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Abstract

This paper proposes a piecewise-linear Kalman filter (PKF) to estimate DSGE models with
occasionally binding constraints. This method expands the set of models suitable for nonlin-
ear estimation. It straightforwardly handles missing data, non-singularity (more shocks than
observed time series), and large-scale models. We provide several applications to highlight its
efficiency and robustness compared to existing methods. Our toolkit integrates the PKF into
Dynare, the most popular software in DSGE modeling.

Keywords: DSGE, occasionally binding constraints, nonlinear estimation, Piecewise Kalman Filter

JEL classification: C11, C32, C51

?The opinions and views expressed in this paper are those of the authors only and should not be
considered as official positions of the European Commission.
??Corresponding author: Marco Ratto, European Commission, Joint Research Centre, TP058, Via E.

Fermi 2749, 21027 Ispra VA, Italy.
Acknowledgments: We thank Alexander Richter for sharing his code with us.



1. Introduction

Dynamic Stochastic General Equilibrium (DSGE) models with occasionally binding

constraints (OBCs) have become central to economic analysis and policy advice. For

example, the nonlinearities imposed by the zero lower bound (ZLB) on nominal interest

rates, borrowing constraints, or downward nominal wage rigidity can alter standard policy

prescriptions.1 Given current projections on nominal interest rates, the ZLB is likely

to stay a recurring feature of advanced economies.2 At the same time, sound policy

advice requires models with satisfactory empirical performance. While it is now common

practice to estimate linear models using historical data, ignoring OBCs can lead to a

biased inference by missing the stronger internal propagation mechanism.3 Yet, when

taking DSGE models with OBCs to the data, applied researchers often find the existing

estimation methods computationally too expensive or not applicable to their model of

interest.

To deal with this challenge, we propose a general, efficient, and easily implementable

estimation procedure for DSGE models with OBCs. Our approach builds on OccBin

(Guerrieri and Iacoviello, 2015), a version of the perfect-foresight extended path (Fair

and Taylor, 1983).4 This solution method handles OBCs as different regimes in which

the constraints are either slack or binding and represents the model as a time-varying

state-space system. As emphasized in Guerrieri and Iacoviello (2015), the interaction of

the expected regime length and state variables can result in highly nonlinear dynamics.

The piecewise-linear solution can thus capture important economic aspects of OBCs. At

the same time, it can easily handle models with many state variables. The basic idea of our

proposal is to embed this fast iterative algorithm into a diffuse Kalman filter, resulting in

a piecewise-linear Kalman filter (PKF). Since likelihood-based model estimations require

solving the model for many parameter draws from a proposal distribution, the PKF

exploits the efficiency of the piecewise-linear solution. It is worth noting that while we

build on the OccBin toolkit, the PKF is a general filter suitable for any piecewise-linear

1See Christiano et al. (2011) for an application to the ZLB. Guerrieri and Iacoviello (2017) discuss
the impact of household borrowing constraints. Burgert et al. (2021) study fiscal policy in a monetary
union under downward nominal wage rigidity.

2See e.g. the OECD (2021) short-term interest rates forecast.
3For example, Gust et al. (2017) find that a nonlinear model with a ZLB produces to significantly

different parameter estimates compared to its linearized counterpart. In particular, the linear model
overstates the importance of exogenous sources of business cycles. See also Hirose and Inoue (2016);
Atkinson et al. (2019).

4Kulish et al. (2017) also apply the extended path but treat the duration of ZLB as an exogenous
process. By contrast, the regime length is endogenous in the OccBin toolkit and its implementation in
the PKF.
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model.5

Compared to the two main existing approaches for estimating models with OBCs,

namely the inversion filter (IF) and the particle filter, the PKF is a general and flexible

alternative.6 The IF is closest to our approach (e.g. Guerrieri and Iacoviello 2017).

This method also builds on the piecewise-linear solution but proceeds differently for

the estimation. It solves for the innovations that minimize the distance between the

data and the model predictions. While the IF is relatively fast, one drawback is its

tight restriction on the innovation structure: the number of shocks needs to be equal to

the number of observables. The direct mapping from shocks to observed variables also

precludes accounting for the uncertainty about data (measurement errors) and initial

state variables.

The second method solves the model fully nonlinearly and evaluates the likelihood

function with a particle filter. Unlike the deterministic OccBin algorithm, the full nonlin-

ear solution captures the role of risk for economic behavior and other model nonlinearities.

However, in this case, filtering becomes highly expensive as it requires a costly model solu-

tion for each parameter draw. Moreover, particle filtering requires sensitive assumptions

about measurement error.7 In practice, these factors currently limit this approach to

small models, which, depending on the application, miss crucial economic transmission

channels.8

Against this backdrop, we highlight two main contributions of the PKF. First, the

PKF is robust and generalizable to a large class of models that feature more shocks than

observables. Such “non-singularity” is a property of many standard models. We mention

here three common examples. One, in models with news shocks or heterogeneous beliefs,

agents typically do not observe innovations to exogenous shock processes. Instead, they

form expectations based on partial information by solving a signal extraction problem.

As a consequence, this class of models features additional shocks and more shocks than

observables.9 Two, richer (policy) models such as Smets and Wouters (2003) often fea-

5For example, Boehl (2021) proposes a promising and very fast piecewise-linear solution algorithm.
6Farmer (2021) provides a fast nonlinear approximation of the likelihood in non-Gaussian state-

space models. Aruoba et al. (2020) exploit the piecewise-linear nature of OBCs for high-order solution
and particle filtering. These methods are particularly suitable for low-dimensional state-spaces but are
difficult to scale to models with more state variables. For Markov-switching models, Maih (2015) provides
efficient perturbation methods.

7See Cuba-Borda et al. (2019).
8Indeed, Atkinson et al. (2019)[p.15] find “far larger gains in accuracy from estimating a richer, less

misspecified piecewise-linear model.”
9Campbell et al. (2019) provide a noteworthy application by estimating the strength of forward

guidance policy in a rich DSGE model with noisy signals. In a comment, Bielecki et al. (2019) raise
concerns about potentially biased results due to the linearized model approximation. They conclude
that “estimating a richly specified DSGE model of a size similar to that used in policy institutions, in
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ture more shocks than observables, too.10 For example, in European Commission (2020)

we extend a large-scale model (Albonico et al., 2019) to explore novel additional shocks

to capture the effects of social distancing and virus containment measures on savings be-

havior during the COVID-19 pandemic.11 Three, important model misspecification tests

necessitate expanding the structure of exogenous innovations. For example, the agnos-

tic structural disturbance approach (Den Haan and Drechsel, 2020) requires additional

model shocks while keeping the number of observed variables unchanged.12

The second advantage of the PKF is its practicality in terms of speed and implemen-

tation. In workhorse applications, the PKF is several times faster than the IF and orders

of magnitude faster than the particle filter. Besides the fast linear algebra, the PKF

inherits many attractive features from standard Kalman filtering routines: It handles

missing data and non-stationarity in the same way as standard diffuse Kalman filters.

For example, the PKF makes it easy to use all available data, including nominal inter-

est rates during the ZLB period. Similarly, the PKF allows estimating the initial states

- an essential advantage in small samples or models with high endogenous persistence.

Furthermore, we provide a freely available toolbox (to be released), which integrates the

PKF seamlessly into Dynare (Adjemian et al., 2011), the most popular DSGE modeling

software. Adapting the PKF to different models requires only a few additional lines to a

Dynare code as we show in Section 6.

