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Abstract 

This paper investigates greenhouse gas emissions convergence among twenty Latin 
American countries, for the period 1970 to 2015. To that end, we use the Phillips-Sul 
methodology to examine whether these countries have followed an absolute convergence 
process or, whether there has been a club convergence process. Our results offer important 
insights into the greenhouse gas emissions catch-up exhibited by several countries, and do 
not support the hypothesis that all countries of the Latin American region, taken together, 
converge to a single equilibrium state in greenhouse gas emissions intensity. We find strong 
evidence of subgroups that converge to different steady states. An iterative testing procedure 
reveals the existence of different patterns of behavior and shows that such emissions are not 
uniform across these countries. We also identify the forces underlying the creation of clubs 
and the likelihood that any given country will be a member of any convergence club. 
Estimates from an ordered logit model reveal that economic structure, the unemployment 
rate, population density, and per-capita income play a crucial role in determining the 
formation of convergence clubs.  

Keywords: Greenhouse gas emissions, Convergence analysis, global climate policy, Latin 
America. 
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1. Introduction 

Climate change, resulting from growing concentrations of greenhouse gases (GHG) in the 

atmosphere, is a major global challenge in the twenty-first century, increasing concerns - in 

both developed and developing countries - about the environmental impact of emissions. 

The issues of fairness and equity in the allocation schemes for emissions are hotly debated, 

and many developing countries, with lower per-capita emissions, expect developed countries, 

with higher per-capita emissions, to reduce their outputs. Several authors have pointed out 

that if emissions were to converge over time, there would be less concern regarding any per-

capita emissions allocation scheme, with this becoming a key assumption in the climate 

change literature (Stegman and Mckibbin, 2005; Aldy, 2006; Barassi et al., 2011; Payne et al., 

2014). 

The analysis of the dynamics of greenhouse gas emissions is important for policymakers 

in order to evaluate environmental impacts, and design efficient proposals to combat climate 

change. Thus, any group of countries that follows similar steady-state equilibrium can adopt 

common environmental policies to jointly cope with environmental deterioration.  

In this paper, we specifically evaluate whether Latin American countries’ greenhouse gas 

emissions are converging to similar, or different, steady states (Barro and Sala-i-Martín, 

1992). Thus, we bridge an important gap, given that the convergence of pollution from 

greenhouse gases has attracted considerable attention in the developed word, but, to the best 

of our knowledge, has not previously been analyzed in Latin America. It is important to note 

that several studies have examined the convergence of carbon dioxide emissions, but no 

consensus has emerged on the relationship between economic development and pollution 

(Acar et al., 2018), 

Our specific aim is to investigate and test whether convergence in greenhouse gas 

emissions has ocurred among a panel of Latin American countries, using recent datasets and 

the club-convergence technique. To that end, we use the Phillips-Sul (PS) methodology 

(Phillips and Sul, 2007, 2009) to provide the first empirical evidence of the regional 

convergence process in emissions in Latin America. In addition, we consider the 

disaggregation of the phenomenon by polluting sector and by type of gas. More specifically, 

we analyze whether Latin America displays a full convergence process among the various 

countries, or if those countries form convergence clubs.   

We analyze the process of regional convergence in emissions for twenty Latin American 

countries, over the period 1970-2015. Rather than simply describing any observed 
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convergence clubs, we carry out a deeper analysis of the factors underlying the formation of 

such clubs. For this purpose, we employ an ordered regression model to analyze the relative 

importance of different emissions determinants and to test whether the probability of 

belonging to a given club is determined by regional characteristics, such as population 

density, economic structure, unemployment rate, or per-capita income. 

The convergence approach used in this paper has clear advantages over alternative 

methods (González et al., 2017). First, we can identify groups of regions converging towards 

the same growth path through grouping regions by unspecified factors that determine the 

formation of convergence clubs. This is an advantage over other methodologies, where the 

determination of clubs is done ex ante, which greatly limits the results obtained. Second, the 

approach makes it possible to identify convergence clubs among regions, along with any 

divergent regions, although the null hypothesis of absolute convergence is rejected by 

applying an iterative algorithm developed by Phillips-Sul (2007).2 Third, the pace of the 

convergence parameter can also be estimated, which allows us to empirically discriminate 

between relative and absolute convergence. The methodology does not depend on particular 

assumptions concerning trend stationarity or stochastic non-stationarity of the variables. 

Therefore, we use a suitable framework for analyzing convergence and, in this context, we 

focus on the process of convergence in terms of greenhouse gas emissions intensity in the 

Latin American region. 

The rest of the paper is organized as follows. To provide context, the next section 

summarizes and gives an overview of the related literature on national and regional 

convergence, and we perform a brief analysis of the existing empirical evidence. Section 3 

describes the data and contains an analysis of the variables exploited in this study. The 

methodology adopted is presented in Section 4, and Section 5 contains the main empirical 

results for the log t tests and the ordered logit model. We conclude the paper in Section 6 

with final comments and a summary of our main findings from the empirical application, 

drawing some policy implications of this research. 

 

 

 

                                                           
2 Convergence clubs can be identified within the panels under study by using a clustering algorithm developed 
by Phillips and Sul (2007). 
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2. Literature 

Convergence is an issue widely discussed in macroeconomic theory and empirical research, 

particularly since the pioneering work of Baumol (1986) and Barro and Sala-i-Martin (1992). 

The concept of convergence comes from the literature on economic growth, and refers to a 

decrease in differences in economic growth across regions or countries over time.3 

Convergence occurs when a negative correlation is observed between the average growth 

rate and initial income (i. e., a negative relation between the growth rate of the variable of 

interest and its initial level). However, convergence is an imprecise concept and is not 

restricted to the economic growth literature alone, since it has been applied to other fields, 

including energy economics.4 Research on environmental convergence has been the subject 

of many empirical studies that have followed a variety of methodologies. 

Several studies have indicated an inverted U-shape relationship between carbon dioxide 

emissions and income, also known as the Environmental Kuznets Curve (EKC), but the 

EKC alone cannot explain whether or not cross-country emissions converge to a steady state. 

Cross-sectional, time series, and panel studies have all been used to examine convergence 

using a range of concepts. The time series approach can be found in the seminal papers of 

Carlino and Mills (1993) and Bernard and Durlauf (1995, 1996) in their examination of 

income convergence. These authors developed the concept of stochastic convergence, based 

upon the stationarity properties of the variables under analysis. Hence, two non-stationary 

variables converge when there is a co-integrating relationship between them. For example, 

emissions convergence would require that shocks to emissions relative to the mean (or 

relative to another of the sample) are temporary, implying that the logged relative emissions 

series is stationary. On the other hand, the existence of a unit root in the series would imply 

that shocks are permanent, and that emissions are not converging over time. In this case, 

authors such as Strazicich and List (2003), Chang and Lee (2008), Romero-Avila (2008), 

Westerlund and Basher (2008), and Christidou et al. (2013) find support for stochastic 

convergence of emissions. Barassi et al. (2008) and Barros et al. (2016) find no support for 

the stochastic convergence of emissions. The procedure testing for stochastic convergence 

using unit root tests is not flawless and, as Bulte et al. (2007) point out, ADF-type tests that 

                                                           
3 The concept of convergence originates from Solow’s Neoclassical Growth Model, indicating that a backward 
area will keep developing faster than a developed area until the gap between the two regions vanishes, and the 
economic growth of each region will then be maintained at a steady state (Li and Lin, 2013). 
4 The issue of convergence has recently attracted attention in the energy and environmental literature. See 
Pettersson et al. (2014), Acar et al. (2018) and Payne (2020) for surveys of the literature on emissions 
convergence and a much more detailed review. 
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do not allow for structural breaks could lead to a bias against rejecting a false unit root null 

hypothesis. Several authors have recommended allowing for exogenous or endogenous 

structural breaks and studies that allow for structural breaks are likely to be more reliable 

than those that do not.5  

List (1999), one of the first to apply the concepts of cross-convergence, 𝛽𝛽-convergence, 

and stochastic convergence in greenhouse gas emissions, finds convergence in emissions of 

nitrogen oxides and sulfur dioxide across US regions, from 1929 to 1994. Wang and Zhang 

(2014), using panel unit root tests, analyze differences in per-capita carbon dioxide emissions 

from 1996 to 2010 in China, finding evidence of sigma-convergence in all sectors, beta-

convergence in the farming, forestry, animal husbandry, fisheryand water conservancy, and 

construction sectors, and stochastic convergence in all sectors. 

