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Key Links in Network Interactions: Assessing Route-specific Travel

Restrictions in China during the Covid-19 Pandemic∗

Xi Chen† Yun Qiu‡ Wei Shi§ Pei Yu¶
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Abstract

We consider a model of network interactions where the outcome of a unit depends on the

outcomes of the connected units. We determine the key network link, i.e., the network link whose

removal results in the largest reduction in the aggregate outcomes, and provide a measure that

quantifies the contribution of a network link to the aggregate outcomes, which complements

the intercentrality measure of the key network node proposed by Ballester, Calvó-Armengol,

and Zenou (2006). We provide an example examining the spread of Covid-19 in China. Travel

restrictions were imposed to limit the spread of infectious diseases. As uniform restrictions

can be inefficient and incur unnecessarily high costs, we examine the design of restrictions

that target specific travel routes. Our approach may be generalized to multiple countries to

guide policies during epidemics ranging from ex ante route-specific travel restrictions to ex post

health measures based on travel histories, and from the initial travel restrictions to the phased

reopening.
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1 Introduction

The spread of communicable diseases, especially those are transmittable via airborne droplets, de-

pends crucially on the extent of interactions between infectious and susceptible people. Population

flows have therefore been shown to strongly predict the spread of Covid-19 (e.g., Fang et al., 2020,

Jia et al., 2020, Qiu et al., 2020, Wu et al., 2020) as well as other infectious diseases (e.g., Brock-

mann and Helbing, 2013) across space. To slow the transmission of Covid-19, many public health

measures have been adopted across the world, ranging from mild measures (e.g. social distancing,

quarantine and isolation, travel restrictions, testing and contact tracing) to stringent measures

(e.g. city lockdown, shelter-in-place). While many of these public health measures are effective in

suppressing the spread of Covid-19 (e.g., Tian et al., 2020), they can also bring significant social

and economic costs and disruptions (Dai et al., 2021, Duan et al., 2021).

In this paper, we explore the feasibility of imposing travel restrictions on specific origin and

destination pairs and examine the optimal designs of such policies. In addition to being less

restrictive and therefore more cost-effective than lockdowns of entire cities, route-specific travel

restrictions can still be implemented even when complete lockdowns are not (e.g., when the unit

under consideration is a major metropolitan area or an entire country). Even in scenarios when

route-specific travel restrictions are not possible, our identified targeted travel restrictions, once

integrated with advanced mobile technology and specific public health measures1, can be used to

improve risk management for people with certain travel histories. For instance, information on

travel histories has been linked to centralized, real-time health insurance databases and electronic

health records to allow healthcare facilities to identify high-risk patients for targeted screening,

timely quarantine, and aggressive contact tracing (Emanuel et al., 2020, Wang et al., 2020). These

data can also guide border checks and surveillance (Whitelaw et al., 2020).

To characterize which route-specific travel restrictions are more effective, we consider a standard

model of network interactions. Various studies have highlighted that features of networks can be

used to enhance the effectiveness of policy interventions that intend to influence agents’ behavior

(e.g., Deng and Sun, 2017, Lee et al., 2020). Ballester et al. (2006) characterize the key node

in a network whose removal has the largest impact on the aggregate outcome. We determine

the key link between two nodes, whose removal results in the largest reduction in the aggregate

outcome, and show that this can be characterized as a product of the centrality of the origin, the

centrality of the destination, and the link intensity. Therefore, an optimal travel restriction policy

should take into account the travel intensity of a route, and also the risk of the origin and the risk

that the destination can bring to other cities. Our results are applicable in network interaction

models where agents’ outcomes or actions depend on those of the peers (e.g., Lee, 2007, Patacchini

et al., 2017), and a planner can alter the strength of network links. Other potential applications

include determining key collaboration relationships in the network of firms (Hsieh et al., 2020),

1With the advent of mobile payment applications, social media, security camera footage, facial recognition, and
global positioning system (GPS) in vehicles to collect real-time data, travel histories of individuals have become
increasingly easily accessible in multiple countries and regions.
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strengthening ties between entrepreneurs to improve an entrepreneurial ecosystem (Mellon et al.,

2016), and strengthening connections in networks to support interventions on suicide and alcohol

use disorders (Philip et al., 2016).

Our paper is not the first to examine key links in network interactions. Our theoretical anal-

ysis accommodates features such as directed networks, ex-ante heterogeneity between units and

contextual effects, which are motivated by our empirical analysis on key population flow routes in

the spread of Covid-19 in China. Building on the key players analysis of Ballester et al. (2006),

Ballester et al. (2010) provide theoretical results on the contributions of specific network links to the

aggregate activities. Units are assumed ex-ante homogeneous in their analysis. Sun et al. (2021) is

a recent paper that comprehensively studies the design of interventions targeting characteristics of

network nodes and intensities of network links2. Based on a network model of product adoptions,

Meng et al. (2022) examine key nodes and links. We complement Sun et al. (2021) and Meng et al.

(2022) by considering directed networks and contextual effects.

Applying the theoretical model to the data on the spread of Covid-19 in China between January

and February, 2020, we first show that intercity population flows intensify spatial virus spreading.

Based on the estimated parameters, we identify the routes in the population flow networks most

influential on the total number of Covid-19 cases in China and thus the top candidates where

additional public health measures prove necessary. The top routes consist of those closely connected

to areas with severe infections and those whose destinations are cities with large population outflows.

Accounting for such spillovers saliently alters our perceptions of travel restriction policies. These

results can be generalized to guide our responses to other communicable diseases with human-to-

human transmission.

We add to the literature on the spatial spread of diseases (Brockmann and Helbing, 2013) by

considering the design of policies that affect the rate of spillovers. Our paper also contributes to

the growing literature on the optimal designs of various aspects of the public health measures in

response to Covid-19. A number of studies embed a Susceptible-Infectious-Recovered (SIR) model

(Kermack and McKendrick, 1927) in an optimal control problem, such as lockdowns of certain

sections of the population (Acemoglu et al., 2020, Alfaro et al., 2020, Alvarez et al., 2020), testing

and quarantine (Berger et al., 2020), along with coordinated and uncoordinated shelter-in-place

orders (Holtz et al., 2020), initiatives that help students cope with distance learning (Clark et al.,

2021), etc. Fajgelbaum et al. (2020) examine optimal restrictions on directional commuting flows,

integrating a spatial epidemiology model with a quantitative model of commuting, production, and

equilibrium across locations. Their focus is on commuting flows within a metropolitan area, where

population flows in the form of commuting affect disease spread and production. We identify the

key parameters using a causal inference model, in comparison to the literature, which is dominated

by epidemiology models. Our model is more concise and applicable on a larger geographic scale,

such as the spread of diseases across many cities or countries.

The paper is organized as follows. Section 2 describes a network interaction model and provides

2We thank a referee for bringing our attention to this paper.
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measures that identify the key network links. In Section 3, we illustrate the use of the model

in determining key population flow routes using the Covid-19 data in China. Section 4 presents

conclusions. The appendix contains the proofs of the theorems and supplementary results.

2 The key link in network interactions

2.1 Model setup

There are N = {1, · · · , n} units interacting through a network described by an n × n matrix

W = (wij) with wij ≥ 0 and wii = 0. Let yi denote the outcome of unit i. Two examples of the

model are given in Examples 1 and 2. We assume the following model of network interactions,

yi =

 n∑
j=1

wijyj

λ+ x′iβ + ui, (1)

where the outcome of unit i is affected by the outcomes of other units with pairwise weights wij and

the scalar parameter λ measuring the intensity of interactions. xi is a vector of control variables

with corresponding coefficients β, which can include time lagged values of yi. ui is the error term.

Denote ηi = x′iβ + ui and η =
(
η1 · · · ηn

)′
with ′ denoting transpose.

Example 1. In our empirical illustration in Section 3, yi denotes the number of Covid-19 cases

in city i in logarithms. wij, i ̸= j is a measure of the intensity of population flows from city j

to i. This specification can be viewed as a static version of the spatial autoregressive model of

mobility and disease spread in Brinkman and Mangum (2021). The use of a static model allows us

to focus on the analysis of key network links while abstracting away the complicated feedback effects

in dynamic models.

Example 2. Eq.(1) can be rationalized as best responses in a game where individual utilities depend

on linear and quadratic terms of the own and others’ actions (e.g., Ballester et al., 2006, Blume

et al., 2015). For example, consider the following utility function for individual i:

ui (y1, · · · , yn) = ηiyi −
1

2
y2i + λ

∑
j,j ̸=i

wijyiyj .

yi can be an effort level in some activities of individual i. The individual utility depends on a liner

term of effort level, a concavity component reflecting decreasing marginal utility, and an interaction

component between own effort and the levels of effort of others weighted by a connectivity measure

wij and an interaction coefficient λ. In choosing the effort level yi, an individual maximizes the

own utility given the effort levels of others, which gives the best response equation in Eq.(1).

Assuming that the matrix I−λW is invertible, Eq.(1) describes an equilibrium system of {yi}ni=1
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for given η and W . The reduced form is

yi = ℓ′i(I − λW )−1η, (2)

where ℓi is an n×1 vector with i-th entry 1 and all other entries 0. Note that the Bonacich centrality

of unit i given W is ℓ′i(I − λW )−11 (Ballester et al., 2006) and Eq.(2) can be viewed as a weighted

Bonacich centrality of unit i, with weights given by the vector η. Because

ℓ′i(I − λW )−1η = ℓ′i
(
I + λW + λ2W 2 + · · ·

)
η

= ηi + λ
∑
j

wijηj + λ2
∑
j,k1

wik1wk1jηj + λ3
∑

j,k1,k2

wik1wk1k2wk2jηj + · · · ,

the weighted Bonacich centrality of unit i is the discounted sum of network links that end in unit

i and originate in other units with weights given by vector η and discount factor λ. Units with

higher weighted Bonacich centralities have higher equilibrium outcome levels.