The paper proceeds as follows. Section 2 discusses the details of the filter. The first

(prediction) step is a standard estimation of the current state variables. In the second

(update) step, the algorithm updates state and covariance matrices and iterates one-step

backward to estimate the shocks. Using the guess and verify strategy of OccBin, this

step is tailored to models with OBCs. Given the initial condition, we use the shocks

to update matrices of the piecewise-linear system satisfying the OBC. This fixed-point

algorithm continues for each time t until convergence. The algorithm is very fast in

practice and handles general shock structures. Filter initialization, likelihood evaluation,

and parameter estimation with OBCs become straightforward.

Based on these theoretical considerations, two workhorse model applications show that

the PKF provides fast and reliable parameter estimates. Section 3 benchmarks the PKF

using a small consumption-savings model as in Cuba-Borda et al. (2019) (henceforth

CGIZ). To capture essential features of a larger class of models, the model features a

a way that would explicitly account for the nonlinearity created by the [Z]LB, does not seem feasible at
the moment” (p.136).

10The model in Smets and Wouters (2003) features ten structural shock to explain seven observable
variables.

11See European Commission (2020)[p.61-65] and our discussion in Section 5.
12See also the shock selection algorithm proposed by Ferroni et al. (2019).
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nonlinearity stemming from borrowing constraints. For artificial data sets generated

with the piecewise-linear model, both the PKF and IF recover the true parameters. By

contrast, using the fully nonlinear model as a data-generating process (DGP) implies an

approximation error when using the PKF and IF. However, the advantages of the PKF

are significant speed gains, a more predictable computing time and the possibility include

more shocks than observables.

Section 4 turns to a workhorse New-Keynesian model with an endogenous ZLB con-

straint. Following Atkinson et al. (2019) (henceforth ART), we use a large number of

datasets generated by fully nonlinear simulations of this model. The datasets contain

either no ZLB event or a long-lasting ZLB of 30 quarters. The latter is comparable to the

recent experience of advanced economies. For each dataset, we estimate multiple param-

eters and shocks using the PKF, the IF, and a standard linear Kalman filter (Lin-KF).

In particular, for datasets with long-lasting ZLB events, the PKF improves upon the

Lin-KF and the IF. The estimation accuracy, measured by the distance of the parameter

estimates from their true value, also outperforms all methods and model specifications

reported in ART, including small-scale (nested) model versions solved fully nonlinearly

and estimated with the particle filter. Only the PKF includes the true value in the

(5,95)-percentiles of all parameter estimates. In line with ART, we find that estimating a

larger but less misspecified model with the PKF outweighs the costs of abstracting from

high-order risk in this application.

Section 5 briefly discusses the suitability of the PKF for large models. Section 6

provides a practical guide on how to implement our method in Dynare.

Section 7 concludes by discussing an important caveat of the piecewise-linear solution

built in the PKF. While the approximate model solution features a kink in the deci-

sion rules created by the OBC, it misses other nonlinearities and precautionary motives.

Thus, some applications may require computationally more expensive methods to cap-

ture the full nonlinear effects. However, even in these cases, the PKF provides an easily

implementable benchmark.

2. The Piecewise Kalman Filter

This section describes the PKF. Based on a general piecewise-linear model (Section

2.1), Section 2.2 and Section 2.3 describe the algorithm for filtering and fixed-interval

smoothing. Finally, Section 2.4 discusses likelihood computations with the PKF and the

IF and compares their respective filter initialization and computational efficiency.
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2.1. The piecewise-linear model

The local linear approximation of the policy function of a DSGE model featuring OBC

solved with the piecewise-linear approach can be represented as:

xt = T(xt−1, εt)xt−1 + C(xt−1, εt) + R(xt−1, εt)εt, (1)

where xt is the vector of endogenous variables in deviation from the steady state of the

‘baseline’ regime 13 and εt is the vector of iid shocks, εt ∼ N (0,Q). The reduced form

matrices T, C, and R are state-dependent functions of the lagged states and the current

period shocks. Note that C(xt−1, εt) 6= 0 implies that given the states and the shocks,

the constraint is expected to bind at least some time in the future.

A new shock in t+ 1 can require updating the state matrices. Therefore, the one-step

recursion implies, in general, that:

T(xt, εt+1) 6= T(xt−1, εt)

C(xt, εt+1) 6= C(xt−1, εt)

R(xt, εt+1) 6= R(xt−1, εt).

To ease notation, let us re-define the state matrices as:

Tt|t = T(xt−1, εt)

Ct|t = C(xt−1, εt)

Rt|t = R(xt−1, εt)

and

Tt|t−1 = T(xt−1, 0)

Ct|t−1 = C(xt−1, 0)

Rt|t−1 = R(xt−1, 0).

13For expositional purposes and without loss of generality, we refer here to the baseline as the un-
constrained regime, where the OBCs are slack. This setting is typical for ZLB constraints, as shown
in Section 4. However, in some applications (such as the borrowing constraint model in Section 3), the
constraint binds in the baseline regime. The PKF can flexibly handle either case.
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2.2. State filtering and the likelihood

Assume we want to estimate the deep parameters of the model, given a set of observ-

ables yt linked to xt by the observation equation

yt = Hxt, (2)

where, for simplicity and without loss of generality, we assume no observation error.14

Given the initial state mean and variance x0 and P0, we denote their ‘best’ estimate

at any time t− 1 as

xt−1|t−1,Pt−1|t−1. (3)

Algorithm outline. For each t, we guess and verify the state matrices in four steps. Given

a guess, Steps 1 and 2 follow the prediction and update process of the standard Kalman

Filter (e.g. Koopman and Durbin (2003)). For the Lin-KF, these two steps are sufficient.

By contrast, the model with OBCs requires two additional steps because the time-varying

state matrices, i.e. the OBC’s timing and duration, depend on the shocks in t and states

in t − 1 given t. Incorporating this aspect is the PKF’s main innovation: Using the

shock and state estimates obtained in the third (smoother) step, Step 4 simulates the

piecewise-linear model to find the regime sequence(s) and verify the guessed matrices.

The algorithm then iterates until convergence.

Details. Following this outline, we now provide the details of this algorithm. We initialize

the guess of the updated state matrices as:

T(0)t|t = Tt|t−1

R(0)t|t = Rt|t−1

C(0)t|t = Ct|t−1.

Then, we iterate until convergence. Each iteration j follows the algorithm:

14We initialize the filter with the unconditional mean and variance of the ‘baseline’ regime with diffuse
priors.
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1. Prediction step: Given the guessed matrices T(j − 1)t|t,R(j − 1)t|t, C(j − 1)t|t,

x(j)t|t−1 = T(j − 1)t|t · xt−1|t−1 + C(j − 1)t|t (4)

P(j)t|t−1 = T(j − 1)t|t ·Pt−1|t−1 ·T′(j − 1)t|t + R(j − 1)t|t ·Q ·R′(j − 1)t|t

y(j)t|t−1 = Hx(j)t|t−1

F(j)t = H ·P(j)t|t−1 ·H′

v(j)t = zt − y(j)t|t−1,

where zt are the observations of yt.

2. Update state and covariance matrices given the guess

K(j)t = P(j)t|t−1 ·H′ (5)

x(j)t|t = x(j)t|t−1 + K(j)tF(j)−1
t v(j)t

P(j)t|t = P(j)t|t−1 −K(j)tF(j)−1
t K(j)′t.

