
Klockmann, Victor; von Schenk, Alicia; Villeval, Marie-Claire

Working Paper

Artificial intelligence, ethics, and intergenerational
responsibility

SAFE Working Paper, No. 335

Provided in Cooperation with:
Leibniz Institute for Financial Research SAFE

Suggested Citation: Klockmann, Victor; von Schenk, Alicia; Villeval, Marie-Claire (2022) : Artificial
intelligence, ethics, and intergenerational responsibility, SAFE Working Paper, No. 335, Leibniz
Institute for Financial Research SAFE, Frankfurt a. M.,
https://doi.org/10.2139/ssrn.4002578

This Version is available at:
https://hdl.handle.net/10419/249178

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.2139/ssrn.4002578%0A
https://hdl.handle.net/10419/249178
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Victor Klockmann | Alicia von Schenk | Marie Claire Villeval 

 
Artificial Intelligence, Ethics, and 
Intergenerational Responsibility 
 

 
SAFE Working Paper No. 335 | January 2022 

 

Electronic copy available at: https://ssrn.com/abstract=4002578



Artificial Intelligence, Ethics,
and Intergenerational Responsibility

Victor Klockmanna Alicia von Schenkb Marie Claire Villevalc

December 21, 2021

Abstract

In more and more situations, artificially intelligent algorithms have to model humans’
(social) preferences on whose behalf they increasingly make decisions. They can learn
these preferences through the repeated observation of human behavior in social en-
counters. In such a context, do individuals adjust the selfishness or prosociality of their
behavior when it is common knowledge that their actions produce various externalities
through the training of an algorithm? In an online experiment, we let participants’
choices in dictator games train an algorithm. Thereby, they create an externality on
future decision making of an intelligent system that affects future participants. We
show that individuals who are aware of the consequences of their training on the pay-
offs of a future generation behave more prosocially, but only when they bear the risk
of being harmed themselves by future algorithmic choices. In that case, the external-
ity of artificially intelligence training induces a significantly higher share of egalitarian
decisions in the present.
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1 Introduction

Technological progress moves artificial intelligence (AI) from performing narrow, well-defined
tasks in closed environments to becoming an actor in the real world that actively decides
for humans. This increasing autonomy induces a host of ethical questions related to moral
machines and teaching robots to distinguish right from wrong. In extreme cases, AI systems
may experience moral dilemmas with life-or-death consequences, such as in the context of
self-driving cars (Bonnefon et al., 2016; Shariff et al., 2017; Awad et al., 2018), kidney ex-
changes (Dickerson and Sandholm, 2015) and personalized medicine. But in everyday life,
algorithms are making more and more decisions that have a moral component and affect a
large number of people. Consider, for instance, computers that approve credit card trans-
actions (Bhattacharyya et al., 2011; Adewumi and Akinyelu, 2017), AI tools managing time
schedules at the workplace, predictive policing, for which AI forecasts where crimes are
likely to occur (Ensign et al., 2018), or algorithms that advise decision making in courts by
predicting who will re-offend (Brennan et al., 2009; Flores et al., 2016), and that recommend
bail decisions (Kleinberg et al., 2018; Cowgill, 2018). If an artificially intelligent system shall
make decisions on behalf of an individual or a society, it needs to learn the preferences of
that individual or society – this comprises, in particular, social preferences.

AI might exhibit biases or inefficiencies in some of its predictions. If this occurs, the
fault will lie – apart from their programming – mostly in how the algorithms were taught
and trained. Indeed, many AI systems learn from human choices of today to augment
decision making of tomorrow. Biased predictions could thus result from contamination
of the training data, for example, through feedback loops or discriminatory choices that
then substantially affect decision making of the algorithm (Rahwan et al., 2019; Cowgill
and Tucker, Forthcoming).1 As long as our society exhibits biases or unethical behavior,
these biases should be reflected in the data that are collected and the choices self-learning
algorithms make for us and for others, today and in the future. Explicitly identifying and
counteracting those biases, e.g. via affirmative actions regulating the algorithm’s outcome,
is a multilayered challenge and often hard to resolve. Hence, focusing on the transmission
of social preferences through the training of an AI, our first research question is: How does
human behavior that expresses selfish versus prosocial preferences react to the use of today’s
decisions for the training of an AI that will make decisions in the future?

The development of AI raises the question of attribution of responsibility. In his perspec-
tive on AI ethics, Coeckelbergh (2020) describes obstacles when attributing moral responsi-
1For example, algorithmic systems allocating police officers to parts of the city based on crime rate data
may lead to feedback loops. With the police relying on the algorithm without patrolling also in other areas,
they induce the system to allocate officers in the future to the same neighborhoods over and over again.
In the domain of predictive justice, a frequent critique is that using algorithms may reduce the feeling of
responsibility of judges who may be less willing to take the risk of deviating from the recommendation
of the algorithm based on other judges’ decisions. Conformity might then lead to decision errors in some
circumstances.
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bility in human-machine interaction. The guiding question is who is responsible for potential
errors of biased algorithms or for immoral predictions. Though the AI’s actions have moral
consequences, it lacks consciousness, moral reasoning, free will, or emotions. Therefore,
the system cannot be responsible for its decisions. Nevertheless, taking an anthropocentric
ethical position and attributing responsibility to the humans designing or training the AI is
difficult, as well. In his Nicomachean Ethics, Aristotle defines two conditions that must be
satisfied for moral responsibility. First, each action must have its origin in the agent. From
a normative perspective, this implies that having the possibility to decide means respon-
sibility for one’s choices. Second, the agent must be aware of her actions and her actions’
consequences. Especially the latter requirement is difficult to satisfy in the case of humans
training an AI. Human agents might not be fully conscious of the externalities generated
through the seemingly neutral new technology. Certain characteristics specific to AI such as
scalability or self-reinforcement through feedback loops aggravate this concern. Hence, our
second research question is: Is it possible to strengthen individuals’ sense of responsibility
when training algorithms by informing them about the direct impact of their actions on
training and by emphasizing the consequences for the well-being of future generations?

This study contributes to the recent literature on AI and ethics by highlighting the train-
ing aspect of AI and its ability to operate across individuals and generations. Observational
data, when they exist, do not allow us to vary exogenously the externalities generated by the
training of AI. Therefore, we designed an online experiment in which we manipulated the
concern of players for a future generation of individuals. We tested whether an externality
of today’s training of an AI algorithm that would make decisions in the future influenced
today’s individuals’ social preferences and decisions. Importantly, as is also required by the
proposed artificial intelligence regulation by the European Union, participants were fully
aware that their behavior trained an actual machine learning algorithm.2 They also knew
that they trained a sophisticated algorithm that did not simply play a mixed strategy.
Rather, the algorithm aimed to predict their (social) preferences with the greatest possible
accuracy by exploiting features of the decision space and randomization techniques. On the
basis of this prediction, it then made an allocation decision on behalf of the individual.

The Baseline condition of our experiment comprised a set of 30 mini-dictator games in-
spired by Bruhin et al. (2019).3 Participants were paired, and one pair member repeatedly
chose between two options that determined the payoff allocation in the pair. By manipulat-
ing the sum of payoffs, payoff inequality, and whether the dictator was in an advantageous or
2The European Union’s proposed AI regulation, released on April 21, 2021, contains the following paragraph
“Providers shall ensure that AI systems intended to interact with natural persons are designed and developed
in such a way that natural persons are informed that they are interacting with an AI system, unless this is
obvious from the circumstances and the context of use.” (Title IV, Article 52)
3This particular type of game is of course much simpler than the situations faced by doctors, mediators and
judges invoked at the beginning of the article, but it captures the main characteristics of the decision making
process we are looking for: The game is non strategic and it entails an externality on others’ well-being,
making decision makers’ social preferences potentially relevant.
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disadvantageous position with both options, we measured revealed social preferences (i.e.,
selfishness, advantageous and disadvantageous inequity aversion, spite, efficiency concerns).
After participants made their 30 decisions, an intelligent (random forest) algorithm used
these decisions as training data to predict a hypothetical allocation choice of the dictator in
a 31st period, with monetary consequences for the two pair members. Using dictator games
is simpler than using strategic games, as we did not need to account for the individuals’
beliefs on how partners were affected by the perspective of training an algorithm.

The treatments varied: (i) whether the algorithm trained by the dictator’s choices made
an allocation decision only for the current pair of players or also for a future pair of partic-
ipants and how this affected the current pair’s payoff; and (ii) whether it was possible that
the payoffs of the dictator and receiver from the AI’s allocation choice were swapped.

The aim of the first variation was to increase the size of the externality. The Externality
treatment had the same features as the Baseline condition, except that participants were
informed that the dictator’s choices generated training data also for another group that
would participate in the same experiment under the same basic design in the future. We
thereby followed up on Aristotle’s epistemic condition for moral responsibility and aimed at
raising awareness for the consequences of training on the well-being of a future generation.
The Offspring treatment was similar to the Externality treatment, except that we added
a monetary interdependence between the current pair (the “parents”) and the future pair
(the “offspring”). Current generation players received an additional payoff at a later date
that depended on the future generation’s payoff. This interdependence of payoffs is similar
to what was done in previous intergenerational strategic games experiments (Schotter and
Sopher, 2003, 2006, 2007) and can create solidarity across generations.

The aim of the second variation was to test whether, in the spirit of the thought experi-
ment developed by John Rawls, letting participants decide in the so-called original position
behind a “veil of ignorance” regarding the relative position they and others will take in the
AI’s decision would induce fairer allocation choices when they create training data. Previ-
ous studies (e.g. Huang et al., 2019) showed that putting decision makers into the original
positions induces more utilitarian and socially beneficial choices. The Switch treatment
mimicked the Baseline except that the payoffs of the dictator and the receiver, as deter-
mined by AI in period 31, could be switched with 50% probability. Finally, in the Offspring
Switch variation, we combined the intergenerational dependence of payoffs and the uncer-
tainty about the own position. With 50% probability, the additional, future payoffs of the
current generation dictator and receiver were swapped.

Our results show that dictators did not consider the externality of generating training
data for AI when they were simply informed about the existence of an externality for a future
generation of players in the Externality treatment. The same behavior was observed in the
Offspring treatment, that is, when dictators could benefit from their offspring’s payoffs,
provided relative positions across generations were stable and certain.

