 0.000 0.000

Continuous 0.550 0.429 0.263 0.000 0.156 0.000 0.375 0.335 0.674

Discrete 0.531 0.337 0.159 0.259 0.179 0.000 0.374 0.367 0.738

p-value 0.429 0.001 0.000 - 0.314 - 0.988 0.400 0.393

Panel C: IDDS games

mm 0.083 0.804 0.219 0.000 0.521 0.000 0.219 0.055 0.075

rp 0.106 0.752 0.283 0.000 0.479 0.000 0.283 0.057 0.106

p-value 0.409 0.178 0.119 - 0.238 - 0.119 0.974 0.625

Mixed 0.078 0.782 0.241 0.000 0.517 0.000 0.241 0.050 0.126

Pure 0.116 0.761 0.277 0.000 0.472 0.000 0.277 0.071 0.062

p-value 0.187 0.577 0.351 - 0.167 - 0.351 0.775 0.375

Continuous 0.122 0.805 0.244 0.000 0.496 0.000 0.244 0.064 0.112

Discrete 0.073 0.738 0.274 0.000 0.494 0.000 0.274 0.046 0.077

p-value 0.084 0.072 0.429 - 0.950 - 0.429 0.675 0.634

Table 6: Mean of the mean observations of pairs with mean Distance to predictions. Har-

monic and geometric distances are calculated by IQR of both players. p-value in column 5

and 7 shows p-value for t test of by-period mean data for given treatments between distance

to predictions.

26



Median of by-period Mean Summary Table

Treatments row median column median To NE p-value To Center p-value To MM Harmonic Disp Geometric Disp

Panel A: 3117 games

mm 0.376 0.664 0.134 0.007 0.216 0.000 0.391 0.255 0.516

rp 0.516 0.529 0.302 0.000 0.107 0.000 0.314 0.261 0.540

p-value 0.000 0.000 0.000 - 0.000 - 0.000 0.579 0.530

Mixed 0.465 0.544 0.241 0.002 0.114 0.000 0.346 0.219 0.452

Pure 0.500 0.582 0.240 0.009 0.176 0.000 0.317 0.500 1.000

p-value 0.692 0.702 0.524 - 0.007 - 0.653 0.000 0.000

Continuous 0.529 0.544 0.341 0.001 0.198 0.000 0.352 0.219 0.456

Discrete 0.450 0.604 0.212 0.023 0.128 0.000 0.326 0.276 0.558

p-value 0.017 0.092 0.011 - 0.045 - 0.909 0.055 0.066

Panel B: 8002 games

mm 0.584 0.284 0.107 0.000 0.243 0.000 0.443 0.253 0.511

rp 0.500 0.432 0.238 0.000 0.110 0.000 0.320 0.440 0.881

p-value 0.000 0.000 0.000 - 0.000 - 0.000 0.111 0.101

Mixed 0.510 0.411 0.218 0.102 0.162 0.000 0.352 0.243 0.488

Pure 0.542 0.359 0.198 0.207 0.167 0.000 0.371 0.500 1.000

p-value 0.041 0.702 0.732 - 0.577 - 0.161 0.000 0.000

Continuous 0.521 0.431 0.265 0.002 0.138 0.000 0.352 0.276 0.573

Discrete 0.527 0.333 0.154 0.449 0.173 0.000 0.371 0.376 0.753

p-value 0.914 0.003 0.000 - 0.219 - 0.541 0.386 0.356

Panel C: IDDS games

mm 0.055 0.807 0.227 0.001 0.536 0.001 0.227 0.013 0.000

rp 0.084 0.737 0.278 0.000 0.487 0.000 0.278 0.002 0.000

p-value 0.360 0.155 0.116 - 0.224 - 0.116 0.423 0.983

Mixed 0.075 0.747 0.262 0.000 0.516 0.000 0.262 0.029 0.096

Pure 0.078 0.775 0.244 0.004 0.490 0.004 0.244 0.000 0.000

p-value 0.509 0.611 0.402 - 0.270 - 0.402 0.055 0.001

Continuous 0.102 0.799 0.230 0.002 0.500 0.002 0.230 0.007 0.000

Discrete 0.061 0.738 0.272 0.000 0.490 0.000 0.272 0.017 0.000

p-value 0.147 0.147 0.515 - 0.669 - 0.515 0.821 0.916

Table 7: Median of the mean observations of pairs with median Distance to predictions.