In two seminal papers, Phillips and Sul (2007, 2009) maintain that traditional 

convergence tests are inadequate when technology is heterogeneous across countries and the 

speed of convergence is time-varying. In the stochastic convergence analysis, we do not test 

any convergence hypothesis, but we do test the unit root hypothesis. To account for 

temporal transitional heterogeneity, Phillips and Sul (2007, 2009) introduced cross-sectional 

and time series heterogeneity within the parameters of a neoclassical growth model. This 

convergence approach has certain advantages and has given rise to a substantial literature. 

At this point, Panapoulou and Pantelidis (2009) were the first to apply the PS club 

convergence approach to per-capita carbon dioxide emissions for the period 1960 to 2003, 

in 128 countries. Wang et al. (2014) follow the same procedure and identify three 

convergence clubs for carbon dioxide emissions intensity in China for the period of 1995-

2011, and Zang and Broadstock (2016) use the club convergence approach to study energy 

intensity in China. Their findings indicate the existence of three clubs of regions that differ 

significantly from one another. Burnett (2016) and Apergis and Payne (2017) provide 

substantial evidence for CO2 emissions convergence across all fifty US states. More recently, 

Haider and Akram (2019) exploit data on per-capita CO2 emissions for 53 countries over 

the period 1980-2016, although their results do not support the null hypothesis of absolute 

convergence and support the evidence of two club convergence of total emissions and 

                                                           
5 According to Perron (1989), failure to allow for structural breaks in the variables may lead to wrong 
conclusions regarding the order of integration of the variable and, as is well-known in the unit root literature, 
ignoring a structural break in the data may lead the test statistic to be biased toward non-rejection of a false 
unit root hypothesis. A unit root with structural breaks can reduce the possibility of falsely accepting a unit root 
in the series tested and, as Montañés et al. (2005) demonstrate, the omission of a break causes significant 
distortions in unit root tests, potentially leading to mistaken inferences.  
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emissions from gas and petroleum consumption, while three clubs are found in the case of 

per-capita carbon dioxide emissions from coal. 

 

3. Data 

The regional convergence process is analyzed considering the greenhouse gas emissions for 

20 Latin American countries in the period 1970-2015.6 The data that we use to test 

convergence in this context are taken from the Emissions Database for Global Atmospheric 

Research (EDGAR), measured in annual tons per-capita and per-GDP, respectively.7 To 

normalize the data, the study uses the natural log of per-capita/per unit of GDP greenhouse 

gas emissions.8 Additionally, we obtain information and disaggregate the total greenhouse 

gas emissions intensity, in its components, by fuel source and polluting sector. 

These data follow a structure of annual time series for the period 1970-2015, collected 

for all Latin American countries. The countries we consider are: Argentina (ARG), Brazil 

(BRA), Bolivia (BOL), Chile (CHL), Colombia (COL), Costa Rica (CRI), Cuba (CUB), 

Dominican Republic (DOM), Ecuador (ECU), Salvador (SLV), Guatemala (GTM), Haiti 

(HTI), Honduras (HND), Mexico (MEX), Nicaragua (NIC), Panama (PAN), Paraguay 

(PRY), Peru (PER), Uruguay (URY), and Venzuela (VEN).  

Since our objective is to describe the long-run evolution of the time series and isolate 

dynamics at all other frequencies, we present empirical results from 𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) regressions 

performed on time series, filtered for business cycle fluctuations, using the Hodrick and 

Prescott (1997) filter, as suggested by Phillips and Sul (2007). The Hodrick-Prescott filter is 

used to separate the time series into trend and cyclical components (Hodrick and Prescott, 

1997) and the smoothing parameter (or the truncation parameter) is chosen following Ravn 

and Uhlig (2002), who recommend using a value of the smoothing parameter equal to 6.25 

for annual data, which is close to the value found in Baxter and King (1999).9 This filtering 

technique is well-suited for extracting long-run trends from the data, hence eliminating short-

                                                           
6 In this study, the start and end points were chosen according to the available data. Consequently, we use the 
time span 1970-2015 for greenhouse gas emissions per-capita and the time span 1990-2015 for greenhouse gas 
emissions per GDP. 
7 More information about this database can be found in: https://edgar.jrc.ec.europa.eu/.  
8 In time series analysis, this transformation is often considered to stabilize the variance of a series. 
9 The smoothing parameeter penalizes the acceleration in the trend relative to the business cycle component. 
Note that the PS methodology is used only on the trend of the variables, thus the Hodrick-Prescott filter is 
applied to the natural log of the greenhouse gas emissions intensity. 

https://edgar.jrc.ec.europa.eu/
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run erratic behavior. We adopt this procedure because convergence is a long-run concept 

and only the trend component is used when applying the log t test. 

Given that the measure of greenhouse gas emissions intensity needed to analyze 

convergence is a matter of debate, we will define greenhouse gas emissions intensity as the 

ratio of emissions (in tons) per unit of GDP value and per capita. In most studies, per-capita 

emissions are used (Huang and Meng, 2013; Persson et al., 2007; Zhuang, 2008). 

Nevertheless, the applicability of per GDP in greenhouse gas emissions has also been 

examined extensively (Fan et al., 2007), since it reflects the productive efficiency of a country 

(the lower the greenhouse gas emissions per unit of GDP, the more environmentally efficient 

the country). Consequently, our study defines intensity as the ratio of greenhouse gas 

emissions to population and GDP, respectively.10 We use the STATA software for the 

empirical analysis.11 

Table 1 displays the summary statistics associated with each measure of greenhouse gas 

emissions. We observe that the mean value of greenhouse gas emissions per-capita (per 

GDP) is around 4.347 (0.424). The maximum and minimum values of greenhouse gas 

emissions intensity are approximately 12.460 and 0.784 (1.030 and 0.147), respectively. The 

disaggregated analysis by type of gas shows that the mean value of greenhouse gas emissions 

intensity is higher from CH4 and non-combustion. Furthermore, these series are also more 

volatile. 

[Insert Table 1 about here] 

Table 2 displays the summary statistics associated with per-capita greenhouse gas 

emissions for each of the 20 Latin American countries. The average ranges from 1.047 (Haiti) 

to 10.758 (Uruguay), whereas the average per GDP ranges from 0.214 (Costa Rica) to 0.782 

(Uruguay). The standard deviation or volatility in per-capita greenhouse gas emissions ranges 

from 0.136 (Haiti) to 1.151 (Chile) and the standard deviation in per GDP greenhouse gas 

emissions ranges from 0.011 (Guatemala) to 0.124 (Haiti). Ecuador, Salvador, Honduras, and 

Mexico (Brazil, Colombia, Cuba, Dominican Republic, Salvador, Haiti, Mexico, Panama, 

Paraguay, and Uruguay) all exhibit negative skewness in per-capita greenhouse gas emissions 

(greenhouse gas emissions per GDP). Finally, kurtosis is above 3 in Ecuador, Paraguay, and 

                                                           
10 It is difficult to compare total greenhouse gas emissions across countries because of variations in size and 
economic activity, so we instead analyze country-level emission intensities. Emission intensity normalizes 
emissions across countries to offer a more compatible apples-to-apples comparison (Zhao et al., 2015). 
11 To perform the log t test we use the routine logtreg developed for Stata users (Du, 2017). 
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Venezuela in per-capita greenhouse gas emissions, and the kurtosis of greenhouse gas 

emissions per GDP is higher than 3 in Bolivia, Mexico, and Venezuela. 