3. Compute the estimate of the shocks in t:

ε(j)t|t = Q ·R′(j − 1) ·H′F(j)−1
t v(j)t, (6)

and iterate one step backward (smoother step) to also update the state in t − 1

given t, i.e. for s = t, t− 1

Ls = I−K(j)sF(j)−1
s H (7)

r(j)s = H′F(j)−1
s v(j)s + L′sT

′(j − 1)s|sr(j)s+1

x(j)s|t = x(j)s|s−1 + P(j)s|s−1 · r(j)s

where I denotes the identity matrix. Note that the one-step backward recursion is

initialized by setting rt+1 = 0.

4. To find the regimes, i.e. the sequence of OBCs, implied by the states and shocks,

project the piecewise-linear model given the initial condition x(j)t−1|t and shock

ε(j)t|t for s ∈ (t,∞) and update the matrices T(j)t|t, R(j)t|t, C(j)t|t

(a) if the update differs from the guess, set the guess to T(j)t|t,R(j)t|t, C(j)t|t and

restart from Step 1 with j + 1.
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(b) otherwise, proceed to t+ 1 and until T , by setting the updated state matrices

Tt|t = T(j)t|t = T(j − 1)t|t

Rt|t = R(j)t|t = R(j − 1)t|t

Ct|t = C(j)t|t = C(j − 1)t|t,

as well as states and covariances

xt|t = x(j)t|t

Pt|t = P(j)t|t.

Each step of the algorithm is simple since it applies standard Kalman filter and smoother

formulae, using the guessed state matrices and regimes. For a piecewise-linear model,

this algorithm is optimal in the least-squares sense.15

Likelihood computation. Given the prediction error

vt(j) = zt − y(j)t|t−1 (8)

we can compute the log-likelihood density of the data at time t:

L(θ)t = −1
2
nt log(2π)− 1

2
log(det(F(j; θ)t))− 1

2
v(j)′t · F(j; θ)−1

t · v(j)t, (9)

where nt and θ denote the number of observables available in time t and the vector of

deep parameters, respectively.

Convergence. At this stage, some discussion on convergence is in order. In the “pure”

OccBin simulation, the state variables are known and fixed. By contrast, both the shocks

(states) and OBC regimes are unknown in the filtering process. For each period t, the

update step iterates until convergence of the latent shocks and the regime. Independently

of the filter, multiple solutions may arise in this solution method.16 It would be possible

to search for all possible solutions and select the one with the highest likelihood density.

However, this approach would significantly increase the filtering costs.

In the examples discussed below, we find that, in the case of multiple solutions, the

most likely solution is the shortest OBC. To look for this minimum-duration solution,

we apply a relaxation in Step 4. (a): The duration of the new (guessed) constrained

15The optimality of the time-varying system follows directly from Kalman (1960).
16In fact, multiple solutions, i.e. different possible regime sequences, can also arise for the simpler

standard OccBin simulations with given initial states and the shocks. See Holden (2019).
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regime is not allowed to deviate (increase) too much from the previous iteration. For this

purpose, we apply the new guess matrices T(j∗)t|t, R(j∗)t|t, C(j∗)t|t, where the duration

of the new binding regime may increase only up to the allowed maximum amount. With

this relaxation, a few iterations are typically sufficient for convergence. If it fails, we give

a penalty to the likelihood and try a new proposal for the deep parameters.

2.3. Fixed-interval smoothing

As a corollary of the PKF recursions described above, the fixed-interval smoothing

proceeds as follows. We first guess sequence of the state matrices for t ∈ (1, T ), e.g. using

the first forward path needed to compute the likelihood:

T(0)t|T = Tt|t

R(0)t|T = Rt|t

C(0)t|T = Ct|t.

Then, we iterate until convergence with the following algorithm for each iteration j:

1. Run the standard filtering and smoothing recursions given the guess sequence of

state matrices and the estimated regimes T(j − 1)t|T ,R(j − 1)t|T , C(j − 1)t|T .

2. From the obtained sequence of smoothed shocks ε(j)t|T and initial conditions x(j)0|T ,

we simulate the piecewise-linear method, obtaining a new sequence of matrices/regimes

T(j)t|T ,R(j)t|T , C(j)t|T

(a) if the entire sequence of matrices/regimes corresponds to the guess, conver-

gence is achieved;

(b) otherwise restart from 1) with j+1 using the new guess matrices T(j)t|T ,R(j)t|T ,

C(j)t|T .

This fixed-interval smoothing is equivalent to other smoothing recursions in the litera-

ture (Koopman and Durbin, 2003). Similarly, it flexibly handles missing data and can

accommodate more complex shock structures. As for the forward path, each step of the

procedure is straightforward. Using the guessed sequence of matrices, it applies standard

filtering and smoothing formulas, providing the best estimates in the least-square sense

of the historical shocks, as well as latent and initial state variables.

2.4. Computing the likelihood with the IF and with the PKF

We now show under which conditions the likelihood of the PKF and the IF are iden-

tical. Recall first the IF’s likelihood formula:

L(θ)IFt = −1
2
nt log(2π)− 1

2
log(det(Q))− 1

2
ε′t ·Q−1 · εt + log

(
| det

∂εt
∂yt
|
)
, (10)

10



where ∂εt
∂yt

is the Jacobian matrix mapping shocks onto observables.17 For a generic

nonlinear model, and assuming for simplicity no observation error,

yt = f(xt−1, εt; θ) (11)

the Jacobian is only implicit and has to be approximated numerically. For the piecewise-

linear model, it can be derived explicitly combining (1) and (2).

The likelihood computation with the IF requires two additional restrictions. First,

the number of shocks must exactly equal the number of observables in each period t.

Second, the shocks in the first period t = 1 are initialized assuming all state variables

are at their steady-state values in t = 0, i.e. x0 = 0. Then, the IF obtains the shocks by

numerically solving the nonlinear system of equations (11) for εt ∀t.

Filter initialization. The filter initialization drives the difference in the likelihood between

PKF and IF. To see this, note that in (7), the PKF also provides εt|t, i.e. the estimate of

the shocks in time t. Hence, it can also compute the likelihood consistently with the IF.

To do so, note that the IF is conditional to state variables being in steady state for the

initial period t = 0, while in the PKF initial states are latent in t = 0.18

What happens if we relax the two additional requirements of the IF? First, with the

PKF, we can handle problems with more shocks than observables, while this is impossible

with IF. Second, if we let the state variables latent in t = 0, the likelihood value from (9)

can differ from (10) even if the number of shocks is the same. Two main factors explain

this difference:

1. the initial values of state variables and shocks;

2. the recursion of the covariance matrix F has one iteration less, the missing period

t = 0.

Using equation (10) with the shocks εt from the PKF may eliminate the second factor.

However, initialization still matters. Unlike the IF, the PKF provides the optimal starting

values for states and shocks in a least-square sense. While the initialization effects will

vanish for large samples, in general, they matter for small samples. Furthermore, the

differences likely increase in the estimation of shock variances. In case of the IF (eq. 10),

17See equation (23) in Guerrieri and Iacoviello (2017).
18To compute the filtered shocks with the PKF conditional to the state variables being at steady state,

we can add an auxiliary data point at the beginning of the data sample. All observed variables and states
are at their steady state, i.e. x0 = 0, y0 = 0. In this way, the PKF recovers the same sequence of shocks
as the IF algorithm, and therefore equations (9) and (10) provide the same value of the likelihood. For

both algorithms we enforce L =
∑T
t=1 Lt and LIF =

∑T
t=1 LIFt by discarding the likelihood density for

t = 0.
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the variance Q does not influence the sequence of shocks of εt. Hence, it only ‘scales’

the shocks in the likelihood. By contrast, in the PKF (eq. 9), Q not only governs the

covariance matrix Ft. It also determines the initialization of latent states and shocks

in t = 1 and, thereby, the prediction errors vt in the likelihood function. Overall, we

can expect the difference in the likelihood values between IF and PKF to decrease with

sample size and increase with the strength of the internal propagation mechanism.