We observe that the increase in the aggregate outcome for a shock to unit j is

∂
∑

i yi
∂ηj

= ℓ′j
(
I − λW ′)−1

1, (3)

where 1 is a vector of ones, i.e., units with higher values of Bonacich centralities given network

matrix W ′ have larger effects on the aggregate outcome. The main difference between Eq.(3) and

Eq.(2) is that the effect of a unit on other units is larger if the discounted sum of network links that

start in unit i and end in other units is larger, hence the Bonacich centralities are based on network

matrix W ′ rather than W . If the network is undirected, W = W ′ and the two measures are equal.

To distinguish the effect of a unit on others from the effect on a unit from others due to network

asymmetry, we will refer to Eq.(2) as “origin centrality” and Eq.(3) as “destination centrality”.

For a specific network link, the effect of varying wj0j1 on the equilibrium yi, while keeping other

network links fixed, is given by

∂yi
∂wj0j1

= λℓ′i (I − λW )−1 ℓj0ℓ
′
j1 (I − λW )−1 η. (4)

From Eq.(4), the marginal effect of varying the intensity of the network link wj0j1 on the aggregate

equilibrium outcome,
∑

i yi, is

∂
∑

i yi
∂wj0j1

= λ1′ (I − λW )−1 ℓj0ℓ
′
j1 (I − λW )−1 η = λℓ′j0

(
I − λW ′)−1

1ℓ′j1 (I − λW )−1 η. (5)

In a model of network interactions, Ballester et al. (2006) show that individual outcomes are

proportional to their Bonacich centralities, and that the marginal contribution of a unit to the

aggregate outcome is given by its own Bonacich centrality and its contribution to the Bonacich

centralities of other units. Conventionally, removing a unit, for instance, through lockdown of
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an entire city can be viewed as removing all network links that originate or point to the city. In

contrast, in our case the policy targets the values of directed network links, for example, through ex

ante restriction of route-specific transportation or ex post contact tracing and quarantine measures

contingent on specific travel histories. Eq.(5) shows that the marginal effect of a directed link on the

aggregate outcome depends on the interaction between the Bonacich centrality of the destination

city (ℓ′j0 (I − λW ′)−1 1) and the weighted Bonacich centrality of the origin city (ℓ′j1 (I − λW )−1 η).

Intuitively, the intensity of population flows between two cities has a stronger effect on the aggregate

outcome if the origin city has a higher infection risk or infections in the destination city can affect

other cities more.

2.2 The key link in network interactions

Eq.(5) shows the marginal effect of varying the intensity of a network link on the aggregate outcome.

In some circumstances, the policy may be binary. For example, either a travel route is shut down or

it is open. Ballester et al. (2006) provide results on which node’s removal from a network results in

the largest reduction in the aggregate outcome. We add to their results by showing which network

link’s removal leads to the largest reduction in the aggregate outcome. Recall that the network link

from node j1 to j0 is the j0j1 element of matrix W , wj0j1 , and the aggregate outcome is the sum

of outcome levels of nodes (
∑

i yi). Denote W−j0j1 the matrix after replacing the j0j1 entry of W

by zero.

Theorem 1. Suppose that the network interactions are described by Eq.(2) and |λ|maxi
∑

j |wij | <
1. Removing the network link wj0j1, i.e., replacing wj0j1 by 0, will reduce the the aggregate outcome

by λwj0j1 [
(
I − λW−j0j1 ′)−1

1]j0 [(I − λW )−1 η]j1.

The proof is in the appendix. Theorem 1 provides a geometric characterization of the key net-

work links in terms of their impacts on the aggregate outcome if they are removed, which depend on

the link intensity (wj0j1), the interaction coefficient λ, the origin centrality ([(I − λW )−1 η]j1)
3, and

destination centrality ([
(
I − λW−j0j1 ′)−1

1]j0). We discuss two extensions. The next subsection

considers the case where units can be affected by the exogenous characteristics of their connected

units, and exogenous changes in more network links after a link removal are discussed in Appendix

E.

2.3 Contextual effects

Contextual effects reflect changes in outcomes as a result of exposures to similar factors for those

who are close. The identification of causal spillover effects in the presence of contextual effects is the

focus in many papers in both econometrics (Manski, 1993, Bramoullé et al., 2009, Lee et al., 2010,

Blume et al., 2015) and applied fields (e.g., Christakis and Fowler, 2007, Cohen-Cole and Fletcher,

2008). Units can be influenced by the exogenous characteristics of the connected units (contextual

3Note that under the setup of Eq.(2), this equals the equilibrium outcome level of the origin unit, yj1 .
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effects), and disentangling contextual effects from the endogenous outcomes of the connected units

(endogenous effects) helps us understand the mechanisms underlying social interactions and is

policy relevant. For example, a part of the debate on whether obesity can spread via social network

involves the impact of contextual effects (Christakis and Fowler, 2007, Cohen-Cole and Fletcher,

2008, Fowler and Christakis, 2008). Cohen-Cole and Fletcher (2008) emphasize that school specific

factors, such as the prevalence of fast food restaurants, may have explained the endogenous effects

in obesity. Ballester and Zenou (2014) show that ignoring contextual effects can lead to wrong

policies that target key players of a network. This section extends the key network link analysis in

the previous subsection to allow for contextual effects.

The network interactions model with contextual effects is

yi =

 n∑
j=1

wijyj

λ+ ηi, ηi = x′iβ +

 n∑
j=1

wijx
′
j

βw + ui. (6)

Theorem 2. Suppose that the network interactions are described by Eq.(6) and |λ|maxi
∑

j |wij | <
1. Removing the network link wj0j1, i.e., replacing wj0j1 by 0, will reduce the the aggregate outcome

by [
(
I − λW−j0j1 ′)−1

1]j0wj0j1

(
λ[(I − λW )−1 η]j1 + x′j1βw

)
.

The proof can be found in the appendix. When contextual effects are present, the effect of

closing a network link on the aggregate outcome can be decomposed into two components: the

direct effects due to spillovers from the origin j1’s characteristics to the destination j0 (wj0j1x
′
j1
βw),

and the effect from equilibrium adjustments in outcomes when the link is removed for fixed residual

terms. The second component is similar to Theorem 1 and the first component is new in Theorem

2.

Remark 1. Theorems 1 and 2 consider the key network link to be removed. They can be slightly

modified to determine the key network link to be added. Suppose that the j0j1 entry of W is

zero and it is to be replaced by wj0j1 giving W+j0j1. The aggregate outcome will be increased

by λwj0j1 [
(
I − λW+j0j1 ′)−1

1]j0 [(I − λW )−1 η]j1 if there are no contextual effects. The aggregate

outcome will be increased by [
(
I − λW+j0j1 ′)−1

1]j0wj0j1

(
λ[(I − λW )−1 η]j1 + x′j1βw

)
if there are

contextual effects.

Remark 2. Theorems 1 and 2 can be extended to characterize the impact on aggregate outcomes

when a group of network links are removed. Let S denote the set of network links that are removed

and W−S the network matrix with links in S removed. The aggregate outcome will be decreased

by λ
∑

ij∈S wij [
(
I − λW−S ′)−1

1]i[(I − λW )−1 η]j if there are no contextual effects. The aggregate

outcome will be decreased by
∑

ij∈S [
(
I − λW−S ′)−1

1]iwij

(
λ[(I − λW )−1 η]j + x′jβw

)
if there are

contextual effects.
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3 Empirical illustration

In this section, we apply the key network link analysis to determine key population flow routes

in the spatial spread of Covid-19, using data on confirmed Covid-19 cases and the intensities of

between-city and within-city population flows in China. The empirical model is

yi =

 n∑
j=1

wijyj

λ+ tiγ + z′1iβ1 + z′2iβ2 + ui. (7)

We consider two empirical specifications. In the first specification (Model A), we use the measures

of population flow during January 1 - February 29, 2020 to construct the between and within

city population flows. On January 23, 2020, the city of Wuhan was unexpectedly placed under

lockdown that travel out of the city was suspended. Since then, individuals’ travel decisions were

likely affected by either the perceived risk of infection or the public health measures imposed by

the government, which in turn was responding to the infection dynamics. Thus, to mitigate the

endogeneity issue of the observed population flows between and within cities in Model A, we use

the population flow during the same lunar calendar days in 2019 to construct the instrumental

variables4. As a comparison, in an alternative specification (Model B), we estimate the impacts

of between and within city population flows during January 1 - 22, 2020, considering that people’s

traveling behavior was less likely to be affected by the severity of Covid-19 transmission before

January 23, 2020. Model A is the main model and Model B is used as a robustness test where the

alternative and exogenous population flow matrix is used. Although the population flow matrix in

Model B is unlikely to be affected by the unfold of the Covid-19 pandemic, they do not capture

some of the population flows information, and we use this specification as a robustness test.

For both models, the population flow weighted average number of infections in other cities

may correlate with the error term, because infections can spread in both directions as cities are

interconnected through the population flow network. We construct instrumental variables using

population flow weighted meteorological variables in other cities similar to Qiu et al. (2020). Based

on weather characteristics in the existing literature that may strongly predict virus transmission, we

control for weather conditions, including temperature, sea level pressure, station pressure, visibility,

wind speed, snow depth, precipitation, and a dummy for bad weather. The same set of weather

characteristics in other cities weighted by the between city population flow intensities are used

as IVs for the spatially lagged dependent variables. In both models, we additionally control for

some city level social and economic variables, including population density, GDP per capita, the

employment share of primary industry, and the employment share of tertiary industry. The details

of the model specifications and variable definitions are summarized in Table 1.

4We assume that the shares of destination and origin cities for travel routes in 2019 are the same as those in 2020,
i.e., only the travel intensities of people leaving and arriving at cities differ between the years. The travel shares in
2019 were not released by Baidu Migration.
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Table 1: Summary of Empirical Model Specifications
Model A (main model) Model B

yi log(1 + # of confirmed Covid-19 cases by February 29, 2020)

z1i local weather variables⋄ that affect infection rates

z2i city characteristics variables⋄

ti average within city pop. flows average within city pop. flows
intensity, Jan 1-Feb 29, 2020 intensity, Jan 1-Jan 22, 2020

wij average between city pop. flows average between city pop. flows
intensity, Jan 1-Feb 29, 2020 intensity, Jan 1-Jan 22, 2020

w̃ij , t̃i pop. flows variables, same lunar calendar
days in 2019 as Jan 1-Feb 29, 2020

Endogenous wij , ti,
∑n

j=1wijyj
∑n

j=1wijyj
IV† t̃i,

∑n
j=1 w̃ijz1j

∑n
j=1wijz1j

†: in addition to the exogenous variables in the model. ⋄: the variables are standardized by subtracting their sample

averages.