3
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Behavior changed dramatically when relative positions for the algorithmic prediction
became uncertain, to a degree that cannot be explained by expected payoff maximization.
In Offspring Switch, we found evidence for intergenerational responsibility in terms of par-
ticipants showing higher preferences for fairness when teaching the AI. They took (i) the
efficient option more frequently even if this choice decreased their own immediate payoff,
(ii) the selfish option less frequently even if their own payoff was lower than the one of the
receiver in both options, and they chose (iii) the altruistic option more often if it reduced
inequity and was fairer compared to the alternative. One possible interpretation is that
future uncertainty forces individuals to take more distance with immediate selfish interests
and help them take perspective by envisioning the situation more broadly from the start.

Our findings primarily complement the booming literature on AI, ethics, and algorithmic
biases (see, for example, Anderson and Anderson (2007); Bostrom and Yudkowsky (2014);
Bonnefon et al. (2016); Awad et al. (2018); Lambrecht and Tucker (2019); Rahwan et al.
(2019); Awad et al. (2020)). This literature has started to explore the ethical principles
that should guide AI in the presence of moral dilemmas. It has highlighted the cultural and
individual diversity of moral preferences and the resulting complexity of combining these
preferences to define acceptable guidelines for ethical AI. We contribute to this literature
by considering a setting in which machines need to learn social preferences because the
decisions to be made have an impact on several humans and do not depend on the answer
to a true/false question. By focusing on general social preferences that play a role in many
settings, we try to inform more broadly about situations in which an AI needs to learn such
social preferences from repeated observation of human behavior. The system applies the
learned preferences to generalize decision-making in new situations or in different types of
interactions. We could think of cases where algorithms are used directly to allocate surplus
or risk between parties (for example, algorithms that make recommendations to consumers
or propose insurance plans), but there are many more cases where AI needs to incorporate
social preferences as a parameter in its representation of the world (for example, to deter-
mine the acceptability of a policy in the domain of housing, environment, transportation,
etc.). Hereby, our findings draw attention to the risks of teaching AI systems that are de-
rived from legitimate concerns about algorithms imitating human behavior. Most humans
are not ideal models of ethical agents, although they might have been taught egalitarian
principles. In terms of policy implications, our experiment thus suggests a need for designing
machines as agents with explicit ethical rules or guidelines, instead of simply aggregating
the individual data of human decision makers. We suggest that this need is particularly
vivid when machines operate in less mobile societies in which future status is certain and
where social hierarchies are characterized by high inertia.

Further, our study adds to the literature that has used laboratory experiments to inves-
tigate human machine interactions. We refer to Chugunova and Sele (2020) for a compre-
hensive overview of this topic. The experimental research thus far has concentrated mainly
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on settings where human subjects play against computers in strategic situations. Starting
with Houser and Kurzban (2002), several papers have aimed at muting social preferences
by replacing human players with computers in standard economic games, such as the pub-
lic goods game.4 In contrast to our experimental design, these studies either implemented
predefined decision rules for the computer players or left participants uninformed of their
impact on machine behavior. Closer to our approach of training that allows machines to
learn from observed behavior are the studies in the context of auctions. Van den Bos et al.
(2008) and Ivanov et al. (2010) have allowed computers to mimic the bidding strategy of
individuals to study the winner’s curse, and Teubner et al. (2015) used this method to inves-
tigate how playing against a computer affects individuals’ bidding behavior and emotions.
Hence, similar to the design of our study, the players’ decisions determined machine behav-
ior that ultimately affected their payoff. Finally, Corgnet et al. (2019) showed that social
incentives are reduced when replacing human team members with robots. In general, one
novelty of our paper is to introduce the AI not as an opponent in a strategic situation (in
contrast also to Houy et al., 2020) but as a third-party observer that evaluates and learns
from others’ behavior and uses it for out-of-sample prediction and decision making.

Finally, operating through the data that underlies self-learning and intelligent algo-
rithms, the paper broadly relates to studies on the intergenerational transmission of prefer-
ences and economic outcomes (Bisin and Verdier, 2001; Sacerdote, 2002; Björklund et al.,
2006). As in Schotter and Sopher (2003, 2006, 2007) and Chaudhuri et al. (2006), we used
a sequence of nonoverlapping generations of individuals playing a stage game for a finite
number of periods. Additionally, we considered intergenerational income mobility as an ad-
ditional factor influencing preferences and decision making (Bénabou and Ok, 2001; Alesina
et al., 2018). By introducing uncertainty on future status in some treatments, our study
also relates to the experimental literature on role uncertainty (e.g., Engelmann and Strobel,
2004; Iriberri and Rey-Biel, 2011) and on the impact of playing both roles in games (e.g.,
Gueth et al., 1982; Andreoni and Miller, 2002; Charness and Rabin, 2002; Burks et al.,
2003). Although some studies showed that in such settings behavior is less selfish and more
efficiency-oriented than when roles are certain and fixed (Iriberri and Rey-Biel, 2011), others
have found that trust and reciprocity are reduced but only in the absence of uncertainty
(Burks et al., 2003). Our results are in line with those in the literature and suggest that
role uncertainty when generating training data for an AI can induce dictators to make less
selfish decisions. When there was payoff interdependence with the future generation and
dictators’ future was more uncertain, they put higher weight on the receivers’ payoffs.

The remainder of this paper is organized as follows. The next section describes our
experimental design. We formulate behavioral predictions in section 3. Section 4 presents
the experimental results. Section 5 offers concluding remarks.
4This subtraction method was further used by Ferraro et al. (2003) and Yamakawa et al. (2016) to disentangle
motives for individuals’ contributions to a public good, and by Benndorf et al. (2020) in the context of
ultimatum bargaining games.
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2 Design and Procedures

In this section, we first present the design of the experiment and our treatments.5 Next, we
describe our recruitment methods and experimental procedures.

2.1 Design

The experiment consisted of three parts. In part 1, participants performed real effort tasks.
Part 2 comprised two stages. In the first stage, participants played several rounds of a mini-
dictator game. The second stage comprised the prediction of a machine learning algorithm,
based on the observed participants’ behavior in the role of the dictator in stage 1, and its
implementation. In the last part, we elicited sociodemographics and other information.

Part 1 In part 1, each participant had to complete five tedious real effort tasks that
comprised finding a sequence of binary numbers within a matrix of zeros and ones (Figure
B.10 in Appendix B). Participants were informed upfront that completing these tasks would
earn them 1200 points to be used in the second part of the experiment. Our objective was
to generate a feeling of ownership without introducing any earnings inequality in this part.
On average, participants spent approximately 90 seconds per task.

Part 2 The first stage of part 2 comprised 30 periods of a mini-dictator game.6 Each
participant was anonymously paired with another participant and matching was fixed for
the whole part. One of the two pair members was randomly assigned the role of the dictator
(“participant A” in the instructions); the other pair member played the role of the receiver
(“participant B”). Roles remained fixed throughout the part. The dictator’s task in each
period was to select one of two options on how to split points between herself and the receiver
she was matched to. All participants were informed upfront that these decisions would later
serve as the only source of training data for a machine learning algorithm that would make
a prediction and a decision in the second stage of this part and that this decision of the
algorithm would affect their earnings. They were also informed that points earned in this
part were convertible into Euros at the rate 100 points = 1 Euro.

In each period, the dictator could choose one of two possible payoff allocations, X =

(Π1
X ,Π

2
X) or Y = (Π1

Y ,Π
2
Y ), for which the sum of all four payoffs was kept constant in each

period. The dictator’s amount was always weakly higher with option X (the “selfish option”)
than with option Y. Because both participants had to complete the same set of tasks in
the first part to generate the endowments, opting for the selfish option X when the receiver
5The general features of our game are similar as in our companion paper (Klockmann et al., 2021) but
treatments differ.
6See Appendix B for an English translation of the instructions shown to the participants and of the control
questionnaire.
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would receive strictly higher payoff with option Y would indicate that the dictator takes
advantage of her exogenously assigned power of decision.

Across the 30 binary dictator games, we systematically varied the payoffs in the two
options to manipulate the inequality between pair members, the sum of payoffs in each
option, and whether the dictator was in an advantageous or disadvantageous position relative
to the receiver with both options. The calibration of payoffs was inspired by Bruhin et al.
(2019). As in Bruhin et al. (2019), Figure 1 illustrates the payoff space and represents each
game by a solid line that connects option X and option Y. Table C.1 in Appendix C lists
all pairs of options.

We categorize the decisions along two dimensions. First, there were games in which
option X Pareto-dominated option Y (Π1

X > Π1
Y and Π2

X > Π2
Y ), games in which the

receiver or the dictator was monetarily indifferent between both choices (Π1
X = Π1

Y or
Π2
X = Π2

Y ), and games in which the dictator receives strictly higher payoff with option X
while the receiver receives strictly higher payoff with option Y (Π1

X > Π1
Y and Π2

Y > Π2
X).

Second, either the receiver or the dictator earns more money than the other player in both
alternatives (Π1

X > Π2
X and Π1

Y > Π2
Y , or Π2

X > Π1
X and Π2

Y > Π1
Y ), or the dictator’s

decision determined whose payoff was higher (Π1
X > Π2

X and Π2
Y > Π1

Y , or Π2
X > Π1

X

and Π1
Y > Π2

Y ). The aim of these variations was to identify the individual’s distributional
preferences. The order of the 30 decisions was random but was fixed for all the participants.

At the end of this stage, one of the 30 decisions was picked at random. This step
determined the payoffs of both the dictator and receiver in this stage.