[Insert Table 2 about here] 

To provide a visual context of the time series behavior, Figure 1 shows the evolution of 

the greenhouse gas emissions intensity (per-capita and per GDP, respectively) between 1970 

and 2015. We can claim that greenhouse gas emissions per-capita has historically been higher 

in Uruguay, Argentina, and Venezuela. A similar pattern emerges with respect to greenhouse 

gas emissions over GDP, with Uruguay, Bolivia, Haiti, and Nicaragua having the highest 

levels per GDP.  

[Insert Figure 1 about here] 

Alternatively, drawing from the work of Barro and Sala-i-Martin, Figure 2 depicts the 

standard deviation of per-capita and per unit of GDP greenhouse emissions, respectively. 

According to Delagard and Vastrup (2001) and Rey and Dev (2006), sigma-convergence is 

measured by an index of dispersion, such as the variance or its square root. This is an initial 

approach to testing convergence and if the standard deviation decreases over time, it can be 

interpreted as evidence of sigma-convergence. The cross-sectional standard deviation is 

calculated according to the following expression: 

𝑆𝑆 = � 1
𝑁𝑁−1

∑ (𝑌𝑌𝑖𝑖𝑡𝑡 − 𝑌𝑌�𝑡𝑡)2𝑁𝑁
𝑖𝑖=1                                            (1) 

where 𝑌𝑌𝑖𝑖𝑡𝑡 denotes the greenhouse gas emissions intensity of country “i” at time “t” and 𝑌𝑌�𝑡𝑡 

is its mean for each year “t”. As a consequence, we have a series that computes the standard 

deviation of greenhouse gas emissions intensity for all countries in each year. Results are 

displayed in Figure 2. 

[Insert Figure 2 about here] 

In both cases, the dispersion at the end of the period is much lower than that observed 

at the beginning, which can be interpreted as evidence in favour of 𝜎𝜎-convergence. From 

1970 to 2015 (1990 to 2015) the cross-sectional standard deviation of per-capita greenhouse 

gas emissions (per GDP) decreases, indicating smaller variability and supporting sigma 

convergence. Furthermore, the coefficient of variation in Fig. 3 also shows a decreasing trend 
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in per-capita emissions, indicating convergence.12 Nevertheless, no decreasing trend is found 

in greenhouse gas emissions per GDP, indicating no evidence of sigma-convergence. 

[Insert Figure 3 about here] 

 

4. Methodology 

Since we are interested in analysing whether the convergence process of our set of countries 

is homogeneous and whether the countries form convergence subgroups, we will use an 

econometric analysis based on a convergence test developed by Phillips and Sul (2007, 2009), 

and in a subsequent analysis, we will explain why this convergence does or does not exist. 

All econometric analyses are conducted using log of per-capita/per GDP greenhouse gas 

emissions and, as is standard in the economic literature, we refer to convergence as a process 

in which several countries or regions tend towards equalisation of some indicator, such as 

per-capita income, development, health, or greenhouse gas emissions, as in our case. 

Phillips and Sul (2007) propose a new econometric approach for testing the convergence 

hypothesis and the identification of convergence clubs, using a nonlinear time-varying factor 

model and providing the framework for modeling transitional dynamics as well as long-run 

behavior. According to this methodology, groups of countries may converge to a steady state, 

which is common to all the countries of the same group but differs from other groups of 

countries.  

Phillips and Sul (2007) constructed an algorithm to identify clusters of convergence 

subgroups, a data-driven methodology that avoids a priori sample separation and can be used 

as a general panel to cluster individuals into groups with similar transition paths. 

The methodology tests the null hypothesis of convergence using a simple regression that 

includes a ratio of cross-sectional variance 𝐻𝐻1/𝐻𝐻𝑡𝑡, where 𝐻𝐻1 measures the variation at the 

beginning of the sample (𝑡𝑡 = 1), and 𝐻𝐻𝑡𝑡 represents the variation for every point in time. 

Taking the log of 𝐻𝐻1/𝐻𝐻𝑡𝑡, this ratio then measures the distance of the panel from the common 

limit. Using the heteroskedasticity and autocorrelation consistent with HAC standard error 

methods, the null hypothesis of convergence is rejected if the computed one-sided t-test, 

robust to heteroskedasticity and autocorrelation, is < -1.65 at the 5% significance level. This 

                                                           
12 We define the Coefficient of Variation (CV) as 𝐶𝐶𝐶𝐶 = 𝜎𝜎

𝜇𝜇
, where 𝜎𝜎 is the cross-country standard deviation of 

greenhouse gas emissions intensity and 𝜇𝜇 is the cross-country average of the same variable. 
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ensures that the t-ratio converges towards a standard N(0,1) distribution and, therefore, we 

will reject the null hypothesis of convergence whenever this t-statistic takes values lower than 

-1.65.13 

We consider 𝑋𝑋𝑖𝑖𝑡𝑡 the variable of interest, greenhouse gas emissions intensity (emissions 

per-capita and per GDP, respectively), with 𝑖𝑖 = 1, 2, … 20 (the 20 Latin American countries 

considered in this study) and 𝑡𝑡 denoting the time-span. We can break this variable down into 

a product of two components, as 𝑋𝑋𝑖𝑖𝑡𝑡 = 𝛿𝛿𝑖𝑖𝑡𝑡𝜇𝜇𝑡𝑡, where 𝜇𝜇𝑡𝑡 is the common component (i.e. a 

common trend in greenhouse gas emissions intensity) and 𝛿𝛿𝑖𝑖𝑡𝑡 is the idiosyncratic component 

measuring the distance between some component factor 𝛿𝛿𝑖𝑖𝑡𝑡 and the systematic part of 𝑋𝑋𝑖𝑖𝑡𝑡, 

capturing time as well as individual specific effects, and hence the deviation of country 𝑖𝑖 from 

the common path defined by 𝜇𝜇𝑡𝑡.
14 If 𝛿𝛿𝑖𝑖𝑡𝑡 converges towards to 𝛿𝛿, there is evidence in favour 

of the hypothesis of convergence. Since we cannot estimate 𝛿𝛿𝑖𝑖𝑡𝑡 directly, due to over-

parameterization because the number of parameters exceeds the number of observations, 

the common component is eliminated through rescaling by the panel average and defining 

the relative transition component as: 

ℎ𝑖𝑖𝑡𝑡 = 𝑋𝑋𝑖𝑖𝑡𝑡
𝑁𝑁−1 ∑ 𝑋𝑋𝑖𝑖𝑡𝑡𝑁𝑁

𝑖𝑖=1
= 𝛿𝛿𝑖𝑖𝑡𝑡

𝑁𝑁−1 ∑ 𝛿𝛿𝑖𝑖𝑡𝑡𝑁𝑁
𝑖𝑖=1

                                          (2) 

Eq. (2) measures the transition path for greenhouse gas emissions intensity relative to the 

panel average. The cross-sectional variation ratio 𝐻𝐻1/𝐻𝐻𝑡𝑡 is constructed as in Eq. (3) below: 

𝐻𝐻𝑡𝑡 = 1
𝑁𝑁
∑ (ℎ𝑖𝑖𝑡𝑡 − 1)2𝑁𝑁
𝑖𝑖=1                                                 (3) 

Notably, 𝐻𝐻𝑡𝑡 (i.e., the cross-sectional variation) tends to zero when long-term convergence 

exists and 𝑇𝑇, the sample size, moves toward infinity. Consequently, ℎ𝑖𝑖𝑡𝑡 should converge 

towards unity in the presence of convergence. However, when convergence does not hold, 

the distance remains positive as 𝑇𝑇 → ∞. Then, the null hypothesis of convergence (and non-

convergence) can be statistically tested using the log t regression: 

log(𝐻𝐻1/𝐻𝐻𝑡𝑡) − 2 log 𝐿𝐿(𝑡𝑡) = 𝑐𝑐 + 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 + 𝑢𝑢𝑡𝑡,   𝑡𝑡 = 𝑇𝑇0, … ,𝑇𝑇                 (4) 

This null hypothesis defines relative/conditional convergence and is analogous with the 

conditional sigma convergence for the case of panel data (Phillips and Sul, 2007). This null 

                                                           
13 The one-sided t-test is called the log t test due to the presence of the log t regressor in the equation. 
14 Note that 𝛿𝛿𝑖𝑖𝑡𝑡 is a random component, which absorbs the error term as a result.  



