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Economic geography of contagion: 
A study on Covid-19 outbreak in India* 

 

Tanika Chakraborty+ 

Anirban Mukherjee++ 

 

Abstract 

We propose a regional inequality-based mechanism to explain the heterogeneity in the spread 

of Covid-19 and test it using data from India. We argue that an area characterized by core-

periphery economic structure creates regional inequality in which the periphery remains 

dependent on the core for the supply of jobs, goods and services. Hence, areas arranged in core-

periphery structure induce greater degree of mobility which in turn ends up at a higher infection 

rate than the more homogeneously developed areas at the time of pandemic. Using nightlights 

data to measure regional inequality in the degree of economic activity, we find evidence in 

support of our hypothesis. Further, we find that regions with higher nightlight inequality also 

experience higher spread of Covid-19 only when lockdown measures have been relaxed and 

movement of goods and services are near normal. Using mobility data, we provide direct 

evidence in support of our proposed mechanism; that the positive relationship between regional 

inequality and Covid-19 infection is driven by mobility. Our findings imply that policy 

responses to contain Covid-19 contagion needs to be heterogeneous across India where the 

priority areas can be chosen ex-ante based on inequality in economic activity. 
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1. Introduction 

The Covid-19 epidemic that started from China in the month of November, 2019 has already 

created a havoc worldwide. One of the striking features of the Covid-19 epidemic is the cross-

country variation in terms of the number of infections and deaths; the number of confirmed 

cases per 1 million population was much higher in Europe and America than in Asia and Africa, 

during the first year of the pandemic. For example, while the number of confirmed patients per 

1 million population is 87,884 in the USA and 61,222 in United Kingdom, it is only 7989 in 

India, 3860 in Sri Lanka and 4,178 in Zambia. Such cross-continent comparisons, however, is 

not always meaningful as underdeveloped countries often do not have enough facilities to carry 

out more tests and the lower number of cases could just be an artifact of a smaller number of 

tests. But the cross-country differences are difficult to miss even if we compare similar type of 

countries. For example, the number of confirmed patients per 1 million population in Canada, 

standing at 22,766, is almost one fourth of that in the United States. A similar difference within 

a continent can also be seen among European nations; the number of confirmed patients per 1 

million population is 78,986 in Portugal, 63,172 in Netherlands, 48,140 in Italy and 29,010 in 

Russia1. 

 

There could be several factors that explain such cross-country differences; the major candidates 

being population density, urbanization, available infrastructure to carry out effective quarantine 

etc. While social and demographic characteristics may partly and significantly explain the 

variations in the extent of the contagion, we propose a different explanation based on the 

economic geography of a country.  We argue that the contagion depends on certain patterns of 

regional development. Our argument draws heavily on the economic-geography theory of 

economic development, pioneered by Paul Krugman (see (Krugman, 1991; Krugman and 

Venables, 1995) which shows that the process of economic development ends up creating a 

heavily industrialized, small core area, surrounded by a large non-industrial periphery. The 

regional inequality created through the core-periphery mechanism captures the fundamental 

process of economic development not only in the developed part of the world, but in the 

developing regions as well. In the absence of the core-periphery pattern, different regions 

within a country can operate in autarky and in the event of any outbreak in that country, an 

infected region can be disconnected from the rest of the country without seriously disrupting 

the supply of essentials. This becomes more difficult in presence of core-periphery structure 

 
1The country specific data come from https://www.worldometers.info/coronavirus/ as of 28 February, 2021 
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where remote regions (periphery) are all connected with the economic hub (core) and therefore 

to each other. If any of the hubs get affected -- which is a likely scenario as hubs are densely 

populated -- the contagion does not only spread within the hub, but it spreads to the remote 

areas as well. Given the heavy dependence of peripheral areas on the core in a core-periphery 

structure, the movements of goods and people are very high between the core and the peripheral 

regions and any attempt to isolate the core will impose a very high burden of economic costs 

on the peripheries. In our paper, we argue that the high degree of movements between the core 

and periphery becomes instrumental in spreading the disease. Hence, the extent of contagion 

will be higher in areas characterized by a core-periphery structure than in areas consisting of 

similarly developed sub-regions.  

 

Even though our research is motivated by cross country differences in the spread of infection, 

conducting the analysis on cross country samples hardly makes any sense as difference across 

countries could be the result of institutional or cultural differences which are difficult to control. 

We, instead, explain variation in infection rates across regions within India by variations in the 

potential degree of the core-periphery structure across these regions. The core-periphery 

structure essentially embeds regional inequality in economic activity. For instance, a state 

showing a stronger core-periphery structure will also have greater intra-state regional 

inequality. Night time luminosity is a well-established measure to compare economic and 

industrial activity across countries, as well as across regions within a country (Henderson et 

al., 2012; Prakash et al., 2019). We construct an index of regional inequality in economic 

activity based on night time luminosity data, across the districts of India, to measure the core-

periphery structure of a region; the stronger the core-periphery structure, the higher is the inter-

district nightlight inequality in that region.2 We expect that the regions with higher intra-

regional inequality in economic activity will experience higher Covid-19 infection rate, after 

accounting for factors that covary with the spread of the infection and regional inequality.  

 

In addition to state and time fixed-effects to account for unobserved heterogeneity across states 

and time, we follow the growing literature on Covid 19 to identify a range of variables to 

control for. Most of the hypotheses, that are tested by other researchers, are either some ideas 

generated from the understanding of contagious diseases in general (e.g. contagion spreads 

faster in densely populated area) or some heuristics that originated from casual, empirical 

 
2 We use night time luminosity and nightlights interchangeably in this paper.  
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observations (e.g. COVID 19 spreads less in areas covered by BCG vaccination). The controls 

we consider, fall in three broad categories: demographic, economic and disease environment. 

 

Our findings support the hypothesis that the core-periphery economic structure leads to a higher 

spread of the infection. We find that a higher degree of state level regional inequality in 

nightlights is associated with greater contagion. Our findings are similar when we account for 

state fixed effects and state level linear time trends using the extent of nightlight inequality in 

a district’s neighbourhood. In both cases, the findings remain robust to a staggered inclusion 

of a range of control variables.  

 

Movements of people play a key role in our story. The mechanism that underlies our measure 

involves movement of people from the core to the periphery. We provide evidence on this 

channel in three ways. First, we use differences in potential mobility over lockdown and unlock 

periods, announced by the Indian government, to test whether the relationship between Covid-

19 and regional inequality varied across the different lockdown phases. Second, we use 

mobility data from the Facebook Data for Good project to study the mechanism directly. Third, 

we also use unemployment rates as a proxy for movement of people (or lack thereof) and 

investigate its interaction with the core-periphery structure.3 The analysis by the phases of 

lockdown and unlock shows that the core-periphery structure contributes to the spread of the 

Covid-19 infection when the economy opens up. The results are absent or muted during the 

lockdown periods and early phases of unlock. We also find that movement of people, as proxied 

by the Facebook data, is strongly correlated with our measure of regional inequality and is the 

main driver of the baseline relationship. Finally, we find that for the same level of intra-state 

regional inequality in nightlights, districts in states with higher levels of baseline 

unemployment, experience a lower extent of contagion. 

 

The findings in this paper contribute to the section of the literature which looks at the policy 

response of governments in face of Covid-19. In one such paper  Bonacini et al.,( 2021) showed 

how people’s expectation formation can mitigate the effect of lockdown policies. Lockdown 

policies however are seen to effect economies in various, nuanced ways. (Bonacini et al., 

2021b) for example, showed that lockdown induced work-from-home practice creates the risk 

of exacerbating inequality. This can only be mitigated government policies directed at 

 
3 In Section 5.4.3 we provide evidence that higher unemployment is related to lower mobility in India. 
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addressing the issues of income inequality. In the pre-vaccine phase of the contagion, the most 

common strategy practiced by any government was that of lockdown which is complemented 

by health policies whose implementation and success in curbing the contagion varied across 

countries (Chiplunkar and Das, 2021; Qiu et al., 2020) . Nevertheless, we have seen that 

whenever a lockdown was imposed, more often than not it was imposed homogeneously across 

all the regions of a country. Such a country wide lockdown involves huge economic loss. In 

the context of India, for example, quite a few papers estimated the negative impact of lockdown 

policies on economic outcomes (Beyer et al., 2020, 2021). In the context Our paper provides a 

road map of selective lockdown that can minimize the economic costs. We argue that a 

contagion is more severe in areas characterized by higher regional inequality and therefore, 

lockdown should be imposed more stringently in these areas. The underlying notion of our 

paper is similar to Milani, 2021, who analysed how social connectedness (captured by 

Facebook data) across countries explain the cross country similarity in social responses to 

Covid pandemic.  

 

It is important to note that the policy implication of our paper applies to all possible anti-

epidemic measures. After the Covid-19 vaccines were invented, vaccination and lockdown 

spearheaded the anti-Covid policy measures. Nevertheless, the approach to the use of the 

policies remains homogenous; they were implemented with similar intensity across the 

country. We propose an ex-ante selection criterion; we predict that the spread of epidemic will 

be higher in areas characterized by core-periphery structure and therefore, any anti-epidemic 

policy -- be it creation of special Covid hospitals, lockdown or vaccination -- should be 

implemented with greater intensity in those areas. 

     

Our paper is structured in the following way: We elaborate our argument and the issues related 

to our framework in the Section 2. We discuss the data and descriptive statistics in section 3, 

the empirical strategy in section 4, and the results in section 5. In section 6, we conclude.  

 

2. Conceptual Framework 

In this paper, we explore the relationship between regional inequality in economic activity and 

Covid-19 infection. There are two key concepts that need to be explained before we discuss 

the empirical analysis. The first one concerns the mechanism underlying our hypothesis and 

the second one is related to the measurement of regional inequality in economic activity. The 

core-periphery model (also known as the centre-periphery model) of development postulates 
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that the process of economic development organizes an economy in the geographical structure 

of core-periphery where most of the economic activities are carried out in an industrialized 

core which supplies goods and services to less industrially active peripheral areas. The 

alternative to this structure will be that of regional autarky where a region consists of a few 

similarly developed sub-regions consisting of both industrial and agricultural sectors. The 

creation of the core-periphery structures is embedded in the process of development and both 

developed and less developed countries across the globe show such a locational pattern of 

economic activities. In fact, the more developed a region gets, the greater the degree of sub-

regional inequality; this becomes evident from the studies on Africa (Mveyange, 2015)  and 

India (Singhal et al., 2020). One implication of the creation of the core-periphery structure is 

increased movements of commodity and people between core and periphery; goods and 

services move from the core to the periphery while labor moves from the periphery to the core. 

On the other hand, if a country consists of a few autarkic regions, we expect less movements 

between such regions. Therefore, we expect greater movements of people and, consequently, 

higher degree of contagion at the time of epidemic in regions characterised by core-periphery 

structure. This argument forms the basis of our empirical strategy. We use regional inequality 

in economic activity as a proxy for such movements and hypothesize that higher regional 

inequality will be associated with greater degree of Covid-19 infection. One major reason for 

using the measures of inequality instead of mobility itself is the availability of data. The 

nightlight-based inequality measures are more readily available than measures of mobility. 

There are two important criteria that Facebook use restricts the availability of the Facebook 

mobility data. It can only collect data from people who has a smartphone with GPS turned on 

and the Facebook app. Moreover, it does not include data from a geographical unit if there are 

less than 10 movements in a day. Consequently, not all the districts are covered in the Facebook 

database.   

 

The second concept that deserves discussion is the measurement of the core-periphery 

structure. How can we measure the degree of ‘core-periphery-ness’ of a region? The use of 

nightlights to find spatial patterns of economic clusters is not an entirely novel approach. 

However, the exploratory spatial data analysis, also called ESDA techniques, applied in the 

literature are commonly used to capture spatial spill-over (Rodríguez-Pose et al., 2013; 

Rodríguez-Pose and Tselios, 2011; Tselios and Stathakis, 2020) and are not suitable for 

answering our research question. We instead measure ‘core-periphery-ness’ of a region using 

measures of regional inequality in economic activity.  
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     Covid-19 data in India is available at the district level. To match this data structure, in our 

framework, we treat districts as the unit of observation whose level of economic activity is 

measured by the level of nightlight. To test our hypothesis, we need to measure inequality 

across districts which must be measured at a supra-district level. The natural choice of such 

supra-district level is state. In this case, we rank the districts of each state according to their 

respective nightlights and then measure the ratio of nightlights at the 90th and 10th percentile 

(P90/P10 ratio). The use of the P90/P10 as the measure of inequality is now widely being used 

in the literature on economic inequality (Burkhauser et al., 2009; Kijima, 2006; Piketty, 2014). 

