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NON-TECHNICAL SUMMARY

Research Question

Financial entities are highly interdependent. The 2007-09 global turmoil underscored the ne-
cessity of a more rigorous comprehension of the systemic risks associated with these intercon-
nections among banks. In this context, the network analysis and graph theory provide an
insightful methodology to elucidate both direct and indirect financial interlinkages. This paper
examines the network structure of the Argentine interbank money market (commonly known as
call market) using this approach, with the aim of describing its main topological characteristics.

Contribution

This paper provides a comprehensive network analysis of the Argentine unsecured interbank
money market, based on data from the Central Bank of Argentina (BCRA), from January
1st, 2003 to December 31st, 2017. Thus, the call market is represented as a network, where
financial institutions are nodes and the overnight loans among them are the links. Its topological
structure is analyzed, in order to investigate if it shows similarities with stylized network models.
These structural features are also compared with other interbank networks studied around the
world (a detailed survey of comparable empirical studies is included in the Appendix). Different
node centrality measures are computed. Additionally, the degree distributions of the network
are examined.

Results

The Argentine interbank network exhibits low density, as is usual in financial networks, and a
higher reciprocity than comparable random graphs. It displays short average distances and its
clustering coefficient remains above that of a random network of equal size. Both indicators
show values in line with those reported for other interbank networks around the world. Fur-
thermore, the network is prominently disassortative.

It is found that a higher centrality enables a node to settle more convenient bilateral interest
rates compared with the average market rate, identifying a statistical and economically signifi-
cant effect by means of a regression analysis. The degree distributions fit better to a Lognormal
distribution than to a Poisson or a Power Law. These results constitute a relevant input for sys-
temic risk assessment and provide solid empirical foundations for future theoretical modelling
and shock simulations.
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Abstract 

This paper provides an empirical network analysis of the Argentine interbank money 

market, commonly known as call market, based on data from the Central Bank of 

Argentina (BCRA). Its main topological features are described applying graph theory, 

focusing on the unsecured overnight loans settled from 2003 to 2017. The network, 

where banks are the nodes and the operations between them represent the links, exhibits 

low density, as is usual in financial networks, and a higher reciprocity than comparable 

random graphs. It displays a short average distance and its clustering coefficient remains 

above that of a random network of equal size. Both indicators show values in line with 

those reported for other interbank networks around the world. Furthermore, the network 

is prominently disassortative. Different node centrality measures are computed. It is 

found that a higher centrality enables a node to settle more convenient bilateral interest 

rates compared with the average market rate, identifying a statistical and economically 

significant effect by means of a regression analysis. The degree distributions fit better 

to a Lognormal distribution than to a Poisson or a Power Law. These results constitute 

a relevant input for systemic risk assessment and provide solid empirical foundations 

for future theoretical modelling and shock simulations. 
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1. Introduction 

Financial entities exhibit a high degree of interdependence. They forge interlinkages via both 

sides of their balance sheets, which are essential for efficient financial intermediation. The 

financial crises of the nineties and, fundamentally, the 2007-09 global turmoil underscored the 

necessity of a more rigorous comprehension of the systemic risks associated with these 

interconnections among banks. Additionally, those events highlighted the central role played 

by interbank money markets for a correct functioning of financial systems and for the 

effectiveness of monetary policies. 

In this context, the network analysis and graph theory provide an insightful methodology to 

elucidate both direct and indirect interrelationships that are continuously built between the 

multiple agents of financial systems. This approach allows us to better understand phenomena 

like financial contagion, network externalities, cascade failures, etc., which have been highly 

emphasized by recent literature specialized in financial stability (Bougheas & Kirman, 2014). 

This paper examines the topological structure of the Argentine unsecured interbank money 

market, commonly known as call market, from the vantage perspective of network theory. 

Banks conduct the management of a portion of their short-term liquidity positions through this 

market. The average interest rate settled, known as call rate, embodies a fundamental reference 

of the “cost of money” in Argentina. This short-term rate is a key benchmark for the 

determination of other longer-term rates in the economy. For this reason, the call market 

represents one of the most direct transmission channels at disposal of the Central Bank of 

Argentina (BCRA) to implement its monetary policy. It is one of the main markets where the 

monetary authority exerts substantial influence and it is crucial for defining the monetary 

conditions of the whole economy, such as the interest rates levels and the evolution of monetary 

aggregates. Hence the importance of examining the structural features of the network of loans 

that arise from this market, in order to assess its stability and systemic risks.  

Thus, the call market is represented as a network, where financial institutions are nodes and 

the overnight loans among them are links. The aim of this paper is to describe the structure of 

this network, from January 1st, 2003 to December 31st, 2017. Its main topological measures will 

be analyzed in order to investigate if it shows similarities with stylized network models. This 

task will enable us to draw conclusions, for instance, about its resilience to different types of 

disruptive events. 



3 
 

This document is the first comprehensive network analysis of the Argentine interbank 

market1. This line of empirical research has been growing extensively since the early 2000s, 

along with the development of computational technologies and a larger availability of data sets 

suitable for applying these methods and techniques. Similar studies were carried out on the 

money market networks of several countries, such as Italy (De Masi, Iori & Caldarelli, 2006; 

Iori et al., 2008), U.S.A. (Bech & Atalay, 2008), or Switzerland (Schumacher, 2017), just to 

mention a couple of examples. A detailed Table displayed in the Appendix summarizes the 

main topological measures of other comparable interbank networks analyzed in the world using 

an analogous approach. 

The time span of 15 years addressed in this paper for Argentina is one of the most extensive 

intervals examined so far, when compared with the existing empirical studies on financial 

networks. As a strategy to deal with such a long time frame, and in pursuit of more clarity, we 

subdivided it into six different stages. This allows a better description of the variability 

experienced by the network structure throughout these years, which, to some extent, tended to 

move together with the macroeconomic volatility of Argentina’s economy. 

The paper is organized as follows. The next section explains the main characteristics of the 

Argentine call market, the different monetary policy instruments and the minimum liquidity 

regulations imposed by the BCRA, which impact directly on the dynamics of money markets. 

Subsection 2.1 details the different stages in which the time period studied is analytically 

subdivided. Section 3 reviews the theoretical and empirical literature on financial networks and 

Section 4 describes the database used. In Section 5, the methodology applied is thoroughly 

explained and the different topological measures computed are discussed. The results are 

outlined in Section 6. Section 7 presents an econometric regression aimed at quantifying the 

effects derived from node centrality on the banks’ capability for negotiating a more convenient 

interest rate in their individual transactions in the call market. Finally, Section 8 lists some 

concluding remarks, policy implications and lines of research for future work.  

2. The Argentine interbank money market 

The call market is the Argentine traditional interbank market in which banks negotiate their 

liquidity positions with each other. The daily weighted average interest rate of these transactions 

 
1 A few preliminary results of a similar analysis were presented in the BCRA’s Financial Stability Report 

(Second Half 2018). 
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represents one of the most relevant short-term rates of the economy, as it is an essential 

reference for determining the other interest rates of the domestic financial system.  

The loans in this market are unsecured and are agreed between entities by telephone trading. 

They define bilaterally the interest rate of the transaction. Only institutions authorized by the 

BCRA can operate in this market. The vast majority of the loans are overnight, although a few 

longer-term transactions also take place. Financial institutions make a risk assessment of each 

possible counterparty and then define specific credit lines for each one (mainly, they determine 

the limit amount of money to be granted). Hence, when an entity needs liquid funds, it resorts 

in the first place to those banks with which it has credit lines available. This gives rise to 

repeated interactions between pairs of agents in the market. Network analysis is an approach 

that, precisely, allows for a comprehensive examination of these relationships that emerge along 

time and helps us to elucidate the structure of interdependencies that arises from the liquidity 

trail within the interbank markets. 

The bilateral transactions are compensated through the real-time gross settlement system 

called “MEP”2. The transfers of funds are not subjected to settlement risks because the 

monetary authority verifies, before the settlement of each loan, the existence of the 

corresponding funds in each account involved. 

In Argentina, there is another complementary market in which the financial institutions can 

negotiate their liquidity positions, known as “REPO market”. In contrast, this is a secured 

market and the transactions are conducted through an electronic platform. This fact makes it 

more transparent compared with the call market, since all the participants are enabled to see the 

bids and offers of the rest. Nevertheless, to operate in the REPO market it is mandatory to fulfill 

several costly conditions, referred to the volume of assets and equity of the bank (among 

others), that are often impossible to meet by a significant number of entities3. These sort of 

barriers to entry explain, at least partially, the still substantial role played by the call market in 

the local financial system. Unfortunately, the necessary information to analyze the REPO 

market is not available yet, so this study will focus only on the call market. 

Due to the key role of the call rate as a benchmark for other interest rates in the economy, the 

BCRA has used several instruments to influence its behavior. Since 2002 (in a context of a 

 
2 “MEP” stands for “Medio Electrónico de Pagos”. It is the Real-Time Gross Settlement (RTGS) system 

administered by the BCRA, developed in 1997. 
3 For example, in December 2017 only 58 financial entities were allowed to operate in the REPO market, 

out of a total of 77. 
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public debt default), the monetary authority started to issue its own short- and middle-term 

securities, called LEBAC and NOBAC4. These securities were designed to absorb or provide 

liquidity from/to the market, affecting therefore the interest rates and monetary conditions of 

the economy. Additionally, since 2004, the BCRA began to operate actively in the REPO 

market, in order to add complementary instruments to influence the liquidity conditions of the 

banks. A Central Bank’s repo is a secured loan of liquid funds to a financial institution, while 

a reverse repo is the opposite transaction (a sort of “secured deposit” that banks make at the 

Central Bank). Usually, these loans have a maturity of 1 or 7 days.  

In brief, since 2002 the BCRA has affected the liquidity conditions of the economy using 

mainly LEBAC, NOBAC and repos, trying to align the short-term interest rates with its policy 

objectives. Figure 1 shows the evolution of the call rate during these years, jointly with the 

interest rates of the BCRA’s most relevant monetary policy instruments. 

Figure 1 | Call rate and interest rates of monetary policy instruments 

 

2.1. Macroeconomic context 

Money markets in Argentina have faced wide fluctuations during the years under analysis, 

along with the general macroeconomic volatility experienced by the country. For that reason, 

 
4 LEBACs were first issued on 13th March 2002 (by Comunicación “B” 7155 of the BCRA), and 

NOBACs on 2nd December 2003 (by Comunicación “B” 8064). 

Source: BCRA. *Note: The Figure includes only the interest rates of the LEBACs with the 

shortest duration in each moment, provided that they are shorter than 105 days. Longer-

term LEBACs are less relevant to explain the behavior of the call rate. 
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the time period studied in this paper is analytically subdivided into six different stages, defined 

according to the development of exogenous factors which affected crucially the interbank 

network in these years. This approach is useful to detect similarities, breaks and continuities in 

the evolution of its structural features over time, and also consists in a helpful narrative strategy 

to explain more clearly the main events. 

The first stage comprises the lapse previous to the public debt restructuring, more precisely 

the months between January 2003 and June 2005. The economy was starting to recover from 

the deep crisis of 2001 and the financial system was facing many restrictions for its normal 

functioning, not only because of the widespread bank runs suffered the previous years, but also 

because of the sovereign debt default, which continually hindered local operations of many 

international financial entities. Within this first stage, the year 2003 is notably different from 

2004, for two main reasons. In general terms, the economic situation of Argentina was 

considerably healthier during the latter, but the other relevant factor, more specific to the topics 

here analyzed, was that in 2004 the REPO market was established, which provided additional 

tools for managing liquidity to a still weakened domestic financial system. 

Stage 2 is defined between July 2005 and December 2007, a period in which the economy 

strengthened its growth, after the debt restructuring and the surge of the upward trend of 

international commodity prices (Figure 2). Then, Stage 3 is characterized by the outbreak of 

the global financial crisis in 2008 and its subsequent impact on Argentina, so it is delimited by 

the months between January 2008 and February 2010. During 2008 the economic activity 

started to decline, but the main impacts of the crisis were witnessed in the first half of 2009. It 

was not until the second half of that year that the economy began to rebound. The fourth stage 

is signaled by the marked recovery from the crisis, characterized by a buoyant economic activity 

together with the worsening of both fiscal and external deficits (“twin deficits”), so it is defined 

between March 2010 and October 2011. 

At the end of October 2011, harsh FX controls were established by the government, 

introducing radical changes in regulatory frameworks, especially of the financial system. 

Capital mobility was strongly restricted and simultaneously many regulations were imposed on 

banks’ interest rates. Gross Domestic Product (GDP) has stagnated since then, giving rise to a 

period of recurrent macroeconomic fluctuations, without the presence of a growing medium-

term trend. The fifth stage is placed during these years, between November 2011 and November 

2015. As a consequence of the aforementioned regulatory changes, the call rate’s volatility 

exacerbated during that period (see Figure 1). 
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Figure 2 | Argentina Monthly Economic Activity Estimator* (EMAE) 

 

Since December 2015 until the end of the period covered in this paper, FX controls were 

completely relaxed and the regulations on active and passive interest rates were also liberalized. 

These last two years are included in the sixth stage. This lapse is characterized by the 

establishment of an Inflation Targeting regime, where the BCRA used a monetary policy 

interest rate as its main instrument to manage the monetary conditions of the economy.  

Table 1 | Analytical time stages 

 

In this context, the call rate reduced drastically its volatility and progressively resumed a more 

similar behavior to the one displayed before 2012. In Section 6, the topological features of the 

interbank network in each time stage are thoroughly analyzed. 

The number of financial entities decreased almost monotonically during the years under 

analysis. Starting from a total of 100 in January 2003, only 77 were active in December 2017 

(Figure 3). We employ a usual classification in the domestic financial system to study the 

dynamics of different types of banks in the network. It divides them into four subgroups, 

Stage Date Main Events

1 January 2003 - June 2005 Debt default. Beginnings of economic recovery.

2 July 2005 - December 2007 Debt Restructuring. Economic dynamism.

3 January 2008 - February 2010 Global financial crisis.

4 March 2010 - October 2011 Macroeconomic recovery. Twin deficits widening.

5 November 2011 - November 2015 FX-market restrictions. Interest rate controls.

6 December 2015 - December 2017 FX-market and financial liberalization. Inflation Targeting Regime.

Source: INDEC. *Note: Seasonally adjusted index, 2004=100. The data of the year 2003 

arise from a splice with the 1993 index. 
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according to the owner of the institution: State-Owned Banks (SOBs), Domestic Private Banks 

(DPBs), Subsidiaries of Foreign Banks (SFBs) and Non-Bank Financial Institutions (NBFIs). 

This classification, based on the structure and ownership of the equity of the institutions, is also 

useful as a proxy for the specific type of financial businesses in which each entity is specialized.  

Figure 3 | Number of entities in the financial system, by type 

 

The decrease in the number of entities is verified for all the subgroups. SFBs were the group 

that declined the most, going from 28 entities in 2003 to 16 in 2017. NBFIs also experienced a 

notorious reduction (from 22 to 15). Meanwhile, DPBs and SOBs showed a more stable 

evolution, given that the former group only declined from a total of 37 to 33 banks, and the 

latter remained between 12 and 13 entities during the whole period. Obviously, additional 

mergers, entries of new players and exits took place during the 15-year period studied (these 

events cannot be fully visualized in Figure 3), but the description of those detailed facts is 

beyond the scope of this paper.  

2.2. Minimum liquidity reserves 

The minimum liquidity requirements imposed by the BCRA affect crucially the interbank 

money market, both directly and indirectly. In Argentina, during the period under analysis, they 

were defined according to the contemporary deposits of each entity, with different requirement 

coefficients depending on their maturity (the longer maturity, the lower liquidity requirement). 

Liquidity reserves are computed as the monthly average amount of money deposited by the 

Source: BCRA. 
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banks in their Current Accounts (CA) at the BCRA. From 2003 to 2017, these requirements 

averaged 14% of total deposits, varying between 11% and 17% (taking into consideration all 

kinds of domestic currency deposits together). 

At the end of each month, the monthly average of banks’ current account balances at the 

BCRA must exceed these minimum levels to avoid financial penalties. Additionally, since 

1997, a daily liquidity minimum has also been required, defined as a proportion of the 

requirement of the previous month (most of the time it was 50%), which entities must comply 

with at the end of each day. 

The liquidity requirements constitute a regulation that causes substantial impact on the 

dynamics of interbank markets, since the banks tend precisely to resort to these markets to 

adjust their liquidity excesses or shortages, always considering the constraints imposed by the 

monetary authority.  