11 
 

hypothesis of convergence is rejected whenever parameter b in Eq. (4) is statistically lower 

than 0. Following Phillips and Sul (2007, 2009) we set 𝐿𝐿(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡. 

Nevertheless, rejecting the null hypothesis of convergence across the whole panel cannot 

rule out the existence of convergence across subgroups or clubs within the sample. If the 

convergence cannot be verified for the full sample, it should be investigated for the case of 

sub-groups or clubs. Phillips and Sul (2007) develop a data-based algorithm that identifies 

clubs based on the value of the dependent variable. First, this algorithm sorts the countries 

in descending order, according to their final values in the panel, and identifies whether 

countries can form a club based on the corresponding log t test. Second, it forms all possible 

core clubs 𝐶𝐶𝑘𝑘 by selecting the first 𝑘𝑘 highest countries, with 𝑘𝑘 = 2, 3 … .𝑁𝑁. The log t test is 

repeated within each subgroup of size 𝑘𝑘 to test if they can be merged in a same club. More 

precisely, this is accomplished by adding regions one by one to the group of the two highest 

emissions intensity regions at the beginning and running the log t test until the log t test for 

this group is larger than -1.65 and the null hypothesis of convergence cannot be rejected. 

Next, the log t test is repeated for this group and all the units (one by one) remaining in the 

sample, to check whether they converge. If no clubs can be found and the last group does 

not have a convergence pattern, then we will conclude that the members are diverging.  

 

5. Results 

We have separately applied the PS procedure to greenhouse gas emissions intensity 

(emissions per-capita, and per unit of GDP, respectively) and analyzed its decomposition by 

sector and gas type. 

An ordered logistic regression has been estimated to predict how the economic 

characteristics affect the likelihood that any given country will be a member of any 

convergence club.15 Many studies have examined convergence in emissions, but relatively 

little is known about the factors driving the formation of clubs. 

1.1. Convergence of total emissions intensity 

We first test the full panel convergence in greenhouse gas emissions intensity, with Table 3 

presenting the results. When the total sample is considered, the t value for log t test of the 

null hypothesis of overall emissions convergence is -0.5896 and -19.4160 for the greenhouse 

                                                           
15 We have repeated this estimation using an ordered probit estimator. Nonetheless, we only present the results 
using the ordered logit method since its explanatory power is greater. These results are available upon request. 
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gases emissions per-capita and per GDP, respectively, indicating that the null hypothesis of 

full convergence in greenhouse gas emissions per-capita is not rejected at the 5% level, but 

is clearly rejected when we measure that intensity as the ratio of greenhouse gas emissions 

over GDP, since the tabulated value (-19.4160) is much smaller than the critical value (-1.65) 

suggested by Phillips and Sul (2007).16 We cannot reject the null hypothesis of full 

convergence for the emissions per-capita, indicating the presence of a single convergent club. 

However, in the case of greenhouse gas emissions over GDP, since we reject the null 

hypothesis of absolute convergence, the implication is that club convergence exists and that 

countries considered in the analysis do not follow the same pace of convergence in terms of 

emissions per unit of GDP. This result is also supported by Figures 2 and 3, showing that 

the cross-sectional dispersion does not tend towards 0 in the case of emissions per GDP, 

and offering additional evidence of the absence of sigma-convergence.  

Phillips and Sul (2007) argue that rejection of the null hypothesis of full convergence 

does not necessarily mean that there are no convergence clubs and we can apply the cluster 

algorithm in order to identify some convergence clubs. In fact, the PS methodology 

determines clubs based on statistical methods rather than any artificial definition. We reject 

the null hypothesis of absolute convergence at the 5% significance level in emissions per 

GDP but, in order to identify some convergence clubs and their member countries, and the 

existence of any divergent behavior of any countries in the sample, we apply the cluster 

algorithm (Panel B of Table 3). The results of the club-clustering algorithm illustrate the 

presence of three distinct clubs and one non-converging country. Club 1 consists of Bolivia, 

Haiti, Nicaragua, Paraguay, and Uruguay, with the coefficient b on log t equal to 0.0814 and 

t-stat equal to 0.5302 (>-1.65), which fails to reject the null hypothesis of convergence. Club 

2 encompasses Brazil, Ecuador, Honduras, Mexico, and Venezuela, with b=0.2194 and t-

stat=1.3286 (>-1.65), which again fails to reject the null hypothesis of convergence. Club 2 

experiences the fastest convergence speed. Club 3 contains Argentina, Chile, Colombia, 

Costa Rica, Cuba, Dominican Republic, Guatemala, Peru, and Salvador, with b=0.0293 and 

t-stat=0.3919 (>-1.65), again failing to reject the null hypothesis of convergence, and the one 

with the slowest speed of convergence.17 Figure 4 represents the geographical distribution of 

the convergence clubs in a map of the Latin American continent. 

                                                           
16 We should note that the available data is clearly smaller for this definition of greenhouse gas emissions 
intensity, since it covers the period from 1990 to 2015. 
17 The coefficient b provides a scaled estimator of the speed of convergence parameter 𝛼𝛼, specifically b = 2𝛼𝛼. 
This coefficient reveals how fast the members of each club are converging towards the same steady-state, and 
the larger the b coeficient, the faster the convergence. See Appendix B, Phillips and Sul (2007).  
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[Insert Table 3 and Figure 4 about here] 

However, as Phillips and Sul (2009) noted, the cluster algorithm may lead to over-

estimation of the true number of clubs. Phillips and Sul (2009) propose to rerun the log t test 

across the sub-clubs to observe the possibility of merging clubs into larger clubs. To address 

this potential issue, we evaluate merging adjacent numbered clubs into larger clubs by 

performing club merging tests and re-using the log t test between the clubs to measure 

whether there is evidence in support of merging clubs into larger clubs, or between clubs.18 

Having determined 3 convergent clubs, the club-merging statistics shown in Panel C of 

Table 3 also reveal the presence of 3 convergence subgroups, and the results do not support 

the merger of any clubs. Consequently, when we measure emissions intensity as greenhouse 

gas emissions per-capita, we find the existence of a single pattern of behavior of greenhouse 

emissions intensity among the Latin American countries. Nevertheless, when we measure 

emissions intensity as the ratio of greenhouse gas emissions over GDP, we find 3 

convergence subgroups and the speed of convergence ranges from 0.01465 (0.0293/2) to 

0.1097 (0.2194/2). The club-merging algorithm results do not lead to any amalgamation of 

clubs and the results do not support the merger of Clubs 1 and 2, Clubs 2 and 3, or Club 3 

and PAN (i.e., the divergent country), so Panel B of Table 3 shows the final club classification 

and per GDP greenhouse gas emissions across 20 countries in Latin America, converged to 

three clubs whose t statistics are significantly greater than -1.65. Panama forms a divergent 

group and does not converge to any of the above clubs since it is converging to a particular 

transition path. The b values for Clubs 1, 2, and 3 are neither negative nor greater than 2, in 

absolute terms, indicating that the members of these clubs neither diverge nor converge to 

the same level, but converge conditionally and diverge with respect to their own emissions 

levels. The convergence speeds 𝛼𝛼 substantially differ across clubs. Countries in Club 1 

converge at a rate of 4.07 per cent, whereas the convergence speed in Clubs 2 and 3 is 10.97 

and 1.46 per cent, respectively. The fact that the b coefficient in Club 3 is lower than the 

coefficient in the rest of the clubs, but not significantly different from zero (t>-1.65), suggests 

that this is the weakest convergence club. Therefore, a common policy will not yield similar 

outcomes in the case of greenhouse gas emissions per GDP, unlike greenhouse emissions 

per-capita, because these ratios and these groups are not converging to a single transition 

path. 