3.1 Data

We collected the numbers of cumulative confirmed Covid-19 cases of 360 cities by February 29,

2020, using data from 32 provincial-level Health Commissions in China. The National Oceanic and

Atmospheric Administration (NOAA) provides precipitation, visibility, wind speed, indicators for

bad weather (fog, rain or drizzle, snow or ice pellets, hail, thunder, tornados or funnel clouds),

average temperature, etc. at the daily level for 362 weather stations in China. To merge the

meteorological variables with the cumulative number of Covid-19 cases, we first calculated daily

weather variables for each city from station-level weather records, following the inverse distance

weighting method. Specifically, for each city, we drew a circle of 100 km from the city’s centroid and

calculated the weighted average daily weather variables using stations within the 100-km circle. We

used the inverse of the distance between the city’s centroid and each station as the weight. Second,

we calculated the average weather characteristics of each city for each specification, which were then

matched with the number of Covid-19 cases, based on the city identifier. The city characteristics

variables were collected form the most recent China city statistical yearbooks.

We obtained the data on population movement between and within cities from Baidu Migra-

tion5, which tracks population flows based on mobile phone location data. From the Baidu Mi-

gration data, we collected the daily inflow index and outflow index for 360 cities between January

1st and February 29th in 2020, and on the same lunar calendar days in 2019. For each of the 360

cities, Baidu Migration also records the shares of the top 100 origin cities for the population inflow

to the city and the shares of the top 100 destination cities for the population outflow from the city.

We assumed that the population flow is zero for destination or origin cities outside the top 100

lists. Then the between city population flow intensities were calculated by multiplying the daily

5http://qianxi.baidu.com/
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migration index of the population flows with the share of the flows6. Regarding the within city

population flow intensities, Baidu also provided the daily within city migration index for January

1st - February 29th of 2020 and the same lunar calendar days in 2019. Summary statistics are

presented in Table 2. The average intensities of within city population flows are smaller in cities

without confirmed cases than those in cities with confirmed cases.

An implication of Theorem 1 in the context of the spread of Covid-19 is that cities which receive

more population inflows from high risk areas and have high destination centralities could seed more

infections in a region. To test this hypothesis, we construct a provincial level data on the number

of infections, the intensity of population flows, risks of the origin cities and centralities of the

destination cities. We calculate the destination centrality of cities based on the average population

flow subnetwork within the province that the city is in between January 1 and February 29, 2020,

assuming that the discount factor λ is 0.3. Figure 1 shows a clear positive correlation between the

total number of confirmed cases in a province by February 29, 2020 and the average destination

centralities of cities within the province. Given this empirical relationship between the number

of Covid-19 cases and destination centralities, we proceed to estimate the model parameters and

examine the policy implications.

3.2 Estimation results

In Table 3, columns (1), (3) and (5) report the OLS estimates and columns (2), (4) and (6) report

the IV estimates from Eq.(7). The estimates from the first stage regressions are reported in Table

C.1 in the appendix. Columns (3)-(6) include socioeconomic controls, while columns (1) and (2) do

not. The socioeconomic variables are not available in some cities and the sample sizes in columns

(3)-(6) are therefore smaller. We control for province fixed effects in all columns. The estimation

results in Table 3 show a significantly positive spillover effect of infections in other cities mediated by

population flows. The IV estimate λ = 0.180 (column (2)) implies that a 1% increase in infections

in a city where 100,000 people travel to the focal city causes a 0.198% increase in the number

of cases in the focal city7. The magnitudes of IV estimates on λ are smaller than those of OLS

estimates. Population movements between cities lead to the spread of the virus, which can be

reduced by travel restrictions.

For the effect of the within city population flow intensity on infections, the OLS coefficients are

significantly negative, while the IV estimated coefficients are smaller and statistically insignificant.

The negative estimates can be ascribed to the issue of reverse causality because people may avoid

going outside when the risk of catching the virus is high. Similar phenomena have been documented

in, for example, Fang et al. (2020) that the panic effect of covid-19 substantially reduced human

6In the event of a slight discrepancy between the population flow intensity calculated by the inflow index of
destination cites and that by the outflow index of origination cities for a city pair, we take average of the two
intensities.

7In Fang et al. (2020), one migration index unit represents 90,848 people movements. Based on this estimate, we
find that the destination city infections increase by 0.198% (0.180 × 100000 ÷ 90848 × 1%) for a 1% increase in the
infections in the origin city from where on average 100,000 people per day travel to the destination city from the
origin city.
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Table 2: Summary Statistics
Variables N Mean SD Min Median Max

Cities with confirmed cases
Time varying variables, Jan1-Feb29, 2020
Average confirmed cases 324 246.170 2741.927 1 19 49122
Average within city population flows 324 3.709 0.607 1.808 3.724 5.534
Average temperature, ◦C 324 3.972 9.341 -25.228 5.110 22.187
Average sea level pressure, kPa 324 102.476 0.422 101.212 102.58.2 103.578
Average station pressure, kPa 324 96.767 6.855 70.370 100.221 102.901
Average visibility, m 324 7.585 3.445 1.790 6.851 18.381
Average wind speed, m/s 324 2.278 0.761 0.958 2.163 5.050
Average snow depth, mm 324 6.434 20.605 0 0.635 188.860
Average precipitation, mm 324 0.218 0.415 0 0.122 4.528
Bad weather 324 0.393 0.185 0 0.381 0.805
Time varying variables, Jan1-Jan22, 2020
Average within city population flows 324 5.230 0.562 3.096 5.322 6.553
Average temperature, ◦C 324 3.631 10.093 -26.096 4.381 23.276
Average sea level pressure, kPa 324 102.446 0.452 101.095 102.551 103.656
Average station pressure, kPa 324 96.746 6.838 70.325 100.192 102.710
Average visibility, m 324 6.516 3.741 1.132 5.645 18.400
Average wind speed, m/s 324 2.122 0.795 0.732 1.966 6.077
Average snow depth, mm 324 7.315 22.577 0 0.462 204.816
Average precipitation, mm 324 0.169 0.369 0 0.065 4.233
Bad weather 324 0.399 0.223 0 0.364 0.909
City characteristics
Population density, 1000 per km2 272 0.433 0.321 0.010 0.363 2.524
Per capita GDP, 10,000RMB 272 5.273 2.992 1.189 4.447 21.549
Primary industry employment share 272 0.021 0.055 0.000 0.005 0.543
Tertiary industry employment share 272 0.527 0.132 0.179 0.533 0.870

Cities without confirmed cases
Time varying variables, Jan1-Feb29, 2020
Average within city population flows 36 3.105 0.788 1.761 3.027 4.776
Average temperature, ◦C 36 -1.025 9.938 -13.691 -4.120 21.666
Average sea level pressure, kPa 36 102.560 0.680 101.212 102.704 103.468
Average station pressure, kPa 36 86.992 10.798 71.031 86.665 102.590
Average visibility, m 36 10.011 4.801 3.765 8.942 18.035
Average wind speed, m/s 36 1.966 0.752 0.887 1.806 3.745
Average snow depth, mm 36 10.795 44.961 0 0.106 260.297
Average precipitation, mm 36 0.385 1.023 0 0.0341 3.961
Bad weather 36 0.187 0.165 0 0.159 0.583
Time varying variables, Jan1-Jan22, 2020
Average within city population flows 36 4.138 1.039 1.968 4.264 6.366
Average temperature, ◦C 36 -1.563 10.767 -15.144 -4.811 22.841
Average sea level pressure, kPa 36 102.537 0.712 101.141 102.722 103.545
Average station pressure, kPa 36 86.956 10.826 70.902 86.613 102.611
Average visibility, m 36 9.000 5.324 2.723 7.286 18.250
Average wind speed, m/s 36 1.887 0.812 0.797 1.677 3.680
Average snow depth, mm 36 11.110 49.217 0 0 293.716
Average precipitation, mm 36 0.395 1.074 0 0.0156 4.365
Bad weather 36 0.232 0.181 0 0.224 0.818
City characteristics
Population density, 1000 per km2 9 0.136 0.118 0.006 0.082 0.385
Per capita GDP, 10,000RMB 9 6.754 4.904 2.540 5.172 16.402
Primary industry employment share 9 0.044 0.047 0.000 0.020 0.112
Tertiary industry employment share 9 0.494 0.110 0.355 0.512 0.673

Please see the text for variable sources.
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Figure 1: Total number of Covid-19 cases and destination centralities

Each dot represents a province. The vertical axis represents the total number of confirmed Covid-19 cases in a

province by February 29, 2020. The horizontal axis represents the average destination centralities of cities within the

province, computed based on the average population flow subnetwork within the province that the city is in between

January 1 and February 29, 2020, assuming that the discount factor λ is 0.3. For the lower figure, the destination

centrality of a city is weighted by the intensity of population inflows and the number of Covid-19 cases in the origin

cities. The province of Hubei and four centrally administered municipalities (Beijing, Chongqing, Shanghai, Tianjin)

are not included.
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mobility within Wuhan, and in Leeson and Rouanet (2021) that self-limiting behavior attenuated

localized social interactions in the context of infectious diseases. Controlling for city characteristics

variables, the estimated spillover effects remain stable and significant.

yi =

 n∑
j=1

wijyj

λ+ tiγ + z′1iβ1 + z′2iβ2 +

 n∑
j=1

wijz
′
2j

β2w + ui. (8)

We examine whether the spatial spread of Covid-19 from a city is influenced by its socioeconomic

characteristics by testing the presence of contextual effects. The regression equation is Eq.(8) where

variable definitions follow Eq.(7). The contextual effects are captured by the term
∑n

j=1wijz
′
2j . The

results are reported in columns (5) and (6) of Table 3. Given the same risk of importing infections

from other cities, cities that are more closely connected to cities of higher population densities

report fewer infections. Because cities with higher population densities report more infections,

cities that are more closely connected to them may adopt more stringent public health measures

which reduce the disease spread, which also implies that without considering these compensating

policy behavior, the risk of importing infections will be understated. Comparing the between city

transmission parameters in columns (4) and (6), we indeed find that the between city transmission

parameter is underestimated when socioeconomic contextual effects are not controlled for.