Unlike other measures such as Standard Deviation and Gini Coefficient which take into account 

all intermediate income groups, this ratio makes a direct comparison between the most active 

and the least active districts and therefore, brings out the sharpness of inequality. In our case, 

this measures the economic distance between the core (the most active) and the periphery (the 

least active). We argue that greater the distance between the core and the periphery in terms of 

economic development (as measured by nightlight), the greater is the dependence of the 

periphery on the core for jobs and necessary supplies. This in turn entails greater movements 

of goods and people between the core and the periphery and higher rate of Covid 19 infection. 

 

       However, a measure of regional inequality at the state level renders regression with state 

fixed effects infeasible. Inter-state comparisons are difficult to rely on given that most policies, 

especially health policies are decided and implemented at the state level.  Hence even though 

we use state level measure of regional inequality in our baseline regression, for most of our 

empirical exercises, we use regional inequality measured at the district neighbourhood level 

where the neighbourhood of a district 𝑖 is defined as the cluster of districts that share borders 

with the district 𝑖. However, for each district there are at most 4-5 neighbouring districts and 

calculating the P90/P10 for such a small group is not meaningful. We, therefore calculate the 

ratio between the minimum and maximum nightlight in the district-neighbourhood and subtract 

it from 1. The resulting measure becomes a function of the difference between the maximum 

and minimum nightlight in the neighbourhood. We formally introduce this measure in section 

3.2.4. In essence, both the measures capture the distance between the most economically active 

and the least economically active district in the region which in our case can be interpreted as 

the distance between the core and the periphery.  
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3. Data and Descriptive Statistics 

3.1  Covid-19 infection: state-wise variation 

In this paper we offer an economic-geography based hypothesis that explains regional variation 

in Covid-19 infection in India in terms of regional inequality captured by luminosity data. In 

this section, we provide a cursory look at the inter-state variation of Covid-19 infection.  

 

Before proceeding further, let us give a brief description of the administrative boundaries 

within India. India is divided in 28 states and 8 union territories. The states and union territories 

are further divided in districts. At the time of the last census in India in 2011 there were 640 

districts in India. The number of districts has increased over time as they have sometimes been 

bifurcated for administrative ease. As of 2021, there are 740 districts. The districts are further 

subdivided into sub-districts and sub-districts into blocks. The Covid-19 that we use is reported 

at the district level.  

 

Since health is under the jurisdiction of state governments in India, district level information 

on Covid19 infections in India is provided by each state. But there was a significant 

heterogeneity in terms of data publication format across the state which made the data work all 

the more challenging. During our study period (January, 2020-January,2021), there was no 

central database that publishes and updates either patient level information or even district level 

information on tests and detections for all India on a daily basis. Fortunately, a crowd sourced 

initiative, Covid19india came up in India in the early days of the pandemic which gathered data 

from various publications of state governments available online, such as twitter feeds of 

different state’s health department, press releases and bulletins. They created a publicly 

available database of Covid19 infections in India. We obtain all information related to Covid19 

from this database available at https://www.COVID19india.org/. In the appendix, we provide 

a table which details the issue of heterogeneity across state regarding data availability.  

 

In this paper, the issues pertaining to data availability made us restrict our analysis to the spread 

of the disease from May 4, 2020, onwards, when the third phase of nationwide lockdown 

started in India. There are two reasons why we choose this date cut-off. First, the district level 

database of Covid19india.org starts from this date possibly because the quality of data gets 

better from this period as different state governments start reporting data in a consistent fashion. 

Second, our theory is relevant when there are some movements of goods and people. In the 

first month of lockdown (lockdown 1 and 2 i.e. from March, 25, 2020 to May 3, 2020) very 
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stringent restrictions were imposed on business and vehicles. From 4th May, 2020, the 

nationwide lockdown was eased for the first time with several relaxations. Further, we include 

the following major states in our sample4. Andhra Pradesh, Bihar, Chhattisgarh, Gujarat, 

Haryana, Himachal Pradesh, Jammu and Kashmir, Jharkhand, Karnataka, Kerala, Madhya 

Pradesh, Maharashtra, Odisha, Punjab, Rajasthan, Tamil Nadu, Uttar Pradesh (U.P), 

Uttarakhand, West Bengal. As of February 1, 2021, the last date for our data, these states 

together account for around 84% of our data.   

 

In the following figures, we present a broad picture of inter-state variation in terms of the 

number of Covid-19 patients. Figure 1 shows the distribution of Covid infections across states 

as of1st February, 2021. 10 states account for more than 75% of all cases in the country. Hence, 

for the rest of the descriptive statistics on Covid-19 infection in India, we report expositions 

based on these 10 states.  

 

Figure 1: Share of Covid-10 confirmed cases in 10 leading states 

   Figure 2 shows the evolution of Covid over time in the top 10 states. As has been well known, 

Maharashtra led by a big margin, in total number of infections, over the entire period of time 

from the onset of the pandemic in India to early February, 2021, when our data ends. It was 

followed by Delhi for a short while. But Delhi was quickly surpassed by Andhra Pradesh, Tamil 

Nadu, Karnataka and Uttar Pradesh by August. The rest of the states in the top 10, viz. West 

Bengal, Bihar, Telangana and Assam remained relatively closer to each other and later. 

Figure 2 : Time series of Covid-19 confirmed cases in 10 leading states 

   While this graph gives an overall idea about the cross sectional spread of the disease across 

India, it fails to account for the difference in sizes of these states. For example, comparing the 

entire state of Maharashtra with Delhi may not be very informative given the large difference 

in population and land sizes. 

Figure 3: Total confirmed Covid-19 cases per 100 thousand population of the states 

    Figure 3 depicts a map representation of the number of Covid-19 patients normalized by 

population sizes of each state. States such as Maharashtra and Tamil Nadu which dominate the 

Covid-19 scenario in India in terms of total number of patients rank much lower when we 

 
4 Our estimation sample includes 19 major states. It excludes among others Delhi and other Union Territories. 
Since Union Territories are not divided in to districts, we cannot calculate nightlight inequality. Also, for Delhi, 
the Covid data is reported for Delhi as a whole. Consequently, there is no district level variation within Delhi. 
And nightlight inequality does vary over time. Hence it will mean a single nightlight inequality measure will 
explain variations in Covid over time.  
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consider per capita infection spread. Now, Delhi surpasses all other states by a large margin 

with the gap starting to show up significantly from early June. Andhra Pradesh, which was 

ranked low initially, almost caught up with Delhi by September. Maharashtra and Tamil Nadu 

are the next in the list which remained much below Delhi but much higher up than the other 

states throughout the period. Around September, 2020 Karnataka made a big jump and almost 

caught up with Maharashtra and Tamil Nadu. Next in the order are Telangana and Assam, 

followed by West Bengal. Uttar Pradesh, being the largest state was high up in the list of total 

infections, but towards the end in the list of top ten, along with Bihar. 

In this next two figures we present the all-India level variation in average Covid-19 infection 

and nightlight variation – the two variables that our paper is trying to link.  

Figure 4: A district level map of daily confirmed cases of Covid-19 

Figure 4 presents the number of Covid infection at the district level averaged over days until 

31st January, 2021. In the map darker shades indicate more cases while the lighter shades 

represents less cases. We see a wide variation in the number of Covid-19 cases across India 

with more cases in more industrialized Southern states.  

      

3.2 Variables and data sources 

While our empirical specification accounts for state fixed effects, we try to account for time 

invariant district level covariates and time varying state or district level covariates using 

existing information on correlates of Covid-19 contagion. However, given the novelty of 

COVID 19, our choice of correlates is not grounded in any theory. Most of the hypotheses, that 

are tested by other researchers, are either some ideas generated from our understanding of 

contagious diseases in general (e.g., contagion spreads faster in densely populated area) or 

some heuristics that originated from casual, empirical observations (e.g., COVID 19 spreads 

less in areas covered by BCG vaccination). For instance, the hypotheses regarding the Bacillus 

Calmette-Guérin (BCG) childhood vaccination has been tested by Miller et al.(Miller et al., 

2020) and they found that countries without universal BCG vaccination such as Italy, 

Nederland and USA had  been more severely affected by COVID 19 than the countries with 

universal BCG program, at least at the time they wrote the paper. There has been quite a few 

papers looking at the correlation between temperature and COVID infection which has been 

found to be negative (less contagion in high temperature area) (Bannister-Tyrrell et al., 2020; 

Wang et al., 2020). However, there are papers which dispute this claim of a negative 

relationship between temperature and COVID infection. In one such paper,  Zhu & Xie (Zhu 
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and Xie, 2020) looking at the COVID situation in 122 cities across China, did not find any 

consistent negative relation between temperature and COVID infection. 

 

   Taking cue from the existing literature and ideas we use a rich set of covariates consisting of 

demographic, weather, economic and disease environment related variables. Under the 

demographic variables we consider population density. We control for weather variations using 

temperature, rainfall, latitude and longitude. The variables that are considered under the 

economic category include levels of nightlight and unemployment. The disease environment 

variables include general immunization rate, BCG immunization rate and historical Malaria 

index.  

 

We combine the Covid-19 database with information on these demographic, health, social, 

economic, geographic and meteorological indicators from multiple sources for our analysis. 

While some of these indicators, including the information on Covid-19, are available at the 

district level, a few of our measures could only be obtained at the state level. Therefore, for the 

testing of our hypotheses we use the district level aggregated information where data is 

available. In some cases, where we are restricted to state level data, we use state level 

aggregation. Below we provide a detailed outline of all the supplementary data sources, and 

summarize each variable used in our analysis in Table 1.  

Table 1: Summary Statistics here 

 

3.2.1 Demographic variables: 

The demographic variables that we use, include the population of the district and population 

density. However, the data come from 2011 census. In case of those districts that were created 

after 2011, we use the total population for the original district from the 2011 census and then 

distribute it in proportion to land area among the newly formed districts. The average 

population in a district is roughly 2.1 million. The average population per square km of a district 

is 601, with a standard deviation more than double the value. We use the total population in a 

district to calculate our dependent variable, per capital infection rate in a district. 

 

3.2.2 Weather variables: 

The temperature and rainfall variables are obtained from the Indian Meteorological 

Department. Both variables are measured at the district level on a daily basis. Hence, we are 

only able to use data from 2019 since updating the Covid data on a daily basis would also 
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require real time weather data for 2020, which is not freely available. The average temperature 

remains around 34 degree Celsius. Mean rainfall is about 6.6 mm but with a very high variance.  

 

3.2.3 Health variables: 

We have discussed earlier that there are studies trying to link between the extent of BCG 

vaccination program and spread of COVID 19 outbreak, claiming that the relationship between 

these two variables is negative. To allow for such variation in the spread of Covid19 across 

India, we have included the extent of BCG vaccination in Indian districts measured by the 

fraction of children in a district who have been given BCG vaccination, as of 2007-2008, the 

earliest year for which we could find district level information on BCG vaccination. The data 

comes from District Level Household Survey (DLHS)-3, a nationally representative sample 

survey covering 720,000 households, that was conducted in 2007-08. There is another potential 

correlate that have been discussed in popular media – malaria prevalence. It was observed that 

COVID 19 infection is negatively related to malaria prevalence. Hence, we include information 

on prevalence of malaria across the districts of India, from the colonial period, as one of the 

independent variables in our regression framework. The data comes from (Cutler et al., 2010). 

This data provides a classification of districts according to its malaria intensity. There are 6 

categories in total – categories 1 and 2 for non-malarious, 3 and 4 for potential epidemic, while 

5 and 6 are classified as malarious. 

 

3.2.4 Measures of the Core-Periphery structure: 

 

Nightlight inequality – state level 

Finally, we turn to our main variable of interest. We use nightlight data that measures the 

luminosity of night time lights using the satellite images. Specifically, we use the data from 

(Beyer et al., 2020). They extract the district level nighttime light data from the VIIRS-DNB 

Cloud Free Monthly Composites (version 1) provided by the Earth Observation Group at 

Colorado School of Mines. While the monthly data would have allowed us to exploit more 

variation, the monthly nightlight data has significant amount of noise (Beyer et al., 2020). 