                                                           
18 As can be seen from Table 3, the t-statistics of the club merging tests are smaller than -1.65 and, as a result, 
each coefficient is statistically significant, indicating that these initial clubs fail to pass the merging test. 
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The evolution of the average values of greenhouse gas emissions per GDP have been 

obtained for each of the estimated clubs and the results are presented in Figure 5. Clubs 1 

and 2 exhibit the highest values of the ratio at the end of the sample. The average of Club 1 

exceeds the average of Club 2 by 0.22 points at the beginning of the sample period, though 

this gap is reduced to 0.19 points in 2015, so the final distance between the emissions 

intensities of these two clubs has been reduced. Consequently, the average greenhouse gas 

emissions per GDP of the countries in Club 1 are always greater than those of Club 2. As 

can be seen, all the clubs estimated show a decreasing trend in greenhouse gas emissions per 

GDP. However, the decreasing growth rate up to the end of the sample is greater for Club 

3 (average growth rate of -1.85 per cent), than for Clubs 1 and 2 (-0.545 per cent and -0.536 

per cent, respectively). As can be seen from Table 4, for the three convergence clubs, the 

mean values of per GDP emissions vary; Club 1 has the highest mean value of 0.651, Club 

2 has the medium mean value of 0.436, and Club 3 has the lowest mean value of 0.314. 

Therefore, Clubs 1, 2, and 3 are defined as the highest emissions intensity club, the medium 

intensity club, and the lowest club, respectively. 

[Insert Figure 5 and Table 4 about here] 

1.2. Disaggregated analysis: by type of gas and sector 

As a robustness check of these results, and to gain a more complete picture of the whole 

region, we have applied the algorithm for carbon dioxide gas emissions (CO2), the major 

component of greenhouse gases, and for methane (CH4) and nitrous oxide (N2O) emissions. 

The results are presented in Table 5. We cannot reject the null hypothesis of absolute 

convergence when we use per-capita CO2 emissions. Nevertheless, we find two convergence 

clubs when we measure greenhouse gas emissions intensity as the ratios between CH4 

emissions or N2O emissions and population, respectively. The first subgroup consists of 

Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guatemala, Haiti, Nicaragua, Paraguay 

and Venezuela (Argentina, Brazil, Mexico, Paraguay and Uruguay) for CH4 emissions per-

capita (N2O emissions per-capita). The second convergence club is composed of Costa Rica, 

Cuba, Dominican Republic, Honduras, Mexico, Panama, Peru and Salvador (Bolivia, Chile, 

Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, Guatemala, Honduras, Haiti, 

Nicaragua, Panama, Peru, Salvador and Venezuela). 

The results for the 20 countries in CO2 emissions per GDP are presented in the second 

column of Table 5. The hypothesis of overall convergence is clearly rejected. From the 

application of the club algorithm, we find three convergence clubs. The first consists of 
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Bolivia, Ecuador, and Venezuela. Club 2 is the largest, and includes Argentina, Brazil, Chile, 

Dominican Republic, Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, and Peru. 

Club 3 includes Colombia, Costa Rica, Cuba, Panama, Paraguay, and Uruguay. 

In the case of CH4 emissions per GDP, the results are presented in the fourth column 

of Table 5. As with other gases, the null hypothesis of overall convergence is clearly rejected. 

Concerning club convergence, four clubs are identified, along with three non-converging 

countries. The first club corresponds to Haiti, Paraguay, and Uruguay. Brazil and Honduras 

form Club 2, and Club 3 - the largest - contains Argentina, Chile, Colombia, Dominican 

Republic, Ecuador, Guatemala, Mexico, Peru, Salvador, and Venezuela. Club 4 includes 

Costa Rica, Cuba, and Panama. 

Column 6 of Table 5 shows the ratio between N2O emissions and GDP. After rejecting 

the null hypothesis of convergence, we find three convergence clubs and one non-

converging country. Club 1 consists of Bolivia, Brazil, Honduras, Haiti, Mexico, Nicaragua, 

Paraguay, and Uruguay. The countries in Club 2 are Argentina, and Guatemala, while Club 

3 includes Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, Peru, Salvador, 

and Venezuela.  

[Insert Table 5 about here] 

Table 6 illustrates the findings of the club convergence methodology for the greenhouse 

gas emissions per GDP, by polluting sector. In light of the results of club convergence for 

aggregate emissions per GDP, we consider disaggregating total emissions into five broad 

compositions (buildings, non-combustion, other industrial combustion, power industry, and 

transport) in order to test for the existence of club convergence by sector. We consider this 

to be an original contribution, since few studies have focused on emissions convergence 

across industrial sectors. Looking at the convergence of greenhouse gas emissions by sector 

will provide better insight in terms of policy design. This subsection also permits us to 

investigate which polluting sector is responsible for the overall divergence. 

Table 6 reveals four convergence clubs with respect to buildings emissions, two 

convergence clubs for other industrial combustion, and three convergence subgroups in non-

combustion and transport emissions. We find evidence of full convergence for power 

industry emissions since, given that the t-statistic turn out to be positive, the null hypothesis 

of overall convergence cannot be rejected. 

Regarding building emissions per GDP, the results suggest four convergence clubs, 

consisting of Club 1 (2 countries), Club 2 (3 countries), Club 3 (4 countries), and Club 4 (9 
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countries). In terms of per GDP non-combustion emissions, the results reveal three 

convergence clubs: Club 1 (5 countries), Club 2 (10 countries), and Club 3 (4 countries). We 

find evidence of two convergence clubs in other industrial combustion emissions per GDP: 

Club 1 (17 countries), and Club 2 (2 countries). Table 6 shows the presence of three 

convergence clubs in transport emissions per unit of GDP: Club 1 (6 countries), Club 2 (9 

countries), and Club 3 (3 countries). In other words, convergence analysis results change 

depending on the indicator of GHG intensity used. 

[Insert Table 6 about here] 

1.3. Factors conditioning the formation of convergence clubs: Results from an 

ordered logit model 

The Phillips and Sul (2007, 2009) approach clusters regions according to their transition 

paths, revealed through factorizing the log of greenhouse gas emissions intensity. However, 

this alone does not prove the club convergence hypothesis (Azariadis and Drazen, 1990; 

Azariadis, 1996; Galor, 1996), so we follow Bartkowska and Riedl (2012), who propose a 

two-step procedure: the first is clustering and the second is application of an ordered logit 

model to identify variables that may drive club formation. The ordered logit regression model 

is designed for dependent variables that are ordinal but not interval level. 

Having identified the convergence clubs, we explain the formation of clubs across Latin 

America, and determine whether there are statistically significant differences in the factors 

underlying the formation of clubs. For this purpose, we employ an ordered regression model 

as first introduced by McKelvey and Zavoina (1975). The variable to be explained is the club 

to which a country belongs, which can take on values from 1 to 3, the number of clubs that 

the PS algorithm has estimated for the greenhouse gas emissions per GDP. The empirical 

model takes the following general form: 

𝑦𝑦𝑖𝑖
∗ = 𝑋𝑋𝑖𝑖′𝛽𝛽 + 𝜀𝜀𝑖𝑖 (𝑖𝑖 = 1, 2, … , 19)                                     (5) 

where the dependent variable 𝑦𝑦𝑖𝑖
∗ is a latent variable that takes on ordinal values from 1 to 3, 

since the ordered logit model assigns each country to one convergence club; 𝑋𝑋𝑖𝑖 is the set of 

explanatory variables and 𝑖𝑖 = 1, 2, … , 19 indicates the Latin American country (there is one 

country that does not converge to any emissions intensity club).19 𝛽𝛽 is a vector of regression 

coefficients. The dependent variable, ‘Club membership’, varies from 1 to 3 with an average 

                                                           
19 We have eliminated Panama (PAN) in the estimation since it is the divergent club. Therefore, we have three 
categories for our dependent variable (Clubs 1, 2, and 3). 
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value of 2.21 and a median of 2. According to the above results, the highest greenhouse gas 

emissions intensity club, the medium club, and the lowest club are assigned the values of 1, 

2, and 3, respectively. Consequently, the higher the value, the better the performance. 