In stage 2, there was another 31st pair of options X and Y. But instead of the dictator
choosing one of the two options, there was a random forest algorithm used as a standard su-
pervised classification method making the choice (see Appendix A for details). Participants
received detailed information on the concept of machine learning and classification in an
information box included in the instructions (see Appendix B). Notably, the exact function-
ality of the algorithm is not crucial for the research question and, as kept constant across
conditions, does not affect the treatment differences. The focus is the training of AI as an
a priori neutral technology with behavioral data. As explained to the participants before
they made their first decision in stage 1, the algorithm used the dictator’s 30 decisions as
training data to make an out-of-sample prediction of how this dictator would have decided
in period 31 when facing a new game.7 The machine learning tool did not build models or
estimate parameters; it simply predicted from patterns in the data. We used the payoffs and
the sum and difference of points allocated to the players in the chosen and rejected options
as features for classification. For the prediction of the AI, one of the six games represented
by a dashed line in Figure 1 was chosen at random. Table C.2 in Appendix C lists all six
7Note that in many settings, algorithms are trained based on the behavior of many individuals. For our
purpose of focusing on intergenerational responsibility, we let the algorithm learn from one individual only.
We extensively study the question how behavior changes when a multiplicity of individuals provide training
data as compared to a single one in our companion paper Klockmann et al. (2021).
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Figure 1: Dictator Games

Notes: Each circle represents 12 binary dictator games. Each game is represented by a line that connects
option X (in blue) and option Y (in red). The dotted lines correspond to games that were not presented to
the participants. Rather, one of them was picked at random for the AI’s prediction and decision in stage 2.
The slope of each line represents the cost for the dictator to increase the receiver’s payoff. In the top-left
circle, both options in each game represent disadvantageous inequality for the dictator. In the bottom-right
circle, both options in each game represent advantageous inequality for the dictator. In the middle circle,
the relative position depends on the chosen option.

possible out-of-sample decisions of the AI.

The prediction made by the AI in period 31 was implemented for the payment of the
pair members. Therefore, this decision weighted as much as the 30 prior decisions in the
determination of the participants’ earnings in this part. This design choice was made to
motivate the participants to pay attention to each of their decisions because not only each
one could directly count for payment in stage 1 but was also used with certainty as training
material for the AI, which affected payoffs in stage 2. If we had paid instead each of the 30
periods, the weight of the AI decision in period 31 would have been too small to identify
the training effect, and a wealth effect through the length of training could have biased this
identification.

Part 3 In the last part, we elicited sociodemographic information (gender, age, field and
length of study, average weekly spending, and school graduation grade – Abitur). We further
asked about familiarity with AI and machine learning, confidence in these technologies,
satisfaction with the prediction made by the algorithm in period 31, and how accurate this
prediction of the AI reflected the dictator’s preferences. In addition, one question assessed
the participants’ understanding of the functionality of the random forest algorithm.

8
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2.2 Treatments

As summarized in Table 1, the experiment includes a baseline condition and four between-
subjects treatments.

Table 1: Overview of the Treatments

Treatments Externality Payoff Possible
on Future Dependency Role Switch

Baseline No No No
Externality Yes No No
Offspring Yes Yes No
Offspring Switch Yes Yes Yes
Switch No No Yes

Our Baseline condition follows the aforementioned experimental design. The random
forest algorithm made an allocation that was paid out exclusively to the current pair. There
was no externality for any other player.

In the Externality treatment, participants were told that the dictator’s choices generated
training data not only for the AI’s allocation decision in their group but also for another
group that would participate in the same experiment with a similar basic design in the
future, as described in sub-section 2.1.8 Except for the mere information on this externality
via the AI, there was no impact on payoffs in the current pair. The monetary incentives of
the dictator therefore did not change between the Baseline and the Externality treatment.

The Offspring treatment added one payoff dimension to the Externality treatment. In
this variation, the algorithm again learned from the dictator’s choices to make a prediction
not only for the dictator in the current pair but also for another dictator in a future pair.
By contrast with the Externality treatment, the earnings of the first pair members were
affected by the implementation of the prediction made by the AI for the future pair. The
first generation received an additional payoff equal to half of the payoff allocated by the AI in
the 31st period in the future generation. The dictator in the first generation received half of
the payoff of the dictator in the future generation, and the receiver received half of the payoff
of the receiver in the future generation. The objective of this monetary interdependence
between the first pair (the “parents”) and the future pair (the “offspring”) was to make the
externality through AI training more salient. Thereby, dictators were expected to internalize
the monetary externality they exerted on the future through their generated training data.
This payoff was added to the earnings made in one of the first 30 periods and in the 31st
period, but was wired to participants at a later point in time. Compared to the Externality
8Precisely, participants were informed that in period 31 in their successor pair, the algorithm would decide
based on the 30 decisions of the dictator in their pair and on the 30 decisions of the future dictator in their
successor pair. The training data generated by their pair and by their successor pair were given the same
weight in the prediction of the algorithm. The data of the participants in future pairs are not used in the
current paper but in our companion paper (Klockmann et al., 2021).
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treatment, the Offspring treatment preserves the impact on the future generation, but alters
the monetary consequence of this impact for the parent generation.

The Offspring Switch treatment combined the externality of the decisions of the dictators
from the current generation on the future generation’s payoffs through the AI training with
the risk of a switch in the payoff matching with the future generation. With 50% chance,
payoff matching for the future, additional payoff was switched: If this occurred, dictators
(receivers, respectively) in the current generation received half of the payoff of the receiver
(dictator, respectively) from the AI’s allocation in the future generation. Otherwise, payoff
matching was not affected. The objective of this treatment was to increase dictators’ aware-
ness of the monetary consequences of their decisions for the receiver through AI training.
Participants were not informed on whether the switch occurred or not during the session,
but they could infer it when receiving their additional payment.

Finally, we used the Switch treatment as a control treatment aiming to isolate the pure
effect of the possibility of swapped payoffs between the dictator and the receiver for the AI’s
allocation decision in period 31. This treatment mimicked the Baseline condition, except for
the payoff stemming from the AI’s prediction. With 50% probability, payoffs were switched
between the dictator and the receiver: If this occurred, the dictator would receive the payoff
assigned by the AI algorithm to the receiver in period 31, and the receiver would receive
the payoff assigned to the dictator in period 31. Thus, after training the algorithm, the
dictators had a self-interest to weigh more the receiver’s payoff in their evaluation of the
options. Nevertheless, in both treatments Switch and Offspring Switch with possible payoff
swapping, the largest share of the dictator’s total expected monetary outcome stems from
the payoff initially allocated to the dictator (75% in Switch and 90% in Offspring Switch).

2.3 Procedures

Due to the 2020 coronavirus pandemic and the enforced social distancing rules to prevent its
spread, we could not invite students to the laboratory to participate in an onsite experiment.
Alternatively, we implemented a “virtual” laboratory experiment in the framework of the
Frankfurt Laboratory for Experimental Economic Research (FLEX). Using ORSEE software
(Greiner, 2015), we recruited students from Goethe University Frankfurt who provided their
consent for participation in online experiments. We informed them about the new format
and asked them to register for experimental sessions in the same manner used for a usual
lab experiment.9 Volunteers were informed that the experiment would be embedded in a
virtual Zoom meeting, in which they would communicate with the experimenters, and that
they would receive individual log-in information by email in advance.

To guarantee anonymity, we assigned each registered participant a unique ID in the
9Less than 1% of all students registered in the participants pool of the Frankfurt Laboratory for Experimental
Economic Research opted out of online experiments. Therefore, there is no reason to fear a selection bias
due to the novel format of the experiment.
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form of a random alphanumeric string. The second purpose of these IDs was to ensure that
only participants who registered for a given session participated in the meeting, and prevent
individuals from participating multiple times. The third purpose was to identify participants
from the Offspring and Offspring Switch treatments so that they could be assigned their
payoff from the future generation. We programmed the experiment in oTree (Chen et al.,
2016) and hosted it on a Heroku server.10

Once participants logged in, we assessed whether they had registered for the respective
session. Participants were muted, and their video was disabled. After a short welcome from
the experimenters, the oTree link to the experiment was posted to everyone on the chat
function. The experiment started as soon as everyone was present in the oTree room. If
there was an odd number of participants, one person was selected at random, who then
received 4 Euros for arriving on time and who was dismissed. Participants could use the
chat function to ask questions to the experimenters. To prevent the dictators from simply
clicking through the 30 decisions to finish as soon as possible, we forced them to wait for 3
seconds after each choice of option before they could validate their decision.

Based on statistical power analyses with a significance level of 5%, an intended power
of 80%, and a medium-size effect of about 7pp, we determined a target sample size of 30
dictators per treatment. For the underlying distribution of decisions, we chose a binomial
distribution where we varied the probability of selecting the selfish option X.11 A total of 322
participants (161 dictators or independent observations, excluding the offspring subjects)
were actually recruited between July and August 2020. Thirty-four dictators participated
in the Baseline, 34 in the Externality treatment, 30 in the Offspring treatment, 31 in the
Offspring Switch treatment, and 32 in the Switch treatment. There were no dropouts in any
treatment, and we did not have to exclude any observation for technical or any other reasons.
The participants’ average age was 24.6 years, 52.5% were female, their predominant field of
study was economics, and they were on average in their 7th to 8th semester. Table C.3 in
Appendix C summarizes the main sociodemographic variables in each treatment. The only
significant differences are that participants in the Externality treatment were on average 1.9
years older and there were fewer female participants than in the Baseline condition. If we
only consider the dictators, there are no significant differences across treatments.

On average, participants earned 13.17 Euro (S.D. 3.21) and received their payoff by using
PayPal. Participants in the Offspring and Offspring Switch treatments received a second
payoff through PayPal once their successor pair participated in the experiment. Each session
lasted approximately 45 minutes.
10This allowed us to benefit from a large flexibility in terms of monitoring the participants’ progress, and it
provided participants the possibility to login again and continue playing in the unlikely event of a discon-
nection.
11We preregistered the project, the sample size, and our hypotheses on AsPredicted (#44011) in July 2020
before starting the data collection. Before, we ran two pilot sessions in June 2020 to check for technical
functionality and calibrated the decision space of the dictators.
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3 Behavioral Predictions

To investigate how treatment manipulations influenced how individuals trained the AI al-
gorithm, we developed behavioral conjectures based on the comparisons of the dictators’
revealed distributional preferences across treatments. With standard preferences and indi-
viduals exclusively motivated by the maximization of their payoffs, we expected no differ-
ence across treatments Baseline, Externality, and Offspring. Since the expected payoff of
dictators in the Switch and Offspring Switch partially depended on the monetary amount
allocated to the receiver, we expected that a fully rational individual would choose option
Y in some cases (see below for details).