Computational efficiency. The linear recursive algebra of the PKF increases computa-

tional efficiency compared to the nonlinear solver incorporated in the IF. The PKF breaks

one non-linear problem into two simpler ones, identified in Steps 3 and 4 of the PKF al-

gorithm. In Step 3, for a given regime, the PKF exploits linear algebra and computes

shocks as in the standard Kalman filter. In Step 4, given the shocks, the OccBin solver

is used to update the regime. By contrast, the IF numerically solves a system of non-

linear equations for the regime and the shocks by calling the OccBin solver several times.

Overall, the PKF requires fewer calls to the solver, resulting in significant speed gains as

we show in the following sections.

3. Application 1: A small model of consumption choice

Our first application considers the small consumption-savings model of CGIZ. By

embedding an occasionally binding borrowing limit, this prototypical model captures

key nonlinear features of OBCs, such as shock amplification and precautionary savings.

We use data generated from this model as a testbed for the PKF and other estimation

methods.

3.1. The model

Cuba-Borda et al. (2019) provide the micro foundations of the model, in which a

representative household maximizes utility subject to stochastic income shocks and an

endogenous occasionally binding borrowing constraint. Here, we only state necessary

conditions and refer for further model details to their paper. The equilibrium system

consists of four equations in four unknowns {Ct, Bt, λt, Yt} with parameter vector θ =

[β, γ,m,R, ρ, σ] and exogenous innovation εt:

Ct +RBt−1 = Yt +Bt (12)

ln(Yt) = ρ ln(Yt−1) + σεt (13)

C−γt = βREt(C
−γ
t+1) + λt (14)

λt(Bt −mYt) = 0, (15)
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where Et() denotes the expectation operator, Ct is consumption, Bt is debt, λt is the

Lagrange multiplier associated with the borrowing constraint and Yt is the exogenous

stochastic income process. Equation (15) represents the complementary slackness con-

dition associated to the borrowing constraint of the Kuhn-Tucker formulation. Our cal-

ibration is identical to CGIZ, i.e. θ = [0.945, 1, 1, 1.05, 0.9, 0.01].19 Below, we infer the

constant relative risk aversion parameter γ, which also governs intertemporal substitution

in this model. In the DGP, γ = 1.

3.2. The two DGPs

The calibrated model forms the basis of two DGPs, which differ in the solution method

used to simulate the artificial data. The first DGP is a piecewise-linear model approxima-

tion of the model. The solution underlying these datasets thus captures the occasionally

binding borrowing limit. However, due to the piecewise-linear approximation, high-order

risk vanishes, and there are no precautionary motives at work when generating the data.

By contrast, the second DGP features precautionary savings as it is based on a fully

nonlinear solution coming from value function iteration (VFI).

For both DGPs, we generate 100 replicas, each of length T = 100. Following CGIZ, we

focus on the inference of γ, setting all other parameters to their true value. Consumption

is the only observed variable.

3.3. Inference and computational efficiency

For each replica, we evaluate the likelihood with the PKF, the IF, and the Lin-KF.20

The left panel of Figure 1 plots the average likelihood profiles for different values of

γ. For the piecewise-linear DGP (top), the likelihood of the PKF and the IF peaks at

the true value of (γ = 1). Thus, as expected in the absence of solution error, both

methods successfully capture the borrowing constraint and identify the risk aversion

parameter without bias.21 By contrast, the standard Lin-KF cannot identify γ. The

Lin-KF constructs the likelihood around the steady state where the constraint is always

binding. In this case, the model solution does not feature intertemporal smoothing, and

the corresponding likelihood function is flat.

By abstracting from solution errors, the first DGP singles out the efficiency gains of the

PKF. Table 1 shows that the PKF’s likelihood evaluation is more than four times faster

19Note that β < 1/R implies that in steady state the borrowing constraint is binding.
20CGIZ report estimations with the particle filter.
21Note, however, that the different filter initialization implies small differences in the likelihood as

discussed in Section 2.4. Appendix B discusses this issue based on this small model. Section 4 will
also return to it in the context of a larger model in which the initialization affects multiple parameter
estimates.
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Figure 1: Likelihood profiles and estimation methods
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(a) Likelihood profiles for PKF, IF and Lin-KF.
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(b) Likelihood profile of the PKF with measurement error.

Notes: The left panel (a) shows likelihood values for different values of γ computed with PKF (blue),
IF (red) and linear KF (yellow). The right panel (b) shows likelihood values for different values of γ
with no measurement error (blue) and with measurement error equal to 5% (red) and 20% (yellow) of
the standard deviation of consumption. Vertical lines indicate the maximum. Top (bottom) panels show
estimations based on the OccBin (VFI) DGP.

Table 1: Computing times (seconds)

Mean PKF Mean IF Std PKF Std IF

OccBin DGP 101.38 409.21 27.71 122.01
VFI DGP 70.73 424.26 13.88 85.90

Notes: The this table reports the average computing time in sec-
onds for the IF and the PKF across 100 replicas and 100 parameter
values (ranging from 0 to 4.5 on an evenly distributed grid).

than the IF. The computing time is also less variable, increasing the predictability when

planning long-lasting estimation exercises. Both PKF and IF are orders of magnitude

faster than the particle filter (reported in CGIZ) and considerably easier to implement.

The second DGP based on VFI (bottom of panel (a) in Figure 1) highlights the role

of approximation error in the filter. The likelihood evaluations with the PKF and IF

miss the precautionary savings present in the DGP by relying on the piecewise-linear

solution. This misspecification biases the estimate upwards. The likelihood function

peaks above the true value, suggesting some limitations of the piecewise linear approach.

CGIZ discusses these aspects in detail.

3.4. Multiple shocks

Besides the efficiency gains shown in Table 1, the PKF’s flexibility is a further ad-

vantage. Unlike the IF, it allows for more shocks than observables. As an illustration,
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we use the same data as in the exercise above. In contrast, however, we now assume

that the econometrician erroneously believes that the DGP includes measurement error

corresponding to 5% and 20% of the standard deviation of consumption.

While this example mainly illustrates the PKF in a simple non-singular environment,

it offers some economic insights. The right panel in Figure 1 shows that the likelihood

profile flattens, and the upward bias increases in the (assumed) measurement error. Intu-

itively, by assuming measurement error, “the econometrician sees skewed and asymmetric

consumption even after accounting for normally distributed, additive measurement error”

(CGIZ p.9). For the particle filter, which requires measurement error, this assumption

can thus lead to a biased inference.22

4. Application 2: A medium-scale model

We now turn to a medium-scale New-Keynesian model with an endogenous ZLB

constraint, the same as in ART. Based on a large number of datasets generated by this

model, we compare the accuracy of the PKF to existing methods.