To illustrate to what extent our estimates are sensitive to the specification of the population

flow matrix, we consider a different specification where the between and within city population flow

intensities are averages of the population flows between January 1 and January 22, 2020 (Model

B in Table 1). The city of Wuhan was placed under lockdown on January 23, 2020. As is in Jia

et al. (2020), this specification examines how population flows before the adoption of the large-scale

public health measures seed Covid-19 across space. Results are reported in Table 4 and the signs of

estimates are similar to the baseline results in Table 3. The estimated cross-city spillover effects are

smaller than those in Table 3, which may be due to the fact that average population flows before

January 22 only measure part of the population flows that generate spatial spillovers in infections

by February 29. The first-stage results for these IV regressions are reported in Table C.2 in the

appendix.

3.3 Key link analysis

We illustrate the use of Theorem 1 by calculating the contribution of each population flow route to

the total number of infections, based on the specification of column 2 of Table 3. The network links

average population flow intensities between January 1st, 2020 and February 29th, 2020. Because

travel out of areas with serious risks of infection, such as the city of Wuhan, were already severely

restricted during this time period, the key link analysis demonstrates, given the population flow

restrictions already in place such as the lockdown of Wuhan, the routes whose closure would have

the greatest additional effects in reducing infections. The benefit of closing a route in terms of
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Table 3: Model A (Main Model): Estimation Results
(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Between city transmission (λ) 0.224*** 0.180*** 0.213*** 0.172*** 0.361*** 0.310***
(0.0359) (0.0353) (0.0322) (0.0221) (0.040) (0.0580)
[0.247] [0.198] [0.234] [0.189] [0.397] [0.341]

Within city transmission (γ) -0.393*** -0.143 -0.566** -0.158 -0.587*** -0.167
(0.141) (0.136) (0.187) (0.190) (0.173) (0.182)

Weather controls
Temperature -0.00721 -0.0214 -0.0282 -0.0411 -0.0035 -0.0196

(0.0244) (0.0248) (0.0431) (0.0370) (0.0445) (0.0416)
Sea level pressure -0.700* -0.889** -0.976 -1.276* -0.876 -1.177*

(0.379) (0.377) (0.762) (0.695) (0.742) (0.698)
Station pressure 0.0371* 0.0418** 0.0422 0.0450** 0.0316 0.0347

(0.0195) (0.0205) (0.0252) (0.0227) (0.0243) (0.0219)
Visibility -0.0183 -0.0379 0.0198 0.00178 0.0213 0.0070

(0.0286) (0.0248) (0.0316) (0.0279) (0.0306) (0.0267)
Wind speed 0.150* 0.188*** 0.156 0.170** 0.129 0.146***

(0.0752) (0.0709) (0.0974) (0.0821) (0.0884) (0.0729)
Snow depth 0.000176 0.000349 -0.00196 -0.00176 -0.00065 -0.00084

(0.00425) (0.00407) (0.00248) (0.00203) (0.00223) (0.00175)
Precipitation -0.157*** -0.181*** -0.289** -0.329*** -0.239** -0.288***

(0.0550) (0.0503) (0.124) (0.118) (0.106) (0.106)
Bad weather 0.562 0.517 0.257 0.268 0.110 0.143

(0.531) (0.548) (0.534) (0.552) (0.547) (0.537)
Socioeconomic controls

Population density 0.439* 0.727** 0.438** 0.619**
(0.215) (0.308) (0.205) (0.249)

Per capita GDP -0.0363 -0.00356 -0.0715* -0.0403
(0.0402) (0.0385) (0.0386) (0.0411)

Primary industry employment share -3.626 -3.448* -2.603 -2.808
(2.457) (2.027) (2.517) (2.105)

Tertiary industry employment share 0.301 0.345 -0.0613 -0.0690
(0.471) (0.402) (0.425) (0.424)

Contextual effects
Population density -2.097*** -1.523***

(0.393) (0.395)
Per capita GDP 0.0734** 0.0304

(0.0322) (0.0336)
Primary industry employment share 14.58*** 9.062

(4.589) (6.248)
Tertiary industry employment share -0.816 -0.383

(0.844) (0.866)

Observations 360 360 281 281 281 281
Province FE YES YES YES YES YES YES

The dependent variable is the log of the number of cumulative confirmed cases by February 29, 2020. The
endogenous explanatory variables include the log of cumulative number of confirmed cases in other cities and the
intensity of population flows between and within cities. Weather controls are temperature, sea level pressure,
station pressure, visibility, wind speed, snow depth, precipitation, and a dummy for bad weather in own cities.
Socioeconomic controls are population density, GDP per capita, primary industry employment share, and tertiary
industry employment share in own cities. Socioeconomic controls are included in the last four columns, while the
first two columns only control for weather variables. The set of these weather variables in other cities weighted
by the population flow intensities between cities in 2019, and the within-city population flow intensities in 2019
are used as instrumental variables in the IV regressions. Columns (5)-(6) include the contextual effects of the
socioeconomic variables, and use these socioeconomic variables in other cities weighted by the population flow
intensities between cities in 2019 as IV. In all models, province fixed effects are included. Elasticity of infection
spillovers per 100,000 daily population movements are reported in brackets. Standard errors in parentheses are
clustered by provinces. *** p<0.01,** p<0.05, * p<0.1.
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Table 4: Model B (Alternative Model): Estimation Results
(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Between city transmission (λ) 0.161*** 0.133*** 0.155*** 0.127*** 0.241*** 0.198***
(0.0140) (0.0163) (0.0149) (0.0120) (0.0242) (0.0317)
[0.177] [0.146] [0.171] [0.140] [0.265] [0.218]

Within city transmission (γ) 0.127 0.121 0.00624 -0.0159 -0.106 -0.0952
(0.159) (0.151) (0.177) (0.164) (0.156) (0.152)

Weather controls
Temperature -0.0376 -0.0378 -0.0408 -0.0430 -0.0134 -0.0241

(0.0284) (0.0266) (0.0398) (0.0362) (0.0443) (0.0427)
Sea level pressure -0.965** -1.002** -1.387* -1.382** -1.243 -1.309*

(0.432) (0.402) (0.775) (0.700) (0.777) (0.711)
Station pressure 0.0344 0.0383* 0.0361 0.0399* 0.0258 0.0322

(0.0226) (0.0221) (0.0234) (0.0214) (0.0234) (0.0210)
Visibility -0.0331 -0.0424* -0.00088 -0.00519 0.000694 -0.00108

(0.0245) (0.0223) (0.0287) (0.0260) (0.0279) (0.0254)
Wind speed 0.186** 0.203*** 0.168* 0.176** 0.154* 0.161**

(0.0728) (0.0709) (0.0869) (0.0798) (0.0821) (0.0743)
Snow depth 0.00105 0.000934 -0.00154 -0.00160 -0.000537 -0.000939

(0.00450) (0.00416) (0.00219) (0.00197) (0.00197) (0.00171)
Precipitation -0.176*** -0.188*** -0.345** -0.348*** -0.294** -0.312***

(0.0502) (0.0483) (0.136) (0.124) (0.120) (0.115)
Bad weather 0.237 0.275 0.0347 0.0742 -0.181 -0.0865

(0.633) (0.622) (0.647) (0.604) (0.657) (0.612)
Socioeconomic controls

Population density 0.551** 0.682** 0.487** 0.593***
(0.217) (0.268) (0.200) (0.224)

Per capita GDP -0.00758 0.00634 -0.0323 -0.0199
(0.0349) (0.0324) (0.0372) (0.0348)

Primary industry employment share -3.442 -3.388* -2.519 -2.794
(2.126) (1.926) (2.253) (2.040)

Tertiary industry employment share -0.217 0.0344 -0.495 -0.288
(0.376) (0.384) (0.350) (0.390)

Contextual effects
Population density -1.141*** -0.979***

(0.315) (0.245)
Per capita GDP 0.0421** 0.0482**

(0.0202) (0.0197)
Primary industry employment share 7.923** 4.081

(3.283) (4.290)
Tertiary industry employment share -0.0353 -0.0399

(0.466) (0.398)

Observations 360 360 281 281 281 281
Province FE YES YES YES YES YES YES

The dependent variable is the log of the number of cumulative confirmed cases by February 29, 2020. The
average intensities of population flows between and within cities are calculated based on data from January 1
and January 22, 2020, which are treated as exogenous. The endogenous explanatory variables include the log
of cumulative number of confirmed cases in other cities. Weather controls are temperature, sea level pressure,
station pressure, visibility, wind speed, snow depth, precipitation, and a dummy for bad weather in the own
cities. Socioeconomic controls are population density, GDP per capita, primary industry employment share, and
tertiary industry employment share in own cities. Socioeconomic controls are included in the last four columns,
while the first two columns only control for weather variables. The sum of these weather variables in other cities
weighted by the population flow intensities between cities in 2020 are used as instrumental variables in the IV
regressions. Columns (5)-(6) include the contextual effects of the socioeconomic variables. In all models, province
fixed effects are included. Elasticity of infection spillovers per 100,000 daily population movements are reported
in brackets. Standard errors in parentheses are clustered by provinces. *** p<0.01,** p<0.05, * p<0.1.
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Table 5: Key Network Links, Top 25

Rank Origin Destination Total Orig. Dest. Link Cum. % Cum. %
Effect† Centrality‡ Centrality∗ Intensity⋆ Reductions Restrictions