Figure 4 | Banking liquidity in domestic currency (broad definition) 

 

Nevertheless, it is worth noting that the Argentine financial system has preserved high levels 

of liquidity throughout the time period studied. Obviously, a significant heterogeneity existed 

among different entities, but the aggregate liquidity reserves of the system (contemplating cash, 

CAs at the BCRA, LEBACs and repos) remained on average at around 36% of total peso 

deposits, with a minimum of 23% during the beginning of 2003 (when the system was 

recovering from the previous crisis) and peaks over 40% at certain times (Figure 4). These 

peaks stand out in 2007, 2011, 2015 and 2017, all years signed by political elections, in which 

the perception of economic and political uncertainty in the country tends to increase. However, 

Source: BCRA. *Note: “CA at BCRA” represents the banks’ liquidity reserves deposited 

in their Current Accounts at BCRA. 
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there were no moments of extreme illiquidity in these years. Actually, this feature constituted 

a cornerstone of the Argentine financial system’s strength during the period. 

3. Literature review 

Systemic risk and financial contagion turned into prolific areas of research particularly with 

the outbreak of the financial crises during the nineties. Several theoretical models emerged to 

explain this kind of phenomena. For example, Kiyotaki and Moore (1997) or Bernanke, Gertler 

and Gilchrist (1999) developed the idea that the interdependences and weaknesses of agents’ 

balance sheets could generate an amplification mechanism of negative shocks, intensifying 

their persistence and also propagating their effects to a larger proportion of the system. Many 

other alternative propagation mechanisms were suggested, such as different types of fire sales 

models5 or liquidity risks (e.g., Cifuentes, Ferrucci & Shin, 2005). The seminal paper of Allen 

and Gale (2000) was a pioneer in describing financial contagion as a possible equilibrium result 

derived from the particular structure of the network of relationships among entities.  

The 2008 global financial crisis bolstered even more this strand of literature, as it 

demonstrated the huge social costs and externalities that can arise from a systemic failure 

(Bougheas & Kirman, 2014). For this reason, during the last ten years, academic researchers as 

well as policy-makers have devoted a good deal of attention to issues associated with the 

stability and vulnerability of financial systems as a whole and of separate entities individually6 

(FSB-IMF-BIS, 2009).  

Thereafter, many theoretical models have been developed to explain various types of network 

failures with subsequent impacts on contagion and systemic risk specifically related to certain 

structural properties of the underlying financial network. For example, a few papers focus on 

the network effects of precautionary liquidity hoarding (Aldasoro, Delli Gatti & Faia, 2015; 

Gai, Haldane & Kapadia, 2011). Others concentrate on network externalities arising from the 

uncertainty originated by the complexity of financial networks. Caballero and Simsek (2013) 

named this effect “complexity externality”: as the structure of interdependences among banks 

is hard for them to measure because of its complexity, this uncertainty makes them overreact 

to negative shocks, amplifying their initial impact on the system.  

 
5 See Shleifer and Vishny (2011) for a review of this literature. 
6 A review of different systemic risk measures applied to financial systems can be found in Markeloff, 

Warner and Wollin (2012). 
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In this context, network theory is an advantageous framework to address comprehensively the 

complex interconnections among financial institutions. It proved itself useful to assess financial 

stability, quantify systemic risks (Haldane, 2009) and also as a toolkit to study the externalities 

that could emerge for the entire system from the risk associated with a single entity. 

There is no clear consensus on whether a completely interconnected financial network reduces 

contagion and domino effects (Allen & Gale, 2000; Freixas, Parigi & Rochet, 2000) or actually 

fuels them (Battiston et al., 2012; Vivier-Lirimont, 2006). Interconnectedness among banks 

improves risk diversification, but at the same time it makes them more prone to contagion. In 

any case, from a financial stability perspective, there is broad agreement on the idea that banks 

should neither be too-big-to-fail nor too-interconnected-to-fail7 (Hüser, 2015, p. 1), as these 

types of institutions entail a potentially dangerous source of vulnerability to the whole system. 

Hence, network analysis provides us with tools to properly detect the most central entities, 

producing valuable inputs to design prudential policies that could prevent the emergence of 

negative externalities like the ones described above.   

Section 3.1 reviews the main theoretical and methodological concepts of network theory 

employed in this paper. Complementarily, Section 3.2 summarizes the empirical studies which 

examined the topological features of real interbank networks over the world. As it has already 

been mentioned, this study is part of the last group, as our objective is to elucidate the structural 

properties of the Argentine unsecured overnight money market. 

3.1. Network analysis and graph theory 

Literature based on network theory has been growing exponentially for many years, both in 

theoretical and empirical terms. It was enriched by contributions from multiple sciences and 

disciplines, from anthropology, sociology and psychology, to mathematics and physics 

(Granovetter, 1973; Lozares, 1996; Wasserman & Faust, 1994). From a mathematical point of 

view, the study of networks began to formalize thanks to the development of graph theory, 

which was born in 1736, when Euler published the solution to the problem of the “Seven 

Bridges of Königsberg” (Euler, 1736). 

Specifically, a network (or graph) consists of a set of agents, called “nodes” (or “vertices”), 

that establish different kinds of relationships among them, known as “edges” or “arcs”. Network 

 
7 For a deeper analysis of this topic, see Saunders, Smith and Walter (2009). 
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analysis allows us to deal with complex structures of edges and nodes in a comprehensive way, 

that would otherwise be extremely difficult to approach analytically. 

Some of the most prominent stylized network structures in theoretical literature can be 

understood and classified according to three main concepts (Albert & Barabási, 2002). The first 

one is the distance between every pair of nodes. It is defined as the number of edges along the 

shortest path connecting them. The second concept is the clustering coefficient, a key 

topological measure. It indicates the probability that two nodes (both connected to a third 

vertex) have a link between themselves. In other words, it quantifies the density of triangles in 

the graph. The third element is the degree distribution of the graph. The “degree” of a node 

reflects its number of edges, and, in fact, it is really unusual that all the nodes of a network have 

the same degree. The degree distribution of the different nodes in a network can be 

characterized by a distribution function, 𝑃(𝑘), which gives the probability that a randomly 

selected node has exactly 𝑘 edges (see Section 5 for a more detailed definition of these metrics). 

Graph theory was largely focused on regular networks until the 1950’s. The general model 

was developed by the German physicist Ernst Ising (1925) and it was based on a fixed number 

of nodes connected to the x nearer neighbors, where x was in general a fixed number equal for 

all the agents in the graph. This type of network is characterized by a high clustering coefficient 

and very long distances between pairs of nodes. The degree distribution tends to be strongly 

concentrated around the mean, when it is not a simple constant that gathers all the nodes (Albert 

& Barabási, 2002; Cowan, 2004). 

But since the 1950’s, it has become more frequent to deal with big networks with no apparent 

behavior patterns, which were described as random graphs. The Hungarian mathematicians 

Paul Erdös and Alfréd Rényi (1959) characterized formally the creation mechanism and 

properties of this kind of networks. In their model, given a fixed number of nodes, each pair is 

connected with a probability p. As p increases, the graph becomes more complete. Its average 

shortest distances are considerably shorter than in regular networks, its clustering is smaller, 

and its degree distribution approaches a Poisson. 

More recently, Watts and Strogatz (1998) introduced the small world networks, based on the 

fact that, despite the often large scale of many networks, most of them showed relatively short 

distances among their nodes. Formally, the peculiar feature of these networks is that, given an 

equal number of nodes, they exhibit a similar average distance to that of random graphs, but 

their clustering coefficient is significantly higher.  
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Almost contemporaneously, Barabási and Albert (1999) developed the concept of scale-free 

networks, studying the degree distributions of various empirical networks. In random graphs, 

the vast majority of the nodes have a similar degree, around the mean of the distribution. But 

the authors pointed out that real networks hardly ever show this property. Thanks to the increase 

of computing power, it became possible to scrutinize large-scale empirical networks (like 

Internet or biological networks) and they verified that in many contexts their degree 

distributions followed a Power Law. Mathematically, a quantity 𝑘 obeys a Power Law if it is 

drawn from a Probability Density Function (PDF) of the following form:  

𝑃(𝑘) ∝ 𝑘−𝛼, 

where 𝛼 is a constant parameter known as the exponent or scaling parameter. The most 

remarkable feature of this distribution is that it frequently originates extreme values very far 

from the mean, exhibiting heavier-tails than Poisson, normal or exponential distributions 

(which had often been used in previous theoretical models). This gives rise to the possibility of 

networks in which few highly-interconnected nodes coexist with many low-connected nodes. 

As a result, this kind of distribution implies that, with high probability, there exists a little group 

of nodes with disproportionate centrality and systemic importance in the network, linked with 

many others much more peripheral. 

The authors also discovered that this type of structure tends to appear in the context of large 

networks (e.g., thousands or millions of nodes) which also continue growing over time. Another 

peculiar property of this distribution is that it is scale-invariant, i.e., it keeps the shape of its 

moments despite the occurrence of proportional changes in the independent variable. Hence, 

the name of “scale-free” networks.  

In general, their average distance is a little shorter than that of random networks. But in both 

cases, when the number of nodes in the graph grows, their distances increase approximately at 

the same rate (Albert & Barabási, 2002). Additionally, scale-free networks often display a 

higher clustering coefficient (between two and five times higher), although they never reach 

the magnitudes that are usually registered in small world networks. 

Furthermore, Albert, Jeong and Barabási (2000) proved that scale-free networks are robust-

yet-fragile structures. They exhibit a surprising degree of tolerance against random errors, that 

is, they are very resilient to random failures or removals of a relatively large number of nodes 

(robustness). However, this error tolerance is coupled with a high susceptibility to targeted 

attacks. These networks break rapidly into isolated fragments when a few of the most connected 
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nodes are removed (vulnerability). This attribute has critical implications regarding the 

assessment of systemic fragility of interbank networks. If an empirical financial network 

displays this sort of behavior, then a rigorous identification of the central agents in the graph 

becomes a priority task for central banks and regulators who have the responsibility of assuring 

financial stability.  

Instead, random graphs show the converse risk structure. They easily absorb targeted attacks 

but tend to fall apart swiftly when random failures occur. This happens because those graphs 

do not have particularly central nodes of systemic relevance. 

In practical terms, the most crucial consequences of the Power Law distribution derive from 

the fact that it is fat-tailed, in comparison with Poisson or Gaussian distributions. This makes 

the existence of extremely unusual cases more common, which in the context of interbank 

networks should be carefully considered by macro-financial policy-makers. 

A note of caution is in order when trying to detect Power Laws in financial networks. Scale-

free properties tend to emerge in the context of large graphs, but interbank networks are usually 

rather small (compared with social or biological ones, for example). This makes it  troublesome 

to elucidate if a set of observations fits properly with one distribution or another, with serious 

risks of facing finite-sample biases (Clauset, Shalizi & Newman, 2009). Taking that issue into 

account, many recent empirical and theoretical papers focused simply on the task of detecting 

“heavy-tailed behaviors”. They test fits with other types of fat-tailed distributions in addition 

to Power Laws, not limiting themselves just to that latter alternative. These distributions show 

histograms with a slower decay than that of an exponential distribution as the variable of interest 

increases (in our case, the node degree): 

lim
𝑥→∞

𝑓(𝑥)

𝑒−𝑥
≠ 0 

On that basis, other heavy-tailed distributions fitted in empirical literature were, for instance, 

the Lognormal distribution (e.g., Sala et al., 2011), or the Weibull distribution (Kobayashi & 

Takaguchi, 2017). The main objective consists, therefore, in defining whether the degree 

distribution fits reasonably well with a Poisson (in which case the underlying network would 

be similar to a random graph) or if it displays statistically heavier tails (this would entail that it 

shows features closer to a scale-free network). 
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3.2. Empirical literature on interbank networks 

Despite the long-standing research on network theory, in general, and financial interlinkages, 

in particular, the lack of data availability constituted an obstacle for the investigation of 

empirical networks. This has changed over the last two decades, with the fast development of 

computer science and a more abundant availability of data sets reporting bilateral settlements 

between pairs of financial institutions (Barabási et al., 2009). Since then, empirical studies 

about real-life networks have started to grow exponentially. 

The earlier papers focused on simulating shocks and failures on interbank networks of balance 

sheet exposures, with the specific aim of assessing the strength of contagion channels and the 

resilience of the graph. The most eminent pioneer studies were those of Furfine (1999a, 1999b) 

for the United States and Wells (2002) for the UK, but analogous analyses were also carried 

out for Switzerland (Sheldon & Maurer, 1998), Sweden (Blåvarg & Nimander, 2002), Germany 

(Upper & Worms, 2002) and Belgium (Degryse & Nguyen, 2004).  

Boss et al. (2004) and Inaoka et al. (2004) carried out the first topological analyses of real 

interbank networks comparable with the one proposed in this document. The former was based 

on balance sheet exposures in Austria, while the latter examined the interbank payment system 

of Japan. Thereafter, a vast proliferation of this type of analyses took place. A detailed Table in 

the Appendix summarizes the main results of 27 empirical studies on interbank networks 

around the world (for a total of 18 countries, including the topological indicators presented here 

for Argentina). 

Overall, real-world interbank networks are sparse, which means that they are far from 

complete, as only a small fraction of all possible edges actually materializes. In almost all 

empirical cases the average reciprocity is higher than the density of the network, so the 

connections tend to be more reciprocal than in random graphs. This fact denotes that financial 

institutions prefer to interact with those agents with whom they have already established 

relationships in the past. Hence the relevance of taking into consideration the presence of stable 

interconnections when assessing and modelling the behavior of financial entities.  

Furthermore, interbank networks exhibit clustering coefficients higher than random graphs of 

the same size, but substantially lower than regular networks. They also display, in general, very 

short distances (between 1.5 and 4, on average). Thus, these structures can usually be 

characterized as small world networks.  



16 
 

Absolutely all the pieces of research reviewed conclude that interbank networks show 

disassortative mixing, which means that nodes with many edges tend to be connected to nodes 

with relatively less links, and vice versa.  

There is consensus that financial networks follow heavy-tailed distributions. Many of the 

studies cited in the Appendix ascertain that degree distributions fit reasonably well to a Power 

Law (with an exponent between 2 and 3.5), which means that these networks could be described 

as scale-free. Consequently, it is usual to find few banks with an extraordinarily high number 

of edges, coupled with a myriad of nodes far less interconnected. It is worth mentioning that 

the number of participants in financial networks tends to be comparatively low (for example, 

much smaller than those in biological or social networks), which complicates dramatically the 

statistical analysis of their degree distributions. 

Depending on the specific type of data analyzed, three different subgroups of financial 

networks can be clearly identified across literature: 1) balance sheet exposures; 2) payments; 

and 3) transactions in the interbank money markets. This paper is focused on the latter. This 

kind of networks is usually smaller than payment networks and is, on average, the sparsest 

among the three subgroups. In addition, they exhibit significantly lower clustering coefficients 

than payment systems, given that in general their values do not exceed 0.2, while in the second 

case the average clustering is around 0.5. The networks based on balance sheet exposures also 

show clustering coefficients slightly smaller than payment systems. As the empirical studies 

based on interbank money markets typically limit their scope just to overnight loans, the 

analysis presented here is also circumscribed to that subset of transactions, in order to report 

comparable results.  

The papers summarized in the Appendix refer only to financial networks located within the 

boundaries of a particular country, but research on international payment networks has also 

been carried out (e.g., Garratt, Mahadeva & Svirydzenka, 2011; Hattori & Suda, 2007; von 

Peter, 2007) using data sets from the Bank for International Settlements (BIS). 

Among the latest developments in the field, empirical studies based on multi-layer networks 

gained ground. They examine simultaneously the topological structure of various networks 

(“layers”), each of them representing a different type of relation among the same group of banks 

(e.g., payments, overnight loans, derivatives, assets holdings, exposures). The interaction 

between layers is also studied with the aim of performing a comprehensive assessment of 

systemic risk in a specific financial system (Aldasoro & Alves, 2016; Bargigli et al., 2015; 
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Langfield, Liu & Ota, 2014; Molina-Borboa et al., 2015). Additionally, as data availability 

increases, more studies are focusing on the intertemporal dynamics of empirical networks, 

complementing the insights derived from the standard static approaches (Holme & Saramäki, 

2012; Kobayashi & Takaguchi, 2017). 

Particularly, research about the Argentine call market is scarce. One of the most relevant 

recent papers was written by Anastasi, Elosegui and Sangiácomo (2010). They studied the 

effects derived from some characteristics of individual entities on the interest rate that they are 

able to negotiate in the market, applying econometric methods for panel data. They concluded 

that the banks’ ownership and the size of their assets affect significantly the interest rate at 

which they obtain or provide funds, as well as their liquidity and the concentration on the supply 

or demand side of the market. 

This paper presents the first comprehensive network analysis of the call market. For space 

reasons, its scope is limited to the description of the main topological measures of the network 

between 2003 and 2017, while an entire section is devoted to the study of its degree distribution. 