Harmonic and geometric distances are calculated by IQR of both players. p-value in col-

umn 5 and 7 shows p-value for Wilcoxon signed-rank test of by-period mean data for given

treatments between distance to predictions.
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Dynamics details

(1) (2) (3) (4) (5)

Type CW Diagonal Stay CCW CD

continuous -2.94*** -4.06*** -2.61*** -2.84***

(0.319) (0.381) (0.322) (0.385)

pure -2.16*** -2.21*** -2.40*** -22.28***

(0.307) (0.348) (0.329) (0.370)

8002 -0.54 -0.60 -0.61 -0.20

(0.462) (0.496) (0.468) (0.534)

continuous pure 1.49*** 1.24** 0.09 2.27***

(0.384) (0.523) (0.425) (0.459)

continuous 8002 0.89* 0.93 0.84 0.76

(0.506) (0.584) (0.511) (0.609)

pure 8002 0.66 0.60 0.50 0.32

(0.497) (0.552) (0.531) (0.593)

continuous pure 8002 -0.39 -0.54 -0.15 -0.57

(0.587) (0.753) (0.646) (0.708)

second half -0.16** -0.06 -0.17** -0.16

(0.066) (0.083) (0.080) (0.103)

block 2 -0.58*** -0.57*** -0.62*** -0.75***

(0.150) (0.218) (0.156) (0.249)

Constant 3.04*** 2.37*** 1.99*** 0.76**

(0.301) (0.347) (0.307) (0.359)

Observations 37,920 37,920 37,920 37,920 37,920

Table 8: Multinomial logistic regressions of move type fractions on dummy variables. Depen-

dent variables are dummy variables of classified types of dynamics given the observations.

”Stay” type is used as the baseline. Independent variables are treatment dummies. Signifi-

cance level: *** 0.01 ** 0.05 * 0.1.
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Figure 10: Types of cyclical behavior of each pair. From top to bottom: PD, PC, MD, MC.

From left to right: 8002 games, 3117 games.
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(1) (2) (3) (4)

Type CW CCW diagonal stay

continuous -0.16*** -0.01 -0.21*** 0.40***

(0.036) (0.018) (0.024) (0.041)

pure -0.07* -0.06*** -0.05* 0.22***

(0.040) (0.020) (0.027) (0.046)

8002 -0.01 -0.01 -0.02 0.02

(0.038) (0.019) (0.025) (0.043)

continuous pure 0.01 -0.07*** 0.03 0.02

(0.056) (0.027) (0.037) (0.063)

continuous 8002 0.06 0.02 0.03 -0.10*

(0.051) (0.025) (0.034) (0.058)

pure 8002 0.04 -0.00 0.01 -0.03

(0.057) (0.028) (0.038) (0.065)

continuous pure 8002 0.03 0.01 -0.01 -0.03

(0.079) (0.039) (0.052) (0.090)

Constant 0.49*** 0.17*** 0.26*** 0.04

(0.027) (0.013) (0.018) (0.030)

Observations 380 380 380 380

R-squared 0.125 0.234 0.359 0.475

Table 9: Regression of move type fractions at pair level. Dependent variables and num-

bers between 0 and 1 and show fraction of time pairs play each type of classified cycles.