4.1. The data generating process

The DGP is a workhorse New-Keynesian model featuring an occasionally binding

zero lower bound constraint. To generate artificial time series, we use the fully nonlinear

projection solution provided by ART. For the sake of brevity, we focus on maximization

objectives and constraints of the different agents and the stochastic shocks. For additional

details and optimality conditions, we refer to Appendix B.1 and ART.23

4.1.1. Firms

A continuum of monopolistically competitive firms supplies differentiated intermediate

goods yt(j), j ∈ [0, 1]. A perfectly competitive final goods firm purchases these goods to

assemble a single final good, yt ≡
[ ∫ 1

0
yt(j)

θp−1

θp dj
] θp
θp−1

, where θp > 1 is the elasticity of

substitution. Profit maximization implies that the final good firm’s demand function for

good j follows yt(j) =
(
pt(j)
pt

)−θp
yt ∀j, where pt(j) and pt are the price for intermediate

good j and the aggregate price level, respectively.

The production function for intermediate good j is yt(j) =
(
k̃t−1(j)

)α
(atnt(j))

1−α,

where α is a parameter. k̃t−1(j) and nt(j) denote capital and labor services hired at (real)

22See CGIZ for details on the particle filter. Note that unlike the particle filter, the PKF does not
require any measurement error.

23The model is the same as in Gust et al. (2017), except for a few features such as government
consumption and inflation indexation.
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rates rkt and wt, respectively. Common technology evolves according to at = gtat−1, where

deviations from deterministic growth, ḡ, follow:

gt = ḡ + σzεg,t, εg,t ∼ iidN (0, 1). (16)

Intermediate firms set prices subject to quadratic price adjustment costs as in Rotemberg

(1982), adjpt (j) = ϕp/2(pt(j)/(π̄pt−1(j))−1)2yt, where parameter ϕp governs the cost and

π̄ denotes the steady-state (gross) inflation rate. Firm j chooses k̃t−1(j), nt(j), and pt(j)

to maximize its expected present discount value of profits

E0

∞∑
t=1

βtΛt

(
pt(j)yt(j)

pt
− wtnt(j)− rkt k̃t−1(j)− adjpt (j)

)
, (17)

where the marginal value of real profits in t, Λt, and the discount factor, β, reflect that

households own all firms. E0 is an expectation operator.

4.1.2. Households

Households choose choose consumption ct(`), labor, one period bonds, investment

xt(`), the capital stock kt(`), and its utilization rate υt(`) to maximize expected life time

utility

E0

∞∑
t=0

βt
(

log(ct(`)− hcat−1)− χnt(`)
1+ηd`

(1 + η)

)
, (18)

where h governs habits associated with aggregate consumption ca. 1/η is the Frisch

elasticity of labor supply. χ affects steady-state labor. A household’s budget constraint

in period t is ct(`) + xt(`) + bt/(stit) + ut(`)kt−1(`) + adjwt (`) = wt(j)nt(j) + rkt k̃t(`) +

bt−1(`)/πt + dt, where bt(`) is the real value of bonds and it the nominal interest rate.

adjwt (`) captures nominal wage adjustment costs (following an similar specification as

price adjustment costs with scaling parameter ϕw). πt ≡ pt/pt−1. Each household receives

the same dividends, dt, from intermediate firms anc income from capital services, k̃t(`) =

kt(`)υt(`). The households’ capital stock depreciates at rate 0 ≥ δ ≥ 1 and accumulates

subject to adjustment costs (parametrized by ν): kt = (1− δ)kt−1 +xt(1− ν(xgt − 1)2/2),

where xgt = xt/(ḡxt−1) is investment growth. The cost of capital utilization is ut =

r̄k(exp(συ(υt− 1))− 1)/συ, where συ is a parameter. st is a risk premium shock affecting

the spread between the nominal rate and the return on risky assets following:

st = (1− ρs)s̄+ ρsst−1 + σsεs,t, εs,t ∼ iidN (0, 1), (19)

where ρs and s̄ denotes the persistence parameter and the steady-state value, respectively.
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4.1.3. Policy

The central bank sets the notional gross nominal interest rate, it according to a Taylor

rule

int =
(
int−1

)ρi (̄ı(πt/π̄)φπ(ygt )
φy)1−ρi exp(mpt) (20)

with parameters 0 < ρi < 1, φπ > 0, φy > 0. ygt ≡ ygdpt /(ḡygdpt−1) defines the output

growth gap (see also below). π̄ and ı̄ are targets of inflation and nominal interest rates,

respectively. Monetary policy faces an occasionally binding lower bound on nominal

interest rates, i.e. it = max{1, int }. The interest rate shock process follows:

mpt = σiεi,t, εi,t ∼ iidN (0, 1). (21)

4.1.4. Market clearing

The aggregate resource constraint is ct + xt = ygdpt , where real GDP is defined as

ygdpt = [1− ϕp(πt/π̄ − 1)2/2− ϕw(wgt − 1)2/2]yt − utkt−1.

4.1.5. Calibration and fully nonlinear model solution.

The calibration and model solution follow ART. The calibration targets US data

(1988Q1:2017Q4). Table B.1 in the Appendix shows the parameter values. The calibrated

model is solved with a high-quality nonlinear algorithm, which accounts for the OBC. In

contrast to the piecewise-linear approach, the solution method also captures the effects

of uncertainty on the economic decisions of households and firms and other nonlinearities

present in the model.

4.2. Data

The simulated data sets under consideration contain 120 quarters and feature either no

ZLB event (0Q) or a single ZLB event lasting 30 quarters (30Q). The long ZLB episodes

capture the recent experience of advanced economies (euro area, Japan, US) and provide

a meaningful testbed for the different estimation methods. Fluctuations in the model are

driven by three shocks (εz,t, εi,t, εs,t). To allow for applying the IF, the model estimations

thus observe simulated data for three variables: output growth, the inflation rate, and

the nominal interest rate.

Note that samples with 30 quarters ZLB events are rare in the DGP. As acknowledged

in ART, this suggests potential sample selection bias.24 Alternatively, we could randomly

select samples. However, by using the same samples, our findings directly connect to ART

(see below).

24See Atkinson et al. (2019)[p.10]. Reaching 100 datasets with 30Q requires around 2 million simula-
tions. See Table 5 in the Online Appendix of ART.
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4.3. Estimation methods

We consider three estimation methods: PKF, IF, and the standard Lin-KF. All meth-

ods use the true model specification but differ in the filtering and model solution. The IF

and the PKF estimate a piecewise-linear approximation of the true model. In contrast to

the Lin-KF, the decision rules based on OccBin capture the kink of the OBC. However,

all three methods miss other nonlinear features of the DGP. Therefore, it is useful to

compare our findings to ART, who report results for the particle filter and fully nonlinear

(but misspecified) model versions.

For all methods, we use the same 100 draws from this DGP. In total, we estimate

nine parameters with the prior distributions centered around their true values (following

ART). All other parameter values are calibrated to their true values.

4.4. Accuracy of posterior parameter estimates

This section shows that the PKF delivers accurate parameter estimates.25 For each

method h, we measure the estimation accuracy the normalized root-mean square-error

(NRMSE), i.e. the difference between the mean estimate of parameter j, θ̂j,h,k in dataset

k and the true parameter θ̄j.
26 Thus, the NRMSE for parameter j and method h follows

NRMSEj
h =

1

θj

√√√√ 1

N

N∑
k=1

(
θ̂j,h,k − θ̄j

)2

, (22)

where N = 100 equals the number of datasets with a given ZLB duration. To mea-

sure total accuracy across all parameters, we summarize the normalized errors as Σh =∑J
j=1 NRMSEj

h. We also define the sum of normalized errors for all parameters except

the shock standard deviations, denoted ΣP
h .27 In addition, the coverage ratio measures

the probability that the posterior distribution contains the true value:

CRj
h =

1

N

N∑
k=1

I
(
θ̂5%
j,h,k < θ̄j < θ̂5%

j,h,k

)
, (23)

where I is an indicator function. θ̂5%
j,h,k and θ̂5%

j,h,k denote the (5,95)-percentiles of the

posterior distribution, respectively. We define CR as the average CR across parameters.