Finally, an econometric exercise is performed to estimate the impact of different centrality 

measures on the banks’ capability to achieve more convenient interest rates in their short-term 

transactions.  

4. Data 

The BCRA stores daily data about all the transactions carried out in the call market. The 

information available includes the lender and the borrower entities, the amount of money, the 

loan period, the currency involved, the interest rate settled and the type of rate (fixed or 

variable)8. Our sample consists of 294,912 loan operations, all of them conducted between 

January 2nd, 2003 and December 29th, 2017, by a total of 99 different entities (12 SOBs, 41 

DPBs, 27 SFBs and 19 NBFIs). 99.2% of the transactions were settled in Argentine pesos and 

91.6% were overnight. 

The data set is more precise than those available in many other countries, where they are often 

constructed by algorithms (usually, the one developed by Furfine, 1999b) which indirectly infer 

the overnight loans from broader databases that tend to gather a greater set of transactions 

 
8 More precisely, the operations which are settled by the same counterparties, with the same currency, 

period and type of interest rate are netted out on a daily basis. Hence, in those specific and isolated cases 

only the net result of the transactions during the day is registered. 
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between financial institutions (for example, Bech and Atalay (2008) for U.S.A., Rørdam and 

Bech (2009) for Denmark, Akram and Christophersen (2010) for Norway, Bräuning and Fecht 

(2012) for the case of Germany).  

With the aim of getting comparable results to those of other empirical studies on financial 

networks over the world, for most of this paper the sample is restricted to consider only the 

overnight loans in pesos with fixed interest rate. This subset comprises 269,413 operations 

(91.35% of the entire dataset).  

However, we also analyzed how the structural characteristics of the network change if longer-

term loans are taken into account too. It is worth anticipating that the resulting topological 

measures do not show significant alterations when those transactions are considered. The only 

exception is the assortativity of the network, which do display non-negligible changes with 

meaningful implications, as detailed in Section 6.2.  

For the construction of weighted networks, all the weights involved were always based on 

amounts of money expressed in millions of constant pesos of 2017, that is, in real terms 

(constant purchasing power)9. Lastly, the data on total deposits, assets and liquidity of each 

financial institution (used in the regressions of Section 7) emerge from the information collected 

by the BCRA. 

5. Notation, measures and methods 

The topological measures of a network are indicators that describe its structural properties. 

The study of network topology and its evolution over time are very useful to elucidate the 

features of the complex set of interconnections and interdependencies that arise among the 

multiple participating agents. 

Since the minimum liquidity requirement established by the BCRA for banks is based on the 

average amount of reserves deposited by them over the whole month, the monthly networks 

appear to be a better approximation of the genuine lattice of relationships among banks 

emerging from their liquidity management than the daily networks. In other words, as that 

 
9 To this purpose, the Consumer Price Index (CPI) issued by INDEC (corresponding to Gran Buenos 

Aires) was applied for the period between January 2003 and November 2006 and for the months between 

May 2016 and December 2017. For methodological reasons, other sources were used for the remaining 

months. We used an average of the CPIs issued by provincial statistical institutes from December 2006 

to April 2011, the CPI computed by the National Congress from May 2011 to July 2012, and the CPI 

issued by the Statistical Institute of the City of Buenos Aires from August 2012 to April 2016. Those 

multiple sources are the most reliable indicators available in each moment. 
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regulation has a direct impact on the call market, the networks which arise on average during 

the whole month reflect more appropriately the structure of interactions established by the 

financial institutions to negotiate their liquidity excesses or deficiencies. Daily networks display 

an inherently higher level of volatility (already high in Argentina for any frequency), which 

complicates the examination of actual interconnections, without adding substantial analytical 

insights. Accordingly, Finger, Fricke and Lux (2013), while investigating the Italian interbank 

network, emphasized that the daily networks could not be considered as being representative 

for the underlying “latent” network, as they often seemed to be random, but for longer 

aggregation periods the graphs actually contained significant non-random structure. In addition, 

they argue that networks based on lower frequency data show more stable properties and 

therefore less sensitive to the sample period selected. 

Hence, this paper will focus on the examination of monthly networks. This approach can also 

be understood noting that all the transactions in the call market are based on the previous 

existence of open credit lines among banks, which set up a “latent” network of 

interrelationships. Every day, some links “activate” and others do not, but they remain available 

in case of need. For these reasons, daily networks may be insufficient to account for the relevant 

structure of interconnections in the interbank market. 

5.1. Network size and representation 

The two most basic topological properties of a network are the number of nodes or vertices 

(N), which represent the participating agents, and the number of links (also known as “edges” 

or “arcs”) that exist between them (M). In our monthly networks, each node represents a bank 

that carried out at least one transaction in the call market during the month in question, while 

the edges are created when at least one operation was settled between a pair of entities during 

such lapse. 

These indicators provide a first description of both the size of the network and the density of 

its interconnections. They are also useful to estimate other topological measures and are utilized 

to calculate the computational complexity of the algorithms required to perform particular 

simulations. 

In addition to the typical visual representation of graphs (advantageous because of its clarity 

and for exploratory purposes), there exists a matrix representation. That approach is necessary 

to deal formally with such structures and to implement algorithms based on them. This type of 
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representation is known as Adjacency Matrix, a 𝑁 𝑁 matrix (denoted by “A”), whose 

components, 𝑎𝑖𝑗, are defined as follows: 

𝑎𝑖𝑗 =    
1      𝑖𝑓 |𝑤𝑖𝑗| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝑤𝑖𝑗 is the average amount of money traded during the month between the bank 𝑖 and the 

bank 𝑗. In our particular case, we set the minimum threshold at zero. It is worth recalling that 

the amounts of pesos involved are always expressed in constant purchasing power.  

In other words, each component of the matrix A is defined depending on whether at least one 

interbank loan was settled or not between each pair of 𝑖 and 𝑗 financial institutions during the 

month. For most of this paper, we will focus on the directed networks. It implies that 𝑎𝑖𝑗 and 

𝑎𝑗𝑖 are not necessarily equal, thus the matrix may not be symmetric. The direction of the flows 

of money (i.e., if they are being borrowed or lent by a specific bank) is relevant to describe the 

type of edges involved. Therefore, a link is incoming to the borrower and outgoing from the 

lender of the funds. 

Another type of matrix is the so-called Weighted Adjacency Matrix (denote by “W”), whose 

components are the aforementioned 𝑤𝑖𝑗, namely, the average amount of constant pesos 

negotiated by each pair of banks during the month. Weighted graphs are useful to take into 

account the importance of each edge relative to the others, given that a link which involves 

large amounts of money is not equivalent to other that canalizes relatively smaller sums.   

The average distance and the diameter of a network are two additional measures related to the 

size of the graph, which simultaneously consider its level of interconnectedness. The distance10 

(𝑑𝑖𝑗) between two nodes 𝑖 and 𝑗 is defined as the number of edges along the shortest path 

connecting them. Thus, the average shortest distance (L) is the arithmetic mean of all the 

distances in the network: 

𝐿 =
1

𝑁(𝑁 − 1)
∑ 𝑑𝑖𝑗
𝑖,𝑗;𝑖≠𝑗

 

It indicates how “close”, on average, are the agents to each other11. In turn, the longest distance 

between the nodes in the network is known as the “diameter” of the graph. Among the different 

 
10 Also called “geodesic distance”. 
11 In the case of disconnected networks (i.e., there exists at least a subset of nodes which is not linked at 

all with the rest), it is usually considered the average distance of the biggest subset of connected nodes. 
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algorithms developed to compute these indicators, the most frequently used is the one designed 

by Dijkstra (1959), which is applied in this paper.  

5.2. Connectivity  

The “density” or “degree of completeness” (δ) of a network is a measure that quantifies the 

percentage of the potential links that actually exist, given the number of nodes of the graph: 

𝛿 =
∑ 𝑎𝑖𝑗𝑖𝑗

𝑁(𝑁 − 1)
 

This indicator ranges from zero (for a set of nodes with no edges) to 1 (in which case the 

network is “complete”, as it is fully connected). Technically, the stylized network with the 

minimum degree of completeness is the so-called “tree network”, where all nodes are connected 

by exactly one path, and it has a density equal to 1 divided by the number of nodes. As 

aforementioned, real-world interbank networks tend to display low density. 

For directed graphs, it is often relevant to know if their edges are reciprocal, i.e., to find out 

to what extent the links that go from node 𝑖 to node 𝑗 are also directed in the opposite way, that 

is, from 𝑗 to 𝑖. The standard measure of the “reciprocity” (R) in a network is the following: 

𝑅 = 
∑ 𝑎𝑖𝑗𝑎𝑗𝑖𝑖𝑗

𝑀
 

However, a flaw of this indicator is that it does not take account of the fact that denser 

networks tend to have, consequently, a higher number of reciprocal links, due exclusively to 

random reasons (Costa et al., 2007). An alternative way to address this issue is adjusting R for 

the degree of completeness of the network under consideration: 

𝑅 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =  
∑ (𝑎𝑖𝑗 − 𝛿)(𝑎𝑗𝑖 − 𝛿)𝑖𝑗

∑ (𝑎𝑖𝑗 − 𝛿)2𝑖𝑗
=
𝑅 − 𝛿

1 − 𝛿
 

Values of this indicator above zero imply a larger reciprocity than a random network with the 

same density, while values below zero suggest a smaller level of reciprocity than it would be 

expected in a random context. The former case is known as a “reciprocal” network, and the 

latter as an “anti-reciprocal” one. These measures are very useful for evaluating the type of 

relationships and interdependences that emerge in financial systems. 
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A simple but quite fundamental concept in network theory is the “degree” of a node. This 

indicator captures the number of nodes that a specific node is connected to. Hence, the degree 

(𝑘𝑖) of a vertex 𝑖 is defined, for the case of an undirected network, as: 

𝑘𝑖 = ∑ 𝑎𝑖𝑗
𝑗∈𝑁(𝑖)

 

Where 𝑁(𝑖) is the set of neighbors of vertex 𝑖; that is, the set of nodes that have an edge (in 

any direction) with vertex 𝑖. In the case of directed graphs, the notions of in-degree (𝑘𝑖
𝑖𝑛) and 

out-degree (𝑘𝑖
𝑜𝑢𝑡) become relevant. 𝑘𝑖

𝑖𝑛 stands for the number of nodes with which node 𝑖 has 

incoming edges (in the context of this paper, the number of banks from which a bank 𝑖 has 

borrowed funds), while 𝑘𝑖
𝑜𝑢𝑡 is the number of nodes with which node 𝑖 possesses outgoing links 

(i.e., the quantity of banks to which bank 𝑖 has lent money): 

𝑘𝑖
𝑖𝑛 = ∑ 𝑎𝑗𝑖

𝑗∈𝑁(𝑖)

  ;  𝑘𝑖
𝑜𝑢𝑡 = ∑ 𝑎𝑖𝑗

𝑗∈𝑁(𝑖)

  

The average degree of a network is simply the arithmetic mean of its nodes’ degrees, and it 

constitutes a key measure of the connectivity among the participants of the system. The average 

out-degree and in-degree of monthly networks are computed similarly (by the arithmetic mean 

of  𝑘𝑖
𝑜𝑢𝑡 and 𝑘𝑖

𝑖𝑛 for all 𝑖, respectively), with the purpose of studying the different levels of 

connectivity displayed by lenders, on the one hand, and by borrowers, on the other. 

A prominent and associated indicator is the node strength (𝑠𝑖). It is the sum of the weights of 

all the edges of a node; that is, the sum of the amounts of money involved in all the links of 

vertex 𝑖: 

𝑠𝑖 = ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)

𝑗∈𝑁(𝑖)

 

The strength of a node can be understood as a measure of the intensity of its interactions, and 

not just as an absolute level of connectivity (as is the case of the degree). It is convenient to 

assess in a different way the relevance of the entities that operate large amounts of money per 

month, with respect to the entities that may be connected to many others (i.e., display a high 

degree) but through low-value operations. As it was done for the degree, the in-strength (𝑠𝑖
𝑖𝑛) 

and the out-strength (𝑠𝑖
𝑜𝑢𝑡) of the nodes will be equivalently computed, but weighting the edges 

by the funds borrowed or granted, respectively: 
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𝑠𝑖
𝑖𝑛 = ∑ 𝑤𝑗𝑖

𝑗∈𝑁(𝑖)

  ;  𝑠𝑖
𝑜𝑢𝑡 = ∑ 𝑤𝑖𝑗

𝑗∈𝑁(𝑖)

  

Another key topological feature is the assortative mixing, or assortativity, of the nodes in the 

graph (𝜌𝑘𝑗). It refers to the preference of the nodes between the option of being connected with 

others of a similar degree to one's own or that of relating to a greater extent with those that 

exhibit a different degree. Many ways to compute this indicator were developed, but here we 

use the Pearson correlation coefficient between the degrees of nodes that share links, in line 

with Newman (2002), one of the seminal contributions regarding this matter: 

𝜌𝑘𝑗 =
𝑀−1∑ 𝑘𝑙𝑗𝑙 − [𝑀−1∑

1
2 (𝑘𝑙+𝑗𝑙)𝑙 ]

2

𝑙

𝑀−1∑
1
2 (𝑘𝑙

2 + 𝑗𝑙
2)𝑙 − [𝑀−1∑

1
2 (𝑘𝑙+𝑗𝑙)𝑙 ]

2 

Where 𝑘𝑙 and 𝑗𝑙 are the degrees of the vertices at the ends of the 𝑙th edge, with 𝑙 = 1, …, M. 

The assortativity coefficient 𝜌𝑘𝑗 characterizes the correlation between the degrees of connected 

nodes, and, as such, it ranges from -1 to 1. If it is positive, the network is said to show an 

assortative behavior (sometimes also called “homophily”), since it means that the nodes tend 

to be connected to other of a similar degree. If it is negative, the network is said to be 

“disassortative”, implying that low-degree nodes tend to attach to the high-degree nodes of the 

graph, and vice versa. The closer the coefficient is to 1 (or -1), the more intense is the assortative 

(or disassortative) behavior of the nodes. 

Just to mention a couple of examples, it has been found that social networks often display an 

assortative behavior (i.e., high-degree nodes prefer to connect with others of similar degree), 

while technological and biological networks tend to be disassortative (Newman, 2002, p. 4). 

Financial networks are prominently disassortative (as it can be verified from the evidence 

summarized in the Appendix), which means that financial institutions with few connections are 

more prone to establish links with banks of high degree, and vice versa. 

This fact has significant implications, both in terms of the network’s structural characteristics 

and in terms of its stability and systemic risk. For instance, disassortative networks are 

particularly vulnerable to targeted attacks on their highest-degree vertices, while assortative 

networks proved to be more resilient to them (Newman, 2002).  

Additionally, the clustering coefficient of the monthly networks is examined in this paper. It 

is a measure of the probability that two nodes which are neighbors of a same node also share a 

link themselves. The clustering coefficient of node 𝑖 is defined as follows: 
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𝑐𝑖 =
1

𝑘𝑖(𝑘𝑖 − 1)/2
∑𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ
𝑗,ℎ

 

Basically, it indicates whether two vertices, which are connected to a third vertex, have a 

connection between them; that is, it states if they form a triangle. The average clustering 

coefficient quantifies the density of triangles in the graph and is computed as the arithmetic 

mean of all the individual 𝑐𝑖. It is a measure of the density of interconnections within the 

network. A high clustering coefficient reveals the existence of stable and lasting relationships 

among the nodes, with all the potential consequences that it entails, which can be either positive 

(e.g., an enhanced resilience to random and relatively mild shocks) or negative (e.g., higher 

level of contagion when facing targeted and intense attacks). 

5.3. Centrality and concentration 

Centrality is a widely used concept in the context of social networks and it has been 

extensively studied for decades. It has several interpretations and implications, like the 

measurement of power, influence or control exerted by a node over the rest of the network. 

Moreover, centrality measures offer the possibility of ranking nodes according to their 

“relevance” in a graph. Thus, these indicators are key to detect too-interconnected-to-fail 

vertices, and consequently to estimate the potential vulnerability of a network, as the removal 

of those nodes could possibly result in a fast fragmentation of the graph (Martínez-Jaramillo et 

al., 2012). 

Several centrality measures have been developed, which allow to quantify the relevance of 

each node in a graph, based on different approaches. All the measures presented here are 

defined in such a way that a higher value is always interpreted as a larger centrality of a node 

in the network. This notion is closely related to the determination of the systemic importance 

(BIS, 2011) of a bank in the financial system, from the perspective of its interconnectedness 

with the rest. 