Many factors affect GHG emissions intensity but, in this study, we only consider the 

following explanatory variables (𝑋𝑋𝑖𝑖): GDP per capita (constant 2015 $US) to measure the 

economic situation, the unemployment rate, industry share of GDP (to capture the 

composite effect), manufacturing industries share of GDP, services share of GDP, and total 

population density (to account for demographic factors). All the variables come from the 

World Bank’s World Development Indicators database. 

A summary of descriptive statistics for the variables is presented in Table 7. Due to the 

high dispersion of the GDP per capita, we include this variable in the logarithm form in our 

model. The shares of manufacturing, industry, and services are defined as the sums of the 

value-added of the manufacturing, industry, and services sectors as a percentage of GDP, 

respectively. We present the descriptive statistics of these key determinants by convergence 

clubs in Table 8. Countries in Club 1 have a higher unemployment rate, while countries in 

Club 2 have higher GDP per capita, industry, and manufacturing share. Countries in Club 3 

have higher services share and population density. Club 2 may be classified as a high-income 

group, Club 1 as a low-income group, and Club 3 as a middle-income group. 

[Insert Table 7 and 8 about here] 

Table 9 shows the results of our ordered logit estimations with 𝑦𝑦𝑖𝑖
∗ as the dependent 

variable, based on a maximum likelihood (ML) estimation method.20 

According to Table 9, GDP per capita, industry, manufacturing, services share of GDP, 

population density, and the unemployment rate are significant club membership predictors. 

The positive signs of GDP per capita, industry, manufacturing and services, and population 

density indicate that larger values help to explain the formation of the club classification. 

However, the unemployment rate bears a negative sign and, consequently, smaller values 

consolidate the grouping results. 

The estimated coefficient of log GDP per capita is 1.202, which is significantly positively 

correlated at the 1% level. The estimated value for industry share is 0.045, which is 

significantly positively correlated at the 10% level. The estimated value for manufacturing 

                                                           
20 The variables were selected according to a general-to-specific procedure in which we first estimate the model 
including more variables and then drop the insignificant ones. These additional results are available upon 
request. 
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share is 0.158, which is significantly positively correlated at the 1% level. The estimated 

coefficient for population density is 0.006 and is positively correlated at the 1% level. The 

services share displays a 0.120 coefficient significant at the 1% level, and unemployment is 

negatively correlated with club membership, with a -0.062 coefficient statistically significant 

at the 10% level. 

Hence, the ordered logit model shows that the differences in GDP per capita, share of 

industrial, manufacturing, or services sectors, population density, and unemployment rate 

play a significant role in determining convergence club membership, with a positive 

relationship found for all, except for the unemployment rate, which has an opposite effect. 

In Table 9, we also present the associated marginal effects on the probabilities of 

belonging to each club of the ordered logit model, in order to determine how regional specific 

characteristics affect the likelihood that a given country will be a member of a convergence 

club, and to facilitate the interpretation of our initial results. These effects refer to the average 

marginal effects for each club outcome. The marginal effects show the instantaneous change 

in the probability of belonging to a particular club, given a small change in an explanatory 

variable (Long and Freese, 2014). According to Table 9, increases in industry, manufacturing, 

and services share make memberships of Club 3 (Club 1-2) more (less) likely in varying 

degrees. By contrast, the higher the unemployment rate, the greater the probability of 

belonging to Clubs 1 and 2. GDP per capita and the population density increase the 

probability of belonging to Clubs 2 and 3.  

A one-unit increase in GDP per capita increases the probability of belonging to Clubs 2 

and 3. A 1% increase in the industry, manufacturing, and services share is associated with a 

higher probability of belonging to Club 3, and a lower probability of belonging to Clubs 1 

and 2.  A 1% increase in the population density increases the likelihood of being in Clubs 2 

and 3 by 0.02% and 0.10%, respectively. The sign of the average marginal effect of the 

unemployment rate implies that a 1% increase in the unemployment rate decreases the 

likelihood of being in Club 3 by 1.1%, the lowest greenhouse gases emissions intensity club. 

However, a 1% increase in the unemployment rate increases the likelihood of belonging to 

Club 1 and 2 by 0.89% and 0.25%, respectively. 

Results show that the share of industry value-added in GDP is positively associated with 

emissions efficiency, in line with the evidence that the energy structure of each polluting 

sector does not necessarily imply that the industrial sector is the least energy efficient sector, 
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in such a way that sectoral energy efficiency will depend on the composition and structure 

of each sector (Yu et al., 2015). 

[Insert Table 9 about here] 

 

6. Conclusions 

We have explored the convergence process of greenhouse gas emissions intensity across 

Latin American countries by identifying groups of countries converging to the same steady 

state without an ex ante classification. This study considers 20 Latin American countries, 

over the period 1970 to 2015, and not only provides evidence of convergence in greenhouse 

gas emissions intensity across Latin American countries, but also examines convergence by 

sector and gas source. This division allows us to establish more precise results. First, we 

examine the sigma-convergence and compute the cross-sectional deviation and the 

coefficient of variation (CV). Second, the shortcomings of the sigma convergence approach 

motivate us to utilize the recent methodology developed by Phillips and Sul (2007, 2009), a 

technique that allows us to test the null hypothesis of convergence for a pool of data, against 

the traditional approach of unit root tests or beta and sigma convergence.  

Results show clear evidence against the null hypothesis of absolute convergence and 

suggest the presence of four clubs in greenhouse gas emissions per GDP. Results also 

indicate multiple convergence clubs by polluting sector (building, non-combustion, other 

industrial combustion, power industry, and transport) and type of gas (CO2, CH4, and N2O). 

Furthermore, economic and demographic variables, such as GDP per capita, share of 

polluting sectors value-added in GDP, unemployment rate, and population density, are 

important predictors of the convergence club creation and can explain regional disparities 

and the heterogeneous behavior of the Latin American countries in emissions intensity. 

All these findings may contribute to future policies of environmental protection, since 

the convergence of air pollutants is a major concern for policy makers, and all countries 

pursue the goal of allocating emissions equally in the future. Understanding the distribution 

of greenhouse gases through time and space can help policy makers in designing policies to 

combat climate change and allocate emissions obligations, since developments in energy 

efficiency appear to be the main driving force for convergence in energy intensities and, by 

extension, in emissions intensity. Having knowledge of the convergence or divergence 

pattern in emissions is fundamental for suitable policy design, and we trust that our analysis 
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of the driving forces of country-level convergence in emissions intensitiy will also help Latin 

American policymakers determine where to invest their resources to mitigate greenhouse 

emissions more efficiently. Based on the results presented here, we conclude that differences 

in economic structure, GDP per capita, unemployment rate, and population density have 

played an important role in Latin America’s greenhouse gas emissions intensity. However, it 

is also important to remember that developed countries are, historically, the main drivers of 

the human-produced greenhouse emissions and most Latin American countries are still in 

the stage of accelerating industrialization and urbanization. 

One key question is whether differences in emissions across regions tend to increase or 

decrease over time (Burnett, 2016) and, for this reason, this study may provide valuable 

insights for policymakers to implement efficient national policies and to achieve proposed 

environmental goals. The very existence of clubs in greenhouse gas emissions invalidates a 

common environmental policy among Latin American countries, since they are converging 

to their respective steady states and each group of countries has its own characteristic 

behaviour. Country-specific emissions policies need to be designed and our results indicate 

that a common Latin American emissions policy is sub-optimal and, on the contrary, the task 

ahead must be to reduce emissions via a common policy for each club. In addition, the 

disparities reflected in our results suggest that convergence analysis results change depending 

on the indicator of emissions intensity used. 