Independent variables are treatment dummies. Significance level: *** 0.01 ** 0.05 * 0.1.
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Directional learning details

BR learning

(1) (2) (3) (4)

Row Row Col Col

Dependent: 4sit = si,t+1 − sit

β1 0.05*** 0.45*** 0.05*** 0.40***

(0.007) (0.042) (0.006) (0.036)

pure 0.36*** 0.15*** 0.39*** 0.18***

(0.043) (0.053) (0.040) (0.050)

mm -0.01* -0.21*** -0.02*** -0.15***

(0.009) (0.060) (0.008) (0.055)

8002 -0.01 -0.01 -0.01 -0.04

(0.009) (0.061) (0.008) (0.046)

IDDS 0.03 0.15 -0.04*** -0.03

(0.027) (0.119) (0.008) (0.100)

pure mm -0.14** 0.35*** -0.27*** 0.11

(0.056) (0.097) (0.050) (0.080)

pure 8002 0.07 0.09 0.06 0.05

(0.059) (0.077) (0.053) (0.075)

pure IDDS -0.23*** 0.27 -0.32*** 0.11

(0.067) (0.166) (0.046) (0.136)

mm 8002 0.01 -0.06 0.00 0.08

(0.011) (0.089) (0.011) (0.075)

mm IDDS 0.07 0.08 0.03*** 0.10

(0.043) (0.160) (0.010) (0.122)

pure mm 8002 -0.16** -0.09 -0.03 -0.08

(0.072) (0.127) (0.067) (0.123)

pure mm IDDS 0.39*** -0.15 0.35*** 0.07

(0.148) (0.209) (0.066) (0.187)

Observations 79,145 4,995 79,145 4,995

R-squared 0.263 0.371 0.262 0.274

Number of Pairs 415 345 415 345

Table 10: BR learning regression table. Column (1)(3) use continuous time data and column

(2)(4) use discrete time data. Significance level: *** 0.01 ** 0.05 * 0.1.
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Pure directional learning

(1) (2) (3) (4)

Row Row Col Col

Dependent: 4sit = si,t+1 − sit

β1 0.03*** 0.20*** 0.03*** 0.16***

(0.004) (0.025) (0.004) (0.026)

pure 0.39*** 0.40*** 0.42*** 0.43***

(0.042) (0.041) (0.040) (0.044)

mm -0.01 -0.10*** -0.01*** -0.05

(0.005) (0.034) (0.005) (0.038)

8002 -0.01 0.03 -0.00 -0.00

(0.005) (0.043) (0.005) (0.033)

IDDS -0.00 -0.01 -0.03*** -0.13*

(0.007) (0.059) (0.005) (0.077)

pure mm -0.15*** 0.23*** -0.28*** 0.00

(0.055) (0.083) (0.050) (0.069)

pure 8002 0.07 0.05 0.06 0.01

(0.058) (0.063) (0.052) (0.068)

pure IDDS -0.20*** 0.43*** -0.33*** 0.21*

(0.062) (0.129) (0.045) (0.120)

mm 8002 0.00 -0.09* 0.00 0.02

(0.006) (0.053) (0.006) (0.047)

mm IDDS -0.01 0.03 0.02*** 0.14

(0.008) (0.071) (0.006) (0.099)

pure mm 8002 -0.16** -0.07 -0.03 -0.03

(0.071) (0.105) (0.067) (0.109)

pure mm IDDS 0.47*** -0.10 0.36*** 0.04

(0.142) (0.152) (0.065) (0.173)

Observations 79,145 4,995 79,145 4,995

R-squared 0.263 0.339 0.262 0.240

Number of Pairs 415 345 415 345

Table 11: Pure directional learning regression table. Column (1)(3) use continuous time

data and column (2)(4) use discrete time data. Significance level: *** 0.01 ** 0.05 * 0.1.
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Directional learning with 5 lagged regret terms

(1) (2) (3) (4)

Row Row Col Col

Dependent: 4sit = si,t+1 − sit

β1 1.16*** 0.62*** 0.78*** 0.50***

(0.046) (0.032) (0.048) (0.029)