To identify the distributional preferences revealed by the dictator’s decisions, we consid-
ered the frequency of choosing a certain option and estimated parameters of social prefer-
ences. We refer to Bruhin et al. (2019), who built on Fehr and Schmidt (1999) and Charness
and Rabin (2002), to set up a two-player model of social preferences that was fitted to the
data, using maximum likelihood. Denoting the payoffs of the dictator by πD and that of
the receiver by πR, the dictator’s utility function is given by

uD(πD, πR) = (1− αs− βr)πD + (αs+ βr)πR. (1)

Hereby, s = 1{πR−πD > 0} and r = 1{πD−πR > 0} are indicators of disadvantageous and
advantageous inequality for the dictator, respectively. Following Bruhin et al. (2019), the
sign of the parameters α and β describe the preference type of the dictator. α < 0 reveals
“behindness averse” decisions motivated by envy of the receiver’s payoff whenever receiving
a lower amount. Similarly, β > 0 reveals “aheadness averse” decisions motivated by a
willingness to increase the other’s payoff whenever receiving a larger amount.12 Depending
on the absolute value of α and β, the choices reveal more envious or more empathetic
preferences. Furthermore, the parameters may have the same sign. First, if α, β < 0,
choices are spiteful, independent of whether the receiver earns more or less than the dictator.
Second, if α = β = 0, choices are purely selfish and the dictator does not put any weight
on the other’s payoff. Finally, if α, β > 0, choices are altruistic because the dictator always
derives utility from the receiver receiving a payoff.

When estimating the social preference parameters of a representative dictator, we closely
adhered to above described method by Bruhin et al. (2019) for the following reasons. First,
though dictators in the Offspring treatment can benefit repeatedly from selfish training of the
algorithm, we need not incorporate this in the utility functions. The estimated parameters
α and β only describe the relative weighting of payoffs rather than absolute weights. The
12For the sake of simplicity, we assume that the parameters of the model can capture the same preferences
when the dictator is oneself and when the dictator is another individual (i.e., when one’s decisions train an
algorithm that will decide for another couple of individuals). We simply allow the values of these parameters
to vary cross conditions.
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additional future payoff in the Offspring treatment proportionately increases stakes for both
dictator and receiver and does not affect our parameter estimation.13 Second, we do not
explicitly model the externality of training data on the future that dictators create in the
Externality, Offspring, and Offspring Switch treatments and thus do not directly incorporate
the payoffs of the future pair(s) in the utility functions. If we just added these future payoffs
of the other dictator and receiver, we would implicitly assume that the dictator assigns equal
weights to her own payoff and the payoff of the other (future) dictator, which is most likely
not true. Our aim is to measure how changes in the externality of AI training and its
consequences affect revealed social preferences as defined in the dictator’s utility function
in (1). Finally, the utility function in (1) can already capture the possibility of switched
payoffs between dictator and receiver in the Offspring Switch and Switch treatments. The
dictator’s expected payoff in these treatments is a weighted sum of πD and πR rather than
only πD. This can directly be represented by positive weights α and β beyond any social
preferences. We refer to this in more detail in what follows.

We now formulate behavioral conjectures regarding the dictators’ choices and the dif-
ferences in the parameters capturing social preferences across treatments. In the first set of
treatments (Baseline, Externality, and Offspring), the experimental design manipulated the
relationship between dictators and another pair of participants in a future generation, and
highlighted the transfer of data and choice preferences via the AI’s training.

We first test whether an externality of today’s behavior on future predictions and payoffs
through the AI affected today’s decisions, by comparing the Baseline and the Externality
treatment. The salience of such an externality could influence its internalization by the
dictators. For example, if an individual was inequity averse, she might be even more willing
to reduce inequality in a future group that would be affected by her training of the algorithm.
We thus conjectured that the information on an externality of AI training for the future,
if anything, would make selfish choices that increase the dictator’s payoff at the expense of
the receiver’s payoff less likely.

Conjecture 1. Compared with the Baseline, dictators in the Externality treatment choose
the selfish option weakly less frequently in decisions in which the receiver would be monetarily
better off with the alternative. The estimated social preferences parameters, α and β, are
weakly larger in the Externality treatment than in the Baseline.
13In technical terms, we followed the econometric strategy by Bruhin et al. (2019) that builds on a
random utility model. When choosing an allocation X = (πX

D , π
X
R ), the dictator’ utility is given by

U(πX
D , π

X
R ;α, β, σ) = uD(πX

D , π
X
R ;α, β) + εX , where uD is the deterministic utility from (1) and εX is a

random component following a type 1 extreme value distribution with scale parameter 1/σ. The likelihood
of choosing allocation X over Y then reads (see Bruhin et al., 2019)

Pr(X|πX
D , π

X
R , π

Y
D, π

Y
R ;α, β, σ) =

exp(σuD(πX
D , π

X
R ;α, β))

exp(σuD(πX
D , π

X
R ;α, β)) + exp(σuD(πY

D, π
Y
R ;α, β))

.

The additional future payoff in the Offspring treatment would simply correspond to multiplying the objective
function – i.e., the deterministic utility uD – with a positive factor. This only inversely proportionally
changes σ, but leaves the estimated values of α and β unchanged.
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We expected that introducing a monetary dependence between generations would induce
stronger self-interest in the dictators in the Offspring treatment than in the Externality
treatment. This is because the dictators could now benefit twice from the AI’s predictions
favoring them since a second payment was based on how many points the algorithm allocated
to the dictator in the offspring pair. Therefore, dictators might be willing to opt more
frequently for the selfish option in the Offspring than in the Externality treatment.

Conjecture 2. Compared with the Externality treatment, dictators in the Offspring treat-
ment choose the selfish option more frequently in decisions in which the receiver would be
monetarily better off with the alternative. The estimated social preferences parameters, α
and β, are smaller in the Offspring than in the Externality treatment.

In the second set of treatments (Switch and Offspring Switch), we introduced the possi-
bility of switching payoffs in period 31 or in the future generation between the dictator and
the receiver on the training data created by the dictator. In the Switch treatment, the dicta-
tor in periods 1-30 may receive in period 31 the receiver’s payoff based on the AI prediction.
Her expected payoff then directly depends on the amount allocated to the receiver. Assum-
ing that in each round the dictator takes only the current set of options into account, her
expected payoff would amount to πD + 1

2(πD + πR). An individual maximizing this expres-
sion would choose option X in 70% of all rounds (all except games 1,2,10,11,12,20,21,22,30 in
Table C.1). Apart from that, her estimated social preference parameters would, by design,
raise to α = β = 0.25 when normalizing the expected payoff to get the relative weights as
defined in (1). Thus, this treatment is expected to raise dictators’ weighting of self-interest
in the receiver’s monetary outcome from the very beginning of the game.

Conjecture 3. Compared with the Baseline, dictators in the Switch treatment choose the
selfish option less frequently in decisions in which the receiver would be monetarily better off
with the alternative. The estimated social preferences parameters, α and β, become closer
to 0.5, as dictators weight their payoff and that of the receiver more equally in the Switch
treatment than in the Baseline condition.

Finally, the Offspring Switch treatment combines the externality of AI on a future gener-
ation with the possible switching of payoffs between the dictator and the receiver. Thus, this
treatment can be directly compared with both the Switch and Offspring treatments. With-
out discounting the future, the dictator’s expected payoff now amounts to 2πD+ 1

4(πD+πR).
The relative weight a purely selfish individual puts on the receiver’s payoff is lower than in
the Switch treatment and amount to α = β = 0.1 when normalizing the expected payoff.
This individual would choose option X in 80% of all rounds (all except games 1,10,11,20,21,30
in Table C.1). Still, because the Offspring Switch variation simultaneously activates both
mechanisms, self-interest in the receiver’s payoff and the externality through training, we
expect dictators to act more egalitarian than in the other two treatments.
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Conjecture 4. Compared with the Switch and Offspring treatments, dictators in the Off-
spring Switch treatment choose the selfish option less frequently in decisions in which the
receiver would be better off with the alternative. The estimated social preferences parameters,
α and β, are larger in Offspring Switch compared with both other treatments.

4 Results

To test our four conjectures, we primarily considered two measures that proxy moral be-
havior. One measure directly refers to the proportion of selfish choices of option X by the
dictator in the different decision scenarios. The other measure is given by the estimated
social preferences parameters, α and β, of a representative agent, following Bruhin et al.
(2019).14 Tables 2 and 3 report pairwise tests that compare the differences in the two afore-
mentioned measures of preferences, as revealed by the actual choices, across treatments.15

In what follows, we refer to the set of decisions characterized by conflicting interests, that
is, the decisions in which the dictator gets a strictly higher payoff with option X and the
receiver gets a strictly higher payoff with option Y, as the “restricted sample”. For these
decisions, choosing more frequently the selfish option can be considered a less moral action
(because both players produced a similar effort in part 1). We report all games in appendix
Table C.1 and mark those belonging to the restricted sample with an asterisk.

Surprisingly, Table 2 reveals no significant differences in the share of dictators’ choices
of the selfish option X between the Baseline, the Externality, and the Offspring treatments
(t tests, p > 0.39 for all pairwise comparisons), in line with the prediction of a model with
standard economic preferences. The share of selfish choices was relatively high in each of
these treatments (70.29% in the Baseline, 71.08% in the Externality treatment, and 73% in
the Offspring treatment). Similarly, in Table 3, the estimated social preferences parameters
for the representative agent did not differ significantly across these three treatments (p >
0.20 in each pairwise comparison). Thus, being informed that training the AI algorithm
would affect third parties’ earnings in the Externality treatment did not affect the dictators’
choices. Dictators did not care about the externality of their behavior in terms of income
inequality in the whole experimental group. Comparing the Baseline and the Offspring
treatments reveals that dictators neither altered their behavior when they could additionally
benefit at a future point in time from teaching the AI with selfish decisions.
14In addition, Figures D.1 and D.2 in Appendix D display the distribution of the shares of selfish option X
chosen by the dictators, by treatment, in the full sample and the restricted sample, respectively.
15Unless specified otherwise, all the non-parametric statistics reported in this paper were two-sided, and
each individual provided one independent observation. We did not report regression analyses comparing
treatments because there was no control group to compare all the treatments with. The only regression
analysis that was conducted both at the aggregate level and for each treatment separately aimed at checking
for the influence of individual sociodemographic characteristics on the probability to choose the selfish option.
The results are reported in Table C.7 in Appendix C. At the aggregate level, only the variable “studying in
economics” had a significant effect on this probability. Most variables have no effect in any regression.
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Table 2: Overview of the Frequency of Choices of the Selfish Option X across Treatments

Treatments Nb Obs. Option X p–values Option X p–values
Restricted Sample

Baseline 34 70.29%
(0.029)

〉
0 .846

66.01%
(0.046)

〉
0 .713

Externality 34 71.08%
(0.028)

〉
0 .592

68.30%
(0.042)

〉
0 .391

Offspring 30 73.00%
(0.021)

〉
0 .000

73.00%
(0.033)

〉
0 .000

Offspring Switch 31 58.71%
(0.018)

〉
0 .081

48.39%
(0.030)

〉
0 .039

Switch 32 63.85%
(0.023)

〉
0 .087

58.16%
(0.035)

〉
0 .182

Baseline 34 70.29%
(0.029)

66.01%
(0.046)

Notes: The table reports the relative frequency of the choice of the selfish option X in each treatment, with
standard errors of means in parentheses. Each dictator in periods 1-30 gives one independent observation.
Column “Option X [Restricted sample]” includes only the decisions in games characterized by conflicting
interests, that is, those in which the dictator obtains a strictly higher payoff with option X and the receiver
gets a strictly higher payoff with option Y. p-values refer to two-sided t-tests for differences in means. The
Baseline appears twice to report comparisons with both Externality and Switch treatments.