In the context of interbank markets, quoting Martínez-Jaramillo et al. (2012), a financial 

institution can be characterized as “central” in a network if it displays one or some of the 

following characteristics: 

• Possesses numerous linkages with other members of the network (degree). 

• The total amount of its assets, liabilities and/or flows in the network are large (strength). 

• Its failure could spread contagion in a few steps (closeness). 
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• Interacts with counterparts which are also relevant (eigenvector). 

• Many paths pass through it (betweenness). 

Degree Centrality (𝑘𝑖) is one of the most basic measures of network centrality. According to 

it, a node is more relevant in a network if it is connected to many other nodes, given that its 

failure could impact on them directly. For more specific purposes, it is also possible to calculate 

the out-degree centrality (𝑘𝑖
𝑜𝑢𝑡) and the in-degree centrality (𝑘𝑖

𝑖𝑛) of the nodes. In Section 6.3, 

the average total degree, in-degree and out-degree are computed for each of the four subgroups 

of entities mentioned in Section 2.1. In practice, the arithmetic means of 𝑘𝑖, 𝑘𝑖
𝑜𝑢𝑡 y 𝑘𝑖

𝑖𝑛 are 

calculated separately for each subgroup, in order to elucidate their different roles and level of 

prominence in the interbank market. 

A similar procedure is applied to compute the strength centrality of each subgroup, taking into 

account the total strength (𝑠𝑖) as well as the in-strength (𝑠𝑖
𝑖𝑛) and out-strength (𝑠𝑖

𝑜𝑢𝑡). A high 

level of Degree Centrality exhibited by a node does not necessarily mean that the institution 

has a strong impact on the others, as it could be the case that those various connections actually 

involve low amounts of money. In contrast, Strength Centrality is useful to assess the relevance 

of each subgroup with respect to the total amounts of liquid funds traded in the market. 

The Closeness Centrality (CC) of a node is based on how many intermediaries are required to 

pass through in order to reach it. This measure is associated with the capability of a node to 

spread contagion to the rest of the network, as it indicates “how far the node is from the others”. 

It is calculated as the inverse of the average length of the shortest paths from a node 𝑖 to all the 

other vertices in the graph. We use a normalized version of this metric, which allows us to 

compare its values homogeneously among graphs that do not have the same N: 

𝐶𝐶(𝑖) =
𝑁 − 1

∑ 𝑑𝑖𝑗𝑗
 

In order to find the average closeness of the network, we simply calculate the arithmetic mean 

of 𝐶𝐶(𝑖) for all 𝑖 ∈ 𝑁. It is also possible to compute this measure considering only the incoming 

or the outgoing edges of nodes, but, in this case, our research will focus exclusively on total 

(undirected) connections. 

Betweenness Centrality is associated with the strategic location of a node on the network’s 

communications paths. In the case of the call market, this type of centrality reflects the influence 

of a node on the liquidity channels within the system. Betweenness Centrality reveals how fast 

potential shocks can spread through the network, while other measures, like the degree or 
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closeness centrality, account for the probability of amplification of shocks to the neighbors of 

each vertex (Lublóy, 2006). 

The Betweenness Centrality (B) of a node 𝑖 is defined as follows: 

𝐵(𝑖) = ∑
𝜎𝑗ℎ(𝑖)

𝜎𝑗ℎ
𝑖≠𝑗≠ℎ∈𝑁

 

Where 𝜎𝑗ℎ is the total number of shortest paths between 𝑗 and ℎ, and 𝜎𝑗ℎ(𝑖) is the number of 

shortest paths between 𝑗 and ℎ that pass through vertex 𝑖. Dividing 𝐵(𝑖) by (N-1)*(N-2), the 

measure is normalized, so that it can be treated as a comparable indicator among graphs of 

different sizes. The average betweenness of the network is derived from the arithmetic mean of 

the normalized 𝐵(𝑖) for all 𝑖 ∈ 𝑁. 

The last centrality measure examined in this paper is the Eigenvector Centrality, first proposed 

by a famous contribution of Phillip Bonacich (1972). As its name suggests, the centrality value 

of node 𝑖 is given by the 𝑖th entry of the eigenvector (e) associated to the largest eigenvalue (λ) 

of the graph’s adjacency matrix (A): 

𝜆𝒆 = 𝐴𝒆 

This measure exhibits the peculiarity that it takes into consideration the centrality of the 

neighbors of a node to compute its centrality. It can be understood as the weighted sum of the 

direct and indirect connections of the node, at any length. Hence, it takes into account the entire 

pattern of the network to derive the indicator, with the aim of capturing the inherent complexity 

of the existing relationships in the graph. This measure exhibits some similarities with the 

paradigmatic PageRank algorithm, which is used by Google to rank webpages according to the 

relative importance of their connections, as proposed in the seminal paper of Page et al. (1999). 

Based on these centrality measures (and adding some control variables that will be detailed 

below), in Section 7 we estimate the empirical effect of a higher centrality on a bank’s capability 

to negotiate more convenient interest rates in the call market. Other very similar analyses were 

carried out by Bech and Atalay (2008) for the Federal Funds Market of U.S.A., by Akram and 

Christophersen (2010) for the interbank market of Norway, by Kraenzlin and von Scarpatetti 

(2011) for the Swiss market, and by Bräuning and Fecht (2012) for the German case. All these 

contributions verified the existence of a significant positive effect derived from a greater 

centrality on the ability to achieve better interest rates in interbank money markets. 
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This paper applies a similar methodology to the one used by Bech and Atalay (2008). An 

econometric regression is estimated by Ordinary Least Squares (OLS), including the required 

control variables to remove potential sources of endogeneity. After that, the robustness of the 

resulting coefficients is tested by changing alternatively the regressors included in the 

specification (always computing heteroskedasticity-robust standard errors). It must be noted 

that all the daily transactions are taken into account individually for these exercises (not their 

monthly averages). More details on this estimation are provided in Section 7. 

Finally, the centrality analysis is complemented by an assessment of the concentration of 

liquidity flows in the market. The typical Herfindahl-Hirschman indices are computed to 

measure the existing concentration in the lenders’ side of the market -IHH(L)-, on the one hand, 

and among the borrowers -IHH(B)-, on the other. 

𝐼𝐻𝐻(𝐿) =∑(
𝑣𝑖𝑗

𝑉
)
2

𝑖

 ;  𝐼𝐻𝐻(𝐵) =∑(
𝑣𝑗𝑖

𝑉
)
2

𝑖

 

Where 𝑣𝑖𝑗 and 𝑣𝑗𝑖 denote, respectively, the total amounts lent and borrowed by each entity 𝑖 

in a specific month (always expressed in real terms)12, while 𝑉 refers to the total traded amount 

of money in the network: 

𝑉 =∑𝑣𝑖𝑗
𝑖

=∑𝑣𝑗𝑖
𝑖

 

That is to say, IHH is defined as the sum of the squares of each entity’s share of the total 

amount of money traded in the market. IHH(L) and IHH(B) describe, respectively, the 

concentration of lending and borrowing by individual nodes in the network. These are indicators 

often used to measure market power and competition. 

IHH ranges from 0 to 1. A higher value indicates a greater concentration of liquidity among 

few participants. As its value decreases, the closer it is to 1/𝑁, the more competitive the market 

is, reflecting a more balanced situation regarding the liquidity management within the system. 

To obtain comparable measures across time, this index is normalized by adjusting it according 

to the changes in the number of nodes in the market: 

 
12 It is worth noting that 𝑤𝑖𝑗 and 𝑤𝑗𝑖 represent the average volume of money traded by each pair of 

entities 𝑖 and 𝑗 during a particular month, while 𝑣𝑖𝑗 y 𝑣𝑗𝑖 reflect, instead, the total sum of the funds traded 

by each pair of entities in a month. 
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𝐼𝐻𝐻∗ = 
(𝐼𝐻𝐻 −

1
𝑁)

1 −
1
𝑁

 

Consequently, these indicators can be treated in a homogeneous and comparable way across 

networks of different sizes. 

Measuring the concentration of liquidity in the call market, both from its demand and supply 

sides, is remarkably advantageous to detect potential bottlenecks and/or key agents in the 

liquidity flows of the network. Additionally, this task is useful to examine the potential 

contagion derived from disruptive events or individual failures of nodes. 

5.4. Degree distribution 

With the purpose of determining which is the distribution function that best fits to the 

empirical degree distribution of monthly networks, the methodology proposed by Clauset et al. 

(2009) is applied. This procedure is one of the most widely used in the literature related to these 

topics (Gillespie, 2015; Martínez-Jaramillo et al., 2012), since it has proven to achieve more 

robust results than the other existing techniques. 

Our main objective is to find out if it is accurate to assume that the degree distributions of the 

monthly networks behave similarly to that of random graphs (which are best described by a 

Poisson), or if the empirical data fits better to a “heavy-tailed” distribution, such as, for 

example, a Power Law or a Lognormal (among other possibilities). In the latter case, “unusual” 

or disruptive events (far away from the mean or median of the distribution) exhibit a relatively 

higher probability of happening than in the former case. This fact gives rise to very significant 

consequences in terms of the systemic risk to which the network is subject in each case.  

As the Power Law distribution function diverges when the variable in question approaches 

zero, it is necessary to establish some lower bound (𝑥𝑚𝑖𝑛) in order to estimate its parameters, 

based on the empirical data. It is often the case that degree distributions follow a Power Law 

only in the tail, i.e., for values above the lower bound 𝑥𝑚𝑖𝑛, hence the critical role of an unbiased 

estimation of its real value.   

Table 2 presents the theoretical distribution functions that are fitted to the data in this paper, 

and the appropriate normalizing constant (C) required to ensure that the sum of probabilities 

over the domain of the variable totals 1. As it can be easily noted, parameter 𝑥𝑚𝑖𝑛 constitutes a 

necessary prerequisite to estimate the other parameters, which are in turn estimated by the 
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method of Maximum Likelihood (ML). The ML estimators are advantageous because they are 

consistent and asymptotically efficient13. 

Table 2 | Probability Density Functions tested for the fit to the empirical data 

  

The main contribution of Clauset et al. (2009) consists in the fact that they choose the value 

of 𝑥𝑚𝑖𝑛 that minimizes the differences between the probability distributions of the empirical 

data and the best-fit theoretical model (regardless of the specific model selected). A variety of 

methods are available to measure the distance between two probability distributions, but for 

non-normal data the most usual is the Kolmogórov-Smirnov or KS statistic, which is simply 

the maximum distance between the Cumulative Distribution Function (CDF) of the data and 

the CDF of the fitted model: 

𝐾𝑆 = max
𝑥≥𝑥𝑚𝑖𝑛

|𝐷(𝑥) − 𝑃(𝑥)| 

Where 𝐷(𝑥) is the CDF of the data, for values above 𝑥𝑚𝑖𝑛, and 𝑃(𝑥) is the CDF of the 

hypothetical model fitted by ML, for the same region 𝑥  𝑥𝑚𝑖𝑛. The proposed estimate of 𝑥𝑚𝑖𝑛 

is then the value of 𝑥𝑚𝑖𝑛 that minimizes KS. 

It is worth noting that the authors highlighted the fact that this methodology achieves more 

accurate results provided the sample has a size of about 1,000 or more observations. It 

constitutes a note of caution that must be taken into consideration while interpreting this type 

of empirical analyses in the context of financial networks, where the sizes of the data sets are 

often comparatively modest. In our case, the monthly networks examined are also relatively 

 
13 Clauset et al. (2009, Appendix B) show a summarized formal proof of this statement. 

Power 
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small, a fact that amplifies potential estimation biases, but very common particularly in 

networks based on interbank loans. 

In order to compute the variance of the parameter estimates (both for 𝑥𝑚𝑖𝑛 and for the others) 

the non-parametric “bootstrap” method is applied.  

However, once the parameters of a specific distribution are estimated to fit the data, it is also 

necessary to analyze whether that distribution represents a plausible description of the data or 

not. Regardless of the true underlying distribution from which the data set was drawn, it is 

always possible to fit any distribution. Hence, it is imperative to examine the goodness-of-fit to 

the real observations. 

To this purpose, Clauset et al. suggest a goodness-of-fit test which generates a p-value that 

measures the plausibility of the hypothetical model. The test evaluates the “distance” between 

the distribution of the empirical data and the hypothesized model. This distance is compared 

with distance measurements for comparable synthetic data sets generated from the same 

theoretical model, and a p-value is then defined as the fraction of the synthetic distances that 

are larger than the distance estimated by our original KS. If this p-value is large (close to 1) 

then the difference between the empirical data and the model can be attributed just to statistical 

fluctuations, but if it is small, the model would not be a plausible fit to the data.  

In practice, after deriving our initial KS statistic, we apply a Monte Carlo procedure, 

generating 3,000 synthetic data sets from the hypothesized distribution. After that, its 

parameters are estimated in the same way than before (by obtaining the 𝑥𝑚𝑖𝑛 that minimizes 

the KS statistic and estimating the other parameters by ML), individually for each simulated 

sample. Consequently, we derive 3,000 KS statistics, one for each synthetic data set. Finally, 

we compare them with the initial value arising from the first exercise. If the fraction of synthetic 

KS that are larger than the KS for the empirical data is “big enough”, the evidence would not 

reject the hypothesized distribution function as a reasonably good fit to the data. The authors 

choose a p-value  0.1 as threshold for rejection of the null hypothesis, but they also mention 

that some researchers could possibly impose the less stringent rule of p-value  0.05. 

This paper examines whether the degree distributions of the monthly networks (the total 

degree distribution as well as the in-degree and out-degree distributions) fit better to a Poisson, 

to a Power Law, or to a Lognormal distribution (see Table 2). These three theoretical 

distributions were chosen for several reasons. Poisson distribution describes behaviors similar 

to those of random graphs, while the Power Law is the paradigmatic case among heavy-tailed 
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distributions. Between these two extreme cases, the Lognormal distribution displays also heavy 

tails, but exhibits a greater flexibility than a Power Law. This feature usually allows for better 

fits to empirical data that behave more similarly to fat-tailed distributions but in a less strict 

way than a Power Law. 

After estimating the parameters of each distribution according to a best-fit to the data, the 

goodness-of-fit test mentioned before is carried out. Then, the performance of the different 

models is assessed by comparing the log-likelihood levels associated to each distribution, based 

on the empirical data and the parameter estimates. For instance, if the log-likelihood resulting 

from the Lognormal fit is higher than the one derived from the other proposed distributions, 

that would indicate that the Lognormal describes better the data set (in spite of the possible fact 

that in none of the three cases the hypothesized model is rejected by the goodness-of-fit test). 

6. Network analysis of the overnight money market 

This section is divided into four subsections. Subsection 6.1 reviews some basic topological 

measures associated with the size of the interbank network and their evolution over time, while 

6.2 describes its density and some characteristics concerning its connectivity. Subsection 6.3 

explores different centrality measures and studies the concentration of liquidity flows by 

individual banks. Finally, Subsection 6.4 focuses on the detection of the distribution function 

that best fits to the empirical degree distribution present in the graphs. The main objective in 

that subsection consists in elucidating statistically whether that degree distribution can be 

accurately described by a “heavy-tailed” distribution or not. This feature entails extremely 

significant insights when carrying out simulations or theoretical stress tests, which are typical 

exercises implemented by financial regulators and supervisors over the world. 

6.1. Size 

One of the salient features of the Argentine interbank network is its relatively small size. 

Nevertheless, this is a characteristic shared, in general, by overnight loans networks, as they 

tend to be smaller than graphs based on balance sheet exposures or payments. If we 

circumscribe to the former group of networks, the Argentine is not the smallest (cf. the 

Appendix), but it is substantially tinier than, for instance, the Fed Funds network in the U.S.A. 

(Bech & Atalay, 2008) or the Italian Overnight Money Market (Kobayashi & Takaguchi, 2017). 
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Specifically, the number of nodes (i.e., active financial entities in the call market) is not the 

lowest, compared with other interbank networks, but it is significantly smaller than the largest 

ones. A similar result emerges for the number of edges, although in this case it is relatively 

more evident that they are less numerous than in the majority of the other financial networks 

analyzed so far. 

Figure 5 | Monthly total number of active nodes and edges in the call market 

 

As mentioned in Section 5, the present analysis is focused on the monthly networks. During 

the period between the years 2003-2017, the monthly average of active nodes was 65.4±5.9 

entities, which established an average of 237.5±73.1 edges per month (considering the directed 

graphs). It is worth highlighting the large fluctuations suffered by these two variables, with their 

most pronounced movements taking place between 2003 and 2010 (Figure 5). The most intense 

volatility is observed in the first stage of the period under analysis, mainly associated with the 

fact that the financial system was still recovering slowly after the 2001 crisis and the sovereign 

debt default was not solved yet (which hindered the normal conduct of financial operations in 

the country). 2003 was the year with the lowest average number of active banks (53.6±4.2) and 

links (127.4±19.8)14. 