Table 2 shows that the piecewise-linear approximation improves the accuracy of the

estimation. We highlight three main points. First, only the PKF includes all true param-

eter values in the (5,95) percentiles of the estimates. In the datasets with a 30 quarter

25Results are based on the mean draw. The mode estimates improve the fit across methods.
26Normalization by the true value, renders the NRMSE statistic invariant to the scale of the parameters.
27Thus, ΣPh sums the NRMSE for ϕp, h, ρs, ρi, φπ, and φy.
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ZLB event, the PKF reduces the sum of the NRMSE from 1.42 to 1.20 compared to

the Lin-KF. Most of the gain from accounting for the OBC comes from risk premium

shocks (σs), pointing to missing amplification in the linear model: The weaker internal

propagation mechanism in the absence of the ZLB constraint requires an overly large role

of exogenous shocks. Second, the linear model’s coverage ratio deteriorates substantially

for the price adjustment cost (ϕp) and the Taylor rule coefficient on output (φy). In-

terestingly, the coverage ratio for the inflation coefficient (φπ) is higher for the Lin-KF.

This finding suggests that the DGP features nonlinearities not captured by the OccBin

solution. In the linear model, both misspecification dimensions interact.28 Finally, note

that the accuracy also improves for the 0Q datasets, where the ZLB constraint can bind

in expectations.

Fully nonlinear estimation and model (mis)specification. ART report particle-filter esti-

mates of fully nonlinear but misspecified small-scale versions of the model. The PKF’s

estimates of the medium-scale model are more accurate than those of a simpler but fully

nonlinear version estimated with a particle filter. The latter accounts for the significantly

higher computational costs associated with fully nonlinear filtering and also exemplifies

the role of misspecification (inherent in all models but beyond our paper’s scope). For

datasets with 30 quarters of binding ZLB, the sum of the NRMSE of the PKF (1.20) is

considerable than the corresponding NRMSE of the fully nonlinear smaller model (2.08).29

28Indeed, across methods, we find that the ZLB constraint deteriorates the estimates’ accuracy even
when accounting for the occasionally binding ZLB (PKF and IF), suggesting sample selection effects or
interacting nonlinearities.

29See Table 4, p.8 in ART.
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Table 2: Accuracy of estimated structural parameters

Ptr Truth PKF IF Lin-KF

0Q 30Q 0Q 30Q 0Q 30Q

ϕp 100.00 99.92 125.75 103.74 126.98 99.70 128.47
(25.00) (79.47,116.72) (99.91,145.53) (82.20,118.40) (104.36,147.96) (84.21,119.69) (113.28,152.55)
Norm {0.12,0.96} {0.30,0.56} {0.12,0.98} {0.31,0.53} {0.12,0.95} {0.31,0.43}

h 0.80 0.81 0.78 0.81 0.78 0.81 0.80
(0.10) (0.75,0.88) (0.71,0.84) (0.74,0.86) (0.72,0.84) (0.74,0.87) (0.73,0.86)
Beta {0.05,0.93} {0.06,0.72} {0.05,0.89} {0.05,0.79} {0.05,0.89} {0.05,0.85}

ρs 0.80 0.80 0.82 0.81 0.82 0.80 0.81
(0.10) (0.76,0.84) (0.78,0.86) (0.76,0.84) (0.79,0.85) (0.76,0.84) (0.78,0.85)
Beta {0.03,0.93} {0.04,0.66} {0.03,0.91} {0.04,0.63} {0.03,0.89} {0.03,0.85}

ρi 0.80 0.79 0.80 0.79 0.80 0.79 0.80
(0.10) (0.77,0.83) (0.76,0.84) (0.77,0.83) (0.76,0.84) (0.77,0.82) (0.76,0.83)
Beta {0.02,0.95} {0.03,0.83} {0.03,0.97} {0.03,0.85} {0.02,0.98} {0.03,0.94}

σz 0.005 0.0045 0.0053 0.0047 0.0056 0.0045 0.0055
(0.005) (0.0039,0.0052) (0.0044,0.0061) (0.0040,0.0054) (0.0043,0.0063) (0.0037,0.0050) (0.0047,0.0064)
IGam {0.13,0.64} {0.12,0.81} {0.11,0.77} {0.18,0.63} {0.14,0.65} {0.17,0.69}

σs 0.005 0.0060 0.0053 0.0059 0.0053 0.0061 0.0066
(0.005) (0.0043,0.0078) (0.0039,0.0071) (0.0043,0.0076) (0.0041,0.0070) (0.0042,0.0076) (0.0044,0.0081)
IGam {0.31,0.88} {0.23,0.89} {0.28,0.88} {0.21,0.92} {0.34,0.87} {0.40,0.84}

σi 0.002 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
(0.002) (0.0018,0.0022) (0.0017,0.0022) (0.0018,0.0022) (0.0018,0.0022) (0.0017,0.0022) (0.0017,0.0022)
IGam {0.07,0.83} {0.08,0.82} {0.07,0.89} {0.08,0.88} {0.07,0.82} {0.08,0.85}

φπ 2.00 1.93 1.85 1.95 1.87 1.92 1.90
(0.25) (1.78,2.11) (1.59,2.08) (1.78,2.10) (1.60,2.06) (1.74,2.05) (1.74,2.05)
Norm {0.07,0.99} {0.11,0.71} {0.06,0.99} {0.10,0.72} {0.07,1.00} {0.07,0.95}

φy 0.50 0.42 0.50 0.42 0.48 0.42 0.42
(0.25) (0.27,0.63) (0.34,0.66) (0.22,0.62) (0.31,0.68) (0.24,0.62) (0.25,0.58)
Norm {0.28,0.87} {0.22,0.95} {0.29,0.84} {0.25,0.92} {0.29,0.87} {0.27,0.87}

Σ 1.08 1.20 1.04 1.25 1.14 1.42
ΣP 0.57 0.76 0.58 0.78 0.59 0.77
CR 0.89 0.77 0.90 0.76 0.88 0.81

Notes: This table shows the parameter estimates for each estimation method (first column header) and the length of the ZLB regime (second column
header). For each parameter, the table reports the average posterior value (first row), (5,95) percentiles (second row) and the NRMSE and the CR
(third row, in curly brackets). The second column reports the true parameter value (and prior mean), the prior standard deviation, and the prior
distribution. The bottom rows (bold font) report the sum of the NRMSE for all parameters (Σ), the sum of the NRMSE all parameters excluding
shock standard deviations (ΣP ), and the average coverage ratio CR, respectively.
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Filter initialization. We conclude this section with a closer look at filter initialization.

As shown in Table 2, the IF features a smaller bias in the estimates of the technology

shock for datasets without ZLB event. The NRMSE of the standard deviation (σz) is

smaller than in the PKF. This result demonstrates the interplay of the filter initialization

and model approximation. Namely, the IF’s suboptimal initialization increases the es-

timated standard deviation, counterbalancing the downward bias of the piecewise-linear

approximation present in the IF and the PKF.