Hence, we use the noise and outlier corrected lights averaged over time, and standardized by 

area at the district level used by (Beyer et al., 2021). The nightlights data is widely used as a 

proxy for economic activity (Prakash et al., 2019). We use the district level measure of 

luminosity in 2019 to create a state level inequality of luminosity. Specifically, we use the ratio 
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of the highest 90% to the lowest 10% from the distribution of luminosity across districts within 

a state. We argue that the state level dispersion captures the degree of conglomeration in a state. 

In addition to the inequality measure, we also control for the level of nightlights in a district as 

a proxy for overall economic development. 

 

Nightlight inequality – district-neighbourhood level 

We use this measure to solve the problem of unobserved heterogeneity at the state level. We 

call two districts neighbour if they share boundaries. This way for each district there exists a 

cluster of districts which form its neighbourhood. We calculate the nightlight inequality for 

this neighbourhood. The neighbourhoods typically consist of 3-4 districts and therefore, our 

original measure of inequality – ratio of 90th and 10th percentile does not make much sense. 

Instead, we measure nightlight inequality in the following way:  

. 

 
𝜂ௗ = 1 −

𝜇ெ௜௡
ௗ

𝜇ெ௔௫
ௗ  

(2) 

 

In the above expression  𝜂ௗ measures the neighbourhood nightlight inequality for district d, 

𝜇ெ௜௡
ௗ  measures the minimum nightlight in the neighbourhood of district d while 𝜇ெ௔௫

ௗ  the 

maximum value in the neighbourhood. This expression essentially becomes 𝑅ௗ/𝜇ெ௔௫
ௗ  where 

𝑅ௗ refers to range (Max-Min) of nightlights in the neighbouring districts. Range captures the 

degree of dispersion and therefore, higher the value of 𝜂ௗ, higher will be the value of 

neighbourhood inequality. 

 

  In Figure 5 we present the variation in nightlight across the districts of India. In this map 

darker shades represent higher nightlight (or core) while the lighter spots represent low 

nightlight (or periphery).5 The map reveals the structure of the core-periphery all across the 

country. In all parts of India we see dark shaded core areas being surrounded by the light shaded 

peripehry regions.  

 

Figure 5: A district level map of District-Neighborhood Nightlight-Inequality 

 

 
5 The bottom 10 percentile of the nightlight distribution is represented by the lightest shade. 
The top 10 percentile is represented by the 2 darkest shades.  
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4. Empirical Model 

In our empirical section we perform two major exercises – estimate how the core-periphery 

structure of the economy along with the demographic, economic factors, weather and disease 

environment influence the COVID 19 infection. We test this with the district level information. 

The specific model we estimate for this purpose is the following: 

 𝑦ௗ௦௧ =  𝛽଴ +  𝛽ଵ𝑁𝐿𝐼௦ + 𝛽ଶ𝑇௧ + 𝛽ଷ𝑋ଵௗ௦௧
ᇱ + 𝜀ௗ௦௧ (1) 

   

In the equation above, yୢୱ୲ captures the measure of contagion (number of confirmed Covid-19 

cases per 1000 population) in district d, state s and time t. Time is measured as number of days. 

NLIୱ represents nightlight inequality in state, s (the construction of this variable is discussed in 

section 2.5), Xଵୢୱ୲ represents district, district-time and state-time varying controls. In our 

analysis we have only two variables that vary at district-time level – temperature and rainfall. 

Most variables, such as latitude, population density, BCG vaccination, historical malaria 

intensity, nightlights, are all recorded at the district level and does not vary with the days of 

2020. We also include the extent of Covid tests conducted. It varies across states and with the 

days of 2020. 𝛽ଵ is our parameter of interest. The variable T measures the day of the year. We 

assign a value of 1 to the 1st day of January 2020 and cumulatively calculate the number of 

days for each date in the 2020 calendar. This is our baseline specification. However, in section 

5.2 we use district-neighborhood level of regional inequality along with state fixed effect.  

 

5. Results 

5.1 State Level Regional Inequality and Covid-19 infection 

In Table 2 we report the estimates from equation (1), our baseline specification. Our main 

variable of interest is nightlight inequality and from our hypothesis, we expect that the effect 

of nightlight inequality on confirmed cases to be positive – the more unequal a state, the greater 

will be the movement between the core and the peripheral regions and higher will be the degree 

of Covid-19 contagion. In column 1, we regress total confirmed cases per 1 million population 

in a district on nightlight inequality at the state level. As expected, the coefficient for nightlight 

inequality is positive and significant.  

Table 2: State Level Nightlight Inequality and Covid-19 infection 

In column (2) we add factors that determine the number of confirmed cases mechanically. First, 

since the rate of infection is likely to vary over time, we include controls for time elapsed as 

days since January 1, 2020. Second, the number of Covid-19 tests performed has also varied 
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significantly across the states. We include daily Covid-19 tests performed. Finally, the extent 

of urbanity or development of an area determines where the infection started spreading first. 

Hence, we include average nightlight of a district before Covid-19 started, from 2019. In 

columns 3-7 we include additional district level characteristics which are potential predictors 

of the number of cases per capita. In column (3) we add population density of the district, in 

column (4) we add a district’s monthly temperature and rainfall information, in column (5) we 

add the extent of BCG and overall immunization, which includes tuberculosis, influenza etc., 

cover in a district, in column (6) we add malaria intensity from historical data during the 

colonial period, and finally in column (7) we add controls for district’s latitude and longitude.  

  

We see that the coefficients for nightlight inequality are positive and significant across 

specifications implying that a state characterized by a stronger core-periphery structure, 

necessitating movement of goods and people from the core to the periphery, experience a 

greater rate of Covid-19 infection per capita. The number of tests conducted seems to be 

negatively correlated with the number of infections in columns 2 through 4. This could simply 

reflect that those states with worse health investments have more cases and conduct fewer tests. 

Indeed, as a wider range of a state’s health indicators are accounted for in columns 5-7, we find 

a positive correlation between Covid-19 tests and cases, as is likely to be the case mechanically 

since more tests will result in more detected cases. 

 

The negative coefficients on number of days elapsed since the beginning of the pandemic 

suggests that the average number of infections per capita fell over time. One reason this could 

happen is that after the initial first wave, there has been a secular decline in the Covid cases till 

1st February 2021, the end date in our data, and the sub-periods of decline are dominating the 

aggregate situation. This idea becomes clearer when we show phase-wise results. 

 

As expected, the coefficients for district level nightlights are also positive and significant across 

specifications implying that greater urbanization or economic development is correlated with 

a higher rate of infection. One counter-intuitive finding is that the population density is 

negatively related with the total confirmed cases per 1000 population. One possible explanation 

of this counter-intuitive result could be the more stringent lockdown measures that were 

implemented in densely populated areas. More densely populated areas are more susceptible 

to Covid-19 outbreak and governments usually more impose stricter restriction there. 

Population density is however related to various other things such as economic prosperity as 
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well. But in our full specification, when we control for all other factors population density 

probably captures the intensity of lockdown measures imposed by the governments and 

therefore, the sign of the coefficient is negative.6  

 

In line with the popular belief, we find that daily infections rise with fall in temperature. The 

relationship between infection and rainfall, however, is positive. Contrary to the popular 

beliefs, daily infections are higher in districts with greater level of vaccination (BCG and 

overall). This result however, is possibly driven by confounding variables. The BCG and other 

vaccination drive was possibly taken more vigorously in districts where the chance of epidemic 

is high due to several demographic and socio-economic variables. When a pandemic such as 

Covid-19 hits the country, these districts are more likely to be affected more. Therefore, the 

positive association between the rate of vaccination (BCG and other) in the past and Covid-19 

infection rate in the present could be driven by those confounding variables. The correlation 

between infection and malaria intensity is negative initially but after accounting for a district’s 

latitude and longitude, turns positive. This points to the fact that the spread of malaria, at least 

during the colonial period, was limited to certain geographies. Within similar geographic areas, 

in terms of latitude and longitude, the regions that are historically more prone to malaria 

infection are also more prone to Covid-19 spread.  

 

Our results show that there exists a strong correlation between state level nightlight inequality 

and Covid-19 daily infection. However, identification remains a critical issue here as there are 

many unobserved heterogeneities at the state level that we could not take control of as our main 

variable of interest – nightlight inequality – is time invariant and also measured at the state 

level. These unaccounted-for unobserved heterogeneities could also be the reason behind 

variability in the coefficients of the control variables across all the 7 specifications. Before 

moving to the next section, let us compare our results with Tan et al. (2021) who also found 

positive association between county level income inequality and Covid-19 infection and death 

in the United States. The nature of inequality and the mechanism discussed there however, are 

different from our analysis. They found that the association between income inequality and 

Covid-19 infection nearly peaked during summer. They hypothesized that this was driven by 

 
6 The results from the heterogeneity analysis in Section 5.3 also point towards this possibility. During the strict 
lockdown phase, that was imposed country wide, the coefficient for population density is positive (Table 5a). 
However, as the economy opened up gradually during the unlock period, the coefficient on population density 
turned negative possibly due to stricter enforcement of ‘micro-containment’ zones in more dense regions (Table 
5b).   
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poor people working in high risk, contact prone sectors such as hotels, restaurants and 

entertainment venues. Our results on the other hand, is driven by regional inequality where the 

mobility between the core and the periphery assumes the critical role. It is somewhat difficult 

to directly compare these two results. Nevertheless, our story can be mapped to that paper if 

could show that most of people working in contact prone sectors in the core comes from the 

periphery and phases of lockdown and unlock which affected these sectors the most forced 

these workers to move back and forth between their workplaces in the core and homes in the 

periphery. However, because of data issue we cannot make such claims.  

 

5.2 Nightlight Inequality at District Neighborhood Level and Covid-19 infection  

In order to solve the identification problem in Table 2, we use regional inequality measured at 

the district-neighbourhood level. The idea behind this measure is that a state might have 

multiple core regions and the movement of goods and people to various regions depends on 

which core serves which periphery. In other words, the extent of movement of people and 

goods might vary even within a state depending on the relative inequality of districts with 

respect to their neighbouring districts. We report the results from this estimation in Table 3. 

Equation 2 shows the estimation specification corresponding to Table 3, where 𝛽ଵ is the 

coefficient of interest. 

𝑦ௗ௦௧ =  𝛽଴ + 𝛽ଵ𝑁𝐿𝐼ௗ + 𝛽ଶ𝐷𝑎𝑦𝑠௧ + 𝛽ଷ𝑁𝐿ௗ + 𝛽ସ𝑇𝑒𝑠𝑡௦௧ +  𝛽ହ𝐷𝑒𝑛𝑠𝑖𝑡𝑦ௗ +

𝛽଺𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒ௗ௧ + 𝛽଻𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙ௗ௧ + 𝛽଼𝐵𝐶𝐺ௗ + 𝛽ଽ𝑉𝑎𝑐𝑐𝑖𝑛𝑒ௗ + 𝛽ଵ଴𝑀𝑎𝑙𝑎𝑟𝑖𝑎ௗ +

𝛽ଵଵ𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒ௗ + 𝛽ଵଶ𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒ௗ + 𝐷𝑢𝑚𝑚𝑦௦ + 𝐷𝑢𝑚𝑚𝑦௦ ∗ 𝐷𝑎𝑦𝑠௧ +  𝜀ௗ௦௧                           (2) 

 

 

Table 3 Baseline regression with neighbourhood inequality 

In column 1, we regress total confirmed cases per 1million population on neighbourhood 

nightlight inequality with state fixed effect. The coefficient is positive and significant. From 

column 2 onwards, we keep adding controls like we did in the baseline regression. For all the 

controls, the coefficients are similar to what we observed in Table 2. However, unlike in Table 

2, after accounting for unobserved heterogeneity, the correlation between each of the control 

variables and confirmed cases remains the same across all specifications. In column 8 we 

account for state level linear time trends considering that different states experienced the first 

Covid-19 wave and their peak infection rates at different times. The effect of nightlight 
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inequality remains unchanged with the staggered inclusion of all these covariates. We present 

the rest of our results in this paper on the basis of the full specification in column 8.7  

 

5.3 Heterogeneity Analysis 

In response to the COVID 19 pandemic, the government of India, in March 2020, announced 

a lockdown resulting in suspension of usual activities of government offices, business 

establishments and educational institutions, except those related to the supply of essential 

goods and services.8 Subsequently, over different phases of lockdown (and eventually 

unlocks), different types of activities were allowed. This set of policies, popularly known as 

lockdown, varied in their intensity over time – they were relaxed or tightened depending on the 

Covid-19 situation in India. The details of the lockdown and unlock phases are given in Table 

4. 