Infections Pop. Flows

1 Shenzhen Dongguan 2.62 6.04 2.65 0.94 0.80 0.37
2 Foshan Guangzhou 2.59 4.44 3.07 1.10 1.71 0.80
3 Guangzhou Foshan 2.49 5.85 2.32 1.07 1.96 1.21
4 Dongguan Shenzhen 2.09 4.61 2.92 0.89 2.56 1.56
5 Shanghai Suzhou 1.60 5.82 2.18 0.71 2.97 1.84
6 Beijing Langfang 1.49 6.03 1.67 0.85 3.22 2.17
7 Langfang Beijing 1.46 3.43 2.66 0.91 3.63 2.52
8 Suzhou Shanghai 1.44 4.48 2.54 0.72 4.09 2.80
9 Dongguan Guangzhou 1.22 4.61 3.07 0.49 4.33 2.99
10 Shenzhen Guangzhou 1.21 6.04 3.07 0.37 4.59 3.13
11 Shenzhen Huizhou 1.16 6.04 1.79 0.61 4.74 3.37
12 Huizhou Shenzhen 1.15 4.14 2.92 0.54 5.01 3.58
13 Guangzhou Dongguan 1.11 5.85 2.65 0.40 5.12 3.73
14 Xi’an Xianyang 1.07 4.80 1.36 0.94 5.19 4.10
15 Guangzhou Shenzhen 0.95 5.85 2.92 0.31 5.36 4.22
16 Wuhan Xiaogan 0.84 10.80 1.12 0.39 9.48 4.37
17 Tianjin Beijing 0.83 4.92 2.66 0.35 9.74 4.51
18 Wuhan Huanggang 0.83 10.80 1.13 0.38 13.05 4.66
19 Chongqing Chengdu 0.77 6.36 2.34 0.29 13.19 4.77
20 Beijing Baoding 0.76 6.03 1.45 0.49 13.25 4.96
21 Xianyang Xi’an 0.74 2.89 1.84 0.79 13.33 5.27
22 Baoding Beijing 0.72 3.50 2.66 0.44 13.50 5.44
23 Beijing Tianjin 0.63 6.03 1.68 0.35 13.57 5.57
24 Huizhou Dongguan 0.59 4.14 2.65 0.30 13.63 5.69
25 Guangzhou Qingyuan 0.58 5.85 1.32 0.42 13.65 5.85

This table lists the top 25 population flow routes, ranked by their contributions to the aggregate outcome (
∑

i yi with

yi the number of Covid-19 cases in logarithms) as given in Theorem 1. The estimates use column 2 of Table 3. †:

in log points. ‡: weighted Bonacich centrality of the origin city, (I − λW )−1 η. ∗: Centrality of the destination city

j0, (I − λW ′)
−1

1. ⋆: wdestination,origin. Cities in blue/red/purple are in the Pearl River Delta/Jingjinji Metropolitan

Region/Yangtze River Delta, respectively. The second last column shows the cumulative percentage reductions in

the total number of cases, and the last column shows the cumulative percentage of population flows that are stopped,

if the routes with equal or higher rankings are all closed and population flows on unaffected routes do not change.
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reduced infections depends on the centrality of the origin city, the centrality of the destination city,

and the intensity of population flow on the route. Given the population flow patterns observed in

the data, Table 5 lists the top 25 most consequential population flow routes, which are those in the

regions with large population outflows to many distant cities in China, such as the regions of the

Pearl River Delta, the Jingjinji Metropolitan Region, and the Yangtze River Delta, as indicated

by their high destination centralities. For example, the top ranked route is from Shenzhen to

Dongguan, which features a relatively high destination centrality as Dongguan is a city with a

large population of migrant workers who return to their hometowns in this time period around the

Chinese New Year and some can travel long distances. Infections in these cities can affect more

cities in the country and pose higher risks for virus spread. The total number of cases is predicted

to be 13.65% lower if the top 25 network links are all closed, which constitute only 0.02% of all

network links, or 5.85% of the amount of population flows, confirming the value of identifying key

network links for targeted policy interventions.

It is interesting to observe that the most influential routes are not necessarily those with the

highest population flow intensities, because the centralities of the origin and the destination are

also relevant in the determination of the key network links. The most influential routes also may

not be the routes whose origins have highest infection risks. While infection risks in the city of

Wuhan were high during the sample period as indicated by its high origin centrality, only two routes

from Wuhan are ranked in the top 25, one from Wuhan to Xiaogan and the other from Wuhan to

Huanggang with both destinations in Hubei province. Given the strict travel restrictions such as

the lockdown of Wuhan in place, the intensity of population flows from Wuhan were low already

for many destinations, and this lowers the marginal benefits of even more stringent travel controls

from Wuhan. Note that this does not imply that the lockdown of Wuhan was not consequential in

reducing infections, but only that travel restrictions around Wuhan in addition to those imposed

would have relatively smaller effects.

The contextual effects can affect the key link analysis. We show in earlier analysis that cities

that are closely connected to other cities with high population densities report fewer cases, given

the same case importation risks, which may be due to compensating public health measures. The

contextual effects partly mitigate the risk of receiving population inflows from high risk cities. The

key link ranking taking into account the contextual effects (Table 6) attaches smaller values to the

risk of the origin cities as seen in the smaller origin centralities than those in Table 5. Population

flow routes that end in cities in the Pearl River Delta, especially Shenzhen and Guangzhou, are

still among the high risk routes due to their large population outflows to wider areas, i.e., high

destination centralities.

A parameter in the key link analysis is the spatial interaction coefficient λ whose value is

empirically estimated. We assess to what extent the key link rankings are sensitive to its value by

performing the analysis for alternative values of λ. We consider two scenarios, one with low spatial

interaction intensity (i.e., λ taking half the value of the estimate), and the other with high spatial

interaction intensity (i.e., λ taking 1.5× the value of the estimate). The results are reported in
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Table 6: Key Network Links with Contextual Effects, Top 25

Rank Origin Destination Total Orig. Dest. Link Cum. % Cum. %
Effect† Centrality‡ Centrality∗ Intensity⋆ Reductions Restrictions

Infections Pop. Flows

1 Huizhou Shenzhen 4.69 4.14 6.56 0.54 2.33 0.27
2 Dongguan Shenzhen 4.52 4.61 6.56 0.89 3.99 0.71
3 Foshan Guangzhou 3.50 4.44 6.97 1.10 5.00 1.26
4 Guangzhou Foshan 3.36 5.85 5.17 1.07 5.23 1.79
5 Dongguan Guangzhou 2.83 4.61 6.97 0.49 5.74 2.03
6 Huizhou Dongguan 2.49 4.14 6.04 0.30 6.03 2.18
7 Qingyuan Guangzhou 1.81 2.56 6.97 0.30 6.39 2.33
8 Huizhou Guangzhou 1.68 4.14 6.97 0.17 6.71 2.42
9 Guangzhou Dongguan 1.66 5.85 6.04 0.40 6.75 2.62
10 Yueyang Changsha 1.45 5.06 2.76 0.34 7.36 2.79
11 Guangzhou Shenzhen 1.41 5.85 6.56 0.31 7.43 2.94
12 Zhuhai Zhongshan 1.29 4.60 2.72 0.38 7.61 3.13
13 Wuhan Huanggang 1.22 10.80 1.29 0.38 13.41 3.32
14 Wuhan Xiaogan 1.21 10.80 1.24 0.39 19.92 3.51
15 Xi’an Xianyang 1.17 4.80 1.85 0.94 20.03 3.98
16 Xianyang Xi’an 1.15 2.89 2.67 0.79 20.15 4.37
17 Huanggang Wuhan 1.08 7.97 2.12 0.20 39.34 4.47
18 Zhaoqing Foshan 1.06 3.00 5.17 0.21 39.39 4.58
19 Dongguan Huizhou 1.05 4.61 3.63 0.34 39.42 4.75
20 Xiaogan Wuhan 1.02 8.17 2.12 0.23 50.89 4.86
21 Kunming Qujing 0.99 3.99 1.40 0.55 50.93 5.13
22 Mianyang Chengdu 0.98 3.14 3.37 0.30 51.04 5.28
23 Yiyang Changsha 0.96 4.11 2.76 0.33 51.22 5.45
24 Changsha Yueyang 0.94 5.49 1.64 0.39 51.34 5.64
25 Zhaoqing Guangzhou 0.94 3.00 6.97 0.14 51.40 5.71

This table lists the top 25 population flow routes, ranked by their contributions to the aggregate outcome as given

in Theorem 2. The estimates use column 6 of Table 3. †: in log points. ‡: weighted Bonacich centrality of the origin

city, (I − λW )−1 η. ∗: Centrality of the destination city, (I − λW ′)
−1

1. ⋆: wdestination,origin. Cities in blue are in the

Pearl River Delta. The second last column shows the cumulative percentage reductions in the total number of cases,

and the last column shows the cumulative percentage of population flows that are stopped, if the routes with equal

or higher rankings are all closed and population flows on unaffected routes do not change.
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Tables D.1 and D.2 in the appendix. The rankings are similar in both scenarios, and the key link

targeting is more effective in reducing infections when the spatial interaction intensity is higher.

4 Conclusion and discussion

Network interactions are ubiquitous. The outcomes or actions of individuals can depend on those of

other connected individuals. The literature has characterized the key network node whose removal

can influence the aggregate outcome the most. Besides network nodes, the network links between

nodes can also be targets of policy interventions (Mellon et al., 2016, Philip et al., 2016), with the

objective of reshaping aggregate outcome levels. In this paper, we provide a geometric interpretation

of the factors affecting the contribution of a network link to the aggregate outcome, and show that

the importance of a network link depends on the centralities of the origin and the destination nodes,

along with their link intensity. We discuss how the theoretical results can accommodate contextual

effects and networks that can change in response to the interventions.

We apply the model to examine the spread of Covid-19 in China. Restrictions on travel are

frequently imposed as part of governments’ responses to the Covid-19 pandemic. Blanket bans

or lockdowns of entire regions could incur significant social and economic costs, which may out-

weigh the benefits from reduced infections, and erode public support for the epidemic control and

prevention measures. In this paper, we show that the marginal effect of decreasing intercity pop-

ulation flows in reducing total infections is not homogeneous, but rather depends on the positions

of the origin and destination cities in the network of population flows. The benefit of restricting

population flows on a route is larger if the origin city is closely connected to areas with severe

infections, or the infections in the destination city can spill over to many other cities. Population

flow restrictions that target these links could be more cost-effective. Importantly, the key routes

may not necessarily be those with highest link intensities.