 
14 In 2009, in the context of the global financial crisis, the number of edges fell to a slightly higher value 

(128.1±18.9), but the decline was not that significant in the case of the participating nodes (61.4±1.8). 

Note: the red circles signal the monthly networks shown in Figure 6. A specific month of 

each stage was selected in order to display an introductory visual approximation of the 

network’s structural changes throughout the period under analysis. 
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Figure 6 | Argentine interbank networks (monthly average) 

 

As Argentina recovered from the crisis, the interbank network in 2004 started to grow 

considerably, both in terms of its edges and its active nodes (Table 3). The percentage of 

participating banks in the call market with respect to the total number of authorized entities in 

the system increased from 55% in 2003 to an average of 84.5% in 2007, and then stabilized at 

around 81.5% during the rest of the period15 (Figure 7). 

 
15 Only temporary deviations from that average took place in two specific moments: the 2008-09 global 

crisis and when strict capital controls were established in 2011. During the toughest months of the crisis, 

the participation ratio hit a minimum of 67.9% (May 2009). The other local minimum is observed few 

months after the implementation of capital controls, when the participation ratio reached a level of 

72.5% in April 2012. 

Note: Each node represents a financial entity (green: State-Owned Banks; red: Domestic Private Banks; 

light blue: Subsidiaries of Foreign Banks; dark blue: Non-Bank Financial Institutions). Each edge denotes 

the existence of at least one loan settled between a pair of entities during the month, and its color is defined 

by the lender entity. The visualization layout of the nodes was computed by the Fruchterman-Reingold 

algorithm (1991). 



34 
 

Table 3 | Nodes and edges: monthly summary statistics 

 
* Stage 1 is subdivided in two parts in this Table, with the aim of showing in more detail the values observed 

during 2003, year in which the minimums for the whole period took place. 2008 is omitted because the network 

experienced a continuous shrinkage all year long, so its average values are not illustrative of what really occurred 

in terms of the network’s empirical dynamics. 

Figure 7 | Active nodes in the call market, as % of total entities in the 

financial system 

 

During the second stage of the period under analysis the call market displayed the greatest 

dynamism, reaching peaks in terms of active nodes and links in 2007. Table 4 shows the average 

number of participating entities, by type, in each time interval. It is worth pointing out that SFBs 

are the only type of entities with a monotonic decrease in number, while the other entities 

showed an evolution more aligned with the behavior of the network as a whole. This 

phenomenon suggests that this sort of banks behave in a particular way, less synchronized with 

the rest of the system. Section 6.2 reviews the average connectivity levels of each type of entity, 

providing a complementary analysis, useful to describe the high effervescence of the network 

during this second stage of the time frame considered. 

Average
Standard 

Dev.

Coeff. of 

variation
Min. Max. Average

Standard 

Dev.

Coeff. of 

variation
Min. Max.

1 Jan-03 - Dec-03 54 4.2 7.7% 45 58 127 19.8 15.5% 99 162

1' Jan-04 - Jun-05 59 6.7 11.3% 47 71 189 58.0 30.7% 92 293

2 Jul-05 - Dec-07 72 3.6 5.0% 63 77 341 40.3 11.8% 259 436

3 Jan-09 - Feb-10 61 1.8 2.9% 57 64 128 18.9 14.8% 103 158

4 Mar-10 - Oct-11 67 2.3 3.4% 63 72 220 48.2 21.9% 144 319

5 Nov-11 - Nov-15 66 2.9 4.4% 58 71 251 29.7 11.8% 180 322

6 Dec-15 - Dec-17 66 1.5 2.3% 62 68 246 29.7 12.1% 168 289

Nodes Edges

DateStage*
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Table 4 | Average number of participants in the call market, by type of entity 

 

Throughout 2008, when the global financial crisis broke out, a notable contraction of the 

networks’ size materialized. A minimum of 57 nodes and 110 edges was reached in May 2009. 

The networks remained shrunk around those values until the beginnings of 2010, when they 

started to increase in size until they got to the levels at which they would then stay relatively 

unchanged until 2017, around a monthly average of 66 nodes and 243 edges. After the recovery 

from the crisis, the network showed substantial stability (perhaps in line with the economic 

stagnation that the country has experienced since 2011), only paused by a transitory decline 

during the early 2012, in a recessive economic context, after the introduction of severe FX 

controls that hindered the normal activity of the financial system. 

It is evident from Figure 5 that the number of nodes (N) and edges (M) tend to move together. 

In fact, from a log-log regression between those two variables, it is inferred that M α N3.45. This 

suggests that the average degree of the network -〈𝑘〉- increases with order N2.45, or, which is 

the same: 〈𝑘〉 α N2.45 (Figure 8)16. This result contrasts with the theoretical papers that assume 

that the average degree of the network remains fixed over time (that is, they presume implicitly 

that N and M grow simultaneously in a linear way)17. 

Broadly speaking, from Figure 8 it can also be concluded that this relationship was present in 

almost every time stage of the period, with the peculiarity that during the 2008 crisis the 

intercept seems to lie in a value lower than the average. Only 7 out of the 180 monthly networks 

analyzed were considered as outliers and excluded from the regression, all of them belonging 

to the first stage (January and February 2003, and the five months between November 2003 and 

March 2004). It can be appreciated that those individual networks took place in the most volatile 

 
16 This M-N elasticity is significantly higher than the elasticity estimated by Kobayashi and Takaguchi 

(2017) for the Italian Overnight Market, where they found that M α N1.5. 
17 See Dorogovtsev and Mendes (2003) for further discussion on this topic. 

SOB DPB SFB NBFI

1 Jan-03 - Dec-03 3 21 20 9 54

1' Jan-04 - Jun-05 4 27 19 9 59

2 Jul-05 - Dec-07 8 31 19 13 72

3 Jan-09 - Feb-10 6 25 18 14 61

4 Mar-10 - Oct-11 6 28 18 14 67

5 Nov-11 - Nov-15 7 29 16 14 66

6 Dec-15 - Dec-17 6 32 15 13 66

Total 

(average)
Stage Date

Type of entity
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context during the time span under study. After this unstable lapse, the identified relationship 

between N and M seems to stabilize around the aforementioned levels.  

Figure 8 | Log-Log relationship between N and M 

 

Other relevant indicators to measure the size of the networks are the diameter and the average 

shortest distance. The latter (considering the directed graphs) displayed an average of 2.8±0.5, 

while the diameter oscillated around 7.9±1.9. These two topological metrics followed similar 

trajectories over the years, and roughly co-moved with the number of active nodes and edges 

(Figure 9). 

Figure 9 | Average distance and diameter of monthly networks 

 

Note: the horizontal axis of the scatter plot depicts the natural logarithm of the number of 

nodes in each monthly network, while the vertical axis shows the natural logarithm of the 

number of edges. 
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The average shortest distance of the networks generally remained very stable, showing values 

between 2 and 3, with few exceptions (which, in any case, also stayed close to that range). 

During the first stage of the period, the average distance increased from a level lower than 2 to 

approximately 3, and then remained stable around that number from 2005 until 2008 crisis, 

when it temporarily fell again to nearly 2. In the years of FX controls it practically did not 

experience considerable changes (although its volatility was higher than in the second stage), 

exhibiting a mean of 2.8. In 2016-17 the distances appear to regain an incipient upward path, 

reaching and surpassing steadily the threshold of 3.  

These distances are clearly within the typical range of values displayed by the financial 

networks of the world (see the Table in the Appendix). They are comparatively quite short, 

which tends to support the hypothesis that also the Argentine interbank network exhibits the 

characteristics of a “small-world network”. 

The diameter followed a similar path, although it was substantially more volatile. It grew from 

4 (or less) in 2003 to an average of 8 in the second half of 2004, keeping roughly this mean 

level thereafter, until 2015. In Stage 6 of the period under consideration, it is also perceived a 

renewed rise in this indicator (though not abrupt), when monthly networks started to frequently 

display diameters noticeably above 9. 

In conclusion, the size of interbank networks in the call market experienced a significant 

volatility, specially between 2003 and 2010, when they first increased sharply until 2007, but 

then shrunk partially because of the global crisis, among other factors. Finally, after a fairly 

quick recovery from this event, the topological measures studied in this Section stabilized 

around values substantially higher than the initial ones. Since 2010, all these indicators referred 

to the size of the networks tended towards stabilization. It is worth mentioning that in 2016-17 

the number of edges showed an incipient decay, while the diameter and the distance increased 

marginally. Nevertheless, these movements are still too mild to draw definite conclusions about 

possible changes in the trends of these structural metrics. 

6.2. Connectivity 

Interbank networks of overnight loans usually exhibit low density (Hüser, 2015) in 

comparison with other types of networks studied in various sciences (e.g., biology, physics, 

social networks, among others). The Argentine financial network here analyzed is not the 

exception, since only 5.5%±1.1% of the potential number edges actually exists (given the 
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number of active nodes in each month). Thus, monthly networks are far from being “complete” 

(Figure 10). 

The density of the monthly networks followed a similar path to the other topological measures 

already described: from a starting point of 5% in average during the first stage, it went up to 

6.7% in the second (it reached peaks of 7.9%), but, during the crisis, it declined to a minimum 

of 3.5%. After a recovery of the density levels throughout the fourth stage, in 2011 it reached 

nearly 6%, at around which it would then stabilize until the end of 2017. 

Figure 10 | Density and reciprocity of monthly networks 

 

The reciprocity coefficient experienced much more volatility, hitting strikingly high values in 

2011. In general, it also shares an evolution comparable with the other metrics mentioned, but 

its variability makes it difficult to identify patterns as clearly as in the other cases. The average 

reciprocity of the network was 7.9%±3%, reaching a maximum of 17.7% in September 2011 

and a minimum of 1.8% in the beginnings of 2010. These figures are in line with other real-

world interbank networks, where the reciprocity is typically higher than the density. However, 

the average reciprocity level found for the Argentine call market is among the lowest ones. 

The reciprocity exceeded the level of density in 77.2% of the months. This implies that the 

network tends to show a higher reciprocity than a random network of equal degree of 

completeness. That is, the banks are prone to establish two-way relationships between each 

other with motivations different from a mere randomness. This fact highlights the importance 

of taking into account the existence of steady (non-random) relationships between the nodes 

within the call market (at least when evaluating its systemic stability). 
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Nevertheless, the evidence in this matter is not completely conclusive. Even though the 

reciprocity coefficient adjusted for the network’s density turns out to be 2.5%±3.1% (that is, in 

average above zero), the fact that, within only one standard deviation away from the mean, the 

indicator shows negative values weakens to some extent these conclusions. However, in none 

of the different time stages the adjusted reciprocity coefficient displayed a general average 

below zero. 

The assortativity coefficient was -16.3%±9.4%. This implies that the network is 

disassortative, which means that low-degree banks are more likely to interact with high-degree 

banks than with other low-degree ones (i.e., the network is not homophilic). It is the typical 

behavior found in all the other financial networks analyzed over the world. 

Figure 11 | Assortativity coefficient, according to the maturity of the loans considered 

 

This disassortative behavior (that is, a negative assortativity coefficient) was present in 94% 

of the months (Figure 11). The interbank network displayed a positive coefficient only in 10 

out of the 180 months included in the sample. Curiously, that sporadic assortative behavior 

arose mainly in months during which the reciprocity coefficient reached its highest level, in 

2011 and 2012, pointing to the fact that in those moments high-degree entities tended to create 

edges between each other, in a more reciprocal way than during the rest of the period under 

analysis. Nonetheless, when not only overnight loans but also all the other maturities are taken 

into account, the assortativity coefficient remains negative during the whole period. This fact 

reinforces the conclusion that the high-degree entities tend to create more links with low-degree 

entities, but it additionally suggests that the transactions settled with those low-degree banks 
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frequently have maturities longer than a day (while the most connected banks regularly carry 

out overnight transactions). 

Over the last seven years of the sample (2011-2017), the assortativity coefficient was in 

average less negative (that is, nearer to zero in absolute terms) than in the first years. 

Coincidentally, most of the topological measures of the network were relatively more stable in 

the last two time-stages. Hence, it could be deduced that, given the stability of other structural 

parameters, the network moderated its disassortative behavior (without becoming assortative) 

in that lapse. In contrast, during the most booming years in terms of the network’s growth 

(2003-07), disassortativity tended to accentuate.  

Thus, the identification of the high-degree nodes in the system becomes a central task, since 

they represent the cornerstone on which the other banks (less connected and with more volatile 

and smaller trading volumes) can build new links to manage their liquidity during buoyancy 

periods of the network’s activity. In other words, this core of highly interconnected entities 

represents a kind of “gear” that makes the market work, and where the less connected 

institutions resort when financial intermediation in general recovers dynamism in the economy.  

Figure 12 | Clustering coefficient 

 

On another note, the call market shows a level of clustering systematically above that of a 

comparable random network throughout the period studied, as expected a priori (Figure 12). 

There is only one exception in January 2009, in the context of the global financial crisis. It is 

usual to find in financial networks the creation of relatively stable clusters, not randomly 

established, because of the propensity to make lasting relationships among financial agents. 

This conduct allows them to reduce risks, for instance, derived from moral hazard and adverse 

selection, inherent to financial markets. 

Note: The average clustering coefficient observed in the empirical networks is compared with the clustering 

coefficient that would emerge from a random graph with the same number of nodes (N) and with the same 

average degree 〈𝑘〉. The average clustering coefficient of a random network is equal to: 〈𝑘〉/𝑁. 
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However, although financial networks tend to show clustering coefficients higher than those 

of random graphs because of the reasons stated above, at the same time the need of risk 

diversification puts an upper limit to the increase in that indicator. This trade-off explains why 

clustering tends to be higher in interbank networks than in random graphs but it simultaneously 

does not reach comparatively high values in relation with other types of real-world networks 

(for example, biological or linguistic networks usually show significantly higher coefficients). 

These clustering levels are similar to those that emerge in empirical scale-free networks. 

In broad terms, the case of Argentina follows these guidelines, displaying an average 

clustering coefficient of 19%±5.1%. The evolution of the indicator presents some noteworthy 

features. During the global financial crisis, the clustering levels of the network decreased 

towards values similar to those of a random network, while the number of edges and active 

nodes fell alongside. That means that in a context of systemic financial distress and of decline 

in the size and connectivity of the network, it showed some symptoms of “randomization”. This 

could be interpreted as a sort of defense mechanism of the network, which could turn it more 

resilient, avoiding the risks of contagion that usually arise when financial entities are very 

interconnected. 

After the crisis and the stabilization of the network structure, it maintained relatively higher 

and invariant clustering coefficients, around 20%, far from the values that would be seen in a 

comparable random network, until end-2017, when it seems to start showing a new incipient 

and gradual decline. 

Table 5 | Network’s topological measures, average of each period 

 

In summary, starting from very low levels in 2003, the number of active nodes and edges, the 

diameter, average distance, density and reciprocity of the network grew altogether in 

simultaneous with the economy until 2007. During this expansion, disassortativity accentuated, 

as also did the clustering coefficient. The global crisis produced a significant contraction in all 

Stage Date
Avg. 

Distance
Diameter Density Reciprocity Assortativity Clustering

1 Jan-03 - Dec-03 1.9 5.1 4.5% 6.6% -17.1% 20.5%

1' Jan-04 - Jun-05 2.4 6.4 5.3% 6.9% -23.0% 20.2%

2 Jul-05 - Dec-07 2.9 8.3 6.7% 8.1% -25.3% 23.9%

3 Jan-09 - Feb-10 2.7 7.6 3.5% 5.4% -18.7% 10.3%

4 Mar-10 - Oct-11 2.9 8.3 5.0% 9.1% -6.7% 16.9%

5 Nov-11 - Nov-15 2.8 8.1 5.9% 8.3% -11.1% 20.2%

6 Dec-15 - Dec-17 3.2 9.1 5.7% 8.2% -15.1% 17.0%
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these metrics, and banks’ behavior tended towards that of a random network, in terms of its 

reciprocity and clustering. In 2010-11 almost all of the topological measures experienced a 

notorious recovery, with the peculiarity that reciprocity reached historical peaks along with 

positive assortativity coefficients among entities. This phenomenon differentiates that recovery 

phase from the growth observed during the first years of the sample. In 2011, all the indicators 

got to levels that would remain rather stable in average until 2015. Not many significant changes 

were witnessed in the years 2016-17, with the exception of an incipient decrease of the relative 

clustering coefficient (compared with a random graph) and the density of the network, neither 

of them intense enough to draw categorical conclusions.  