Table 4 Phases of lockdown 

These different phases of lockdown and unlock led to different degree of movements of people 

and vehicles. Hence, we expect that the effect of the core-periphery structure (as measured by 

regional inequality of nightlights) on the contagion would depend on the degree of movement 

restrictions across different phases of lockdown and unlock. Accordingly, we check how the 

relationship between Covid-19 infection rate and regional inequality changes across different 

phases of lockdown and unlock. 

 

Our hypothesis, that the core-periphery structure of the economy can affect the rate of infection 

transmission, rests on the premise that it involves movement of people from/to the core to/from 

the periphery. Hence, the effects are likely to depend on the restrictions imposed on the 

movement of goods and people in the first place.  

The results for lockdown 3 and 4, when stringent initial restrictions on movements of goods 

and people were beginning to be relaxed, are given in Table 5a. Subsequently, the relaxations 

were increases in a phased manner between unlock 1-8. The results for these unlock phases are 

given in Table 5b. 

Table 5a Neighbourhood inequality and Covid infection rate across lockdown phases 

 
7 As observed in Figures 2 and 3, confirmed cases evolve non-linearly over time. To account for this, we 
introduced non-linear time effects in our model. The results, presented in Appendix Table A5, remain 
unchanged.   
8 The list of essential goods was defined at the beginning of the Lockdown in March. Appendix Table A2 and 
A3 provides details on the various restrictions across lockdown and unlock phases and the essential goods, 
respectively. 
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Table 5b Neighbourhood inequality and Covid infection rate across unlock phases 

We find that nightlight inequality in a district’s neighborhood has no effect on the spread of 

the disease during Lockdown 3 when the stringent movement restrictions were just beginning 

to be eased. During Lockdown 3, districts were categorized in to red, orange and green zones 

on the basis of the severity in the spread of infection and some relaxations were allowed in 

districts that had lowest severity (i.e. green zone) at that time. During Lockdown 4, we find 

that district level regional inequality has a negative effect on disease spread. Unlike in the 

previous lockdown phases, during Lockdown 4, states were given a larger say in the 

demarcation of districts in to red, orange and green zones. With better local information state 

level administrations are likely to better identify districts that are potentially at a higher risk of 

contagion. For instance, local governments are better able to identify regions that are 

economically more active. Knowing that economic development of a region and infection rates 

are directly proportional, it is possible that state governments grant fewer lockdown relaxations 

to the more economically active districts (the core), within a state, than the less economically 

active districts (the periphery). This would make movement from the core district to the 

peripheral districts, within a state, more difficult. Indeed, this is evident from the negative 

significant coefficient on the average nightlight in a district in column 4. A district with higher 

levels of nightlights, indicating more development, also have fewer cases during lockdown.  

 

Let us consider two distinct cluster of districts (Southern cluster and Northern Cluster) within 

a state. For example, consider the state of West Bengal Southern cluster has Kolkata (West 

Bengal’s capital and one of the biggest cities in India) as the core district and Northern cluster  

has Siliguri (the biggest city in the Northern part of the state) as the core district. Since Kolkata 

is economically more active than Siliguri, the restrictions are likely to be much higher in 

Kolkata than in Siliguri. In other words, lockdown stringency, administered by the states, is 

likely to be higher for core districts than for peripheral districts and for more active ‘core’ 

districts than for less active ‘core’ districts. This in turn means that the disease would spread 

faster in cluster 2, where the economic distance between the core (Siliguri) and the periphery 

is lower, than in cluster 1, where the distance between the core (Kolkata) and the periphery is 

higher and lockdown restriction higher. This could potentially explain the negative coefficient 

on the neighborhood inequality measure during the Lockdown periods.  

 

Table 5b shows the results for the Unlock phases. During Unlock 1, the central government 

continued to impose lockdown restrictions but only in 'containment zones’ with severe case 
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load, while activities were to be permitted in other zones in a phased manner. During Unlock 

1, night curfews were still in effect from 9 p.m. to 5 a.m. across the country and state 

governments were allowed to impose additional restrictions on all activities depending on the 

local situation. Taken together, the situation was similar to Lockdown 4. With the economy 

just opening up from 3 months of Lockdown activities were possibly still moving slowly. 

Hence, we continue to find a negative effect of neighborhood nightlight inequality on the 

spread of Covid-19. During Unlock 2, night curfews were still in place, but some more 

relaxations were allowed. During Unlock 3, further relaxations were allowed and night curfews 

were also stopped. However, several states, particularly the ones with metropolitan cities, like 

Maharashtra, Tamil Nadu and West Bengal, continued with Lockdowns on all or a few days of 

the week. Restrictions on public transportation continued in most states. Our estimates continue 

to show no significant effect of regional inequality on Covid-19 spread. And simultaneously 

the correlation between economic development and the contagion changes from negative to 

zero to positive and then increases as economic activities open up.  

 

From Unlock 4 onwards, with further relaxation in movement, we see a positive significant 

effect of regional inequality on the spread of Covid-19. This effect remains steady and even 

goes up over time until Unlock 7. Since then, overall Covid-19 cases fell consistently in India 

until March 2021. It could be this reason why the size of the effect of regional inequality on 

the spread of the disease also dampens during Unlock 8 although it still remains positive and 

significant. 

 

5.4 Mechanism and Robustness  
5.4.1 Nightlight Inequality and Mobility 

In understanding the effect of nightlight inequality on Covid-19 infection, we argued that the 

underlying mechanism is the mobility of goods and people. If all the business establishments 

and transportation are shut down, there should not be much of a difference between equal and 

unequal regions in terms of the spread of the disease. In the previous section, we provided 

indirect evidence of this mechanism by using the lockdown-unlock phases. In this section we 

provide more direct evidence using mobility information from Facebook Data for Good9. The 

data from Facebook includes the mobility data of people with smartphone with Facebook app 

which keeps their GPS turned on. Therefore, the data represents the mobility of a small fraction 

 
9 We access this data from “Facebook Data for Good” (https://dataforgood.facebook.com/). 
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of population. Nevertheless, it corresponds with migration reported in the Census data and 

hence provides a useful proxy of the overall mobility (Chadha and Raghu, 2021). We argue 

that unequal regions are characterized by greater mobility which in turn leads to greater Covid 

infection. In Table 6 we present the results from a regression where we regress daily movement 

data from Facebook on neighbourhood inequality. In column (1) we regress daily movement 

on neighbourhood inequality without any control and find that the coefficient is positive and 

significant, implying that higher nightlight inequality in the neighborhood of a district reflects 

greater degree of movement to and from that district. From column (2) to (5), we keep adding 

controls similar to the ones used in the baseline regression in Table 3. In column (2) we account 

for the average nightlight of a district to capture the overall level of activity. The strong positive 

coefficient confirms our prior that a high level of economic activity is associated with a high 

degree of mobility. In addition, the negative coefficients on the number of days since start of 

covid and on the number of daily covid tests indicate that overall mobility has gone down as 

covid cases went up. The effect-size of neighborhood inequality on mobility remains unaltered 

by addition of further controls in columns (3) through (5). Overall, we find that nightlight 

inequality remains a strong predictor of mobility measured from the Facebook data.  

Table 6: Nightlight inequality and mobility here  
  

5.4.2 Mobility as the underlying mechanism 

While the results in Table 6 shows the first-stage relationship that we implicitly assumed in 

Table 3, we turn to a direct investigation of the extent to which the relationship between 

neighborhood nightlight inequality and spread of the contagion is indeed driven by mobility 

across districts.  Specifically, if mobility is the main channel through which nightlight 

inequality is driving the spread of Covid, then controlling for mobility in Table 3 should temper 

the effect of nightlight inequality on Covid-19 spread.10 In Table 7, we provide the evidence 

 
10 In an alternative analysis we also use district level industrial heterogeneity to proxy for mobility of and higher 
social interaction among people. Our measure of industrial heterogeneity (ℎ_𝑑) uses the share of labor force in 
different industries (ℎௗ = 1 − ∑ 𝑠௜ௗ

ଶ ,௜  where 𝑠௜ௗ  is the share of work force in industry i  in district d). The 
underlying thought is that, in a district with higher industrial heterogeneity people from the same family are more 
likely to work in different industries. Hence if a person gets infected from her workplace, there is a higher chance 
of spread to other industries through her family members who work there. Since industrial heterogeneity is 
measured at the district level, we account for state fixed effects in these specifications. The estimates are in line 
with our main findings. Industrial heterogeneity has no effect on the contagion during the Lockdown phases. 
However, as the industries open up and mobility increases, we find a positive effect of industrial heterogeneity on 
the spread of Covid-19. These results are reported in Appendix Tables A6 and A7.  However, we due to data 
limitations, we are unable to establish our claim to the mechanism that higher industrial heterogeneity reflects 
greater diversity in employment within the same household. Hence, we cannot be sure that industrial heterogeneity 
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on this potential mechanism. In columns (1) and (3) of this table we report the baseline results 

corresponding to columns 1 and 8 of Table 3 for the estimation sample in columns 2 and 4 of 

Table 7 respectively.11 In column (2) we report the baseline relationship between Covid 

infection and Nightlight inequality (analogous to Column 1 of Table 3) after controlling for 

mobility. In column 4 we estimate the full baseline specification (analogous to Column 8 of 

Table 3) along with a control for mobility. Comparison of columns (1) and (2) reveals that 

inclusion of mobility leads to a large reduction in the magnitude of the coefficient on nightlight 

inequality and mobility itself is an important predictor of the contagion.  In column (4), we 

present the results for the regression with full specification along with mobility as an 

independent variable. Comparison between column (3) and (4) provide stronger support in 

favor of our hypothesis. In column (4), after inclusion of the mobility data, the coefficient of 

the nightlight inequality becomes insignificant while the coefficient for mobility remains 

positive and significant. This means that inequality affects Covid inequality through the 

mobility channel as we predicted in our conceptual framework. These results together provide 

direct evidence in favour of our hypothesis and the underlying mechanism.  

Table 7: Effect of nightlight inequality on Covid 19 infection with and without mobility 

control here  

5.4.3 Unemployment and mobility 

While the evidence in Table 7 strongly indicates that the effect of nightlight inequality on the 

contagion works through mobility, there are limitations of the Facebook Mobility data in terms 

of its representativeness. Hence, in this section, we further investigate the mechanism using 

state-level daily unemployment rates as a proxy for mobility.12 We argue that traveling to work 

depends on employment status. Specifically, mobility is driven by the employed and regions 

with higher level of unemployment would experience lower levels of mobility. Indeed, we see 

this relationship in our data. Appendix Table A4 shows the relationship between state-level 

daily unemployment rates and mobility patterns. We conduct this analysis for the unlock phases 

(beginning with May 2020 till the end of our data) considering that mobility was restricted due 

to government regulations during the lockdown period. The negative estimates imply that both 

 
is indeed capturing greater extent of social interactions. Hence, we refrain from reporting these findings as part of 
our main analysis. 
11 Facebook data reports mobility from one region to another when at least 10 people move across these regions. 
Hence, not all districts-days are available in the Facebook mobility data.   
12 We interpolate the daily unemployment rate using the monthly unemployment rate published by Centre for 
Monitoring Indian Economy (CMIE) 
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inter-district and within-district mobility were significantly low in states with high 

unemployment rates. Hence, we expect that when unemployment rate is high, the effect of 

nightlight inequality on Covid infection rate will be low, since the mobility effect will be 

muted. Accordingly, we regress district level daily per capita infection spread on the interaction 

of state level nightlight inequality and state level daily unemployment rate. In contrast to Table 

2, this specification also allows us to introduce state fixed effects and state level time trends to 

account for all other state level factors that might affect the spread of Covid-19, that are either 

fixed over time or varies linearly over time. The specification that we use is comparable to 

Table 2 except that now we introduce daily unemployment rate and the interaction of state-

nightlight inequality with unemployment rate. We expect, the interaction effect of nightlight 

inequality and unemployment rate to be negative. Between two states with different levels of 

nightlight inequality, the spread of Covid-19 is expected to be lower in the state with higher 

levels of unemployment. We present the results in Table 8.  

Table 8 Interaction between unemployment and Nightlight Inequality and its effect on 

Covid infection rate. 