Table 3: Estimated Parameters of Social Preferences across Treatments

Treatments Nb Obs. Dictators α p–values β p–values

Baseline 1020 34 0.082∗

(0.048)
〉

0 .863

0.395∗∗∗

(0.051)
〉

0 .441
Externality 1020 34 0.070

(0.054)
〉

0 .200

0.341∗∗∗

(0.047)
〉

0 .974
Offspring 900 30 −0.041

(0.068)
〉

0 .000

0.343∗∗∗

(0.051)
〉

0 .007
Offspring Switch 930 31 0.246∗∗∗

(0.034)
〉

0 .030

0.506∗∗∗

(0.033)
〉

0 .801
Switch 960 32 0.123∗∗∗

(0.045)
〉

0 .536

0.492∗∗∗

(0.046)
〉

0 .158
Baseline 1020 34 0.082∗

(0.048)
0.395∗∗∗

(0.051)

Notes: The table reports the estimates of the α and β parameters of advantageous and disadvantageous
inequality aversion, respectively, for a representative agent in the treatments, with robust standard errors
clustered at the individual level in parentheses. One observation corresponds to one dictator in one period.
The number of observations shows how many data were used to estimate inequity aversion for a representative
agent in each treatment. p-values refer to z-tests for differences in estimates. The Baseline appears twice to
report comparisons with both Externality and Switch treatments. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

This analysis rejects both Conjectures 1 and 2, and leads to Result 1.

Result 1. Being informed of the externality of training data for an AI did not affect the
selfishness of decisions when the future status was certain (i.e., no offspring existing or
the offspring holding the same relative position). Neither the share of the selfish option
nor the estimated social preference parameters differed significantly between the Baseline,
Externality, and Offspring treatments.

In line with Conjecture 3 but without reaching a standard level of significance (t test,
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p = 0.087), we found a lower fraction of selfish choices in the Switch treatment than in the
Baseline condition, considering the full sample (63.85% vs. 70.29%). The percentage was
close to the share of 70% option X an expected payoff maximizer would choose as noted
in section 3. The effect mainly stemmed from the decisions in which choosing option Y
would reduce the absolute distance in payoffs between the dictator and the receiver (see
Table C.6 in Appendix C).16 In this subsample, dictators chose the selfish option – which
in this case also raised inequality – less often when there was the uncertainty of switching
payoffs (48.13% vs. 57.65% in the corresponding Baseline condition), but this remained
only marginally significant (t test, p = 0.086). Participants tended to hedge the risk of
a future lower payoff by opting more frequently for the alternative that offered a lower
inequality in the training data. The estimates indicate that the representative dictator in
the Switch treatment values the payoff of the receiver positively (α > 0 and β > 0 with
p < 0.01) regardless of whether the other player is monetarily better or worse off. This raise
in the relative weighting of the receiver’s payoff goes in line with what changed monetary
incentives would predict, though less pronounced. Finally, in the cases in which they were in
an advantageous position, dictators weighted their and the receiver’s payoffs almost equally
(β = 0.492, see Table 3).

This analysis (mildly) supports Conjecture 3 and leads to Result 2.

Result 2. When dictators were aware that they could receive the payoff of the receiver when
the AI’s prediction determined the allocation of payoffs (Switch treatment), there is some
(weak) evidence that they tended to reduce payoffs’ inequality when training the AI, compared
with the Baseline condition. This goes in line with changed monetary incentives, though less
pronounced.

The most striking and stronger effects emerged when comparing the Offspring Switch
treatment with the Offspring and with the Switch treatments. Table 2 shows that when
dictators could earn a fraction of the receiver’s payoff in the future generation, they chose
highly significantly less often the selfish option compared with the participants who received
the dictator’s payoff with certainty at both points in time (58.71% in the full sample and
48.39% in the restricted sample; t tests, p < 0.001 in both samples). In line with this
effect, the estimated parameters α and β for the representative agent were both highly
significantly higher in the Offspring Switch treatment than in the Offspring treatment (α:
0.246 vs. -0.041; z-test, p = 0.0002. β: 0.506 vs. 0.343; z-test, p = 0.007). As in the Switch
treatment, the representative dictator in the Offspring Switch treatment values the payoff
of the receiver positively (α > 0 and β > 0 with p < 0.01), independent of advantageous
or disadvantageous inequity. Note that the increase in the weight the dictator puts on the
receiver’s payoff is about twice as large in the case of disadvantageous inequity compared
to advantageous inequity (∆α = 0.287 vs. ∆β = 0.163). The strongest behavioral change
16This corresponds to games 1 to 7, 10, 28 and 29 in Table C.1 in Appendix C.
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hence occurs in those decisions where the dictator is monetarily worse off than the receiver
and it is highly prosocial to positively weight the payoff of the other in one’s decision. Still,
both parameters rise by more than 0.1, i.e., by more than what the change in monetary
incentives would predict (see section 3). Thus, when holding the intergenerational impact of
AI training constant and introducing the possibility of swapped payoffs, dictators selected
overwhelmingly more frequently the option favoring the receiver. Our findings suggest that
individuals only take the externality through AI training into account when we exogenously
put them in the original position and let them decide behind a “veil of ignorance” regarding
their future position, in the spirit of John Rawls.

The observed treatment difference replicated independent of the advantageousness or
disadvantageousness of the dictator’s position (Table C.4 in Appendix C), and of which
alternative exhibited lower inequality (see Table C.6). The treatment effect vanished only
when considering those decisions in which option X increased the sum of payoffs, namely,
when they were more efficient.17 If both motives, increasing the immediate payoff and
raising efficiency, favored option X, dictators chose this alternative in over 90% of cases in
both treatments (Table C.5).

This analysis supports Conjecture 4 for the comparison between the Offspring Switch
and Offspring treatments, and is summarized in Result 3.

Result 3. When future status became uncertain and dictators could be harmed by the ex-
ternality of their training data, intergenerational responsibility arose and the selfishness of
decisions decreased. The percentage of choices of option X was significantly lower and the
estimated social preference parameters significantly increased in the Offspring Switch treat-
ment compared with the Offspring treatment. Changes in monetary incentives alone cannot
explain the change in revealed social preferences.

Finally, we compared the Offspring Switch and the Switch treatments. This comparison
maintains the possibility of payoff switching but varies the existence of an externality of
the AI training data on a future generation. If payoff switching occurs, the consequences
for the dictator are relatively less important in the Offspring Switch treatment than in the
Switch treatment because it affects only the additional payment from the future generation
(equal to 50% of the future generation’s payoff). This comparison showed similar but
weaker effects as in Result 3. Participants in the former treatment chose the selfish option
X less often (full sample: 58.71% vs. 63.85%; t test, p = 0.081; restricted sample: 48.39%
vs. 58.16%; p = 0.039). Recall from section 3 that a purely selfish individual would
choose option X more often in Offspring Switch compared to Switch as the receiver’s payoff
made up a smaller share of the dictator’s total expected outcome, supporting a greater
role of social preferences. In both treatments with uncertainty regarding future outcomes,
dictators assign positive weight to the receiver’s payoff in all situations. The behindness-
17This corresponds to games 6 to 9, 16 to 19, and 26 to 29 in Table C.1 in Appendix C.
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aversion parameter, α, was significantly higher in the Offspring Switch than in the Switch
treatment (0.246 vs. 0.123; z-test, p = 0.030). The aheadness-aversion parameter, β, did not
differ between these two treatments and remained at approximately 0.5 (precisely, 0.506 vs.
0.492; p = 0.80). The changes in behavior can be observed only in case of disadvantageous
inequity, when assigning positive weight to the receiver’s payoff is the strongest sign of
prosocial preferences. From the perspective of an expected payoff maximizer, however, both
parameters would, by design, go down by 0.15 in Offspring Switch compared to Switch (see
section 3), which is not what we observe. We detect an increase in prosociality despite
the relatively small size of the potential monetary loss when roles are switched. Returning
to John Rawls, one could interpret that only an effect on an independent future pair of
players makes participants adopt the original position behind a veil of ignorance. Then, the
intergenerational transmission of training data becomes particularly salient. In fact, Rawls’
thought experiment originally intended to improve decisions on a societal level also affecting
others rather than just oneself.

In line with this finding, the likelihood of selecting the selfish option differed significantly
when considering the subset of decisions in which the dictator was always in a disadvantaged
position compared with the receiver (67.4% vs. 75%; p = 0.045),18 but not in the cases in
which the dictator was in an advantageous position (46.77% vs. 50%; p = 0.416) or in a
mixed position (61.94% vs. 66.56%; p = 0.227; Table C.4 in Appendix C). In the scenarios in
which the dictator was in a disadvantaged position, the intergenerational impact of training
made individuals put relatively more weight on the payoff of others. Finally, introducing the
externality triggered efficiency concerns. Indeed, in the Offspring Switch treatment, only
approximately one quarter of decisions were selfish when option X was inefficient (Table
C.5). This share was significantly lower than that in the Switch treatment (26.88% vs.
38.33%; t test, p = 0.033). No differences were observed when the selfish choices were the
efficient choices (95.70% vs. 92.45%; t test, p = 0.287).