6.3. Centrality and concentration 

The simplest centrality measure is the average degree of active nodes. Taking into 

consideration the whole period, financial entities exhibited an average total degree of 7.1±1.8, 

experiencing movements quite proportional to the number of edges in the network (Table 6). 

This indicator was clearly heterogeneous among the different types of entities. SFBs were the 

group with the largest average total degree in the network since 2003 until the global crisis, 

moment when DPBs acquired this central role until 2017. On the other end, NBFIs represented 

the group of entities with the lowest average degree during all the period under analysis. 

Table 6 | Average total degree, in-degree and out-degree, by type of entity  

 

The different types of entities assumed contrasting roles in the market. SOBs had an average 

out-degree always higher than their in-degree, becoming the prime liquidity providers of the 

market. These banks held the highest average out-degree of the network between 2004 and 2008 

(Figure 13), the most buoyant years in terms of the call market’s activity. The other entities that 

shared this role of liquidity providers were the DPBs, essentially between 2012 and 2017. 

Total SOB DPB SFB NBFI SOB DPB SFB NBFI SOB DPB SFB NBFI

1 Jan-03 - Dec-03 4.7 2.6 5.0 6.0 2.2 0.6 2.2 3.8 0.3 1.9 2.8 2.3 1.9

1' Jan-04 - Jun-05 6.2 5.0 6.0 8.7 2.2 0.2 2.6 5.7 0.7 4.8 3.5 3.0 1.5

2 Jul-05 - Dec-07 9.5 10.0 9.8 12.8 3.7 1.7 4.7 8.3 1.4 8.3 5.1 4.4 2.3

3 Jan-09 - Feb-10 4.2 3.7 4.5 5.0 2.8 1.1 2.4 3.0 0.7 2.6 2.0 2.0 2.1

4 Mar-10 - Oct-11 6.6 5.6 7.8 6.8 4.3 2.0 4.1 4.1 1.2 3.6 3.7 2.8 3.1

5 Nov-11 - Nov-15 7.6 6.0 9.3 8.0 4.7 1.8 4.4 5.4 1.9 4.2 4.9 2.6 2.8

6 Dec-15 - Dec-17 7.5 6.1 8.5 8.0 5.1 1.7 3.7 5.4 2.8 4.4 4.7 2.6 2.3

Stage Date
Average total degree Average in-degree Average out-degree
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In the opposite side of the market, SFBs erected as the main borrowers of the network, 

displaying the largest average in-degree during nearly the whole period. NBFIs were the least 

connected nodes (in the context of this subsection, the least central), playing a more peripheral 

role in the network’s lattice. Most of the time they showed a higher average out-degree than in-

degree (that is, those entities were more often lenders than borrowers), with the exception of 

the last stage, when the opposite occurred. In fact, their average in-degree experienced an 

evident growing trend, which explains how NBFIs increased, to some extent, their centrality in 

the market over the years. 

Figure 13 also confirms that DPBs had a crucial role not only from the point of view of 

liquidity provision to the network but also with regard to its absorption. That is, they reached a 

comparatively high average out-degree as well as in-degree, in relation with the other entities, 

during the whole period under consideration. 

Figure 13 | Average degree of nodes, by type of entity 

 

When the focus is changed to analyze node strength (Figure 14), conclusions do not differ 

significantly, but some key peculiarities deserve to be highlighted. During the most dynamic 

moments in terms of network’s activity, between 2005 and 2007, the main players of the market 

were fundamentally the SOBs, as lenders, and the SFBs, as borrowers. DPBs also performed a 

key role in both sides of the market (but with less clear predominance), while NBFIs displayed 

a substantially higher out-strength than in-strength. 

With the outbreak of the global crisis, the average node strength of the system collapsed, from 

levels of ARS 917±140 million to nearly 260±43 million in 2009. SOBs were the group of 

banks which experienced the most notorious decline. Since then, no group consolidated as the 

most central from the out-strength perspective. Despite the fact that since 2010 the nodes in the 

network have recovered an average total strength of ARS 370±60 million and remained around 
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those levels until 2017, no group emerged visibly as the most central liquidity provider in the 

market. That role was alternately shared by the different types of banks. 

A phenomenon that deserves to be highlighted is the increase of NBFI’s out-strength during 

the recovery from the crisis, as they boosted significantly the market liquidity in 2009 and 2010. 

This more central role of NBFIs in those years explains at least partially the rise in the network’s 

assortativity (or “homophily”) in the fourth stage of the period (Figure 11). During the post-

crisis recovery of 2010 and 2011, monthly graphs appeared to be more assortative, as NBFIs 

abandoned to some extent their usual peripheral role and were more thoroughly interconnected 

with the core of the network. 

Figure 14 | Monthly node strength, by type of entity  

(ARS millions, constant prices of 2017) 

 

Regarding the average in-strength, SFBs were undoubtedly the most central group, as they 

were the main borrowers in almost every month. Their prominence also experienced a decay 

during the crisis, but nonetheless they bounced back relatively fast and kept their hegemonic 

role (from the in-strength perspective) during the rest of the following years. On the other hand, 

when the average strength of DPBs is considered, the conclusions about their centrality drawn 

from the analysis of their average degree somehow weaken, but these banks anyway constituted 

the second main group of borrowers most of the time. It is also remarkable the change in the 

NBFIs’ behavior in 2016-17, when their in-strength centrality grew exponentially, to levels that 

made them effectively compete with the SFBs for the absorption of the market liquidity. This 

phenomenon may explain, to some extent, the increase in the network’s disassortativity during 

those two years, as well as the simultaneous reduction in the average clustering coefficient. 
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In order to study the concentration of lending and borrowing by individual nodes in the 

market, Figure 15 presents the evolution of the corresponding Herfindahl-Hirschman Indices 

(HHI), normalized according to the number of network’s participants in each moment18.  

Figure 15 | Herfindahl-Hirschman Index, normalized by the number 

of entities participating in the market 

 

As it can be inferred from the examination of the average node strength, the network was 

substantially more concentrated between 2003 and 2009 than in the succeeding years, more 

markedly in the case of borrowers -HHI*(B)- than in the case of lenders -HHI*(L)-. Both HHIs 

fell (i.e., the market reduced its concentration levels) over the years. Starting with values at an 

average of around 10% in 2003-04, after the global crisis those indices reached a plateau until 

2017, showing average figures of approximately 4.6% for lenders and 4.8% for borrowers.  

However, neither of the indices displayed an alarming concentration (in absolute levels) of 

market’s liquidity flows. The network was not significantly concentrated in a few hands, neither 

on the lenders’ nor on the borrowers’ side, although the HHI always remained at levels above 

those that would denote “perfect” competition. 

Another approach to study the network’s concentration is based on the analysis of the “net 

liquidity positions” of the entities in the market. They are the result of netting out all the gross 

flows traded by each entity during a whole month. That procedure allows us to elucidate how 

many banks were net lenders (i.e., input liquidity into the system) and how many were net 

 
18 When the index is near 100%, it indicates complete concentration of liquidity in one entity’s hands, 

and a value approaching zero represents a perfectly equitable distribution of the market shares among 

the banks, regarding the allocation or absorption of liquidity in the network. 
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borrowers in the network (i.e., captured liquidity from it) during a specific month. In 91% of 

the months analyzed there was a higher number of net lenders than net borrowers (Figure 16), 

which reflects that the former were less concentrated than the latter. Notwithstanding, the 

quantity of net lenders never exceeded the 67.5% of total entities, implying that the network 

always remained rather equally distributed between liquidity suppliers and demanders. 

Figure 16 | Distribution of entities according to their monthly net 

liquidity positions in the market 

(% of total active nodes in monthly networks) 

 

The decline in the network’s concentration was accompanied by an increasing percentage of 

entities that began to act as liquidity "intermediaries", meaning that they not only lent but also 

borrowed short-term funds in a same month in the call market (Figure 17). In 2003-04, only 

32% of the nodes were intermediaries in this sense. That number grew to an average of 51.8% 

in 2017. In other terms, towards the end of the time period analyzed, nearly half of the 

institutions participating in the interbank market acted occasionally as both supplier and 

demander of liquid funds during a certain month. This behavior points out the value that the 

call market entails for Argentine financial entities, as it facilitates significantly their liquidity 

management. 
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Figure 17 | Node classification, according to their role in the network 

 

As a complementary approach, with the aim of analyzing the average centralization of the 

network as a whole, Figure 18 presents three additional metrics (detailed in Section 5.3) based 

on the concepts of closeness, betweenness and eigenvector centrality. Each centrality measure 

was computed taking into account the undirected graphs, with the objective of evaluating the 

average centrality of the nodes in the network in absolute terms, interpreting it as a complex of 

stable relationships among financial entities. 

The different centrality measures provide rather divergent perspectives. One remarkable 

feature shared by them is that all seem to experience a sort of “break” in their paths after the 

global financial crisis of 2008. The evolution of the average total strength of the nodes illustrates 

eloquently the magnitude of the change experienced by the network’s structure that year (this 

metric was studied from a disaggregated perspective, by type of entities, a few lines above). 

This indicator registered a strong rise in the years 2005-2007, followed by a collapse with the 

2008 crisis, from which it would only partially recover in 2010, when it reached the values that 

would then remain quite stable until the end of the period. 

Betweenness centrality quantifies the average node centrality according to how many shortest 

paths go through each node, with respect to the existing total number of shortest paths in the 

network. When the network expanded between 2003 and 2007, this centrality measure 

decreased substantially, reaching its minimum level during the month in which the network 

showed the largest size of the whole period (August 2007). With the outbreak of the global 

crisis, the average betweenness grew sharply, in consonance with the simultaneous contraction 

of the network. This centrality measure displays a rather opposite behavior to that of the average 
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total strength, since, after that peak in 2009, betweenness shrank again in 2010 and stabilized 

thereafter, keeping a very mild upward trend.  

In summary, when the network grew, betweenness centrality reacted by falling, which could 

be interpreted as a result of the increase in the number of transactions carried out by a higher 

number of banks. This situation was reversed with the crisis, when the network shrank and got 

back to the average centrality levels of 2004, although it happened with more entities involved 

in the market, a fact that highlights even more the preponderance of the effect outlined before. 

After the subsequent stabilization, the indicator remained fairly stable, in line with the majority 

of the other topological measures of the graph. Though it is important to notice that the 

Argentine interbank network does not display high centrality levels compared with other 

networks, these “mirror” movements with respect to the size and dynamism of the market 

constitute a useful element to take into account when trying to forecast the behavior of the 

network under different contexts.  

Figure 18 | Average total strength of active nodes and centrality 

measures for monthly networks 

 
Note: all centrality measures are normalized according to the size of the network in each moment, except for 

the total average strength, which is computed in constant pesos of 2017. The three centrality measures are 

calculated in such a way that an increase represents higher average centrality, and vice versa. 
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Regarding the evolution of the average closeness centrality, a visible break is also detected 

before and after the crisis. Between 2003 and 2008 it remained at very low and stable levels, 

but then it started to show a noticeable upward trend, almost tripling its initial values by the 

year 2017. The latter behavior coexists with the already descripted stability of the other 

topological features of the network, which seems to imply that entities tend to get “closer” to 

each other in phases of relative stagnation of the network’s structure. That is, they were prone 

to establish more links (“building bridges”) among them in that context. 

The average eigenvector centrality displayed a much more erratic behavior during the whole 

period than the other centrality measures, with just a subtle resemblance with the path of 

closeness centrality. Along the final years of the sample, this type of centrality experienced an 

incipient increase, which may be explained by the enhanced connectivity of NBFIs in those 

years (see, for example, Figure 14). 

In brief, these three metrics offer different approaches to study the average centrality of the 

graph. While average betweenness declined with the boom of the network and increased with 

the crisis, the opposite occurred in the case of closeness (and, although less notably, in the case 

of eigenvector centrality too). Nonetheless, all of them concur that the average centrality of the 

network has experienced an, at least slight, upward trend since 2010, a lapse characterized by 

a relative stability of most of the other topological measures. 

6.4. Degree distribution 

In the literature on this topic, the usual starting point to analyze the degree distribution of a 

graph consists in a visual exploration of their Complementary Cumulative Distribution 

Functions (CCDFs). Figure 19 shows the CCDFs of total degrees, in-degrees and out-degrees 

of nodes in the average network of December 2016. This particular month was chosen as a 

representative example because the topological features of its graph are very close to the global 

average of monthly networks over the whole period. 

 



50 
 

Figure 19 | Complementary Cumulative Distribution Functions of nodes’ degrees 

 
Note: Based on the degree distribution of the December 2016 network. This particular network is one of the most 

similar to the global average of monthly networks over the period (67 nodes, 258 edges). Axis are in log-scale.  
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It can be derived from this first graphic visualization that the degree distribution (of total 

degrees, as well as of both out- and in-degrees) clearly shows “heavier” tails than a Poisson, 

which is typically the distribution observed in the context of a random network. Lognormal 

distribution appears to be the best fit to most of the observations. However, in the case of out- 

and in-degrees the evidence also provides some support to the hypothesis of a Power Law 

behavior in the tails of their distribution. In any case, these two latter distributions are both 

usually said to be “heavy-tailed”, which means that the emergence of extreme events, that is, 

very far away from the mean, are significantly more likely to occur than in the context of normal 

or exponential distributions (or Poisson in the discrete case). In the specific case of the interbank 

network under analysis, this preliminary result indicates that there is a large number of banks 

with few links, coexisting with a small number of highly-interconnected entities, key to the 

smooth functioning of the network. 

After applying the methodology introduced by Clauset et al. (2009) to define if the lognormal 

distribution fits statistically to the monthly empirical networks (and therefore estimated the 

corresponding total of 180 p-values), it results that in 90% of the cases the null hypothesis of 

lognormal fit is not rejected for the total degree distribution, considering a type 1 error 

probability of 10%. Reducing this latter threshold to 5%, the null hypothesis is not rejected in 

95% of the months. Those percentages of non-rejection are 88.3% and 92.8%, respectively, for 

the in-degree distribution, and 91.1% and 95.6% in the case of out-degrees (Table 7). Thus, in 

almost every month the null hypothesis of lognormal fit is held true, more strongly in the case 

of the out-degree distribution.  

The lower bound values of the distribution (𝑥𝑚𝑖𝑛), needed to estimate the other parameters, 

turned out to be low, which means that the number of observations removed to perform the 

estimation is relatively small (compared with the total range of the variable). In fact, the 

minimum cut-off in the case of total degrees is 4.4 in average (versus an individual maximum 

number of 36 degrees), 3.2 for the in-degrees (versus a maximum value of 27), and 2.7 for the 

out-degrees (versus a maximum of 23). It is important to notice again that these are relatively 

small networks compared with other analyzed by other sciences (e.g., biology, physics, 

linguistics, social networks, etc., where nodes and edges can easily reach thousands or even 

millions). Hence, the computations in this paper are clearly subject to potential small-sample 

biases and other problematic issues related to the lack of abundant observations.  



52 
 

Table 7 | Percentage of monthly networks with a degree distribution 

that does not reject the lognormal hypothesis 

  

Two fundamental parameters are needed to specify a Lognormal distribution: the mean (which 

defines the scale of the distribution) and the standard deviation (which defines the shape). The 

estimates of the former parameter follow a similar evolution to that of the network’s average 

degree. The mean for the lognormal distribution of total degrees is 1.9±0.51, it is 1.7±0.51 for 

in-degrees and 1.3±0.71 for out-degrees. 

In the case of standard deviations, a significant conclusion is that they are substantially high 

in comparison with the mean values of the distributions, during all the stages of the period 

analyzed (Table 8). This is precisely the behavior found in heavy-tailed distributions, where 

extreme or disruptive events (that is, far away from the mean) tend to be more frequent than it 

would be expected in more “traditional” distributions. This fact is derived from the examination 

of the Coefficients of Variation (CV)19, which are, in average, 31% for total degrees, 42% for 

in-degrees and 54% in the case of out-degrees. These CV remained above 26% over all the time 

phases, and occasionally the standard deviation reached values even higher than the mean. 

These results clearly reflect that banks’ degrees in this market vary over a significantly broad 

range.   