Column (1) presents the iteration-specification without any fixed effects. We find that 

nightlight inequality has a positive effect on contagion, as before. Also, states with higher 

unemployment rate have lower levels of contagion, after accounting for economic development 

proxied by average levels of nightlight. The interaction between nightlight inequality and 

unemployment is significantly negative. Together these results imply that the positive effect of 

the inequality on infection is partially mitigated in states whenever the movements are less (i.e. 

unemployment is high). These results remain similar across the four different specifications. In 

column 2 we introduce state level linear time trends. In column (3) we account for unobserved 

heterogeneity at the state level and in column (4) we introduce both state fixed effects and state 

level linear time trends – the interaction effect remains unaltered.  

 

Appendix Table 6: Migration and Unemployment during unlock phases 

 

 

6. Conclusion 

The growing literature studying the factors that contribute to Covid-19 spread focuses on 

demographic, social, weather, health related indicators. We provide an additional explanation 

based on the geographical organization of markets. Using data from the first year (March, 

2020-January, 2021) of the Covid-19 contagion across the various districts of India we find 
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that Covid-19 spreads more in regions characterized by a stronger core-periphery economic 

structure. We measure core-periphery structure using inequality in the incidence of nightlights 

across districts. We argue that a core-periphery economic structure is likely to increase the 

spread of infection because it involves movement of people across the core and peripheral 

districts. When we conduct the exercise over different phases of lockdown and unlock, imposed 

by the Government of India, we find that regions with higher nightlight inequality also 

experience higher spread of Covid-19 only when lockdown measures have been relaxed and 

movement of goods and services are near normal.  Further, using mobility data, we provide 

direct evidence that much of the effect of nightlight inequality on the spread of Covid is 

explained by movement of people.  

 

   Our finding has a critical policy implication. The policy responses to Covid-19 contagion 

that we have seen in India, be it the lockdown strategy or the vaccination strategy, are quite 

homogeneous in nature --- prescribe one policy for the entire nation. However, such stringent 

lockdown came at a very high cost. We have seen a handful of academic papers along with 

numerous reports in newspapers and policy documents which detailed the economic loss during 

lockdown. An estimate published in April, 2021 by State Bank of India show that total 

economic loss is in the range of INR 1.5 Trillion13 (approximately 20 Billion USD). Besides 

the figures of economic loss, the first two phases of lockdown in India saw an unprecedented 

humanitarian crisis in the plight of the migrant workers14.  A large part of this crisis had its root 

in the initial stringent lockdown which was imposed uniformly across India.  

 

    One critical implication of our research is selective policy implementation based on regional 

inequality; more intense implementation of the policy instrument in areas characterised by 

more regional inequality. The idea of selective policy implementation is not entirely novel 

when it comes to lockdown strategies. We have seen that during the unlock phases, the Indian 

government has followed this strategy based on the number of confirmed cases in an area. 

Essentially, under this policy, the districts were categorized into various color-coded zones 

based on the severity of the contagion. The districts with a very high number of cases were 

labelled as red zone and the most stringent lockdown policy was imposed on them. The orange 

and green districts had moderate and low number of cases, respectively, and the stringency of 

 
13 https://www.business-standard.com/article/economy-policy/economic-cost-of-mobility-curbs-lockdowns-at-
rs-1-5-trillion-sbi-report-121042300326_1.html 
14 https://www.bbc.com/news/av/world-asia-52776442 
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the lockdown policies were more relaxed in these districts. But this categorization was done 

based on the number of confirmed cases which was revealed ex-post. The selective lockdown 

strategy that follows from our research is better than this policy. Unlike the government 

strategy which uses the ex-post number of confirmed cases, our strategy is based on an ex-ante 

measure, regional nightlights inequality, that can predict the prospective severity of the 

contagion in different regions. Therefore, while government strategy only works after an area 

is severely affected, our approach can be deployed before the contagion spreads and can be 

used to minimize economic and human loss.  

 

    However, there is one important caveat of this policy suggestion. Stringent lockdown in 

unequal regions may have severe negative impact on the poor if the poor are more likely to live 

in more unequal regions. However, previous research shows that districts with a stronger core-

periphery structure, i.e., more unequal districts, are not necessarily the poorer ones. In fact, 

more developed regions are generally characterized by greater degree of sub-regional 

inequality (Mveyange, 2015; Singhal et al., 2020). Hence, in the event of a stringent lockdown 

we can think of a redistributive policy which would transfer resources from the rich core to the 

poor periphery to support the poor people in the peripheries. Second, the alternative to our 

selective lockdown is the blanket lockdown which has been practised in India. The blanket 

lockdown did impact both equal and unequal regions alike and therefore, is Pareto inferior to 

the policy of selective lockdown.  Moreover, it is important to note that the policy implication 

of our paper is not restricted to lockdown policies. Now, with vaccine’s inclusion to the array 

of anti-Covid policy instruments, we can apply the basic principle of our policy suggestion and 

prioritize areas for vaccination drive based on the core-periphery structure.  
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Figures:

Figure 1: Share of Covid-10 confirmed cases in 10 leading states 
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Figure 2: Covid-10 confirmed cases in 10 leading states 
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Figure 3: Covid-10 confirmed cases per 100 thousand population in 10 leading states  
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Figure 4: A district level map of daily confirmed cases 

 

 

 

 

 

 



32 
 

 

 

 

 

 

 

Figure 5: A district level map of District-Neighborhood Nightlight-Inequality 
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Tables: 

Variables Mean SD 10 Percentile 90 Percentile 

Confirmed per million 8857 5570 3154 17049 
District Population (million) 2.15 1.53 0.67 4.05 
Nightlight (district level) 4.62 14.13 0.49 8.65 
Nightlight Inequality [p90/p10] 2.44 1.02 1.03 3.89 
District Population Density, 2019 735 3680 157 1099 
Temperature (Celsius) 31.08 6.07 23.79 38.91 
Rainfall (mm) 4.34 13.48 0.00 12.56 
Malaria 4.86 1.26 3.00 6.00 
Latitude (N) 23.04 5.98 12.81 30.28 
Longitude (E) 79.09 4.44 74.12 85.99 
% BCG Vaccination, 2007 87.76 11.20 72.30 98.90 
% Fully Immunized, 2007 56.08 21.44 25.60 83.60 
Observations 139309 139309 139309 139309 

Table 1: Summary Statistics, Regression Sample 
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Dependent Variable: Total Confirmed Covid19 per million population 
  (1) (2) (3) (4) (5) (6) (7) 

Nightlight 
Inequality 

6.528*** 6.012*** 6.000*** 5.648*** 3.347*** 3.452*** 3.755*** 

 (0.177) (0.178) (0.178) (0.180) (0.180) (0.183) (0.182) 

Days since 
Jan1. 2020 

 -0.012*** -0.013*** -0.038*** -0.071*** -0.074*** -0.084*** 

  (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) 

Nightlight  0.476*** 0.598*** 0.611*** 0.567*** 0.575*** 0.614*** 

  (0.012) (0.017) (0.017) (0.017) (0.017) (0.017) 
Daily tested  -0.000*** -0.000*** -0.000*** 0.000*** 0.000*** 0.000*** 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Population 
density 

  -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** 

   (0.000) (0.000) (0.000) (0.000) (0.000) 
Temperature    -0.529*** -0.570*** -0.540*** -0.750*** 
    (0.047) (0.046) (0.046) (0.048) 
Rainfall    0.332*** 0.281*** 0.263*** 0.241*** 
    (0.014) (0.014) (0.014) (0.014) 

BCG 
vaccination 

    0.695*** 0.684*** 0.565*** 

     (0.029) (0.030) (0.030) 

Total 
vaccination 

    0.258*** 0.265*** 0.213*** 

     (0.016) (0.016) (0.016) 

Colonial 
malaria 

     -0.620*** 0.663*** 

      (0.145) (0.165) 
Latitude       -0.604*** 
       (0.034) 
Longitude       -1.013*** 
       (0.046) 
Constant 18.177*** 21.518*** 21.532*** 43.638*** -20.383*** -18.917*** 91.007*** 
 (0.469) (0.756) (0.755) (2.389) (2.990) (3.012) (4.828) 
        

Observations 148,737 147,875 147,875 147,473 145,640 139,309 139,309 
Adjusted        
R-squared 

0.009 0.021 0.021 0.025 0.052 0.053 0.059 

Table 2: Nightlight Inequality varies at the state level. Average district level nightlight, population density, 
latitude, longitude, BCG vaccination (in 2017), total vaccination (in 2017) and colonial malaria vary at the district 
level. Covid19 daily tested varies by state-day. Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1  
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Dependent Variable: Total Confirmed Covid19 per million population 
  (1) (2) (3) (4) (5) (6) (7) (8) 

Nightlight 
Inequality 

1.310*** 0.690*** 0.645*** 0.604*** 0.436*** 0.618*** 0.584*** 0.476*** 

 (0.138) (0.138) (0.138) (0.138) (0.137) (0.142) (0.142) (0.139) 

Days since 
Jan1. 2020 

 -0.010*** -0.010*** -0.010*** -0.011*** -0.011*** -0.011*** -0.008*** 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 

Nightlight  0.054*** 0.071*** 0.072*** 0.072*** 0.071*** 0.071*** 0.072*** 

  (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
Daily tested  0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Population 
density 

  -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

   (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Temperature    0.000 -0.014*** -0.010** -0.011** -0.094*** 
    (0.005) (0.005) (0.005) (0.005) (0.006) 
Rainfall    0.026*** 0.026*** 0.024*** 0.024*** 0.020*** 
    (0.001) (0.001) (0.001) (0.001) (0.001) 

BCG 
vaccination 

    0.004 0.006** 0.007** 0.007** 

     (0.003) (0.003) (0.003) (0.003) 

Total 
vaccination 

    0.014*** 0.011*** 0.009*** 0.009*** 

     (0.002) (0.002) (0.002) (0.002) 

Colonial 
malaria 

     -0.152*** -0.137*** -0.142*** 

      (0.017) (0.018) (0.017) 
Latitude       -0.058*** -0.071*** 
       (0.015) (0.015) 
Longitude       -0.058*** -0.053*** 
       (0.012) (0.012) 
Constant 2.286*** 3.832*** 3.863*** 3.617*** 3.346*** 3.611*** 9.487*** 13.799*** 
 (0.121) (0.133) (0.132) (0.274) (0.349) (0.355) (1.037) (1.024) 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
State Trend  No No No No No No No Yes 
Observations 148,737 147,875 147,875 147,473 145,640 139,309 139,309 139,309 

Adjusted        
R-squared 

0.086 0.114 0.115 0.115 0.116 0.118 0.119 0.157 

Table 3: Baseline with neighbourhood nightlight-inequality and state fixed effect. Nightlight Inequality, average 
district level nightlight, population density, latitude, longitude, BCG vaccination (in 2017), total vaccination (in 
2017) and colonial malaria vary at the district level. Covid19 daily tested varies by state-day. Standard errors in 
parentheses: *** p<0.01, ** p<0.05, * p<0.1  
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Table 4: Phases of India-wide Lockdown and subsequent Unlock as stipulated by the Government of India. 
Information gathered from various official notifications by the Ministry of Home Affairs, GOI, and media reports.  