Result 4 provides additional support for Conjecture 4.

Result 4. When the future status was uncertain and for a given possibility of switched
payoffs, introducing an externality of AI training on the future significantly reduced the
frequency of selfish choices, especially when efficiency could be improved by an altruistic
choice. Individuals in the Offspring Switch treatment chose option X significantly less often
than those in the Switch treatment did, and the parameter α of aversion against disadvan-
tageous inequality was significantly higher in that treatment, though monetary self-interest
in the receiver’s payoff decreases.

Overall, these results show that the externality of AI training data on a future gen-
eration (and an individual’s future payoffs) together with individuals’ uncertainty about
their future status when being again affected by the implementation of the AI’s predic-
18This corresponds to games 21 to 30 in Table C.1 in Appendix C.
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tions strongly influenced individuals’ decisions and the social preferences revealed by their
choices. Teaching an AI algorithm seemed to trigger intergenerational responsibility if and
only if the individuals could be harmed once the AI training leads to less moral decisions in
a future generation.

To test the robustness of these findings, we additionally adjusted the statistical results for
multiple hypotheses testing within each column of Tables 2 and 3. We used the family-wise
error rate (FWER) by employing the Holm-Bonferroni and Holm-Šidák methods (Holm,
1979). We used the false discovery rate (FDR) by employing the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995). Comparing the Offspring Switch and Offspring
treatments, we found that the observed differences in all four measures (i.e., the share of
option X in all decisions and in the restricted sample, α and β) remained significant at a 5%
level. Comparing the Offspring Switch and Switch treatments, we observed that the effect of
introducing an externality under a given mobility regime survived the FDR correction only
at the 10% level when considering the share of option X in the restricted sample and the
envy parameter α. The other comparisons between these two treatments lost significance.

Finally, using a non pre-registered, exploratory, analysis, we examined how dictators
formed their decisions beyond the analysis of their actual choices of the option. In particular,
as an assessment of how much attention the individuals paid to the menu of options, we
measured the time in seconds dictators stayed on the page before submitting their choice
between option X and option Y. Table 4 reports how long dictators on average weighed
alternatives before submitting their decisions in each treatment.

Table 4: Average Decision Time in Seconds, by Treatment

Treatments Nb of Obs. Mean Time p− values Mean Time p− values
Restricted Sample

Baseline 34 11.44
(0.573)

〉
0 .552

12.64
(0.781)

〉
0 .780

Externality 34 11.89
(0.505)

〉
0 .001

12.91
(0.606)

〉
0 .002

Offspring 30 9.86
(0.299)

〉
0 .001

10.52
(0.344)

〉
0 .001

Offspring Switch 31 13.88
(1.102)

〉
0 .243

15.89
(1.477)

〉
0 .241

Switch 32 12.28
(0.795)

〉
0 .385

13.71
(1.121)

〉
0 .432

Baseline 34 11.44
(0.573)

12.64
(0.781)

Notes: The table reports the dictators’ average decision time, in seconds. These values include the three
seconds they had to wait between selecting an option and submitting it. Standard errors of means are in
parentheses. One observation corresponds to one dictator. The column “Mean Time [Restricted Sample]”
includes only the decisions in games characterized by conflicting interests, that is, in which the dictator
obtains a strictly higher payoff with option X and the receiver gets a strictly higher payoff with option Y.
p-values refer to two-sided t-tests for differences in means.

The comparison between the Baseline and the Externality treatments indicated that the
awareness of their intergenerational impact through AI training did not significantly affect
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the dictators’ decision time. By contrast, the comparison between the Offspring and the
Externality treatments revealed a highly significant difference. Although the decisions did
not differ between these treatments (see Result 1), dictators needed on average less time
for making their decision when these choices involved a higher personal monetary stake,
namely, when they could benefit another time in the future from how they trained the AI.

Although the risk of swapped payoffs in period 31 in the Switch treatment did not
significantly affect decision time compared with the Baseline, such a risk in the future in the
presence of a monetary dependence between generations raised the average decision time
in the Offspring Switch treatment in comparison with the Offspring treatment. Individuals
used approximately 41% more time to select one option if the externality their AI training
data generated could harm them in the future. This difference is highly significant (p =

0.001). This difference in timing reflects the difference in decisions described in Result 3.19

This exploratory analysis supports our last result.

Result 5. Dictators made on average faster decisions in the Offspring treatment than their
counterparts did in the Offspring Switch and Externality treatments.

5 Discussion and Conclusion

Technological progress, strongly accelerated by an ever-increasing amount of available data
and growing capacities of automated agents, comes along with ethical questions. Machines
often have to include in their decision models parameters that represent the social prefer-
ences of individuals in the society. Therefore, they have to learn what these social preferences
are, based on the repeated observation of human decision making in social environments,
that is, when decisions impact others’ utility. AI is thus far not an abstract, self-deciding
super-intelligence, but primarily consists of prediction machines that make decisions based
on training data (Agrawal et al., 2018). These training data do not come from impartial
spectators but from the decision makers themselves. If these training data reflect unethical
behavior (e.g., discrimination, egoism, imposition of the law of the strongest), this influences
AI’s decision models across scenarios and generations. With the growing use of “black box”
algorithms, making humans accountable for AI predictions is becoming increasingly diffi-
cult (Pasquale, 2015). An obvious approach to managing this challenge could be to ensure
algorithmic transparency. However, making individuals fully aware of their responsibility in
training AI, not only in terms of immediate consequences but also regarding the impact on
the future, may not be sufficient to make them more attentive to the externalities they gen-
erate through their actions. Our study suggests that this may differ depending on whether
19When splitting the sample by decision (X or Y), the same treatment differences in terms of decision time
persist, independent of the decision. Dictators were always faster in the Offspring than in the Externality
and Offspring Switch treatments. This also holds when splitting by decision type, namely, restricted sample,
advantageousness, fairness, and efficiency.
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individuals are living in societies with high or low intergenerational income mobility.

Studying whether individuals change behavior if they anticipate that their actions gen-
erate externalities through the training of an AI would be extremely difficult with ob-
servational data. This is why we designed a controlled, simplified environment in which
individuals received transparent information that their decisions were used to train an AI
and would have externalities. The algorithm predicted the choice the individual would make
in a future game. We manipulated the presence of an externality of the AI training data, the
concern of the participants for the consequences of these training data on future participants
affected by the AI, and uncertainty about future status.

Our findings reveal that intergenerational responsibility in human behavior when train-
ing an AI cannot be triggered by information alone. It was only in settings where individuals
understood that there was a risk of being harmed by immoral algorithmic decisions (through
harming their offspring) that they considered intergenerational transmission of data when
teaching the machines and exhibited less selfishness. Uncertainty regarding their own fu-
ture position and their offspring’s payoff allowed individuals to be more considerate and put
higher weight on the others’ outcome when providing training data for a machine learning al-
gorithm. Though we implemented interdependence of earnings across generations, this effect
cannot be explained by monetary self-interest alone. Under standard economic preferences,
an expected payoff maximizing individual would have neglected the uncertainty in future
earnings because the affected share of total payoff is small. Indeed, in the Switch treatment,
25% of the total payoff corresponds to the receiver’s payoff in expectation; in the Offspring
Switch treatment, it is only 10%. As we observe higher weights on the receiver’s payoff in
Offspring Switch than in Switch, self-interest cannot explain more egalitarian choices when
training the AI also for future generations. By contrast, in stable settings with no inter-
generational earnings mobility, individuals disregarded the negative externalities of their
decisions on the future generation. One possible interpretation is that being more uncertain
about one’s future situation leads individuals to take more distance from their immediate
selfish interests and leads them to envision the situation more broadly from the beginning,
in the spirit of John Rawls’ idea of taking decisions behind a veil of ignorance. Another
possible interpretation building on Prospect Theory (Kahneman and Tversky, 1979) is that
pessimistic individuals who are more anxious about their future status and payoffs might
overweight the subjective probability of switching payoffs in the last period and overweight
the possibly occurring losses. Since in the current design the dictator is not always in advan-
tageous position (and thus in period 31, switching position is not necessarily bad in terms
of absolute payoff), we tend to favor the first interpretation. However, to neatly disentan-
gle between these different interpretations it might be interesting in future work to elicit
subjective beliefs about the risk of getting a lower payoff in the last period.

Our study has limitations. The main limitation is the caution that must be used re-
garding the external validity of our results because they have been generated in artificial
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settings. In real settings, AI is obviously not trained with the data of a single or just a few
individuals. But the artificiality of the experiment allows us to observe what is precisely
impossible to observe in reality: How do individuals alter their decisions when they are fully
aware that their action has an impact on future generations through the training of an AI?
If we do not find any impact in this specific context where individuals are the only source
of the externality through training, it is very unlikely that we would find an impact when
individuals are not pivotal. While keeping this caveat in mind, our experimental results sug-
gest a need for designing machines more as explicit ethical agents since we show that even
when being aware and pivotal, most individuals do not adjust to the simple presence of ex-
ternalities. Because human beings are not ideal models of ethical agents due to widespread
selfishness, teaching an AI by simply imitating human behavior risks reproducing unfair-
ness. An implication might be that machine learning algorithms should be extended with
classical programming that exogenously implements basic moral guidelines. Which moral
guidelines should be implemented must be subject to evaluations of both universal and more
culture-specific moral preferences (Awad et al., 2020).

Our paper represents a starting point by focusing on simple dictator games in which one
single individual is fully responsible for the outcome in the group and for the externality
she creates by passing on training data to future players. Further research could address
our questions by using more complex, strategic games, such as bargaining games. We could
also use the training data to allow the AI to learn social preferences and then, let the AI use
these preferences in a different decision environment. Another avenue would be to attempt
to replicate our results by comparing how managing the ethics of new technologies differs
across cultures and countries with a low versus high degree of intergenerational income
mobility (OECD, 2008) and by considering real-world applications of AI systems that make
decisions based on observed behavior. Promising avenues of research would also be to study
the effects of an individual’s actual versus perceived accountability for algorithmic biases,
or of varying the pivotality for choices of algorithms with the availability of Big Data.
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A Appendix Random Forest Algorithm

For predicting the out-of-sample choice of the dictator in the 31st period, we relied on a random
forest algorithm as a standard classification method (Breiman, 2001). A Random Forest consists
of several uncorrelated Decision Trees as building blocks. The goal of using a Decision Tree is to
create a training model that can be used to predict the class of a target variable. It learns simple
decision rules inferred from prior data (training data). In our experiment, the target variable was the
decision of the dictator in period 31 and the training data corresponded to the dictator’s previous
decisions in periods 1 to 30. The algorithm took eight features as input variables to predict the
binary outcome option X or option Y in period 31. Apart from the four payoffs for both players from
both options, we further added the sum and difference between payoffs for each option as features.