These findings may have rich implications for virus mitigation strategies that go beyond im-

posing ex ante route-specific travel restrictions to optimize ex post management. For regions at

the beginning of an epidemic 8 or with inadequate resources, systematic infection screening and

personnel training may take time and are demanding. The incubation period and high prevalence

of asymptomatic infections may also limit the effectiveness of screening vital signs or self-reporting

of symptoms (World Health Organization, 2020). Therefore, a number of economies have adopted

innovative approaches in their strategies to effectively curb spread of the virus. For instance, tools

such as migration maps, which collect real-time data on the location of people via mobile phones,

mobile payment applications and social media, allow mainland China to track the movement of

people who flowed out of Wuhan or other high risk areas. These data also guide border checks

and surveillance (Wu et al., 2020, Liu, 2020). Taiwan initiated health checks for airline travelers

8Our findings may also apply to later stages of a pandemic when the original strain of virus spreading is under
control but more transmissible new variants, such as Delta and Omicron, continue to emerge locally or to be in-
troduced through cross-border transportation to domestic areas, which leaves less time to respond due to the high
contagiousness.
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from Wuhan and surrounding cities, integrating data from immigration records with its central-

ized, real-time health insurance database. This integration allowed healthcare facilities to access

patients’ travel histories and identify high-risk individuals for testing and tracking (Wang et al.,

2020). South Korea’s aggressive contact tracing using security camera footage, facial recognition

technology, bank card records and GPS data from vehicles and mobile phones provides real-time

data and detailed timelines of people’s travel, which facilitates targeted screening and timely quar-

antine (Fisher and Sang-Hun, 2020). Such mobile technology will continue to help advance policies

on travel restrictions while striking a balance between privacy concerns and public welfare.

Finally, large negative infectious disease externalities are often inherent to pandemics, given

the fact that first movers often bear the largest costs and therefore have insufficient incentive

to internalize these externalities. While governments have largely responded to COVID-19 with

costly public health interventions, most notably lockdowns of cities or travel routes that restrict

human interactions, many missed the best window of opportunity. To motivate local governments

to impose the route-specific travel restrictions contingent on their heterogeneous risks at the very

beginning of a pandemic, targeted support and subsidies from the central government to first

movers are warranted. For instance, preferential policies aimed at reviving and sustaining business

operations of Small and Micro Enterprises (SMEs) have been implemented by both central and

provincial governments, including reliefs on taxation, finance, social security, subsidies, and rent

reduction (Okyere et al., 2020). Overall, the incurred costs are more than offset by benefits accrue

to the aggregate level. Moreover, coordinated restrictions among governments may also reduce the

required restrictions and associated costs to achieve the same objective of combating a pandemic,

which generates additional benefits to all parties (Holtz et al., 2020).
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Bramoullé, Y., Djebbari, H. and Fortin, B. (2009) Identification of peer effects through social

networks, Journal of Econometrics, 150, 41–55.

Brinkman, J. and Mangum, K. (2021) JUE insight: The geography of travel behavior in the early

phase of the COVID-19 pandemic, Journal of Urban Economics.

Brockmann, D. and Helbing, D. (2013) The hidden geometry of complex, network-driven contagion

phenomena, Science, 342, 1337–1342.

Christakis, N. A. and Fowler, J. H. (2007) The spread of obesity in a large social network over 32

years, New England Journal of Medicine, 357, 370–379.

Clark, A. E., Nong, H., Zhu, H. and Zhu, R. (2021) Compensating for academic loss: Online

learning and student performance during the COVID-10 pandemic, China Economic Review, 68.

Cohen-Cole, E. and Fletcher, J. M. (2008) Is obesity contagious? Social networks vs. environmental

factors in the obesity epidemic, Journal of Health Economics, 27, 1382–1387.

Comola, M. and Prina, S. (2021) Treatment effect accounting for network changes, Review of

Economics and Statistics, 103, 597–604.

Dai, R., Feng, H., Hu, J., Jin, Q., Li, H., Wang, R., Wang, R., Xu, L. and Zhang, X. (2021) The

impact of COVID-19 on small and medium-sized enterprises (SMEs): Evidence from two-wave

phone surveys in China, China Economic Review, 67.

Deng, L. and Sun, Y. (2017) Criminal network formation and optimal detection policy: The role

of cascade of detection, Journal of Economic Behavior & Organization, 141, 43–63.

Duan, H., Bao, Q., Tian, K., Wang, S., Yang, C. and Cai, Z. (2021) The hit of the novel coronavirus

outbreak to China’s economy, China Economic Review, 67.

Emanuel, E. J., Zhang, C. and Glickman, A. (2020) Learning from Taiwan about responding

to Covid-19 - and using electronic health records, https://www.statnews.com/2020/06/30/

taiwan-lessons-fighting-covid-19-using-electronic-health-records/.

Fajgelbaum, P. D., Khandelwal, A., Kim, W., Mantovani, C. and Schaal, E. (2020) Optimal lock-

down in a commuting network, Working Paper.

Fang, H., Wang, L. and Yang, Y. (2020) Human mobility restrictions and the spread of the novel

coronavirus (2019-nCoV) in China, Journal of Public Economics, 191.

20

https://www.statnews.com/2020/06/30/taiwan-lessons-fighting-covid-19-using-electronic-health-records/
https://www.statnews.com/2020/06/30/taiwan-lessons-fighting-covid-19-using-electronic-health-records/


Fisher, M. and Sang-Hun, C. (2020) How South Korea flattened the curve, https://www.nytimes.

com/2020/03/23/world/asia/coronavirus-south-korea-flatten-curve.html.

Fowler, J. H. and Christakis, N. A. (2008) Estimating peer effects on health in social networks: A

response to Cohen-Cole and Fletcher; and Trogdon, Nonnemaker, and Pais, Journal of Health

Economics, 27, 1400–1405.

Griffith, A. (2021) Random assignment with non-random peers: A structural approach to counter-

factual treatment assessment, Working Paper.

Holtz, D., Zhao, M., Benzell, S. G., Cao, C. Y., Rahimian, M. A., Yang, J., Allen, J., Collis,

A., Moehring, A., Sowrirajan, T., Ghosh, D., Zhang, Y., Dhillon, P., Nicolaides, C., Eckles,

D. and Aral, S. (2020) Interdependence and the cost of uncoordinated response to COVID-19,

Proceedings of the National Academy of Sciences, 117, 19837–19843.

Hsieh, C.-S., König, M. D. and Liu, X. (2020) A structural model for the coevolution of networks

and behavior, Review of Economics and Statistics.

Jia, J. S., Lu, X., Yuan, Y., Xu, G., Jia, J. and Christakis, N. A. (2020) Population flow drives

spatio-temporal distribution of COVID-19 in China, Nature.

Kermack, W. O. and McKendrick, A. G. (1927) A contribution to the mathematical theory of

epidemics, Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences,

115, 700–721.

Lee, L.-f. (2007) Identification and estimation of econometric models with group interactions, con-

textual factors and fixed effects, Journal of Econometrics, 140, 333–374.

Lee, L.-F., Liu, X. and Lin, X. (2010) Specification and estimation of social interaction models with

network structures, Econometrics Journal, 13, 145–176.

Lee, L.-F., Liu, X., Patacchini, E. and Zenou, Y. (2020) Who is the key player? a network analysis

of juvenile delinquency, Journal of Business & Economic Statistics.

Leeson, P. T. and Rouanet, L. (2021) Externality and COVID-19, Southern Economic Journal, 87,

1107–1118.

Liu, J. (2020) Deployment of health IT in China’s fight against the COVID-19 pan-

demic, https://www.itnonline.com/article/deployment-health-it-china\OT1\

textquoterights-fight-against-covid-19-pandemic.

Manski, C. (1993) Identification of endogenous social effects: The reflection problem, Review of

Economic Studies, 60, 531–542.

Manski, C. F. (2004) Statistical treatment rules for heterogeneous population, Econometrica, 72,

1221–1246.

21

https://www.nytimes.com/2020/03/23/world/asia/coronavirus-south-korea-flatten-curve.html
https://www.nytimes.com/2020/03/23/world/asia/coronavirus-south-korea-flatten-curve.html
https://www.itnonline.com/article/deployment-health-it-china\OT1\textquoteright s-fight-against-covid-19-pandemic
https://www.itnonline.com/article/deployment-health-it-china\OT1\textquoteright s-fight-against-covid-19-pandemic


Manski, C. F. and Molinari, F. (2021) Estimating the covid-19 infection rate: Anatomy of an

inference problem, Journal of Econometrics, 220, 181–192.

Mele, A. (2017) A structural model of dense network formation, Econometrica, 85, 825–850.

Mellon, J., Yoder, J. and Evans, D. (2016) Undermining and strengthening social networks through

network modification, Scientific Reports, 6.

Meng, D., Sun, L. and Tian, G. (2022) Dynamic mechanism design on social networks, Games and

Economic Behavior, 131, 84–120.

Okyere, M. A., Forson, R. and Essel-Gaisey, F. (2020) Positive externalities of an epidemic: The

case of the coronavirus (COVID-19) in China, Journal of Medical Virology, 92, 1376–1379.

Patacchini, E., Rainone, E. and Zenou, Y. (2017) Heterogeneous peer effects in education, Journal

of Economic Behavior & Organization, 134, 190–227.

Philip, J., Ford, T., Henry, D., Rasmus, S. and Allen, J. (2016) Relationship of social network to

protective factors in suicide and alcohol use disorder intervention for rural Yup’ik Alaska native

youth, Psychosocial Intervention, 25.

Qiu, Y., Chen, X. and Shi, W. (2020) Impacts of social and economic factors on the transmission

of Coronavirus Disease 2019 (COVID-19) in China, Journal of Population Economics.

Sun, Y., Zhao, W. and Zhou, J. (2021) Structural interventions in networks, arXiv 2101.12420.