 

 

 

  

 Phase Dates Number of days Confirmed per million 

1 Pre-Lockdown 1 Jan, 2020-24 Mar, 2020 84 0.41 

2 Lockdown 1 25 Mar, 2020 – 14 April, 2020 21 7.93 

3 Lockdown 2 15 Apr, 2020 – 3 May, 2020 19 22.86 

4 Lockdown 3 4 May, 2020 -- 17 May, 2020 14 38.38 

5 Lockdown 4 18 May, 2020 – 31 May, 2020 14 64.01 

6 Unlock 1 1 June, 2020 – 30 June, 2020 30 279.00 

7 Unlock 2 1 July, 2020 – 31 July, 2020 31 784.46 

8 Unlock 3 1 Aug, 2020 – 31 Aug, 2020 31 1407.29 

9 Unlock 4 1 Sept, 2020 – 30 Sept, 2020 30 1974.05 

10 Unlock 5 1 Oct, 2020 – 31 Oct, 2020 31 1412.30 

11 Unlock 6 1 Nov, 2020 – 30 Nov, 2020 30 950.53 

12 Unlock 7 1 Dec, 2020 – 31 Dec, 2020 31 605.82 

13 Unlock 8  1 Jan, 2021 – 31 Jan, 2021 31 347.07  
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Dependent Variable: Total Confirmed Covid19 per million population 

  (1) (2) 

  Lockdown 3 Lockdown 4 

Nightlight Inequality 3.177 -7.603** 
 (2.834) (3.404) 

Days since Jan1. 2020 0.018 0.155 
 (0.452) (0.503) 

Nightlight -0.006 -0.135*** 
 (0.031) (0.040) 

Daily tested 0.000 0.000 
 (0.000) (0.000) 

Population density 0.001*** 0.002*** 
 (0.000) (0.000) 

Temperature -0.750*** -0.074 
 (0.165) (0.184) 

Rainfall -0.190 -0.009 
 (0.122) (0.101) 

BCG vaccination 0.221*** 0.069 
 (0.060) (0.076) 

Total vaccination -0.123*** -0.034 
 (0.038) (0.046) 

Colonial malaria -2.345*** -1.813*** 
 (0.349) (0.434) 

Latitude 0.860*** -0.405 
 (0.290) (0.359) 

Longitude -0.609** -1.059*** 
 (0.237) (0.293) 

Constant 38.124 98.519*** 
 (23.447) (28.406) 

State FE Yes Yes 

State Trend  Yes Yes 

Observations 6,133 6,948 

Adjusted R-squared 0.154 0.117 

Table 5a: Regression with neighbourhood inequality for lockdown phases 3 and 4. 
Nightlight Inequality, average district level nightlight, population density, latitude, longitude,  
BCG vaccination (in 2017), total vaccination (in 2017) and colonial malaria vary  
at the district level. Covid19 daily tested varies by state-day. Standard errors in  
parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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Table 5b: Regression with neighbourhood inequality for Unlock phases 1-8. Nightlight Inequality, average 
district level nightlight, population density, latitude, longitude, BCG vaccination (in 2017), total vaccination (in 
2017) and colonial malaria vary at the district level. Covid19 daily tested varies by state-day. Standard errors in 
parentheses: *** p<0.01, ** p<0.05, * p<0.1 
 

 

  

Dependent Variable: Total Confirmed Covid19 per million population 
  (1) (2) (3) (4) (5) (6) (7) (8) 
  Unlock-1 Unlock-2 Unlock-3 Unlock-4 Unlock-5 Unlock-6 Unlock-7 Unlock-8 

Nightlight 
Inequality 

-27.87*** -5.23 -6.16 16.04*** 24.86*** 22.83*** 17.68*** 6.09*** 

 (4.079) (5.658) (6.382) (3.217) (2.420) (3.652) (1.694) (1.560) 
Days since 
Jan1. 2020 

0.77*** 0.18 -0.32 0.02 0.03 -0.48** -0.85*** -0.14 

 (0.271) (0.365) (0.410) (0.215) (0.156) (0.239) (0.110) (0.088) 

Nightlight 0.03 0.73*** 0.90*** 1.45*** 1.33*** 1.31*** 0.71*** 0.22*** 

 (0.049) (0.068) (0.076) (0.039) (0.029) (0.043) (0.019) (0.017) 
Daily tested -0.00 0.00 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Population 
density 

0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Temperature 0.01 -0.46 -1.48*** -0.82*** -1.08*** -2.18*** -0.40*** -0.54*** 
 (0.198) (0.307) (0.460) (0.238) (0.176) (0.323) (0.102) (0.096) 
Rainfall 0.28*** 0.07* -0.03 0.00 0.01 -0.06 -0.03 -0.11* 
 (0.048) (0.040) (0.040) (0.024) (0.034) (0.074) (0.051) (0.067) 
BCG 
vaccination 

-0.17* -0.05 0.19 0.08 0.00 0.17** 0.03 0.02 

 (0.091) (0.126) (0.142) (0.072) (0.054) (0.081) (0.038) (0.036) 
Total 
vaccination 

0.08 -0.03 -0.18** 0.47*** 0.32*** 0.10** 0.22*** 0.12*** 

 (0.055) (0.076) (0.085) (0.043) (0.033) (0.049) (0.022) (0.021) 
Colonial 
malaria 

1.10** -1.06 0.55 2.82*** -2.49*** -7.57*** -1.70*** -0.28 

 (0.511) (0.701) (0.794) (0.401) (0.301) (0.447) (0.203) (0.192) 
Latitude -1.00** -2.22*** -2.18*** -0.46 -0.78*** 0.02 0.54*** -0.44** 
 (0.430) (0.594) (0.673) (0.339) (0.255) (0.404) (0.189) (0.171) 
Longitude -1.24*** -2.50*** -1.40** -1.74*** 0.32 1.82*** 0.29** 0.12 
 (0.348) (0.481) (0.547) (0.273) (0.206) (0.310) (0.141) (0.130) 
Constant 93.02*** 201.56*** 414.09*** 215.92*** 267.60*** 41.19 121.31*** 36.47** 
 (32.564) (46.190) (51.584) (28.642) (23.068) (37.819) (19.637) (15.170) 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
State Trend Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 15,555 16,121 15,947 15,507 15,926 15,154 14,908 13,946 
Adjusted        R-
squared 0.064 0.093 0.136 0.490 0.568 0.330 0.571 0.578 
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 Table 6: Regression with Facebook-migration across districts as the dependent variable. Nightlight Inequality, 
average district level nightlight, population density, latitude, longitude, BCG vaccination (in 2017), total 
vaccination (in 2017) and colonial malaria vary at the district level. Covid19 daily tested varies by state-day. 
Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
  

Dependent Variable: Number of people moving across districts in '0000 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Nightlight Inequality 40.598*** 26.038*** 26.193*** 24.412*** 23.409*** 25.676*** 25.769*** 25.789*** 
 (0.659) (0.535) (0.534) (0.512) (0.515) (0.558) (0.557) (0.557) 
         
Days since Jan1. 2020  -0.017*** -0.017*** -0.016*** -0.015*** -0.015*** -0.014*** -0.029*** 
 

 (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.005) 
Nightlight  1.240*** 1.168*** 1.368*** 1.359*** 1.355*** 1.363*** 1.363*** 
 

 (0.005) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 
Daily tested  -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000 
 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Population density   0.000*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 
 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Temperature    0.013 0.036* 0.045** 0.066*** 0.096*** 
 

   (0.020) (0.020) (0.021) (0.021) (0.024) 
Rainfall    0.002 -0.001 -0.000 0.001 0.002 
 

   (0.005) (0.005) (0.006) (0.006) (0.006) 
BCG vaccination     0.116*** 0.106*** 0.111*** 0.110*** 
 

    (0.012) (0.013) (0.013) (0.013) 
Total vaccination     0.127*** 0.138*** 0.140*** 0.141*** 
 

    (0.008) (0.008) (0.008) (0.008) 
Colonial malaria      -0.109 0.400*** 0.408*** 
 

     (0.077) (0.079) (0.079) 
Latitude       0.391*** 0.397*** 
 

      (0.061) (0.061) 
Longitude       -1.369*** -1.371*** 
 

      (0.048) (0.048) 
Constant -11.981*** -0.624 -0.719 -0.730 -17.913*** -18.797*** 76.700*** 75.356*** 
 (0.571) (0.517) (0.517) (1.067) (1.358) (1.452) (4.168) (4.211) 

         
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
State Trend  No No No No No No No Yes 
Observations 142,933 142,147 142,147 141,756 140,392 133,735 133,735 133,735 
Adjusted R-squared 0.134 0.437 0.438 0.484 0.488 0.484 0.487 0.487 



40 
 

Dependent Variable: Total Confirmed Covid19 per million population 

  (1) (2) (3) (4) 

Nightlight inequality 1.371*** 0.283** 0.593*** 0.106 

 (0.127) (0.128) (0.127) (0.128) 

FB migration  0.026***  0.019*** 

  (0.001)  (0.001) 

Days since 1 Jan, 2020   -0.008*** -0.007*** 

   (0.001) (0.001) 

Nightlight   0.074*** 0.048*** 

   (0.002) (0.002) 

Daily Covid tests    0.000*** 0.000*** 

   (0.000) (0.000) 
Population density   -0.000*** -0.000*** 

   (0.000) (0.000) 

Temperature   -0.122*** -0.124*** 

   (0.006) (0.006) 

Rainfall   0.015*** 0.015*** 

   (0.001) (0.001) 

BCG vaccination   0.006** 0.004 

   (0.003) (0.003) 

Total vaccine   0.013*** 0.010*** 

   (0.002) (0.002) 

Colonial malaria   -0.270*** -0.278*** 

   (0.018) (0.018) 

Latitude   -0.076*** -0.082*** 

   (0.014) (0.014) 

Longitude   -0.030*** -0.004 

   (0.011) (0.011) 

Constant 1.989*** 2.313*** 12.894*** 11.482*** 

 (0.111) (0.110) (0.962) (0.960) 

     
State FE  Yes Yes Yes Yes 

State Trend No No Yes Yes 

Observations 139,720 139,720 130,875 130,875 

Adjusted R-squared 0.099 0.116 0.186 0.191 
Table 7: Baseline with control for Facebook-migration. Columns 1 and 2 correspond to Column 1 of Tabel 3. 
Columns 3 and 4 correspond to Column 8 of Table 3  Nightlight Inequality, average district level nightlight, 
population density, latitude, longitude, BCG vaccination (in 2017), total vaccination (in 2017) and colonial 
malaria vary at the district level. Covid19 daily tested varies by state-day. Standard errors in parentheses: *** 
p<0.01, ** p<0.05, * p<0.1  
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Dependent Variable: Total Confirmed Covid19 per million population 
  (1) (2) (3) (4) 
  No FE State-Trend State-FE State-FE+Trend 
Nightlight Inequality* 
Unemployment  

-0.070*** -0.318*** -0.178*** -0.293*** 

 (0.020) (0.027) (0.024) (0.033) 
     
Nightlight Inequality 4.457*** 14.790*** - - 
 (0.284) (0.844)   

Unemployment -0.098* 0.267*** -0.256*** -0.367*** 
 (0.058) (0.077) (0.072) (0.094) 
Days since Jan1. 2020 -0.094*** -0.223*** -0.136*** -0.090*** 
 (0.004) (0.006) (0.004) (0.010) 
Nightlight 0.624*** 0.730*** 0.719*** 0.725*** 
 (0.017) (0.016) (0.017) (0.016) 
Daily tested 0.000*** 0.000*** 0.000*** 0.000*** 
 (0.000) (0.000) (0.000) (0.000) 
Population density -0.001*** -0.001*** -0.001*** -0.001*** 
 (0.000) (0.000) (0.000) (0.000) 
Temperature -0.746*** -0.477*** -0.176*** -0.736*** 
 (0.048) (0.054) (0.050) (0.057) 
Rainfall 0.221*** 0.162*** 0.196*** 0.161*** 
 (0.014) (0.013) (0.013) (0.013) 
BCG vaccination 0.515*** 0.083*** 0.072** 0.073** 
 (0.030) (0.031) (0.032) (0.031) 
Total vaccination 0.229*** 0.060*** 0.099*** 0.099*** 
 (0.016) (0.018) (0.019) (0.019) 
Colonial malaria 0.531*** -1.181*** -1.288*** -1.309*** 
 (0.166) (0.171) (0.174) (0.170) 
Latitude -0.544*** 0.221** -0.620*** -0.702*** 
 (0.034) (0.088) (0.148) (0.145) 
Longitude -0.960*** -0.086 -0.570*** -0.550*** 
 (0.047) (0.093) (0.120) (0.117) 
Constant 93.860*** 39.418*** 118.980*** 157.303*** 
 (4.835) (8.031) (10.295) (10.132) 
State FE No No Yes Yes 
State Trend No Yes No Yes 
Observations 139,309 139,309 139,309 139,309 
Adjusted  R-squared 0.060 0.141 0.123 0.163 

Table 8: Interaction between unemployment and nightlight and its effect on Covid infection rate. Nightlight 
Inequality, Average district level nightlight, population density, latitude, longitude, BCG vaccination (in 2017), 
total vaccination (in 2017) and colonial malaria vary at the district level. Covid19 daily tested varies by state-day. 
Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 

State Name Variable Name Availability Date Range for 
Variable 
Availability 

Andaman and Nicobar 
Islands 

Total confirmed Partial districts, no missing date 4 days in Mar'20 
| 10 days in 
Apr'20 

  Daily confirmed Partial districts, no missing date 4 days in Mar'20 
| 10 days in 
Apr'20 

  Covid Tests 
(Daily) 

Partial districts, missing dates 
interpolated 

3 days in Mar'20 
| 10 days in 
Apr'20 

Andhra Pradesh Total confirmed All districts, but missing dates 13 days in 
Mar'20 | 1st 
Apr'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 13 days in 
Mar'20 | 1st 
Apr'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 9 days in Mar'20 
| 1st Apr'20 - 31st 
Jan'21 