All decision trees have grown under two types of randomization during the learning process.
First, at each node, a random subset of features was selected to be considered when looking for
the best split of observations. Hereby, we relied on the usual heuristics and allowed up to

√
8 ≈ 3

features. Second, only a random subset of observations was used to build each tree (bootstrapping).
For each dictator, a forest consisted of ten different classification trees. To make the final decision
on whether option X or option Y was the dictator’s hypothetical 31st choice, each tree in the forest
made a decision and the option with the most votes determined the final classification.

Due to the Python foundation of oTree, we made use of the random forest implementation of the
scikit-learn package (Pedregosa et al., 2011). We further set a fixed random state or seed to ensure
reproducibility of results. To assess the accuracy of the algorithm ex post, we split the decision data
of each dictator in a training and test data set with 24 (80%) and 6 (20%) observations, respectively.
For each individual, we thus trained a random forest with 24 randomly selected allocation choices
and let it predict the six remaining ones. For all 161 dictators, this yielded an average predictive
accuracy of about 81.8%, a precision of 86.6%, a recall of 86.6%, and a F1 score of 0.866. Note that
this number should be rather taken as a lower bound on the actual accuracy of the algorithm in
the experiment that actually used all 30 decisions for training to make the out-of-sample prediction.
In Table A.1, we report the precision, recall, and F1 score of the random forest algorithm in each
treatment. We conclude that the performance of the algorithm was not different across treatments.

Table A.1: Performance Metrics of the Random Forest Algorithm by Treatment

Treatment Dictators Accuracy Precision Recall F1 score
Baseline 34 84.31% 89.93% 87.41% 0.8865
Externality 34 80.39% 85.16% 88.59% 0.8684
Offspring 30 83.89% 87.50% 90.84% 0.8914
Offspring Switch 31 77.96% 81.90% 82.61% 0.8225
Switch 32 80.21% 81.34% 89.34% 0.8516

Notes: The table provides an overview of different performance metrics of the random forest algorithm,
separate for each treatment. For each dictator, we made an 80:20 split, i.e., 24 observations for training
and 6 observations for testing.

The questionnaire in the final stage included questions about the participants’ attitudes toward
AI in general and toward the machine learning algorithm in our experiment. On a scale from 1
to 5, we asked dictators to rate their familiarity with and confidence in this technology (averages
of 2.8 and 3.7, respectively), their satisfaction with the prediction in period 31 (average of 4.0),
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and their assessment of how accurately the AI’s decision matched their true preferences (average
of 4.3). There were no significant differences across treatments in any of these variables. There is
also no correlation of these variables with observed behavior and treatment differences. Satisfaction
with and assessed accuracy of the algorithm were not only very high, but also strongly correlated
(Spearman rank correlation: 0.717, p < 0.001).
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B Instructions

The experiment was conducted online with student subjects from Goethe University Frankfurt in
German language. This section provides the instructions translated into English and the screenshots.

Overview
Today’s experiment consists of two parts.
In the first part you earn points by solving tasks.
You will receive more detailed information on the second part at the end of the first part.

Instructions of Part 1
In the first part you will earn points by performing 5 tasks.
For each task you will see a different block of numbers.
In each block, you must select a specific combination of numbers.
By completing all 5 tasks successfully you will earn 1200 points that will be used in the second part of the experiment.

Figure B.1: Instructions – Real Effort Tasks

Note: This screen was displayed in all treatment pairs before participants performed the real effort tasks.

End of Tasks
You have successfully completed all tasks and earned 1200 points that you will be able to use in the second part of the
experiment.

Figure B.2: Instructions – End of Real Effort Tasks

Note: This screen was displayed in all treatment pairs after participants completed the real effort tasks.
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Instructions of Part 2
Instructions

The following instructions are shown to all participants. Please read carefully.
Afterwards, you need to answer a set of control questions to ensure your understanding before you can continue.

Overview

This part consists of 30 independent periods and a period 31 which differs from the previous 30 periods, as explained
below.
At the beginning of the part, you will be randomly assigned a role, either participant A or participant B. You will keep this
role throughout this part.
At the beginning of the part, you are going to be randomly matched with another participant to form a pair.
The pair of participant A and participant B will remain the same throughout the rest of the experiment.

Decisions in Periods 1 to 30

In each of these 30 periods, participant A has to choose between two options: option X and option Y.
Each option represents the share of a number of points between participant A and participant B.
The points that are distributed correspond to your earnings and the earnings of the other participant in your pair in the
first part of the experiment.
In each option, the first number corresponds to the payoff of participant A, the second amount corresponds to the payoff
of participant B.
In the entire experiment, 100 points correspond to one euro.
To validate his or her choice, participant A has to click on the option he or she prefers and then, validate by pressing the
OK button.
It is very important to look carefully at the two amounts of each option before choosing the preferred option.
Note that participant B has no decision to make in this part.

Figure B.3: Instructions – Main Part and Decisions

Note: This screen was displayed in all treatment pairs.

Instructions of Part 2
Period 31

You will receive also a payoff for period 31 that will be added to your payoff in one of the previous periods.
Thus, your total payoff is determined by one of the 30 decisions made in periods 1 to 30, and by the unique decision made
in period 31.

Your payoff in period 31 is determined as follows.
The previous 30 decisions of participant A are used to train an artificially intelligent Random Forest algorithm (see Info
Box).
It is a machine learning algorithm that observes and learns from participant A’s behavior.
Based on the 30 decisions of the participant A in your pair today, the algorithm makes a prediction.
The algorithm gives the full weight of 100% to participant A in your pair in forming its prediction.

Building on this source of training data, the algorithm chooses between option X and option Y in period 31.
Note that the two options X and Y between which the algorithm decides are randomly chosen.
They are of the same type as in the 30 previous decisions made by participant A.

In fact, participant A in your pair does not make a decision in period 31: it is the algorithm that makes the decision
based on its prediction what participant A would prefer, given this participant A’s choices of options in the first 30 periods.
This option chosen in this prediction determines your payoff in period 31 and the payoff of the other participant in your
pair.

Figure B.4: Instructions – Prediction of the Algorithm in Period 31
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[Baseline, Externality, Offspring, Offspring Switch]
The option chosen by the algorithm in this prediction determines your payoff in period 31 and the payoff of the other
participant in your pair.

Example: If the algorithm predicts that participant A would prefer option X with payoffs (K, V): A in the pair receives K
points and B receives V points.

[Switch]
Note that with 50% probability, the roles in your pair are reversed for this payoff in round 31.
If you were participant A in periods 1 to 30, you will become participant B in period 31 with 50% probability and you will
remain participant A with the remaining 50%.
Similarly, if you were participant B in periods 1 to 30, you will become participant A in period 31 with 50% probability
and you will remain participant B with the remaining 50%.

Thus, with 50% probability each, you get the payoff of participant A or of participant B in your pair, independent of your
role in the previous 30 periods.

Example: If the algorithm predicts that participant A would prefer option X with payoffs (K, V): With 50% probability, A
in the pair receives K points and B receives V points; with 50% probability, A in the pair receives V points and B receives
K points.

Info box: Random Forest Algorithm

A Random Forest is a classification method.
Classification is a two-step process in machine learning: there is a learning step and a prediction step.
In the learning step, the model is developed based on given training data.
In the prediction step, the model is used to predict the response for given data.
A Random Forest consists of several uncorrelated Decision Trees as building blocks.
The goal of using a Decision Tree is to create a training model that can be used to predict the class or value of a
target variable.
It learns simple decision rules inferred from prior data (training data).

In this experiment, the target variable is the decision of participant A in period 31.
The training data correspond to previous decisions in periods 1 to 30.

All decision trees have grown under a certain type of randomization during the learning process.
For a classification, each tree in that forest makes a decision and the class with the most votes decides the final
classification.

Figure B.4: Instructions – Prediction of the Algorithm in Period 31 (cont’d)

Notes: This screen was displayed in all treatment pairs. The content of the paragraphs which dynamically
varied across treatments is marked accordingly.
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Instructions of Part 2
The 30 decisions of participant A in your pair generate additional training data for further predictions.
These affect the payoffs of a successor pair in period 31 that will take your place in this same experiment in the next days.

The artificially intelligent algorithm is trained with the decisions of participant A in your current pair.
The algorithm will make two predictions.

1. As mentioned above, there will be a prediction for a decision of participant A in your pair today.
In period 31, the algorithm decides once between option X and option Y based on participant A’s previous decisions
in periods 1 to 30.

2. There will be a prediction that determines the decision of participant A in your successor pair.
The algorithm will decide based on the 30 decisions of participant A in your pair today and on the 30 decisions of
the future participant A in your successor pair.
The training data generated by your pair and by your successor pair are given the same weight in the prediction of
the algorithm.

Summarizing, based on the 30 decisions of participant A in your pair today, the algorithm decides once between option X
and Y for your pair today and once for your successor pair in the future.
Thus, the 30 decisions of participant A today have monetary consequences for your pair today and for another future pair,
through the predictions of the algorithm.

Figure B.5: Instructions – Impact on Future Session (Externality Treatment)

Note: This screen was displayed in the Externality treatment pairs.
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Instructions of Part 2
For both participants A and B, there is an additional payoff.
This amount will be paid out at a future point in time.
We will give details concerning the payment at the end of the session.

The 30 decisions of participant A in your pair generate additional training data for further predictions.
On the one hand, these affect the payoffs in period 31 of a successor pair that will take your place in this same experiment
in the next days.
On the other hand, they also affect your own additional payoff.

The artificially intelligent algorithm is trained with the decisions of participant A in your current pair.
The algorithm will make two predictions.

1. As mentioned above, there will be a prediction for a decision of participant A in your pair today.
In period 31, the algorithm decides once between option X and option Y based on participant A’s previous decisions
in periods 1 to 30.