β1 L1 0.08* 0.01 -0.04 -0.02

(0.042) (0.022) (0.036) (0.020)

β1 L2 0.08* -0.18*** 0.07* -0.12***

(0.046) (0.026) (0.043) (0.017)

β1 L3 0.17*** -0.08*** 0.10** -0.01

(0.046) (0.027) (0.042) (0.020)

β1 L4 0.13*** 0.01 -0.01 -0.01

(0.043) (0.016) (0.041) (0.015)

β1 L5 0.24*** -0.06*** 0.09** -0.04***

(0.044) (0.019) (0.036) (0.013)

Observations 3,270 77,070 3,270 77,070

R-squared 0.284 0.220 0.187 0.231

Number of Pairs 345 415 345 415

Table 12: Directional learning regression table with lagged terms. Column (1)(2) are for

row players learning and column (3)(4) are for column players learning. Column (1)(3) use

continuous time data and column (2)(4) use discrete time data. Significance level: *** 0.01

** 0.05 * 0.1.
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Directional learning with 1 lagged regret term

(1) (2) (3) (4)

Row Row Col Col

Dependent: 4sit = si,t+1 − sit

β1 1.12*** 0.61*** 0.74*** 0.51***

(0.038) (0.032) (0.037) (0.030)

β1 L1 0.01 -0.12*** -0.08*** -0.11***

(0.033) (0.023) (0.025) (0.024)

Observations 4,650 78,730 4,650 78,730

R-squared 0.308 0.190 0.199 0.218

Number of Pairs 345 415 345 415

Table 13: Directional learning regression table with lagged terms. Column (1)(2) are for

row players learning and column (3)(4) are for column players learning. Column (1)(3) use

continuous time data and column (2)(4) use discrete time data. Significance level: *** 0.01

** 0.05 * 0.1.

Figure 11: Simulation result in 8002 games mixed strategy treatments. Simulation under

random pairwise matching is on the left and simulation under mean matching is on the right.

34



Directional learning with discrete regret

(1) (2) (3) (4)

Row Row Col Col

Dependent: 4sit = si,t+1 − sit

β1 0.02*** 0.19*** 0.03*** 0.14***

(0.004) (0.020) (0.004) (0.022)

pure 0.15*** 0.10*** 0.19*** 0.15***

(0.019) (0.027) (0.020) (0.028)

mm -0.00 -0.09*** -0.01*** -0.02

(0.004) (0.030) (0.004) (0.034)

8002 -0.01 0.00 -0.01** -0.03

(0.004) (0.031) (0.005) (0.025)

IDDS 0.00 0.02 -0.03*** 0.01

(0.007) (0.052) (0.004) (0.062)

pure mm 0.05 0.26*** -0.11*** 0.08

(0.035) (0.063) (0.029) (0.051)

pure 8002 0.05** 0.03 -0.04* -0.06*

(0.027) (0.039) (0.023) (0.034)

pure IDDS -0.07** 0.20*** -0.13*** 0.11

(0.029) (0.078) (0.025) (0.076)

mm 8002 0.00 -0.06 0.01 0.04

(0.006) (0.043) (0.006) (0.040)

mm IDDS -0.02** 0.01 0.02*** -0.01

(0.008) (0.064) (0.005) (0.087)

pure mm 8002 -0.15*** -0.00 0.02 -0.08

(0.043) (0.075) (0.034) (0.063)

pure mm IDDS 0.12* -0.15 0.14*** -0.03

(0.074) (0.102) (0.040) (0.114)

Observations 79,145 4,995 79,145 4,995

R-squared 0.231 0.337 0.259 0.247

Number of session round pair id 415 345 415 345

Table 14: Pure directional learning regression table. Column (1)(2) are for row players

learning and column (3)(4) are for column players learning. Column (1)(3) use continuous

time data and column (2)(4) use discrete time data. Significance level: *** 0.01 ** 0.05 *
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