The CV remains fairly stable between 2010 and 2017, years in which the size of the network 

also remained relatively flat. During the stages when the network was comparatively small (1 

and 3), CV grew considerably, because of the presence of a higher variance among the entities’ 

 
19 It is the ratio of the standard deviation to the mean of a distribution. 

p-value > 

0.1

p-value > 

0.05

Average 

Xmin

p-value > 

0.1

p-value > 

0.05

Average 

Xmin

p-value > 

0.1

p-value > 

0.05

Average 

Xmin

1 Jan-03 - Jun-05 90.0% 93.3% 2.9 93.3% 93.3% 2.7 93.3% 100.0% 2.0

2 Jul-05 - Dec-07 90.0% 93.3% 6.3 96.7% 96.7% 2.7 93.3% 93.3% 4.3

3 Jan-08 - Feb-10 92.3% 92.3% 3.1 88.5% 88.5% 2.7 88.5% 88.5% 1.5

4 Mar-10 - Oct-11 90.0% 100.0% 3.6 80.0% 90.0% 3.9 85.0% 90.0% 2.9

5 Nov-11 - Nov-15 89.8% 98.0% 4.5 85.7% 91.8% 4.0 89.8% 95.9% 2.9

6 Dec-15 - Dec-17 88.0% 92.0% 5.0 84.0% 88.0% 3.4 96.0% 100.0% 2.4

90.0% 95.0% 4.4 88.3% 92.8% 3.2 91.1% 95.6% 2.7Jan-03 - Dec-17

Out-degreeIn-degreeTotal degree

DateStage

Note: This Table includes all the months of the year 2008 (they were not included in other Tables, given that 

they belong to a transition lapse between two different network structures, so their inclusion to compute the 

average topological measures of Stage 3 would dilute the resulting effects derived from the crisis). Here, those 

months are included with the purpose of examining if the degree distribution of the network changed during each 

month of the whole period. 
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degrees. In contrast, when the network was bigger (Stage 2), the CV reached its minimum value, 

implying that the average degree had more explanatory power on the complete distribution. 

Table 8 | Estimation of Lognormal parameters of monthly networks’ 

degree distributions 

 

When compared with other empirical distributions that can be fitted by a Lognormal20, these 

parameters are in line with those found in the context of social sciences, economics and 

linguistics. They are also similar to the parameters observed in many studies on medicine or 

geology, while the standard deviation found here for the Argentine interbank network is 

significantly lower than those found in many studies about ecological or environmental topics.  

With the purpose of comparing the Lognormal goodness-of-fit with that of other distributions 

usually studied in specialized literature, the log-likelihood derived from the Lognormal 

hypothesis is contrasted with the resulting log-likelihood of a Poisson and a Power Law fitted 

to the observations (Table 9).  

Applying the same optimal 𝑥𝑚𝑖𝑛 that emerges from a Power-Law fit to compute both log-

likelihoods, in 98.3% of the cases the log-likelihood derived from the Lognormal fit to the total 

degree distributions is higher than the log-likelihood derived from the Power Law fit. This result 

also arises in 99.4% of months for the in-degree distributions and in 100% of the monthly out-

degree distributions. From an analogous procedure, it is concluded that the Lognormal 

distribution describes the data better than a Poisson in 96.7% of months in the case of total 

degree distributions, in 96.1% of the in-degree distributions and in 97.2% of out-degree 

distributions. 

 
20 See Limpert, Stahel and Abbt (2001) for a survey of studies that found empirical lognormal 

distributions in the context of several sciences. 

Mean Std. Dev. CV Mean Std. Dev. CV Mean Std. Dev. CV

1 Jan-03 - Jun-05 1.6 0.7 43% 1.4 0.8 57% 0.9 0.8 85%

2 Jul-05 - Dec-07 2.3 0.6 26% 1.9 0.8 41% 1.7 0.6 34%

3 Jan-08 - Feb-10 1.7 0.6 35% 1.4 0.6 46% 0.6 0.7 124%

4 Mar-10 - Oct-11 1.8 0.6 33% 1.7 0.6 37% 1.3 0.6 46%

5 Nov-11 - Nov-15 2.1 0.6 28% 1.8 0.7 37% 1.4 0.7 50%

6 Dec-15 - Dec-17 2.0 0.6 28% 1.8 0.6 35% 1.3 0.7 53%

1.9 0.6 31% 1.7 0.7 42% 1.3 0.7 54%Jan-03 - Dec-17

Total degree In-degree Out-degree
Stage Date

Note: The Table shows the average value of the parameters in each stage, based on the monthly estimates. 
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Table 9 | Percentage of monthly networks in which the log-likelihood of the lognormal 

fit is higher than the log-likelihood derived from fitting other distributions 

 

In summary, the Lognormal distribution, with the parameters shown in Table 8, is the one that 

best fits in general to the empirical data of the interbank loans network, with just a few 

exceptions. After a detailed examination of these exceptions (which represent only a 10% of 

total cases), no clear regularities emerge that could systematically explain the rejections to the 

Lognormal hypothesis. The rejection of this hypothesis is not concentrated in any of the time 

stages of the period. In addition, those exceptional networks do not show any peculiar 

topological feature, as they do not display an abnormal size or number of edges, nor an atypical 

diameter.  

In conclusion, this heavy-tailed distribution seems to be the most suitable to describe the 

histogram of total degrees, as well as in- and out-degrees. This phenomenon has critical 

implications when assessing the probability of disruptive events and financial fragility, so it 

turns out to be a key input to take into consideration for the design of macroprudential and 

banking regulation. 

7. Effects of node centrality on bilateral interest rates 

With the aim of measuring the potential effects derived from node centrality on the bilateral 

interest rates that banks are able to agree in the call market, a set of regressions were carried 

out applying OLS (with Heteroskedasticity-Robust standard errors). The dependent variable in 

this analysis is the interest rate differential between the bilateral rate agreed in each operation 

and the average rate settled in the market the same day. This differential is defined as a 

percentage of the average market rate. Formally, the main goal is to estimate the impact of node 

𝑖’s centrality (measured by different indicators) on the following variable:   

(6.1)                                      𝑟 =  
𝑐𝑎𝑙𝑙𝑖𝑗𝑡 − 𝑐𝑎𝑙𝑙𝑡

𝑐𝑎𝑙𝑙𝑡
 

Where: 

Log-likelihood 

Lognormal > 

Power Law

Log-likelihood 

Lognormal > 

Poisson

Total degree 98.3% 96.7%

In-degree 99.4% 96.1%

Out-degree 100.0% 97.2%
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- 𝑐𝑎𝑙𝑙𝑖𝑗𝑡: Interest rate agreed between entity 𝑖 and entity 𝑗 on day 𝑡. 

- 𝑐𝑎𝑙𝑙𝑡: Average interest rate settled in the market, defined as the volume-weighted average 

interest rate of all the transactions on day 𝑡. 

This specific definition of the dependent variable (as a percentage of the market rate, and not 

in basis points, as it is the case, for example, in Bech & Atalay, 2008) is useful to avoid biases 

derived from the substantial volatility experienced by the average call rate during the period 

analyzed (see Figure 1), and allows to focus exclusively on the relative spread between the 

bilateral interest rates settled by financial entities in each one of their particular transactions and 

the average market rate. 

On that basis, nine different regressions were computed using the following generic form:  

  (6.2)         𝑟 =  𝛼 + 𝛽11(𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑙𝑒𝑛𝑑𝑒𝑟 > 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟) +

𝛽21(𝑎𝑠𝑠𝑒𝑡𝑠 𝑜𝑓 𝑙𝑒𝑛𝑑𝑒𝑟 > 𝑎𝑠𝑠𝑒𝑡𝑠 𝑜𝑓 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟) + 𝛾1𝐷𝑡𝑦𝑝𝑒 𝑜𝑓 𝑙𝑒𝑛𝑑𝑒𝑟 +

𝛾2𝐷𝑡𝑦𝑝𝑒 𝑜𝑓 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟 + 𝛾3𝑋 + 𝜀 

Where: 

- 𝛽1 is the coefficient of interest in our analysis, as it quantifies the effect on bilateral 

interest rates explained by the fact that the lender is more central than the borrower. On 

the other hand, 𝛽2 measures the impact derived from the fact that the lender has a bigger 

size than its counterparty (in terms of their assets or their deposits). These effects are 

estimated thanks to the inclusion of binary variables that, in the case of the variable 

associated to 𝛽1, take the value 1 when the lender is more central that the borrower, or, in 

the case of 𝛽2, when the former has a bigger balance sheet than the latter; and take the 

value 0 when the opposite happens. 

- The 𝐷𝑖 are vectors of dummies included to take into account the type of entities involved 

in the transaction. That is, to measure the difference in interest rates when state-owned 

banks or private entities (domestic or foreign) or NBFIs are the lenders/borrowers of the 

loan. 𝛾1 and 𝛾2 are the vectors of coefficients associated to this set of control variables. 

- 𝑋 stands for a vector of control variables included to consider specific features of each 

loan in particular. For instance, the amount of money (in real terms), maturity in calendar 

days (as all the loans considered have a maturity of 1 working day), etc. 

- 𝛼 is the constant, and, as such, it contains all the base categories of the dummy variables 

included in the regression. 
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Table 10 shows the resulting estimates for nine regressions based on the generic form (6.2), 

combining different centrality measures and control variables. In the first place it is worth 

noting that including individually any of the five centrality measures computed here (columns 

1-5 of Table 10), in all cases their associated coefficient is positive and statistically significant 

(with p-values lower than 1%). This implies that a lender that is more central in the network 

(defining this concept by any of the measures discussed here) than its counterparty tends to 

settle a higher interest rate than the market average of the day. 

The most prominent effect is derived from exhibiting a higher degree centrality (column 1 in 

Table 10), in which case the lender is able to settle, on average, an interest rate 1.32% above 

the market call rate. A similar effect, though slightly lower, is caused by having a higher 

centrality measured in terms of average strength: it allows the entities to lend at a rate 1.11% 

above the market average (column 5). The other three metrics (closeness, betweenness and 

eigenvector centrality) appear to be less effective, with an impact of nearly half of the effects 

observed in the first two cases. Anyway, they show a positive impact too, statistically and 

economically significant (columns 2, 3 and 4). 

Before analyzing the outcomes of combining different centrality measures in the same 

specification, it is worth reviewing first the other coefficients, which tend to remain stable in 

all the nine columns of Table 10.  

Regarding the type of lender entity, DPBs (the base category of the corresponding dummy) 

are those who provide funds at the highest interest rates, while NBFIs, on average, lend money 

at the lowest rates of the market. From the perspective of the borrowers, NBFIs tend to obtain 

the most expensive loans, followed by SOBs in the second place, while SFBs tend to borrow at 

the most convenient rates. Both the order of the groups of entities as well as the magnitude of 

the coefficients remain stable in all specifications. It is relevant to control for the type of entity 

involved in each transaction in order to take into account the effects on interest rates derived 

from the specific type of business that each group runs, which is qualitatively different in each 

case. All the coefficients computed for these variables are statistically significant (with p-values 

below 1%) and their sizes are a reflection of the existing differences in the businesses that each 

entity conducts in the financial system. 
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Table 10 | Dependent variable: interest rate differential between bilateral rates and the 

average market rate of the day, as a percentage of the market rate (𝒓)  

 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Centrality Measures

Lender > Borrower, Degree 0.0132** 0.0167** 0.0171**

(0.0007) (0.0011) (0.0011)

Lender > Borrower, Closeness  0.0066** 0.0052** 0.0050** 0.0042** 0.0049**

(0.0006) (0.0008) (0.0008) (0.0008) (0.0008)

Lender > Borrower, Betweenness 0.0044** -0.0007 -0.0029** -0.0003 0.0001

(0.0006) (0.0008) (0.0008) (0.0008) (0.0008)

Lender > Borrower, Eigenvector 0.0069** 0.0052** -0.0053** -0.0080** -0.0011

(0.0006) (0.0007) (0.0010) (0.0010) (0.0008)

Lender > Borrower, Strength 0.0111** 0.0107**

(0.0007) (0.0008)

Size of financial entity

Lender > Borrower, Assets 0.0409** 0.0441** 0.0441** 0.0430** 0.0398** 0.0431** 0.0412** 0.0411**

(0.0008) (0.0007) (0.0007) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

Lender > Borrower, Deposits 0.0445**

(0.0007)

Lender > Borrower, Liquidity -0.0024** -0.0027** -0.0031** -0.0028** -0.0028** -0.0025** -0.0023** -0.0004 -0.0033**

(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)

Type of Lender

State-Owned Bank -0.0135** -0.0129** -0.0127** -0.0133** -0.0138** -0.0132** -0.0134** -0.0150** -0.0127**

(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

Subsidiary of Foreign Bank -0.0279** -0.0267** -0.0277** -0.0273** -0.0281** -0.0267** -0.0274** -0.0269** -0.0306**

(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

Non-Bank Financial Institution -0.0388** -0.0382** -0.0390** -0.0389** -0.0397** -0.0381** -0.0383** -0.0302** -0.0378**

(0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009)

Type of Borrower

Non-Bank Financial Institution 0.1628** 0.1671** 0.1669** 0.1658** 0.1644** 0.1657** 0.1631** 0.1680** 0.1699**

(0.0012) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0012) (0.0011) (0.0011)

State-Owned Bank 0.0530** 0.0579** 0.0576** 0.0564** 0.0544** 0.0563** 0.0534** 0.0622** 0.0608**

(0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

Domestic Private Bank 0.0496** 0.0518** 0.0508** 0.0503** 0.0477** 0.0512** 0.0504** 0.0518** 0.0528**

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008)

Loan characteristics

Call rate, market average -0.0017** -0.0016** -0.0016** -0.0016** -0.0017** -0.0016** -0.0017** -0.0005** -0.0005**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001)

Maturity 0.000005 0.000008

(0.0003) (0.0003)

Amount 0.000005* 0.000005* 0.0000 -0.00001**

(0.0000) (0.0000) (0.0000) (0.0000)

Days until end of the month 0.0000 0.0000 -0.0001* -0.0001*

(0.0000) (0.0000) (0.0000) (0.0000)

Time dummies

Monthly Yes Yes Yes Yes Yes Yes Yes Yes Yes

Annual No No No No No No No Yes Yes

Constant -0.0314** -0.0321** -0.0300** -0.0308** -0.0299** -0.0328** -0.0320** -0.0648** -0.0525**

Adjusted R² 0.1668 0.1661 0.1659 0.1661 0.1665 0.1663 0.1670 0.1908 0.1875

Coefficients

* Significant with a p-value<0.1. ** Significant with a p-value<0.01. Note: Each column shows a set of 

coefficients estimated according to a particular specification based on (6.2). Standard deviations are displayed 

in parenthesis. The 𝑅2 was adjusted according to the number of regressors included. 
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When considering the specific characteristics of each loan, it turns out that none of the controls 

included have significant effects in economic terms. The maturity in calendar days does not 

show a statistically significant impact. The “amount of the loan” does exhibit a statistically 

significant impact, though economically negligible (less than 0.001% of the market rate). The 

number of days until the end of the month (when the reserve maintenance period for banks 

ends) explains in some cases a negative and statistically significant effect (i.e., the farther the 

end of the month, the lower the rates asked by lenders), but it is also economically negligible. 

Something similar occurs in the case of the market call rate, which is associated to a negative 

coefficient (that is, the higher the market rate, the lower the differential between it and the 

bilateral rates), statistically significant, but it is below 0.2%, which makes it rather irrelevant in 

economic terms. 

On average, a lender with more assets that its counterparty is able to settle an interest rate 

between 4% and 4.4% higher than the market rate for a loan. This coefficient is stable and 

significant across all specifications, both in statistical and economic terms. If, instead, the size 

of the entities is measured from the other side of their balance sheets, that means, considering 

the volume of their deposits, the associated coefficient remains practically unchanged. This 

result is useful to assess the robustness of the estimation of this particular parameter (regression 

8 in Table 10). Overall, these results are in line with those found by similar empirical studies, 

such as Anastasi et al. (2010), Akram and Christophersen (2010) for the interbank market of 

Norway, and Bräuning and Fecht (2012) for the German case.  

Individual liquidity levels also affect bilateral rates. This effect is statistically significant in 

all the specifications in which the assets are included as a proxy of the size of the entity, and 

exhibits values between -0.2% and -0.3%. That is, if the lender has higher liquidity levels than 

the borrower, the settled rate of an operation between them would tend to be 0.2%-0.3% lower 

than the average market rate. But if this variable is included as a regressor jointly with the 

deposits (instead of the assets), the collinearity between these two variables turns the coefficient 

associated to liquidity non-significant to explain 𝑟. 

Specifications 6, 7, 8 and 9 regress 𝑟 on different combinations of centrality measures, with 

the aim of examining their partial effects and potential complementarities. A first important 

result in this sense is that the coefficient associated to betweenness centrality turns out to be 

unstable and many times non-significant when included jointly with other centrality measures. 

Something similar occurs in the case of eigenvector centrality. In contrast, closeness centrality 
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always appears stable and significant, at around 0.5%, regardless of the combination of 

variables selected. 

Degree and strength centrality proved to be the most relevant to explain interest rates 

differentials. In the first case, its associated coefficient even increases when it is included 

together with other metrics, to a figure near to 1.7%. This value is both statistically and 

economically significant. Strength centrality remains around 1.1%, also stable and significant 

even upon changes in the specification. 