Figure 2 provides an illustrative example of this interplay. Panel (a) shows the path

of smoothed shocks obtained with the IF (red) and PKF (blue) for an example selected

from the 200 datasets. In this example, the IF’s initialization implies a large positive

innovation of the technology shock in period one. Panel (b) highlights that the single

outlier significantly biases the posterior estimates. It increases the shock’s standard

deviation (σz) and affects other estimates such as ϕp. The bias caused by the first period

implies that a pre-sample is a simple remedy when using the IF (blue lines) for this

example, as suggested in Section 2.4.

Figure 2: Initialization effects and estimation results

0 20 40 60 80 100 120
-0.05

0

0.05

0.1
Innovations to productivity shock

0 20 40 60 80 100 120
-5

0

5
10-3 Innovations to interest rate shock

0 20 40 60 80 100 120

Time

-0.02

-0.01

0

0.01

0.02
Innovations to risk premium shock

IF
PKF

(a) Smoothed shocks

50 100 150
0

0.01

0.02

varphip

1.5 2 2.5
0

2

phipi

0 0.5 1
0

2

4
phiy

0.50.60.70.80.9
0

10

20
h

0.5 0.6 0.7 0.8 0.9
0

10

20
rhos

0.5 0.6 0.7 0.8 0.9
0

10

20
rhoi

0.01 0.02
0

500

1000
sigz

0.01 0.02
0

200

400
sigs

2 4 6 8

10-3

0

2000

4000
sigi

(b) Posterior densities of different estimators

Notes: Black (red) lines show posterior densities from the PKF (IF) using a selected dataset (98 out of
100). Blue (gray) lines depict the IF estimates with a one period pre-sample (prior distributions).

5. Large-scale model applications

To benchmark our approach, we have so far considered models accessible to other esti-

mation methods. However, the PKF expands the reach of nonlinear estimation methods

also to large models. Here, we briefly mention the estimation of the Global Multicountry

(GM) model of the European Commission (Albonico et al., 2019) with an endogenous

21



occasionally-binding ZLB constraint.30 In terms of model complexity and specification,

the GM model is comparable to other large models used at policy institutions.31 However,

despite the importance of the ZLB for policy prescriptions and observed macroeconomic

dynamics, this class of models commonly abstracts from nonlinear estimation.

Estimating the GM model is challenging not only because of its size. It is written in

a non-stationary form and features more shocks than observables.32 In this setup, typical

for policy institutions, computational efficiency is paramount. Here, both comparative

advantages are crucial: Non-singularity rules out the application of the IF, while the

model size makes the particle filter too costly.33 A recent application to the COVID-19

crisis (European Commission, 2020)[p.61-65] exploits the PKF’s flexibility. Integrating

additional “lockdown” shocks allows the GM model to capture the rapid and enormous

contraction in economic activity while maintaining the nonlinearity imposed by the ZLB.

For brevity, we do not discuss the estimation results further and only illustrate some

economic properties in Appendix D.34

6. Implementing the PKF in Dynare

This section provides a practical guide on how to implement the PKF in Dynare. As

an example, consider the model outlined in Section 3. It consists of the following four

equations, which we repeat here for convenience:

Ct +RBt−1 = Yt +Bt (24)

ln(Yt) = ρ ln(Yt−1) + σεt (25)

C−γt = βREt(C
−γ
t+1) + λt (26)

λt(Bt −mYt) = 0. (27)

Implementing this model with the OBC into our Dynare toolkit requires only a few lines of

code. First, we declare λt as an endogenous variable and introduce a parameter BORRCON.

30The model features two regions: the euro area (EA) and the rest of the world (RoW). The EA
economy features two types of households, multiple assets, several firm sectors, and a detailed fiscal
policy block. The Taylor rule is subject to a ZLB constraint. A rich trade structure (including different
commodities) and financial markets link the EA with a simplified RoW block. Albonico et al. (2019)
provide more information.

31For example, the New Area-Wide Model (NAWM) of the ECB (Christoffel et al., 2008; Karadi et al.,
2017) or the SIGMA model from the Federal Reserve Board (Erceg et al., 2006).

32A total of 36 shocks matches 33 time series.
33Indeed, the speed gains of the PKF are critical even if one would modify the shock structure according

to the IF’s requirements.
34In another application of the PKF, Cozzi et al. (2021) estimate an endogenous growth model featuring

a rich macroeconomic dataset, stochastic trend productivity, and a ZLB constraint.
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Second, the argument occbin in line 5 triggers the Occbin/PKF environment, including

for the standard estimation command. In the last step, we state the conditions for

entering and leaving the constrained regime with the keywords bind and relax. Following

the OccBin toolkit (Guerrieri and Iacoviello, 2017), we express these conditions in their

linearized form. The keyword pswitch declares the switching parameter BORRCON, which

takes values 0 or 1 depending on whether the OBC is slack or binding.

1 var b c lb y ;

2 varexo eps_u ;

3 parameters RHO , BETA , M, R, STD_U , GAMMAC , BORRCON ;

4

5 model(occbin);

6 c = y + b - R*b(-1) ;

7 log(y) = RHO*log(y(-1)) + eps_u ;

8 lb = 1/c^GAMMAC - BETA*R/c(+1)^GAMMAC ;

9 [pswitch = ’BORRCON ’, bind = ’lb <-0’, relax = ’b>M*y’]

10 (b - M*y)*(1 - BORRCON) + lb*BORRCON = 0 ;

11 end;

12

13 ...

14

15 estimation;

Listing 1: Sample for code for the borrowing constraint model

Appendix C provides a complete example for the model estimation.

7. Conclusion

This paper has provided a fast, reliable, and widely applicable estimation procedure

for DSGE models with occasionally binding constraints. The proposed methodology is

conceptually simple. It embeds a fast nonlinear model solution into a diffuse Kalman fil-

ter. As a result, it alleviates and overcomes the restrictions of existing methods regarding

ease of use, shock structure, model stationarity, missing data, and model size. We have

presented several applications to support our conclusions.

We hope that the PKF will prove useful for applied researchers and policymakers

interested in models with OBCs. Of course, there is not one method suitable for all

purposes. Applications, where uncertainty and precautionary motives are central, may

require computationally more expensive methods. However, even in these cases, the PKF

provides a user-friendly benchmark approximation.
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Appendix A. Model details

Appendix A.1. Equilibrium conditions in the consumption choice model

Cuba-Borda et al. (2019) describe the microfounded household maximization problem.

Here, we state the necessary conditions for an equilibrium which are expressed as a

system of four equations in four unknowns {Ct, Bt, λt, Yt} with parameter vector θ =

[R,m, σ, γ, β] and exogenous innovation εt:

Ct +RBt−1 = Yt +Bt (1)

lnYt = ρ lnYt−1 + σεt (2)

C−γt = βREt[C
−γ
t+1] + λt (3)

λt(Bt −mYt) = 0, (4)

where Et[] denotes the expectation operator.
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Appendix B. Initialization of IF and PKF in the Application 1

As an illustration, in Figure B.1 we show the likelihood values evaluated at the true

value for γ by the two filters for the first 20 data points associated with a simulation with

value function iteration as DGP. Indeed the difference converges to zero as we move away

from the first observation. The likelihood profile of the PKF is always higher than the

one resulting from the IF (see the bottom panels of Figure B.2). This finding suggests

that allowing for latent initial states improves upon (particularly with small samples) the

assumption that the initial state corresponds to the steady state as done in the IF.