One limitation of this study is that our results do not offer evidence of causality, a 

question that is left to future research. Other possible and promising extensions are 

expanding the determinants of greenhouse gases emissions, and extending the country 

sample to include developed and more developing countries. These questions are left for the 

future as very promising research lines. 
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Table  1. Summary statistics for the GHG series 
  Observations Mean Std. Dev. Minimum Maximum Skewness Kurtosis 
Panel A. GHG emissions intensity  
GHG emissions per capita 920 4.347 2.611 0.784 12.460 1.041 3.379 
GHG emissions per GDP 520 0.424 0.169 0.147 1.030 0.826 3.389 
Panel B. Gas emissions intensity 
CO2 emissions per capita 1000 1.841 1.353 0.055 6.660 1.169 3.761 
CO2 emissions per GDP 600 0.171 0.061 0.034 0.406 0.816 4.071 
CH4 emissions per capita 924 1.953 1.488 0.378 7.900 1.983 7.058 
CH4 emissions per GDP 520 0.191 0.133 0.036 0.678 1.285 4.000 
N2O emissions per capita 920 0.570 0.437 0.131 2.350 2.161 7.868 
N2O emissions per GDP 520 0.059 0.040 0.010 0.192 1.222 3.691 
Panel C. Sector GHG emissions intensity 
GHG emissions per GDP from building 520 0.024 0.011 0.006 0.064 0.777 3.191 
GHG emissions per GDP from non-combustion 520 0.261 0.167 0.052 0.861 1.220 3.917 
GHG emissions per GDP from other industrial combustion 520 0.041 0.029 0.002 0.170 2.203 9.099 
GHG emissions per GDP from power industry 520 0.037 0.025 0.000 0.123 0.676 3.067 
GHG emissions per GDP from transport 520 0.060 0.017 0.005 0.109 -0.660 4.496 
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Table  2. Summary statistics, by country 
Panel A. GHG emissions per capita           
Latin American countries Mean Std. Dev. Minimum Maximum Skewness Kurtosis 
ARG 8.953 0.549 7.880 10.150 0.374 2.587 
BOL 3.990 0.475 3.120 4.960 0.547 2.545 
BRA 4.780 0.622 3.610 6.080 0.306 2.473 
CHL 5.588 1.151 3.660 8.090 0.146 2.374 
COL 3.820 0.292 3.380 4.350 0.083 1.767 
CRI 2.926 0.285 2.450 3.550 0.402 2.469 
CUB 4.938 0.720 3.950 6.260 0.390 1.738 
DOM 2.775 0.434 2.070 3.680 0.274 1.620 
ECU 3.834 0.523 2.380 4.590 -0.919 3.571 
SLV 1.600 0.255 1.160 2.060 -0.094 1.858 
GTM 1.559 0.224 1.250 2.150 0.559 2.532 
HTI 1.047 0.136 0.784 1.290 0.020 1.768 
HND 1.998 0.161 1.690 2.290 -0.186 1.923 
MEX 5.889 0.526 4.810 6.980 -0.253 2.316 
NIC 2.729 0.426 2.110 3.660 0.807 2.594 
PAN 3.585 0.448 2.820 4.290 0.076 1.754 
PRY 4.973 0.499 4.110 6.140 0.613 3.060 
PER 2.422 0.401 1.890 3.290 0.511 1.963 
URY 10.758 0.803 9.230 10.460 0.199 2.175 
VEN 8.775 0.689 7.690 11.080 1.096 4.360 
Panel B. GHG emissions per GDP           
Latin American countries Mean Std. Dev. Minimum Maximum Skewness Kurtosis 
ARG 0.450 0.062 0.361 0.610 0.511 2.988 
BOL 0.705 0.114 0.597 1.030 1.655 4.757 
BRA 0.415 0.022 0.378 0.444 -0.534 1.672 
CHL 0.343 0.051 0.265 0.460 0.339 2.144 
COL 0.365 0.071 0.250 0.475 -0.069 1.709 
CRI 0.214 0.051 0.147 0.311 0.619 2.044 
CUB 0.315 0.083 0.200 0.422 -0.065 1.305 
DOM 0.322 0.053 0.223 0.391 -0.439 1.760 
ECU 0.436 0.057 0.359 0.537 0.446 1.821 
SLV 0.263 0.021 0.217 0.284 -0.935 2.660 
GTM 0.256 0.011 0.236 0.281 0.136 2.451 
HTI 0.596 0.124 0.395 0.754 -0.022 1.459 
HND 0.447 0.023 0.412 0.500 0.469 2.837 
MEX 0.364 0.013 0.329 0.388 -0.716 4.049 
NIC 0.616 0.058 0.523 0.730 0.146 2.272 
PAN 0.216 0.037 0.148 0.264 -0.365 1.802 
PRY 0.554 0.021 0.507 0.587 -0.446 2.306 
PER 0.299 0.043 0.239 0.372 0.140 1.681 
URY 0.782 0.114 0.566 0.933 -0.632 2.233 
VEN 0.518 0.045 0.439 0.638 0.589 3.287 
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Figure 1. Evolution of GHG emissions 
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Figure 2. Cross-sectional standard deviation GHG emissions intensity 
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Figure 3. Coefficient of variation GHG emissions intensity 
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Table  3. Convergence analysis in GHG emissions intensity 
Panel A. Overall convergence 

GHG emissions per capita GHG emissions over GDP 

𝑏𝑏�  coefficient t-stat 𝑏𝑏�  coefficient t-stat 
-0.0401 -0.5896 -0.8319 -19.4160* 

Panel B. Convergence clubs 
Club 1 [5] 

BOL, HTI, NIC, PRY, URY 

𝑏𝑏�  coefficient t-stat 
0.0814 0.5302 

Club 2 [5] 
BRA, ECU, HND, MEX, VEN 

𝑏𝑏�  coefficient t-stat 
0.2194 1.3286 

Club 3 [9] 
ARG, CHL, COL, CRI, CUB, DOM, GTM, PER, SLV 

𝑏𝑏�  coefficient t-stat 
0.0293 0.3919 

Non-converging [1] 
PAN 

Panel C. Club merging convergence analysis 

  𝑏𝑏�  coefficient t-stat 
Merging Clubs 1 + 2 -0.5457 -6.7722* 
Merging Clubs 2 + 3 -0.6526 -13.8369* 
Merging Club 3 + Non-converging -0.1239 -2.1868* 
Notes: * denotes statistical significance at the 5% level and indicates 
rejection of the null hypothesis of convergence at the 5% level (if the t-
statistic < -1.65). The term b coefficient stands for a parameter which is 
twice the rate of convergence of each club towards the panel average. The 
t-stat is the convergence test statistic and is a simple one-sided t-test with 
a critical value of 1.65. The numbers in brackets stand for the number of 
countries in a group. 
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Figure 4. Map of Latin America: Convergence clubs for GHG emissions per GDP 
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Figure 5. Average values Clubs 1 – 4 
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Table  4. Descriptive statistics of the convergence clubs 
Club Sample Size Mean Std. Dev. Minimum Maximum 

Club 1 5 0.651 0.125 0.395 1.030 

Club 2 5 0.436 0.061 0.329 0.638 

Club 3 9 0.314 0.084 0.147 0.610 
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Table  5. Convergence analysis by type of gas 
CO2 per capita CO2 per GDP CH4 per capita CH4 per GDP N2O per capita N2O per GDP 

Overall test Overall test Overall test Overall test Overall test Overall test 

𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 

3.6206 46.7658 -0.8280 -30.7629* -0.9630 -21.1219* -0.9415 -31.6068* -0.8026 -23.653* -0.9292 -34.4354* 