In conclusion, all the evidence seems to support the idea that node centrality proves to be a 

relevant factor at the time of negotiating a more convenient rate in the call market, even after 

taking into account the effects derived from the size of the entity, short-term liquidity levels, 

differences in the type of businesses of the banks, and controlling for characteristics of the loan 

such as the maturity or the amount, among other factors. The centrality measures with the 

largest impact are those based on degree and strength (which is in fact a sort of “weighted-

degree centrality”), with closeness centrality in the second place. These results indicate that it 

is profitable for the entities to establish a higher number of interconnections in the network in 

order to become more central, given that from the analysis here presented it is clear that this 

behavior contributes to the achievement of better interest rates compared with the market 

average. In a market like this, which is not too concentrated (see Section 6.3) and which is prone 

to show relatively high and volatile nominal interest rates, securing bilateral rates close to 2% 

higher than the market average constitutes a substantial spread that improves the financial 

revenues of the entities. 

8. Concluding remarks 

This paper presents the first comprehensive network analysis of the topological structure of 

the Argentine unsecured interbank market, commonly known as call market. It represents one 

of the most relevant places where financial entities conduct, on a daily basis, the management 

of their liquidity positions, and, because of that, the interest rates settled in this market provide 

a key reference for the determination of the other longer-term rates of the economy. There are 

not many papers in general about this particular Argentine market, so the present piece of 

research is intended to enrich the current understanding of its structural features and, though 

tangentially, of the changes and fluctuations it underwent over the years under analysis. 
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In general terms, the Argentine interbank network is characterized by its relatively modest 

size, both in terms of its number of nodes and edges. It is not the smallest interbank network 

analyzed so far in the world, but its scale is not comparable to the largest empirical networks of 

other countries. The Argentine network exhibits low density, as is usual in these types of graphs, 

and a reciprocity nearly always above the levels of a random network (with the same degree of 

completeness). The average distance between entities is quite short, with a mean lower than 3.  

The network is prominently disassortative, which means that highly-interconnected nodes 

tend to establish more links with low-degree nodes. This behavior is common in absolutely all 

the empirical interbank networks studied over the world. But it is worth noting that, 

interestingly, in the case of Argentina, the graph’s disassortativity decreased after the global 

crisis, compared with the levels witnessed between 2003 and 2007. Additionally, the network 

displays a higher clustering coefficient than a random network, in line with the interbank loans 

networks of other countries. 

In the Appendix it can be found a Table which compares the topological metrics of the 

different empirical interbank networks analyzed so far around the world, to the best of our 

knowledge, using methodological techniques similar to the ones applied here. This survey is 

useful to trace the main contrasts and similarities between the abundant and heterogeneous 

studies within this literature in constant expansion. For instance, it can be inferred from the 

survey that the networks based on payment systems and those based on balance sheet exposures 

tend to be bigger and denser than interbank loans networks. Additionally, they often show, on 

average, higher clustering coefficients than the latter. As part of a future research agenda, a 

cross-country regression analysis constitutes a potential enriching exercise that could be 

performed on the basis of this type of information. 

When focusing on the time dynamics of the Argentine case, it is possible to note that there is 

a certain correspondence between the movements in the size of the network and the economic 

activity in the country. On the other hand, it was found that the number of edges reacts with a 

positive and high elasticity to changes in the number of nodes in the network (Figure 8). This 

finding contradicts many theoretical models that assume a constant average degree in networks 

that grow in size over time. 

Between 2003 and 2007 the Argentine network grew sharply, according to all of its 

topological metrics. However, the subsequent outbreak of the global crisis in 2008 triggered a 

dramatic collapse. The graph’s density experienced a drastic decline, reaching its minimum 
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level in the series during the beginnings of 2009. Simultaneously, both the clustering and 

reciprocity coefficients decreased to levels comparable to those of a random network, as 

consequence of the significant contraction of the number of active edges in the market. 

Once the crisis was left behind, all the structural indicators recovered swiftly in 2010-11 and 

they stabilized around those levels thereafter, until the end of the period under analysis. It is 

important to clarify that the 2010-11 recovery was qualitatively different from the growth of 

2003-07. In the years after the global crisis, assortativity coefficients became less negative and 

the entities adopted an unusually high reciprocity, both phenomena that had not been evidenced 

during the previous expansionary phase. During the stage with the strictest FX controls (2011-

15), the network remained stable, in line with the economic stagnation that has prevailed in the 

country since then, displaying topological indicators that did not experience significant 

modifications then in 2016-17. In these last years, only incipient changes in the trends of some 

metrics can be perceived, but not yet enough unambiguous to extract definite conclusions.  

The main providers of liquidity in the network were SOBs (more clearly between 2004 and 

2008) and DPBs. The latter group of banks also performed a more influential role as 

intermediaries than the former. That is, they constantly displayed a high number of both out- 

and in-degrees, acting, in average, as the most central entities of the market. SFBs represented 

the major liquidity borrowers throughout the period, while NBFIs always played a peripheral 

role in the network, switching roles between being net lenders or net borrowers alternatively 

over the years, and turning more clearly into liquidity borrowers during 2016 and 2017. 

Regarding the degree distribution of the network, the evidence seems to support consistently 

the hypothesis that total degrees, in-degrees and out-degrees distributions fit better to a 

Lognormal than to a Power Law or to a Poisson. The most important implication of this finding 

is that those degree distributions seem to be heavy-tailed, so they would not be correctly 

characterized by a random graph. This means that a narrow group of highly-connected entities 

coexists with a large number of low-degree entities. From a systemic risk perspective, this fact 

implies that the network tends to be “robust-yet-fragile”, in the sense that it is resilient to 

random failures of its nodes, but it could be very vulnerable when facing directed attacks to the 

most central banks. This constitutes a key result to take into consideration when designing 

macroprudential policies, given that it highlights the relevance of a rigorous detection of the 

most central agents, whose failures can potentially disrupt the systemic stability of the entire 

network.  
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The topological characterization presented in this paper posits solid empirical foundations to 

carry out various theoretical exercises and simulations of shocks, both particularly for the 

Argentine network and for analogous markets in general of similar countries (i.e., with not very 

developed financial systems). The reported results are valuable to know more precisely to what 

extent the existing theoretical models about financial networks, contagion, cascade effects, etc. 

are applicable to the Argentine financial markets, and therefore to choose more adequately those 

that best fit to the Argentine case.  

Complementarily, the effects of different node centrality measures on bilateral interest rates 

were examined by means of an econometric analysis, identifying a positive and significant 

impact, both in statistical and in economic terms. That is, central entities in the network tend to 

settle more convenient bilateral interest rates in their particular operations in the call market. 

Even controlling for the size of the entities (measured according to their assets or deposits), 

their liquidity levels, type of business, type of entity, characteristics of the loan granted 

(maturity, amount, etc.), the centrality displayed by a node in the graph explains a non-trivial 

effect on its capability to lend at a higher interest rate and borrowing funds at a lower cost. The 

most relevant centrality measures were those based on the degree and on the strength, 

explaining a rate differential between 1.1% and 1.7% with respect to the average market rate. 

In the second place, closeness centrality showed a stable and significant effect of nearly 0.5%. 

These results highlight the relevance of taking account of the interconnectedness among 

financial entities and its evolution over time, both when examining the financial system from 

an aggregate perspective and also when approaching the banking business from a more 

entrepreneurial and less systemic point of view. Considering the high domestic interest rates 

witnessed in Argentina and their volatility, profiting those rate differentials with respect to the 

average market rate on a daily basis constitutes a non-negligible source of revenues. These 

effects become even more relevant in a context of a BCRA focused on monetary aggregates to 

conduct monetary policy, as this policy regime tends to accentuate interest rate volatility 

(compared, for example, with a framework based on the determination of a certain monetary 

policy rate to manage the monetary conditions of the economy). 

Given that actually very few studies about the Argentine call market in particular and about 

the different local financial networks in general have been carried out, the future research 

agenda is very broad. For instance, an enriching analysis would consist in performing 

simulations of the network’s response when facing various theoretical shocks of different kinds 

and intensity, and then evaluating potential structural changes that could be triggered by them. 
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Also, it would be insightful to analyze more deeply specific stress events (particular days, 

weeks, or months of the Argentine history) to shed light on the dynamics of the graphs during 

those moments, detecting regularities or stylized facts that might be useful to strengthen the 

local systemic stability. Other studies could be based on other networks, such as the payment 

system, for which the necessary data is not available yet, or the cross-holdings of financial 

assets by different agents, in order to evaluate potential contagion derived from failures in the 

system. In this regard, more research is needed on domestic multilayer networks, an 

exponentially growing literature during recent years over the world (see, for example, Aldasoro 

& Alves, 2016). Finally, a dynamic analysis about the banks’ successive trading activity and 

repeated interactions between pairs of them (in the vein of the study of Kobayashi & Takaguchi, 

2017) could also contribute valuable insights for subsequent theoretical modelling. 

In conclusion, considering the interconnectedness among financial entities as a potential 

source of systemic risk leads to a fertile research agenda, with straightforward policy 

implications for financial regulators and monetary authorities. These topics emerged not only 

because of their key role during the global crisis of 2008-09, but also due to the increasing 

complexity that international financial systems are gaining. Thus, a thorough understanding of 

the potential externalities that can arise from those abundant interdependencies among financial 

(and non-financial) agents becomes a crucial task in a world where distances and reaction times 

are shortening at a striking pace. 
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10. Appendix: Main topological measures of empirical interbank networks 

 

Country Reference Period Data type Frequency N M
1 Density Reciprocity Clustering

2
Assortativity

3 Average 

Distance
Degree distribution

4

Interbank loans 55 69-83 2.6% - - -0.1375 - Rejects Power law

Other interbank    

money flows
55 784-804 26.9% - - -0.375 - Rejects Power law

Austria Boss et al.  (2004) 2000-2003
Balance sheet 

exposures
Quarterly 883 Max. entropy - - 0.12 ± 0.01 - 2.59 ± 0.02 Power law (α=2.01)

Brazil Cont et al.  (2013) 2007-2008
Balance sheet 

exposures
Irregular 592-597 1,200 - - 0.2 Disassortative 2.35-2.42 Power law (α=2.54)

Canada
Embree & Roberts 

(2009)
2004-2008 Payments Daily 14 - 69.2% ± 3.3% 89.3% ± 2.5% 0.84 ± 0.015 - 1.31 ± 0.03 -

Colombia (a)
Cepeda López 

(2008)
2006 Payments Daily 126 2,245 16.4% 34.2% 0.61 - 2.04

Power law (Out: α=3.06 /     

In: α=3.24)

Colombia (b)
Machado et al. 

(2010)

2006 and 

2009
Payments Daily 125-137 6,843-9,400 42.8%-60.6% - - - 2.04-2.17 -

Interbank money 

market transactions
43.6 ± 4.1 75 ± 23 11.2% ± 5.8% 26.2% ± 5.5% 0.2 ± 0.1 - 2.9 ± 0.4 Exponential

Payments 89 ± 5.3 283 ± 41 8.3% ± 0.8% 22.8% ± 1.8% 0.5 ± 0.1 - 2.5 ± 0.1 Negative binomial

Estonia
Rendón de la Torre 

et al. (2016)
2014 Payments Yearly 16,613 43,375 13% - 0.183 -0.18 7.1 Power law (α=2.45)

EU Alves et al.  (2013) 2011
Balance sheet 

exposures
Yearly 54 1,737 60% 71% 0.84 -0.24 1.38 Power law (α=3.5)

Germany
Craig & von Peter 

(2014)
1999-2012

Balance sheet 

exposures
Quarterly 1,732 ± 85 20,081 ± 1,461 0.66% - - - - Rejects Poisson

Hungary Lublóy (2006) 2005 Payments Monthly 36 774 61% - - - - -

Australia
Sokolov et al. 

(2012)
2007 Daily

Denmark
Rørdam & Bech 

(2009)
2006 Daily
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Country Reference Period Data type Frequency N M
1 Density Reciprocity Clustering

2
Assortativity

3 Average 

Distance
Degree distribution

4

Italy (a)
De Masi et al. 

(2006)
1999-2002

Interbank money 

market transactions 

(e-MID)

Daily 140 200 - - - Power law (α=2.3)

Italy (b) Iori et al.  (2008) 1999-2002

Interbank money 

market transactions 

(e-MID)

Daily 177-215 - - - - Disassortative -
Not scale-free, but heavier-

tailed than a random network

Italy (c)
Fricke & Lux 

(2015a)
1999-2010

Interbank money 

market transactions 

(e-MID)

Quarterly 120-200 - 17%-25% - - Disassortative - -

Italy (d)
Fricke & Lux 

(2015b)
1999-2010

Interbank money 

market transactions 

(e-MID)

Daily and 

Quarterly
- - - - - - -

Negative binomial (daily)

Weibull (quarterly)

Italy (e) 
Kobayashi & 

Takaguchi (2017)
2000-2015

Interbank money 

market transactions 

(e-MID)

Daily 94 303 - - - - - -

Japan (a) Inaoka et al.  (2004) 2001-2002 Payments Monthly 354 1,727 2.76% - - - - Power law (α=2.1)

Japan (b)
Imakubo & Soejima 

(2010)

1997 and 

2005
Payments Monthly 444 and 354 1,383 and 1,709 1.4% and 2.7% - - Disassortative - Power law (α=1.6-3.4)

Balance sheet 

exposures
280 30% 80% - Disassortative 1.7 Power law (α=3.5)

Payments 471 40% 82% 0.7-0.85 Disassortative 1.5 Power law

Netherlands 

(a)

Pröpper et al. 

(2008)
2005-2006 Payments Daily 129 ± 5 1,182 ± 61 7% 63% ± 2% 0.4 ± 0.02 Disassortative 2.0-2.5 -

Netherlands 

(b)

van Lelyveld & Veld 

(2014)
1998-2008

Balance sheet 

exposures
Quarterly 91-102 ~1,000 8% - - - -

Rejects Poisson and Power 

law

Secured money    

market transactions
161 - 10%-20% 5%-10% 0.05-0.2 - 2-4 -

Unsecured money 

market transactions
241 - 5% 20%-30% 0.1-0.3 - 2.6-3.7 -

27-40

Switzerland Schumacher (2017) 2005-2012
25-day 

periods

Mexico
Martínez-Jaramillo 

et al. (2012)
2005-2010 Daily

𝑘𝑛𝑛(𝑘) ∝ 𝑘− .5c(𝑘) ∝ 𝑘− . 
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Notes: 1) maximum entropy refers to a method used to estimate some exposures for which no disaggregated data is available, so the number of links does not emerge directly from the observed 

information; 2) c(𝑘) accounts for the number of triangles a node of degree 𝑘 belongs to; 3) 𝑘𝑛𝑛(𝑘) is a function that describes the average degree 𝑘𝑛𝑛 of the neighbors of a node with degree 𝑘; 

4) α refers to the exponent of a Power Law, while μ and σ represent the mean and standard deviation of a Lognormal distribution, respectively; 5) Wetherilt et al. (2010) divided their analysis in 

two time phases: the first ranges from 18th May 2006 to 8th August 2007, and the second, from 9th August 2007 to 16th December 2008, so their results are reported here separately for each phase. 

This Table only reports the metrics explicitly mentioned or expressed by the authors of each paper. 

 

 

Country Reference Period Data type Frequency N M
1 Density Reciprocity Clustering

2
Assortativity

3 Average 

Distance
Degree distribution

4

UK (a) Becher et al.  (2008) 2003 Payments Daily 337 989 0.90% - 0.23 - 2.4 -

UK (b)
Wetherilt et al. 

(2010)
5 2006-2008

Interbank money 

market transactions
Daily 12-13 - 42.1%-38.5% 70.7%-68.9% - - - -

USA (a)
Soramäki et al. 

(2007)
2004 Payments Daily 5,086 ± 128 76,614 ± 6,151 0.3% ± 0.01% 21.5% ± 0.3% 0.53 ± 0.01 -0.31 2.6 ± 0.2 Power law (α=2.11)

USA (b)
Bech & Atalay 

(2008)
1997-2006

Interbank money 

market transactions 

(federal funds)

Daily 470 ± 15 1,543 ± 72 0.70% ± 0.03% 6.5% ± 0.8%
In: 0.10

Out: 0.28
-0.06 to -0.28

In: 2.4 

Out: 2.7

Out: Power law (α=2 ± 0.05)

In: Negative binomial

Argentina This paper 2003-2017
Interbank money 

market transactions
Monthly 65 ± 6 237.5 ± 73.1 5.5% ± 1.1% 7.9% ± 3% 0.19 ± 0.05 -0.16 ± 0.09 2.8 ± 0.5 Lognormal (μ=1.9 / σ=0.6)
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