Tian, H., Liu, Y., Li, Y., Wu, C.-H., Chen, B., Kraemer, M. U. G., Li, B., Cai, J., Xu, B., Yang, Q.,

Wang, B., Yang, P., Cui, Y., Song, Y., Zheng, P., Wang, Q., Bjornstad, O. N., Yang, R., Grenfell,

B. T., Pybus, O. G. and Dye, C. (2020) An investigation of transmission control measures during

the first 50 days of the COVID-19 epidemic in China, Science.

Wang, C. J., Ng, C. Y. and Brook, R. H. (2020) Response to COVID-19 in Taiwan: Big Data

Analytics, New Technology, and Proactive Testing, JAMA, 323, 1341–1342.

Whitelaw, S., Mamas, M. A., Topol, E. and Van Spall, H. G. C. (2020) Applications of digital

technology in COVID-19 pandemic planning and response, The Lancet Digital Health.

World Health Organization (2020) Key considerations for repatriation and quarantine of travellers

in relation to the outbreak of novel coronavirus 2019-nCoV.

Wu, J. T., Leung, K. and Leung, G. M. (2020) Nowcasting and forecasting the potential domestic

and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling

study, Lancet.

22



A Proof of Theorem 1

Let −j0j1 denote the scenario when the network link wj0j1 is removed. Under the assumption that

|λ|maxi
∑

j |wij | < 1, I−λW and I−λW−j0j1 are invertible and the equilibrium outcome described

by Eq.(2) exists and is unique. From Eq.(2),

y−j0j1
s − ys = ℓ′s

(
I − λW−j0j1

)−1
η − ℓ′s (I − λW )−1 η (A.1)

= −λℓ′s
(
I − λW−j0j1

)−1 (
W −W−j0j1

)
(I − λW )−1 η

= −λwj0j1ℓ
′
s

(
I − λW−j0j1

)−1
ℓj0ℓ

′
j1 (I − λW )−1 η

where in Eq.(A.1) we have used the identity A−1−B−1 = A−1 (B −A)B−1 for invertible matrices

A and B.

Summing over s, the impact of removing wj0j1 on the aggregate outcome is

n∑
s=1

(
ys − y−j0j1

s

)
= λwj0j11

′ (I − λW−j0j1
)−1

ℓj0ℓ
′
j1 (I − λW )−1 η

= λwj0j1 [
(
I − λW−j0j1 ′)−1

1]j0 [(I − λW )−1 η]j1 .

B Proof of Theorem 2

The proof mirrors the proof of Theorem 1 with some modifications.

y−j0j1
s − ys = ℓ′s

(
I − λW−j0j1

)−1
η−j0j1 − ℓ′s (I − λW )−1 η

= ℓ′s
(
I − λW−j0j1

)−1 (
η−j0j1 − η

)
+ ℓ′s

(
I − λW−j0j1

)−1
η − ℓ′s (I − λW )−1 η

= −ℓ′s
(
I − λW−j0j1

)−1
ℓj0wj0j1x

′
j1βw + ℓ′s

(
I − λW−j0j1

)−1
η − ℓ′s (I − λW )−1 η.

The proof is completed by using the result in Eq.(A.1) and summing over s.

C First stage results

Table C.1 presents the first stage estimates for the IV regressions for Model A as described in Table

3. Columns (1) and (3) display the coefficients on the sum of cumulative confirmed cases in other

cities weighted by population flows. Columns (2) and (4) present the coefficients on within city

population flow intensity. The estimates of the first stage regressions for Model B are reported in

Table C.2. We also report the R-squared and F -test statistics for the joint significance of excluded

instruments in the first stage.

D Key network links under alternative specifications

Please see Tables D.1 and D.2.
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Table C.1: Model A: First Stage Results
(1) (2) (3) (4) (5) (6)

VARIABLES Wy t Wy t Wy t

Own city
Within-city population flow intensities in 2019 -0.245 0.760*** -0.435 0.859*** -0.274 0.862***

(0.219) (0.122) (0.294) (0.0905) (0.232) (0.0976)
Temperature -0.0463 0.0285 -0.0167 -0.00329 -0.00025 -0.00362

(0.0911) (0.0182) (0.0614) (0.00827) (0.0554) (0.00851)
Sea level pressure -0.520 0.273* 1.017 0.148 1.222 0.150

(1.033) (0.159) (1.072) (0.190) (1.083) (0.203)
Station pressure 0.0230 -0.00022 0.00566 0.00241 0.00530 0.00299

(0.0504) (0.00933) (0.0309) (0.00673) (0.0277) (0.00656)
Visibility -0.110*** 0.0195*** -0.0663** 0.0243*** -0.0332 0.0231***

(0.0357) (0.00668) (0.0296) (0.00558) (0.0273) (0.00552)
Wind speed 0.0956 0.025 0.0662 -0.0149 0.0608 -0.0142

(0.122) (0.0272) (0.0969) (0.0267) (0.0828) (0.0273)
Snow depth 0.000742 0.00135 -0.0046 0.000786** -0.00255 0.00082**

(0.00467) (0.00128) (0.00320) (0.000301) (0.00202) (0.000338)
Precipitation 0.0401 0.0170 0.234 0.00583 0.128 0.00212

(0.246) (0.0343) (0.184) (0.0216) (0.134) (0.0220)
Bad weather 0.0145 -0.0435 -0.241 0.0109 -0.415 0.00990

(0.660) (0.148) (0.669) (0.159) (0.495) (0.164)
Population density 0.700 -0.0660 0.804 -0.0866

(0.549) (0.141) (0.538) (0.143)
Per capita GDP 0.0624 -0.00542 0.0611 -0.00476

(0.0520) (0.0128) (0.0527) (0.0130)
Primary industry employment share -2.733 0.406* -2.770 0335

(2.362) (0.207) (2.256) (0.218)
Tertiary industry employment share 2.145** 0.133 2.389** 0.0769

(1.059) (0.167) (0.988) (0.173)
Other cities, weight = population flow

Temperature 0.115 -0.0194** 0.0730 -0.00448 -0.105 -0.0100
(0.137) (0.00829) (0.0908) (0.00547) (0.0905) (0.00620)

Sea level pressure -1.632 -0.245 -1.862 -0.0179 -3.883* -0.0343
(3.047) (0.178) (2.275) (0.148) (2.002) (0.152)

Station pressure 0.0803 0.00498 0.108** -0.00167 0.190*** -0.00793
(0.0747) (0.00926) (0.0474) (0.00784) (0.0487) (0.00728)

Visibility -0.394* 0.00818 -0.368* 0.00871 -0.244 0.0218
(0.214) (0.0337) (0.178) (0.0281) (0.178) (0.0365)

Wind speed 1.025 -0.00915 1.405*** -0.00542 1.197*** -0.00544
(0.729) (0.0490) (0.459) (0.0686) (0.399) (0.0592))

Snow depth 0.0264 -0.00173 0.0112 0.000542 0.0132 0.00107
(0.0235) (0.00239) (0.0166) (0.00141) (0.0128) (0.00126)

Precipitation -6.209** 0.314* -6.337** 0.321 -2.891 0.321
(2.761) (0.157) (2.334) (0.233) (2.095) (0.224)

Bad weather 2.894 -0.128 2.681 -0.0962 1.396 0.139
(3.016) (0.282) (2.759) (0.301) (2.408) (0.373)

Population density -0.0212 0.228
(0.657) (0.137)

Per capita GDP -0.00913 -0.00868
(0.0664) (0.00977)

Primary industry employment share -63.88*** 0.302
(17.56) (1.450)

Tertiary industry employment share 4.069*** -0.424
(0.998) (0.289)

First-stage R2 0.862 0.846 0.889 0.865 0.915 0.869
F -test of excluded instruments 15.73 42.95 37.89 28.11 214.5 23.96
F -test p-value 0.000 0.000 0.000 0.000 0.000 0.000
Observations 360 360 281 281 281 281
Province FE YES YES YES YES YES YES

This table reports the first stage results for the weighted sum of cumulative confirmed cases in other cities and
the intensities of population flows within cities. The first-stage R-squared and F -tests for the joint significance of
excluded instruments in the first stages are reported. Weather controls and socioeconomic controls are included
in the last two columns, while the first two columns only control weather variables. Columns (5)-(6) include the
contextual effects of the socioeconomic variables.Standard errors in parentheses are clustered by provinces. ***
p<0.01,** p<0.05, * p<0.1.
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Table C.2: Model B: First Stage Results
(1) (2) (3)

VARIABLES Wy Wy Wy

Own city
Within-city population flow intensities in 2020 0.116 -0.449 -0.130

(0.376) (0.498) (0.247)
Temperature -0.0992 -0.0811 -0.0741

(0.0693) (0.0987) (0.0880)
Sea level pressure -0.686 0.438 0.571

(1.234) (1.627) (1.541)
Station pressure -0.0398 0.0263 0.0364

(0.0574) (0.0514) (0.0461)
Visibility -0.0775 -0.102** -0.0536

(0.0533) (0.0450) (0.0436)
Wind speed -0.151 0.179 0.162

(0.198) (0.195) (0.154)
Snow depth -0.000556 -0.00511 -0.00259

(0.00985) (0.00455) (0.00307)
Precipitation 0.409 0.223 0.115

(0.539) (0.307) (0.241)
Bad weather 1.372 0.703 0.255

(1.396) (0.885) (0.694)
Population density 1.136 1.358*

(0.769) (0.787)
Per capita GDP 0.166** 0.181**

(0.0624) (0.0671)
Primary industry employment share -3.998 -4.046

(3.349) (3.519)
Tertiary industry employment share 3.077* 3.434**

(1.527) (1.302)
Other cities, weight = population flow

Temperature 0.204 0.191 -0.107
(0.208) (0.156) (0.168)

Sea level pressure -1.158 -1.200 -4.965
(4.318) (3.699) (3.218)

Station pressure 0.177 0.129* 0.233**
(0.114) (0.0736) (0.104)

Visibility -0.803** -0.855*** -0.635*
(0.376) (0.297) (0.351)

Wind speed 1.393 2.096** 1.485**
(0.992) (0.755) (0.719)

Snow depth 0.00239 0.0268 0.0293
(0.0463) (0.0282) (0.0244)

Precipitation -10.76** -8.692** -4.259
(4.152) (4.090) (3.609)