  Club 1 [3] Club 1 [11] Club 1 [3] Club 1 [5] Club 1 [8] 

    

BOL, ECU, VEN 

ARG, BOL, BRA, 
CHL, COL, ECU, 
GTM, HTI, NIC, 

PRY, VEN 

HTI, PRY, URY ARG, BRA, MEX, 
PRY, URY 

BOL, BRA, HND, 
HTI, MEX, NIC, 

PRY, URY 

    𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 

    0.0157 0.0764 0.4455 9.2462 0.3127 1.2926 2.2933 1.5465 0.0033 0.0416 

    Club 2 [11] Club 2 [8] Club 2 [2] Club 2 [15] Club 2 [2] 

    

ARG, BRA, CHL, DOM, 
SLV, GTM, 

HTI, HND, MEX, 
NIC, PER 

CRI, CUB, DOM, 
HND, MEX, PAN, 

PER, SLV 
BRA, HND 

BOL, CHL, COL, 
CRI, CUB, DOM, 

ECU, GTM, HND, 
HTI, NIC, PAN, 
PER, SLV, VEN 

ARG, GTM 

    𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 𝑏𝑏� coef. t-stat 

    0.2141 6.979 0.7785 0.6291 2.2712 3.5219 -0.0172 -0.4307 0.1004 0.2155 

    Club 3 [6] Non-converging [1] Club 3 [10]     Club 3 [9] 

    

COL, CRI, CUB, 
PAN, PRY, URY URY 

ARG, CHL, COL, 
DOM, ECU, GTM, 
MEX, PER, SLV, 

VEN 

  
CHL, COL, CRI, 

CUB, DOM, ECU,  
PER, SLV, VEN 

    𝑏𝑏� coef. t-stat     𝑏𝑏� coef. t-stat     𝑏𝑏� coef. t-stat 

    1.1902 21.751     -0.0558 -0.8514     0.3719 5.608 

            Club 4 [3]     Non-converging [1] 
            CRI, CUB, PAN     PAN 

            𝑏𝑏� coef. t-stat         

            0.5721 3.3532         

            Non-converging [2]         

            BOL, NIC         
Notes: * denotes statistical significance at the 5% level and indicates rejection of the null hypothesis of convergence at the 5% level (if the t-statistic < -1.65). The term b coef. stands for a parameter which is twice the rate 
of convergence of each club towards the panel average. The t-stat is the convergence test statistic and is a simple one-sided t-test with a critical value of 1.65. The numbers in brackets stand for the number of countries in 
a group. 
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Table  6. Convergence analysis by sector 
Buildings emissions per 

GDP 
Non-combustion 

emissions per GDP 
Other industrial combustion 

emissions per GDP 
Transport emissions  

per GDP 
Power industry 

emissions per GDP 
Overall test Overall test Overall test Overall test Overall test 

𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat 
-1.8568 -53.8368* -0.8347 -21.9009* -0.7082 -23.1413* -2.0743 -45.7836* 0.1724 0.8377 

Club 1 [2] Club 1 [5] Club 1 [17] Club 1 [6]   

BOL, HTI BOL, HTI, NIC,  
PRY, URY 

ARG, BOL, BRA,  
CHL, COL, CUB,  

DOM, ECU, GTM,  
HTI, HND, MEX,  
NIC, PAN, PER,  

URY, VEN 

BOL, ECU, HTI,  
HND, MEX, VEN   

𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat   

1.0909 0.8014 0.4836 1.9980 -0.0027 -0.0388 0.9128 2.6327     
Club 2 [3] Club 2 [10] Club 2 [2] Club 2 [9]   

ARG, ECU, NIC 
ARG, BRA, COL, 
DOM, ECU, SLV, 

GTM, MEX, PER, VEN 
CRI, SLV 

BRA, CHL, CRI,  
SLV, GTM, NIC,  
PRY, PER, URY 

  

𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat   

0.1887 4 -0.1325 -1.6426 2.5786 5.6231 0.2367 4.4422     
Club 3 [4] Club 3 [4] Non-converging [1] Club 3 [3]   

COL, GTM, HND, 
MEX 

CHL, CRI, CUB,  
PAN PRY ARG, COL, DOM   

𝑏𝑏� coefficient t-stat 𝑏𝑏� coefficient t-stat   𝑏𝑏� coefficient t-stat   

0.2568 1.2319 0.5431 2.8266     0.4782 0.9655     
Club 4 [9] Non-converging [1]   Non-converging [2]   

BRA, CHL, CUB, 
DOM, SLV, PAN, 
PER, URY, VEN 

HND   CUB, PAN   

𝑏𝑏� coefficient t-stat   
      

0.1270 3.2984                 
Non-converging [2]         

CRI, PRY               
Notes: * denotes statistical significance at the 5% level and indicates rejection of the null hypothesis of convergence at the 5% level (if the t-statistic 
< -1.65). The term b coefficient stands for a parameter which is twice the rate of convergence of each club towards the panel average. The t-stat is the 
convergence test statistic and is a simple one-sided t-test with a critical value of 1.65. The numbers in brackets stand for the number of countries in a 
group. 
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Table  7. Descriptive statistics of the ordered logit variables 
Variable Obs Mean Std. Dev. Minimum Maximum 
Club membership 494 2.211 0.833 1 3 
GDP per capita 520 5,773.956 3,450.580 1,134.138 1,5613.750 
Share of industry in GDP 514 28.571 6.529 16.294 57.747 
Share of manufacturing industries in 
GDP 513 15.795 3.483 6.232 28.311 
Population density 520 76.160 87.245 6.337 388.082 
Share of rural population 520 32.316 15.299 4.955 71.490 
Share of service industries in GDP 508 54.467 7.902 32.395 73.448 
Unemployment rate 500 6.699 3.548 1.580 20.520 
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Table  8. Descriptive statistics, by convergence club 

  GDP per capita 
Share of industry 

in GDP 
Share of manufacturing 

industries in GDP 
Share of service 

industries in GDP 
Unemployment 

rate Population density 

Club 1 
4,046.230 

(3,770.084) 27.514 (5.382) 14.879 (3.126) 50.191 (7.145) 7.531 (3.791) 81.065 (122.340) 

Club 2 
6,595.086 

(3,022.624) 32.523 (8.427) 16.679 (3.408) 52.064 (7.436) 6.114 (2.992) 43.489 (17.381) 

Club 3 
6,004.057 

(3,182.046) 27.789 (4.756) 16.426 (3.027) 56.472 (6.002) 6.919 (3.647) 95.276 (86.011) 

Notes: The entries are the mean values of the variables and the numbers in parentheses denote their standard deviations. 
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Table  9. Ordered Logit regression results 
 

Dependent variable: Club membership Marginal effects 

Explanatory variables  Club 1 Club 2 Club 3 
       
Log of GDP per capita 1.202*** -0.172*** 0.048*** 0.220*** 

 (5.514) (-5.856) (-4.709) (6.176) 
Share of industry in GDP 0.045* -0.006* -0.002* 0.008* 

 (1.929) (-1.963) (-1.823) (1.953) 
Share of manufacturing industries in GDP 0.158*** -0.023*** -0.006*** 0.029*** 

 (5.163) (-5.926) (-3.916) (5.765) 
Population density 0.006*** -0.001*** 0.000*** 0.001*** 

 (4.140) (-3.935) (-4.161) (4.201) 
Share of service industries in GDP 0.120*** -0.017** -0.005*** 0.022** 

 (4.551) (-5.185) (-3.415) (4.915) 
Unemployment rate -0.062* 0.009** 0.002*** -0.011*** 

 (-1.788) (1.747) (2.035) (-1.819) 

     
Observations 466    
Pseudo R2 0.173    
Note: The values in parentheses are the robust z-statistics of the corresponding coefficient. *** 
p<0.01, ** p<0.05, * p<0.1. 

 