Arunachal Pradesh Total confirmed All districts, but missing dates 6 days in Apr'20 | 
1st May'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 6 days in Apr'20 | 
1st May'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 5 days in Apr'20 | 
1st May'20 - 31st 
Jan'21 

Assam Total confirmed All districts, but missing dates 31st Mar'20 - 
19th Aug'20 

  Daily confirmed All districts, but missing dates 31st Mar'20 - 
19th Aug'20 

  Covid Tests 
(Daily) 

All districts, but missing dates 3rd Apr'20 - 19th 
Aug'20 

Bihar Total confirmed All districts, but missing dates 22nd Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 22nd Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 23rd Mar'20 - 
31st Jan'21 

Chandigarh Total confirmed All districts, no missing dates 19th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, no missing dates 20th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, no missing dates 20th Mar'20 - 
31st Jan'21 

Chhattisgarh Total confirmed All districts, but missing dates 19th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 19th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 25th Mar'20 - 
31st Jan'21 
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Daman diu and dadra 
nagar haveli 

Total confirmed All districts, but missing dates 5th May'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 5th May'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 6th May'20 - 31st 
Jan'21 

Delhi Total confirmed State level, no missing dates 2nd Mar'20 - 
31st Jan'21 

  Daily confirmed State level, no missing dates 3rd Mar'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

State level, no missing dates 3rd Mar'20 - 31st 
Jan'21 

Goa Total confirmed All districts, no missing dates 25th Mar'20 | 4th 
Apr'20 | 26th 
Apr'20 - 19th 
Aug'20 

  Daily confirmed All districts, no missing dates 25th Mar'20 | 4th 
Apr'20 | 26th 
Apr'20 - 19th 
Aug'20 

  Covid Tests 
(Daily) 

All districts, but missing dates 25th Mar'20 | 4th 
Apr'20 | 26th 
Apr'20 - 19th 
Aug'20 

Gujarat Total confirmed All districts, but missing dates 19th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 19th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 21st Mar'20 - 
31st Jan'21 

Haryana Total confirmed All districts, but missing dates 17th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 17th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 18th Mar'20 - 
31st Jan'21 

Himachal Pradesh Total confirmed All districts, but missing dates 20th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 23rd Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 23rd Mar'20 - 
31st Jan'21 

Jammu and Kashmir Total confirmed All districts, but missing dates 9th Mar'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 9th Mar'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 13th Mar'20 - 
31st Jan'21 

Jharkhand Total confirmed All districts, but missing dates 31st Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 6th Apr'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 6th Apr'20 - 31st 
Jan'21 

Karnataka Total confirmed Partial districts, no missing date 9th Mar'20 - 31st 
Jan'21 

  Daily confirmed Partial districts, missing dates 
interpolated 

10th Mar'20 - 
31st Jan'21 
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  Covid Tests 
(Daily) 

Partial districts, missing dates 
interpolated 

10th Mar'20 - 
31st Jan'21 

Kerala Total confirmed All districts, but missing dates 30th Jan'20 | 2nd 
- 3rd Feb'20 | 8th 
Mar'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 30th Jan'20 | 2nd 
- 3rd Feb'20 | 8th 
Mar'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 10th Mar'20 - 
31st Jan'21 

Ladakh Total confirmed All districts, but missing dates 7th Mar'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 11th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 11th Mar'20 - 
31st Jan'21 

Lakshadweep Total confirmed All districts, but missing dates 18th - 31st Jan'21 

  Daily confirmed All districts, but missing dates 19th - 31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 19th - 31st Jan'21 

Madhya Pradesh Total confirmed All districts, but missing dates 20th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 22nd Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 22nd Mar'20 - 
31st Jan'21 

Maharashtra Total confirmed All districts, but missing dates 9th Mar'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 9th Mar'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 10th Mar'20 - 
31st Jan'21 

Manipur Total confirmed All districts, but missing dates 24th Mar'20 | 2nd 
Apr'20 | 26th 
Apr'20 - 19th 
Aug'20 

  Daily confirmed All districts, but missing dates 24th Mar'20 | 2nd 
Apr'20 | 26th 
Apr'20 - 19th 
Aug'20 

  Covid Tests 
(Daily) 

All districts, but missing dates 26th Apr'20 - 
19th Aug'20 

Meghalaya Total confirmed All districts, but missing dates 13th Apr'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 15th Apr'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 15th Apr'20 - 
31st Jan'21 

Mizoram Total confirmed All districts, but missing dates 25th Mar'20 | 
26th Apr'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 26th Apr'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 26th Apr'20 - 
31st Jan'21 
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Nagaland Total confirmed All districts, but missing dates 19th May'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 20th May'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 20th May'20 - 
31st Jan'21 

Odisha Total confirmed All districts, but missing dates 16th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 19th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 19th Mar'20 - 
31st Jan'21 

Puducherry Total confirmed All districts, but missing dates 17th Mar'20 | 1st 
- 2nd Apr'20 | 
10th Apr'20 | 
25th Apr'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 2nd Apr'20 | 10th 
Apr'20 | 25th 
Apr'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 2nd Apr'20 | 10th 
Apr'20 | 25th 
Apr'20 - 31st 
Jan'21 

Punjab Total confirmed All districts, but missing dates 9th Mar'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 21st Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 21st Mar'20 - 
31st Jan'21 

Rajasthan Total confirmed All districts, but missing dates 10th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 14th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 14th Mar'20 - 
31st Jan'21 

Sikkim Total confirmed All districts, but missing dates 23rd May'20 - 
19th Aug'20 

  Daily confirmed All districts, but missing dates 23rd May'20 - 
19th Aug'20 

  Covid Tests 
(Daily) 

All districts, but missing dates 24th May'20 - 
19th Aug'20 

Tamil Nadu Total confirmed Partial districts and missing dates 7th Mar'20 - 31st 
Jan'21 

  Daily confirmed Partial districts and missing dates 19th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

Partial districts and missing dates 19th Mar'20 - 
31st Jan'21 

Telangana Total confirmed Partial districts and missing dates 2nd Mar'20 | 14th 
Mar'20 - 26th 
Apr'20 

  Daily confirmed Partial districts and missing dates 2nd Mar'20 | 14th 
Mar'20 - 26th 
Apr'20 

  Covid Tests 
(Daily) 

Partial districts and missing dates 14th Mar'20 - 
26th Apr'20 

Tripura Total confirmed All districts, but missing dates 6th Apr'20 | 10th 
Apr'20 | 26th 
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Apr'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 26th Apr'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 26th Apr'20 - 
31st Jan'21 

Uttar Pradesh Total confirmed All districts, but missing dates 4th - 5th Mar'20 | 
9th Mar'20 - 31st 
Jan'21 

  Daily confirmed All districts, but missing dates 9th Mar'20 - 31st 
Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 9th Mar'20 - 31st 
Jan'21 

Uttarakhand Total confirmed All districts, but missing dates 15th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 19th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 19th Mar'20 - 
31st Jan'21 

West Bengal Total confirmed All districts, but missing dates 17th Mar'20 - 
31st Jan'21 

  Daily confirmed All districts, but missing dates 17th Mar'20 - 
31st Jan'21 

  Covid Tests 
(Daily) 

All districts, but missing dates 20th Mar'20 - 
31st Jan'21 

Table A1: Data availability 
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Phase Dates Numb
er of 
days 

Regulations Source 

Pre-
Lockdo
wn 

1 Jan, 
2020-
24 Mar, 
2020 

84 Business as Usual   

Lockdo
wn 1 

25 Mar, 
2020 – 
14 
April, 
2020 

21 All services and factories, except essential, were suspended. Arrests across the 
states were made for violating norms of lockdown such as venturing out for no 
emergency, opening businesses and also home quarantine violations.  
 
The national rail network has maintained its freight operations during the 
lockdown, to transport essential goods. On 29 March, the Indian Railways 
announced that it would start services for special parcel trains to transport 
essential goods, in addition to the regular freight service.  
 
As the end of the initial lockdown period came near, many state governments 
expressed their decision to extend it till the end of April. Among them were 
Odisha, Punjab, Maharashtra, Karnataka with some relaxations, West Bengal 
and Telangana.  

https://ww
w.mha.go
v.in/sites/
default/fil
es/Guideli
nes_0.pdf 

Lockdo
wn 2 

15 Apr, 
2020 – 
3 May, 
2020 

19 On 14 April, the nationwide lockdown was extended till 3 May, with a 
conditional relaxation promised after 20 April for the regions where the spread 
had been contained by then. Every police station area were to be evaluated to 
see if it had contained the spread. The areas that were able to do so would be 
released from the lockdown on 20 April. If any new cases emerged in those 
areas, lockdown could be reimposed. 
 
On 16 April, lockdown areas were classified as "red zone", indicating the 
presence of infection hotspots, "orange zone" indicating some infection, and 
"green zone" with no infections in the past 21 days. 
 
The government also announced certain relaxations from 20 April, allowing 
agricultural businesses, including dairy, aquaculture, and plantations, as well as 
shops selling farming supplies, to open. Public works programmes were also 
allowed to reopen with instructions to maintain social distancing. Cargo 
vehicles, including trucks, trains, and planes, would run. Banks and government 
centres distributing benefits would open as well with limited timings. 
 
On 25 April, small retail shops were allowed to open with half the staff. Again, 
social distancing norms were to be followed. 
 
On 29 April, The Ministry of Home Affairs issued guidelines for the states to 
allow inter-state movement of the stranded persons. States have been asked to 
designate nodal authorities and form protocols to receive and send such persons.  

https://ww
w.busines
stoday.in/
current/ec
onomy-
politics/ne
w-
coronavir
us-
lockdown
-
guidelines
-issued-
check-
full-list-
of-
relaxation
s-
lockdown
-rules-by-
mha/story
/401030.h
tml 
 
 
https://ww
w.dnaindi
a.com/indi
a/report-
centre-
issues-
fresh-set-
of-
guidelines
-for-
coronavir
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us-
lockdown
-20-
relaxation
-for-
some-
areas-
from-
april-20-
2821074 

Lockdo
wn 3 

4 May, 
2020 -- 
17 
May, 
2020 

14 On 1 May, the Government of India (GOI) further extended the lockdown period 
to two weeks beyond 4 May, with some relaxations. 
 
Movement is permitted within green zones with buses limited to 50 percent 
capacity. Orange zones would allow only private and hired vehicles but no 
public transportation. The red zones would remain under complete lockdown. 
The zone classification would be revised once a week. 

https://ww
w.mha.go
v.in/sites/
default/fil
es/MHA
%20Order
%20Dt.%
201.5.202
0%20to%
20extend
%20Lock
down%20
period%2
0for%202
%20week
s%20w.e.f
.%204.5.2
020%20w
ith%20ne
w%20gui
delines.pd
f  

Lockdo
wn 4 

18 
May, 
2020 – 
31 
May, 
2020 

14 On 17 May, GOI extended the lockdown for a period for two weeks from 18 
May, with additional relaxations. 
 
Unlike the previous extensions, states were given a larger say in the demarcation 
of Green, Orange and Red zones. Red zones were further divided into 
containment and buffer zones. The local bodies were given the authority to 
demarcate containment and buffer zones. 

https://ww
w.thehind
u.com/ne
ws/resour
ces/article
31608347.
ece/binary
/MHAOrd
erdatedM
ay17-
Guideline
sofLockd
ownexten
sion.pdf 
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Unlock 
1 

1 June, 
2020 – 
30 
June, 
2020 

30 The MHA issued fresh guidelines for June, stating that the phases of reopening 
would "have an economic focus". Lockdown restrictions were only to be 
imposed in containment zones, while activities were permitted in other zones in 
a phased manner. 
 
This first phase of reopening was termed "Unlock 1.0" and permitted shopping 
malls, religious places, hotels, and restaurants to reopen from 8 June. 
Restrictions on interstate travel was relaxed. However, large gatherings were 
still banned and night curfews were in effect from 9 p.m. to 5 a.m. in all areas 
and state governments were allowed to impose additional restrictions on all 
activities. 

https://ww
w.mha.go
v.in/sites/
default/fil
es/MHAO
rderDt_30
052020.pd
f  

Unlock 
2 

1 July, 
2020 – 
31 July, 
2020 

31 Phase II of Unlock began on 1 July. Lockdown measures were only imposed in 
containment zones. In all other areas, most activities were permitted. However, 
large gatherings were still prohibited and night curfews were in effect from 10 
p.m. to 5 a.m. in all areas. 
 