28



Figure B.1: Likelihood differences due to initialization.
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Figure B.2: Likelihood profile: PKF, IF. T = 100
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Appendix B.1. Medium-scale New Keynesian Model

The de-trended equilibrium conditions are taken from Atkinson et al. (2019).

Setup. Preferences:

E0

∑∞
t=0 β

t[log(ct − hcat−1)− χ
∫ 1

0
nt(`)

1+ηd`/(1 + η)]

Constraints:

ct + xt + bt/(stit) + utkt−1 + ϕw
2

∫ 1
0 (wgt (`)− 1)2yft d` =

∫ 1
0 wt(`)nt(`)d`+ rkt υtkt−1 + bt−1/πt + dt

kt = (1− δ)kt−1 + xt(1− ν(xgt − 1)2/2)

xgt = xt/(ḡxt−1)

wgt (`) = πtwt(`)/(π̄ḡwt−1(`))

nt(`) = (wt(`)/wt)
−θwnt

ut = r̄k(exp(συ(υt − 1))− 1)/συ
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De-trended Equilibrium System.

rkt = r̄k exp(συ(υt − 1)) (1)

ỹt = (υtk̃t−1/gt)
αn1−α

t (2)

ut = r̄k(exp(συ(υt − 1))− 1)/συ (3)

rkt = αmctgtỹt/(υtk̃t−1) (4)

w̃t = (1− α)mctỹt/nt (5)

wgt = πtgtw̃t/(π̄ḡw̃t−1) (6)

ỹgdpt = [1− ϕp(πt/π̄ − 1)2/2− ϕw(wgt − 1)2/2]ỹt − utk̃t−1/gt (7)

ygt = gtỹ
gdp
t /(ḡỹgdpt−1) (8)

int = (int−1)ρi (̄ı(πt/π̄)φπ(ygt )φy)1−ρi exp(σiεi,t) (9)

it = max{1, int } (10)

λ̃t = c̃t − hc̃t−1/gt (11)

w̃ft = χnηt λ̃t (12)

c̃t + x̃t = ỹgdpt (13)

xgt = gtx̃t/(ḡx̃t−1) (14)

k̃t = (1− δ)(k̃t−1/gt) + x̃t(1− ν(xgt − 1)2/2) (15)

1 = βEt[(λ̃t/λ̃t+1)(stit/(gt+1πt+1))] (16)

qt = βEt[(λ̃t/λ̃t+1)(rkt+1υt+1 − ut+1 + (1− δ)qt+1)/gt+1] (17)

1 = qt[1− ν(xgt − 1)2/2− ν(xgt − 1)xgt ] + βνḡEt[qt+1(λ̃t/λ̃t+1)(xgt+1)2(xgt+1 − 1)/gt+1] (18)

ϕp(πt/π̄ − 1)(πt/π̄) = 1− θp + θpmct + βϕpEt[(λ̃t/λ̃t+1)(πt+1/π̄ − 1)(πt+1/π̄)(ỹt+1/ỹt)] (19)

ϕw(wgt − 1)wgt = [(1− θw)w̃t + θww̃
f
t ]nt/ỹt + βϕwEt[(λ̃t/λ̃t+1)(wgt+1 − 1)wgt+1(ỹt+1/ỹt)] (20)

gt = ḡ + σgεg,t (21)

st = (1− ρs)s̄+ ρsst−1 + σsεs,t (22)

mpt = σiεi,t (23)

This is a system of 23 equations in 23 unknowns:

{c̃, n, x̃, k̃, ỹgdp, ỹ, u, υ, wg, xg, yg, w̃f , w̃, rk, π, i, in, q,mc, λ̃, g, s,mp, x̃t ≡ xt/zt}

Calibrated parameters. Table B.1 presents parameter calibration. Since our parameter

choices are identical, we refer to the discussion provided in ART.
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Table B.1: Calibrated parameter values

Description parameter value

Subjective discount factor β 0.9949
Frisch Labor Supply Elasticity 1/η 3
Price Elasticity of Substitution θp 6
Wage Elasticity of Substitution θw 6
Steady-state Labor Hours n̄ 1/3
Steady-state Risk Premium s̄ 1.0058
Steady-state Growth Rate z̄ 1.0034
Steady-state Inflation Rate π̄ 1.0053
Capital Share of Income α 0.35
Capital Depreciation Rate δ 0.025
Investment Adjustment Cost ν 4
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Appendix C. Sample code

The new occbin integration into DYNARE features the PKF when the estimation

command is triggered. Setting up the occbin environment requires only minor modifica-

tions to a standard Dynare code.

1 // MODEL CODE (Standard Dynare)

2 var b bnot c ec lb maxlev y ;

3 varexo eps_u ;

4 parameters RHO , BETA , M, R, STD_U , GAMMAC , BORRCON ;

5

6 BORRCON = 0;

7 STD_U = 0.01;

8

9 // OCCBIN environment

10 model(occbin);

11 ec = c(1);

12 c = y + b - R*b(-1) ;

13 // define OBC ------------------------

14 [pswitch = ’BORRCON ’, bind = ’lb<-lb_ss ’, relax = ’b>bnot’]

15 // END OBC ---------------------------

16 (b - M*y)*(1 - BORRCON) + lb*BORRCON = 0 ; // complementarity lb = 0;

17 bnot = M*y ; //

18 lb = 1/c^GAMMAC - BETA*R/c(+1)^GAMMAC ;

19 log(y) = RHO*log(y(-1)) + eps_u ;

20 maxlev = b-bnot;

21 end;

22

23 shocks;

24 var eps_u;

25 stderr STD_U;

26 end;

27

28 steady;

29 check;

30 // ESTIMATION (Standard Dynare commands)

31 varobs c;

32 estimated_params;

33 GAMMAC ,, 0.01000 , 10.0000 , NORMAL_PDF , 3, 1;

34 end;

35

36 estimation;

Listing 2: Full sample for code for the borrowing constraint model
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Appendix D. A large-scale model with ZLB

This Appendix illustrates some economic properties of the large-scale GM model

(Albonico et al., 2019) with an occasionally binding ZLB, which we estimate using the

PKF. Here, we present simulations on the macroeconomic costs of the ZLB. For this

purpose, we run two simulations. The first feeds the estimated shocks into the nonlinear

model, given our parameter estimates. By construction, these shocks recover the observed

time series. The second simulation feeds the same set of shocks into a model without

ZLB constraint. This procedure provides counterfactual trajectories of inflation, output,

and the interest rate.

Figure D.3 shows that the ZLB entails substantial macroeconomic costs. The esti-

mated model identifies adverse demand shocks as the primary mechanism for low inflation

and the ZLB environment.35 Under ZLB, the central bank cannot accommodate the de-

flationary shocks. The missing interest rate response amplifies the shock transmission,

and the shocks lead to a persistent decline in output and inflation. By contrast, without

the ZLB constraint, the monetary policy rule would imply an interest rate of -200 basis

points. Without the ZLB constraint, the estimates suggest that inflation would have

reached 2.5 percent annually, and output would grow around its long-run trend (before

2020). While abstracting from unconventional monetary policy, this exercise underlines

the importance of the ZLB for the current (and future) macroeconomic environment in

the EA and other advanced economies.

35This finding is in line with those of other estimated models such as Gust et al. (2017).
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Figure D.3: Counterfactual experiment
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