Bad weather 1.178 2.953 1.493
(3.964) (3.840) (3.264)

Population density -0.166
(0.971)

Per capita GDP 0.117
(0.105)

Primary industry employment share -96.46**
(38.08)

Tertiary industry employment share 3.760*
(2.033)

First-stage R2 0.790 0.903 0.922
F -test of excluded instruments 39.44 76.03 21.43
F -test p-value 0.000 0.000 0.000
Observations 360 281 281
Province FE YES YES YES

This table reports the first stage results for the weighted sum of cumulative confirmed cases in other cities. The
first-stage R-squared and F -tests for the joint significance of excluded instruments in the first stages are reported.
Weather controls and socioeconomic controls are included in the last two columns, while the first column only
controls weather variables. Column (3) includes the contextual effects of the socioeconomic variables. Standard
errors in parentheses are clustered by provinces. *** p<0.01,** p<0.05, * p<0.1.
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Table D.1: Key Network Links, Low Interaction Intensity, Top 25

Rank Origin Destination Total Orig. Dest. Link Cum. % Cum. %
Effect† Centrality‡ Centrality∗ Intensity⋆ Reductions Restrictions

Infections Pop. Flows

1 Shenzhen Dongguan 0.53 3.91 1.60 0.94 0.07 0.37
2 Foshan Guangzhou 0.51 2.89 1.78 1.10 0.17 0.80
3 Guangzhou Foshan 0.47 3.39 1.47 1.07 0.21 1.21
4 Beijing Langfang 0.37 3.91 1.23 0.85 0.23 1.54
5 Dongguan Shenzhen 0.37 2.66 1.72 0.89 0.31 1.89
6 Xi’an Xianyang 0.37 3.83 1.14 0.94 0.32 2.25
7 Wuhan Xiaogan 0.35 9.68 1.05 0.39 2.23 2.41
8 Shanghai Suzhou 0.35 3.79 1.47 0.71 2.28 2.68
9 Wuhan Huanggang 0.35 9.68 1.05 0.38 3.64 2.83
10 Langfang Beijing 0.34 2.51 1.69 0.91 3.70 3.18
11 Suzhou Shanghai 0.30 2.93 1.62 0.72 3.77 3.46
12 Shenzhen Huizhou 0.27 3.91 1.27 0.61 3.79 3.70
13 Huizhou Shenzhen 0.26 3.09 1.72 0.54 3.84 3.91
14 Shenzhen Guangzhou 0.23 3.91 1.78 0.37 3.88 4.05
15 Xianyang Xi’an 0.22 2.26 1.36 0.79 3.90 4.36
16 Tianjin Beijing 0.22 4.05 1.69 0.35 3.95 4.50
17 Dongguan Guangzhou 0.21 2.66 1.78 0.49 3.98 4.69
18 Beijing Baoding 0.20 3.91 1.17 0.49 3.99 4.88
19 Xiaogan Wuhan 0.20 7.55 1.28 0.23 10.18 4.97
20 Guangzhou Dongguan 0.20 3.39 1.60 0.40 10.20 5.12
21 Chongqing Chengdu 0.19 4.75 1.58 0.29 10.22 5.23
22 Yueyang Changsha 0.19 4.52 1.34 0.34 10.27 5.37
23 Xi’an Weinan 0.19 3.83 1.08 0.50 10.27 5.56
24 Baoding Beijing 0.18 2.80 1.69 0.44 10.31 5.73
25 Kunming Qujing 0.18 3.32 1.10 0.55 10.31 5.95

This table lists the top 25 population flow routes, ranked by their contributions to the aggregate outcome as given

in Theorem 1. The estimates use column 2 of Table 3 with the exception that λ is half the estimated value. †: in

log points. ‡: weighted Bonacich centrality of the origin city, (I − λW )−1 η. ∗: Centrality of the destination city,

(I − λW ′)
−1

1. ⋆: wdestination,origin. Cities in blue/red/purple are in the Pearl River Delta/Jingjinji Metropolitan

Region/Yangtze River Delta, respectively. The second last column shows the cumulative percentage reductions in

the total number of cases, and the last column shows the cumulative percentage of population flows that are stopped,

if the routes with equal or higher rankings are all closed and population flows on unaffected routes do not change.
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Table D.2: Key Network Links, High Interaction Intensity, Top 25

Rank Origin Destination Total Orig. Dest. Link Cum. % Cum. %
Effect† Centrality‡ Centrality∗ Intensity⋆ Reductions Restrictions

Infections Pop. Flows

1 Foshan Guangzhou 11.61 7.80 5.60 1.10 18.43 0.43
2 Shenzhen Dongguan 11.52 10.29 4.81 0.94 24.81 0.80
3 Guangzhou Foshan 11.41 10.84 4.10 1.07 26.03 1.21
4 Dongguan Shenzhen 10.06 8.57 5.31 0.89 29.04 1.56
5 Dongguan Guangzhou 6.11 8.57 5.60 0.49 30.05 1.75
6 Shanghai Suzhou 5.65 9.12 3.37 0.71 32.07 2.03
7 Shenzhen Guangzhou 5.58 10.29 5.60 0.37 32.95 2.17
8 Guangzhou Dongguan 5.48 10.84 4.81 0.40 33.30 2.32
9 Suzhou Shanghai 5.28 7.05 4.05 0.72 35.10 2.60
10 Beijing Langfang 5.00 9.39 2.48 0.85 36.75 2.93
11 Langfang Beijing 4.98 5.12 4.22 0.91 38.04 3.29
12 Huizhou Shenzhen 4.81 6.48 5.31 0.54 38.90 3.50
13 Shenzhen Huizhou 4.77 10.29 2.93 0.61 39.16 3.73
14 Guangzhou Shenzhen 4.72 10.84 5.31 0.31 39.63 3.86
15 Xi’an Xianyang 2.59 6.30 1.73 0.94 39.81 4.22
16 Tianjin Beijing 2.53 6.35 4.22 0.35 40.52 4.36
17 Huizhou Dongguan 2.49 6.48 4.81 0.30 40.67 4.48
18 Chongqing Chengdu 2.45 9.05 3.51 0.29 41.15 4.59
19 Beijing Baoding 2.37 9.39 1.95 0.49 41.34 4.78
20 Baoding Beijing 2.30 4.73 4.22 0.44 41.73 4.95
21 Dongguan Huizhou 2.25 8.57 2.93 0.34 41.79 5.08
22 Guangzhou Qingyuan 2.20 10.84 1.82 0.42 41.87 5.24
23 Beijing Tianjin 2.04 9.39 2.36 0.35 42.01 5.38
24 Xianyang Xi’an 2.00 3.90 2.54 0.79 42.15 5.69
25 Chengdu Chongqing 1.85 7.60 2.69 0.34 42.80 5.82

This table lists the top 25 population flow routes, ranked by their contributions to the aggregate outcome as given

in Theorem 1. The estimates use column 2 of Table 3 with the exception that λ is 1.5× the estimated value. †: in

log points. ‡: weighted Bonacich centrality of the origin city, (I − λW )−1 η. ∗: Centrality of the destination city,

(I − λW ′)
−1

1. ⋆: wdestination,origin. Cities in blue/red/purple are in the Pearl River Delta/Jingjinji Metropolitan

Region/Yangtze River Delta, respectively. The second last column shows the cumulative percentage reductions in

the total number of cases, and the last column shows the cumulative percentage of population flows that are stopped,

if the routes with equal or higher rankings are all closed and population flows on unaffected routes do not change.
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E Exogenous changes in multiple links

Networks may rewire after interventions that target components of the networks. Lee et al. (2020)

extend the key player analysis of Ballester et al. (2006) by accounting for network changes after

the removal of network nodes and show that the key player rankings can be different if networks

are assumed fixed but in fact may change after the interventions. Some recent research on policy

evaluations in the presence of between unit interactions have also used various ways to take into

account how networks change in response to the interventions (Comola and Prina, 2021, Griffith,

2021). We show how the key link analysis can be extended to allow for network changes after the

removal of a link. As before, the pre-intervention network is represented by matrix W and W−j0j1

is the same as W except for the link j0j1 which is replaced by zero. Suppose that after the link j0j1

is replaced by zero, the network matrix changes to G−j0j1 . Denote the ij entry of matrix G−j0j1

by gij . We assume that G−j0j1 differs from W−j0j1 for a set of links S(j0j1):

G−j0j1 −W−j0j1 =
∑

ij∈S(j0j1)

ξijℓiℓ
′
j , (E.1)

where ξij measures the network changes for the ij link.

Theorem 3. Suppose that the network interactions are described by Eq.(1) and the network changes

according to Eq.(E.1) when removing the network link wj0j1, i.e., replacing wj0j1 by 0. Also assume

that |λ|maxi
∑

j |wij | < 1 and |λ|maxi
∑

j |gij | < 1. Removing the network link wj0j1, will reduce

the aggregate outcome by

λwj0j1 [
(
I − λW−j0j1 ′)−1

1]j0 [(I − λW )−1 η]j1

− λ
∑

ij∈S(j0j1)

ξij [
(
I − λG−j0j1 ′)−1

1]i[
(
I − λW−j0j1

)−1
η]j . (E.2)

The proof is similar to that of Theorem 2 and is omitted. Comparing Theorems 1 and 3, whether

changes in other parts of the network as a result of removing a link magnify or dampen the direct

effects of removing the link depends on the term in Eq.(E.2), specifically the sign and size of ξij

and the centralities of the affected routes. For example, in the context of population flows and

disease spread, restrictions on a travel route may increase the flows to other destinations, which

may attenuate the direct effects of restrictions in reducing aggregate outcomes. On the other hand,

closing a travel route may discourage travel on other routes due to awareness of increased disease

risks, which may enhance the direct effects of the route closure.

A more substantive treatment on changes in multiple network links for undirected networks is

given by Sun et al. (2021). We have assumed that how the network rewires after interventions is

deterministic and is known to the decision maker. Allowing for uncertainty requires a model for

network formation such as Mele (2017) and Lee et al. (2020) and methods from statistical treatment

assignment (Manski, 2004). One may also consider bounds on the indirect effects from network

changes (Manski and Molinari, 2021).
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