State governments were allowed to put additional restrictions on all activities, 
but state borders had to be opened for Inter- and intra-state travel. Limited 
international travel was permitted as part of the Vande Bharat Mission. Shops 
were permitted to allow more than five persons at a time. 
 
Educational institutions, metro railway, recreational activities remained closed 
till 31 July. Only essential activities were permitted in containment zones.  

https://ww
w.mha.go
v.in/sites/
default/fil
es/MHAO
rder_2906
2020.pdf 

Unlock 
3 

1 Aug, 
2020 – 
31 Aug, 
2020 

31 Unlock 3.0 for August 2020 removed night curfews and permitted gymnasiums 
and yoga centres to reopen after 5 August. Educational institutions remained 
closed till 31 August. All inter-and intrastate travel and transportation are 
permitted. 
 
Independence Day celebrations are permitted with social distancing. 
Maharashtra and Tamil Nadu imposed a lockdown for the whole month, while 
West Bengal imposed lockdowns twice a week. On 30 August the Delhi Metro 
started its operations with two metro lines 

https://ww
w.mha.go
v.in/sites/
default/fil
es/DOLrD
t_290720
20.pdf 

Unlock 
4 

1 Sept, 
2020 – 
30 Sept, 
2020 

30 On 29 August 2020, the GOI issued guidelines for activities permitted in Unlock 
4.0. Lockdown remained in force in the Containment Zones till 30th September 
2020. Outside the containment zone, however, additional activities were given 
permission. 
 
Metro Rail was allowed to be reopened in a graded manner from 7 September.  
Marriage functions with gatherings of up to 50 people and funereal/last rites 
ceremonies with up to 20 people were permitted. 
Religious, entertainment, political, sports, academic functions and gatherings of 
up to 100 people were allowed. 

https://ww
w.mha.go
v.in/sites/
default/fil
es/MHAO
rder_Unlo
ck4_2908
2020.pdf 
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Unlock 
5 

1 Oct, 
2020 – 
31 Oct, 
2020 

31 On 30 September 2020, the Ministry of Home Affairs issued guidelines for 
activities permitted in Unlock 5.0. 
 
For schools it was recommended to teach online as far as possible, but States 
and Union Territories were allowed to make those decisions from 15 October, 
in a graded manner. 
 
Lockdown shall remain in force strictly in the Containment Zones till 30 
November 2020. 
 
Also, swimming pools being used for training of sportsperson would be allowed 
to open.  
 
Cinema halls, that had remained close all this while, could be opened from 15 
October 2020, with a 50% of their seating capacity.  
 
On 3 November the Government of Kerala opened its tourism sector by 
reopening hill stations, beaches, national park, and inter-state public transport 
movement. 

https://ww
w.mha.go
v.in/sites/
default/fil
es/MHAO
rderDt_30
092020.pd
f  

Unlock 
6 

1 Nov, 
2020 – 
30 Nov, 
2020 

30 On 27 October 2020, the GOI issued guidelines for activities permitted in 
Unlock 6.0. No new changes were made to the existing Unlock 5.0 guidelines 
and notified that Unlock 5 guidelines were to be  in the month of November 
2020. 
 
Also, a handful of states allowed opening up of more activities outside 
containment zones and announced partial reopening of schools. Lockdown was 
enforced time and again in spite of attempts to permanently move towards an 
unlock phase.  
 
The GOI extended the ban on scheduled international passenger flights till 
January 31. 

https://ww
w.india.co
m/news/in
dia/mha-
issues-
unlock-6-
guidelines
-check-
here-
whats-
allowed-
whats-
not-in-
november
-4187769/ 

Table A2: Lockdown Phases and Restrictions 
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  List of Essential Items as of 30th March 2020 
1 Fruits & Vegetables 
2 Rice, wheat flour, other cereals and pulses 
3 Sugar and salt, spices and masalas 
4 Bakery and dairy (milk, milk products) 
5 Tea and coffee 
6 Eggs, meat and fish 
7 Food grains, oil, masala and food ingredients 
8 Packaged food and beverages 

9 
Health supplements, nutraceuticals, food for special dietary use and food for special 
medical purpose 

10 Infant/baby food 
11 Animal feed/pet food 
12 Food delivery services and e-commerce for above mentioned products 
13 Cold storage and warehousing of food products 

14 
Fuel such as coal, rice husk, diesel/furnace oil and others necessary to run manufacturing 
plants and factories 

15 
All raw materials, intermediaries, packaging materials needed to support the above list of 
products 

16 Sanitary napkins 
17 Diapers 
18 Soaps and detergents 
19 Surface cleaners and disinfectants 
20 Body wash and shampoos 
21 Tissue papers 
22 Toothpaste/ other oral care products 
23 Battery cells, chargers 

Table A3: List of essential goods  
Source: https://www.bloombergquint.com/business/government-expands-list-of-essential-items-to-include-
hygiene-products and https://seednet.gov.in/PDFFILES/Essential_Commodity_Act_1955(No_10_of_1955).pdf 
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Dependent Variable: Inter District migration Within District Migration 
  (1) (2) 
Unemployment -1.030*** -0.518*** 

 (0.131) (0.100) 
Constant 503.437*** 245.222*** 

 (2.155) (1.647) 

   
State FE Yes Yes 
Day of Year FE Yes Yes 
Observations 4,392 4,392 
Adjusted R-squared 0.994 0.984 

Table A4: Regression with inter-district Facebook-migration as the dependent variable in column (1) and within-
district Facebook-migration in column (2). Sample covers the entire unlock period starting with the month of May 
2020 till the end of the data. Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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Dependent Variable: Total Confirmed Covid19 per million population 
  (1) (2) 
  Column-8 (Table 3) + NonLinear-Time 
Nightlight inequality 0.476*** 0.493*** 

 (0.139) (0.137) 
Days since 1 Jan, 2020 -0.008*** 0.126*** 

 (0.001) (0.002) 
Days-squared  -0.000*** 

  (0.000) 
Nightlight 0.072*** 0.073*** 

 (0.002) (0.002) 
Daily Covid tests  0.000*** 0.000*** 

 (0.000) (0.000) 
Population density -0.000*** -0.000*** 

 (0.000) (0.000) 
Temperature -0.094*** -0.105*** 

 (0.006) (0.006) 
Rainfall 0.020*** 0.003** 

 (0.001) (0.001) 
BCG vaccination 0.007** 0.006** 

 (0.003) (0.003) 
Total vaccine 0.009*** 0.011*** 

 (0.002) (0.002) 
Colonial malaria -0.142*** -0.133*** 

 (0.017) (0.017) 
Latitude -0.071*** -0.072*** 

 (0.015) (0.014) 
Longitude -0.053*** -0.061*** 

 (0.012) (0.012) 
Constant 13.799*** -0.673 

 (1.024) (1.029) 

   
State FE  Yes Yes 
State Trend Yes Yes 
Observations 139,309 139,309 
Adjusted R-squared 0.157 0.184 

Table A5: Baseline with neighbourhood nightlight-inequality and state fixed effect. Column (2) additionally 
allows for non-linear time trend. Nightlight Inequality, Average district level nightlight, population density, 
latitude, longitude, BCG vaccination (in 2017), total vaccination (in 2017) and colonial malaria vary at the district 
level. Covid19 daily tested varies by state-day. Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1  
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Dependent Variable: Total Confirmed Covid19 per million population 
  (1) (2) 
  Lockdown 3 Lockdown 4 

Industrial Heterogeneity 3.997 -9.727 
 (5.205) (6.001) 
Days since Jan1. 2020 0.023 0.168 
 (0.453) (0.504) 
Nightlight 0.020 -0.223*** 
 (0.062) (0.082) 
Daily tested -0.000 0.000 
 (0.000) (0.000) 
Population density 0.000 0.003*** 
 (0.001) (0.001) 
Temperature -0.765*** -0.050 
 (0.165) (0.184) 
Rainfall -0.193 0.004 
 (0.123) (0.101) 
BCG vaccination 0.216*** 0.082 
 (0.061) (0.077) 
Total vaccination -0.121*** -0.038 
 (0.038) (0.046) 
Colonial malaria -2.334*** -1.878*** 
 (0.349) (0.434) 
Latitude 0.850*** -0.353 
 (0.292) (0.360) 
Longitude -0.561** -1.181*** 
 (0.243) (0.299) 
Constant 35.780 107.397*** 
 (24.643) (29.556) 
State FE Yes Yes 
State Trend Yes Yes 
Observations 6,105 6,920 
Adjusted R-squared 0.146 0.104 

Table A6: Regression with industrial heterogeneity index. Column 1 includes the full  
sample. Columns 2 and 3 are for Lockdown phases 3 and 4, respectively. Average district level nightlight,  
population density, latitude, longitude, BCG vaccination (in 2017), total vaccination  
(in 2017) and colonial malaria vary at the district level. Covid19 daily tested varies by state-day.  
Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1  
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Dependent Variable: Total Confirmed Covid19 per million population 
  (1) (2) (3) (4) (5) (6) (7) (8) 
  Unlock-1 Unlock-2 Unlock-3 Unlock-4 Unlock-5 Unlock-6 Unlock-7 Unlock-8 
Industrial 
Heterogeneity 

-47.586*** -61.526*** 18.548* 93.785*** 14.053*** 5.833 19.651*** 19.081*** 
 (7.078) (9.714) (10.958) (5.369) (4.105) (6.262) (2.863) (2.693) 
Days since 
Jan1. 2020 

0.768*** 0.178 -0.320 -0.029 -0.000 -0.488** -0.863*** -0.142 

 (0.271) (0.364) (0.410) (0.207) (0.153) (0.237) (0.109) (0.088) 
Nightlight 
(average) 

0.375*** 1.715*** 1.545*** 3.169*** 2.684*** 2.604*** 1.224*** 0.442*** 

 (0.098) (0.136) (0.152) (0.074) (0.057) (0.085) (0.039) (0.034) 
Daily tested -0.000 0.000 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Population 
density 

-0.003*** -0.013*** -0.010*** -0.026*** -0.019*** -0.019*** -0.008*** -0.003*** 

 (0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.000) (0.000) 
Temperature 0.058 -0.468 -1.510*** -1.269*** -1.342*** -2.377*** -0.453*** -0.564*** 
 (0.199) (0.306) (0.457) (0.229) (0.172) (0.318) (0.101) (0.096) 
Rainfall 0.294*** 0.076* -0.027 -0.019 -0.002 -0.058 -0.036 -0.108 
 (0.049) (0.040) (0.040) (0.024) (0.033) (0.074) (0.051) (0.067) 
BCG 
vaccination 

-0.133 -0.028 0.148 -0.095 -0.075 0.104 -0.006 -0.014 

 (0.092) (0.127) (0.143) (0.070) (0.053) (0.081) (0.037) (0.036) 
Total 
vaccination 

0.075 0.004 -0.171** 0.482*** 0.351*** 0.138*** 0.236*** 0.121*** 

 (0.055) (0.076) (0.085) (0.042) (0.032) (0.048) (0.022) (0.021) 
Colonial 
malaria 

0.958* -0.731 0.341 2.636*** -2.140*** -7.206*** -1.533*** -0.260 

 (0.510) (0.699) (0.793) (0.386) (0.294) (0.443) (0.201) (0.191) 
Latitude -0.889** -2.346*** -2.129*** -0.785** -1.187*** -0.435 0.304 -0.514*** 
 (0.431) (0.595) (0.675) (0.327) (0.250) (0.399) (0.187) (0.170) 
Longitude -1.550*** -2.699*** -1.029* -0.202 0.979*** 2.404*** 0.662*** 0.379*** 
 (0.355) (0.490) (0.558) (0.269) (0.205) (0.313) (0.143) (0.133) 
Constant 128.119*** 266.552*** 368.544*** 80.060*** 255.917*** 39.426 103.813*** 11.134 

 (33.955) (47.870) (53.611) (28.360) (23.103) (38.179) (19.819) (15.528) 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
State Trend Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 15,496 16,059 15,890 15,461 15,883 15,121 14,870 13,903 
Adjusted          
R-squared 0.062 0.098 0.138 0.524 0.583 0.342 0.576 0.581 

Table A7: Regression with industrial heterogeneity index for Unlock phases 1-8. Average nightlight, population 
density, latitude, longitude, BCG vaccination (in 2017), total vaccination (in 2017) and colonial malaria vary at 
the district level. Covid19 daily tested varies by state-day. Standard errors in parentheses: *** p<0.01, ** p<0.05, 
* p<0.1 
 