2. There will be a prediction that determines the decision of participant A in your successor pair.
This second prediction may be for another pair of options.
The algorithm will decide based on the 30 decisions of participant A in your pair today and on the 30 decisions of
the future participant A in your successor pair.
The training data generated by your pair and by your successor pair are given the same weight.
In particular, participant A accounts for one half of the data the algorithm deciding for your successor pair builds
on.

Summarizing, based on the 30 decisions of participant A in your pair today, the algorithm decides once between option X
and Y for your pair today and once for your successor pair in the future.
Thus, the 30 decisions of participant A today have monetary consequences for your pair today and for another future pair,
through the predictions of the algorithm.
On top of today’s payoff, we pay your pair an amount equal to one half of the payoff your successor pair gets from the
prediction of the algorithm in the future.
This prediction forms the third part of your payoff.

[Offspring Switch]
Note that with 50% probability, the roles in your pair are reversed for this future payoff.
With 50% probability each, you receive 50% of the payoff of participant A or of participant B in your successor pair,
independent of your role today.

[Offspring]
Note that your role as participant A or participant B remains the same for this future payoff.
If you are participant A today, your additional payoff will be determined as 50% of the payoff of participant A in your
successor pair.
If you are participant B today, your additional payoff will be determined as 50% of the payoff of participant B in your
successor pair.

Figure B.6: Instructions – Impact on Future Session (Offspring and Offspring Switch Treatments, cont’d)

Notes: This screen was displayed in the Offspring and Offspring Switch treatment pairs. The content of the
paragraphs which dynamically varied across treatments is marked accordingly.
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Control Questions
Please answer the following control questions.
You must answer all questions correctly before you can continue with the experiment.

Question 1

Will your pair of participant A and participant B remain the same throughout the whole experiment?

Yes

No

Question 2

Which kind of decisions will be made and who will make them?

Participant A decides upon the distribution of the earnings of both participants (A and B) from solving tasks in
the first part of the experiment.

Participant B decides upon the distribution of the earnings of both participants (A and B) from solving tasks in
the first part of the experiment.

Both participants jointly decide upon the distribution of the earnings of both participants (A and B) from solving
tasks in the first part of the experiment.

Participant A proposes a distribution of the earnings of both participants (A and B) from solving tasks in the first
part of the experiment. Participant B can accept or reject this proposal.

Question 3

Does participant B make any decision with regard to the distribution of the endowment earned by both participants within
your pair?

Yes

No, participant A decides upon the allocation of the endowment of both participants.

Question 4

How will your payoff from the first 30 periods be determined?

There is no payoff from the first 30 periods.

All decisions of participant A in all periods will be paid out.

One decision of participant A in one randomly selected period will be paid out.

Figure B.7: Control Questions
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Question 5

How will your payoff from period 31 be determined?

There is no payoff from period 31.

Participant A makes another decision that is paid out.

Participant A makes no decision, but there is an artificially intelligent algorithm that makes a prediction for period
31 based on learned behavior, which determines the payoffs in the pair.

Question 6

Where does the artificially intelligent algorithm in the experiment get its training data from?

Exclusively from the 30 decisions of participant A in your pair.

Exclusively from the 30 decisions of participant A in another pair in your session.

From the 30 decisions of participant A in your pair and the 30 decisions of participant A in another pair.

From the 30 decisions of participant A in your pair and the 30 decisions of participant A in 99 other pairs.

Question 7

For the algorithm of which pair do the 30 decisions of participant A in your pair generate training data?

Exclusively for your pair. [Baseline, Switch]

Exclusively for another pair in your session.

For your pair and for another successor pair of yours in the future. [Externality, Offspring, Offspring Switch]

Question 8

What is the composition of your final payoff? (Multiple selections possible!)

One decision of participant A in the first 30 periods is implemented for your pair.

The decision of the artificially intelligent algorithm in period 31 is implemented for your pair.

The decision of the artificially intelligent algorithm in period 31 of your successor pair in the future is implemented
for your pair. [Offspring, Offspring Switch]

Question 9

Can roles within your pair be switched for payoff?

No, I always keep my role. [Baseline, Externality, Offspring]

Yes, it might be that with 50% probability I get the payoff of the other participant in my pair for the decision in
the randomly selected period between 1 and 30.

Yes, it might be that with 50% probability I get the payoff of the other participant in my pair for the decision by
the artificially intelligent algorithm in period 31. [Switch]

Yes, it might be that with 50% probability I get the payoff of the other participant in my pair for the future payoff
of my successor pair. [Offspring Switch]

Figure B.7: Control Questions (cont’d)

Notes: The selected answers are the correct ones for all treatment groups. Some answers to the control
questions varied across treatments and the correct ones are marked accordingly.
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Results
Randomly selected round: Period 5
Options in this round: (640, 410) and (560, 790)
Decision in this round: Option X
Your payoff: 640 points

Period 31: Prediction
The artificially intelligent algorithm decided between (760, 490) and (440, 710) in this period 31.
Based on the previous decisions of participant A in your pair, the prediction and decision of the algorithm was option X.

[Switch for groups with payoff swapping]
For this payoff, the roles in your group have been swapped.
You will receive the payoff of participant B.

Your payout from period 31 is therefore 760 [490] points.

Figure B.8: Feedback in Parts 2 and 3 (Example)

Notes: This screen was shown to all participants after the dictator’s and the algorithm’s decisions. The num-
bers and option choice are for illustrative purposes only. The content of the paragraphs which dynamically
varied across treatments is marked accordingly.

Final Results
Your payoff from the randomly selected period 5 is 640 points.
Your payoff from period 31 is 760 points.
In total, you will thus receive a payoff of 1400 points.
This is equivalent to 14 euros.

[Offspring, Offspring Switch]
You will receive an additional payoff at a future point in time.
Once your successor pair has participated in the experiment, you will receive this additional payoff.
It is equal to 50% of the payoff from period 31 in your successor pair.

Figure B.9: Final Results (Example)

Notes: This screen was shown to all participants at the end of the experiment before the final questionnaire.
The numbers and option choice are for illustrative purposes only. The content of the paragraphs which
dynamically varied across treatments is marked accordingly.
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Figure B.10: Real Effort Task

Notes: Exemplary real effort task from the first part of the experiment. The correct solution needed to be
marked as shown in the screenshot.
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C Appendix Tables

Table C.1: Decision Space of the Dictator Games

Game Option X Option Y Category 1 Category 2 Category 3 Category 4
(Selfish) (Altruistic) (Slope) (Dictator’s (Highest (Lowest

Position) Efficiency) Inequality)
1* (890, 140) (850, 520) Selfish Advantageous Y Y
2* (910, 140) (830, 520) Selfish Advantageous Y Y
3* (940, 150) (800, 510) Selfish Advantageous Y Y
4* (980, 170) (760, 490) Selfish Advantageous Y Y
5* (1010, 190) (730, 470) Selfish Advantageous None Y
6* (1050, 270) (690, 390) Selfish Advantageous X Y
7 (1060, 330) (680, 330) Receiver indiff. Advantageous X Y
8 (990, 480) (750, 180) X Pareto Advantageous X X
9 (930, 510) (810, 150) X Pareto Advantageous X X
10 (870, 140) (870, 520) Dictator indiff. Advantageous Y Y
11* (620, 410) (580, 790) Selfish Mixed Y None
12* (640, 410) (560, 790) Selfish Mixed Y None
13* (670, 420) (530, 780) Selfish Mixed Y None
14* (710, 440) (490, 760) Selfish Mixed Y None
15* (740, 460) (460, 740) Selfish Mixed None None
16* (780, 540) (420, 660) Selfish Mixed X None
17 (790, 600) (410, 600) Receiver indiff. Mixed X None
18 (720, 750) (480, 450) X Pareto-dom. Mixed X None
19 (660, 780) (540, 420) X Pareto-dom. Mixed X None
20 (600, 410) (600, 790) Dictator indiff. Mixed Y None
21* (350, 680) (310, 1060) Selfish Disadvantageous Y X
22* (370, 680) (290, 1060) Selfish Disadvantageous Y X
23* (400, 690) (260, 1050) Selfish Disadvantageous Y X
24* (440, 710) (220, 1030) Selfish Disadvantageous Y X
25* (470, 730) (190, 1010) Selfish Disadvantageous None X
26* (510, 810) (150, 930) Selfish Disadvantageous X X
27 (520, 870) (140, 870) Receiver indiff. Disadvantageous X X
28 (450, 1020) (210, 720) X Pareto-dom. Disadvantageous X Y
29 (390, 1050) (270, 690) X Pareto-dom. Disadvantageous X Y
30 (330, 680) (330, 1060) Dictator indiff. Disadvantageous Y X

Notes: The first entry of option X and option Y is the dictator’s payoff, the second one is the receiver’s
payoff. In category 1, selfish decisions are characterized by conflicting interests, i.e., the dictator strictly
prefers option X and the receiver strictly prefers option Y. Category 2 describes the relative position of the
dictator. Category 3 states which option maximizes the sum of payoffs. Category 4 states which option
minimizes the absolute difference of payoffs. Stars in column 1 refer to the sub-set of games characterized by
conflicting interests, that is, games in which the dictator strictly prefers option X while the receiver strictly
prefers option Y; these games correspond to what is characterized in the analysis as the “restricted sample”.
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Table C.2: Possible Out-of-Sample Decisions of the AI

Prediction Option X Option Y Category 1 Category 2 Category 3 Category 4
(Selfish) (Altruistic) (Slope) (Dictator’s (Highest (Lowest

Position) Efficiency) Inequality)
1 (1030, 220) (710, 440) Selfish Advantageous X Y
2 (960, 500) (780, 160) X Pareto Advantageous X X
3 (760, 490) (440, 710) Selfish Mixed X None
4 (690, 770) (510, 430) X Pareto Mixed X None
5 (490, 760) (170, 980) Selfish Disadvantageous X X
6 (420, 1040) (240, 700) X Pareto Disadvantageous X Y

Notes: One of the decision scenarios was randomly picked for the AI’s prediction. The first entry of option
X and option Y is the dictator’s payoff, the second one is the receiver’s payoff. In category 1, selfish
decisions were characterized by conflicting interests, i.e., the dictator strictly preferred option X and the
receiver strictly preferred option Y. Category 2 describes the relative position of the dictator. Category 3
states which option maximized the sum of payoffs. Category 4 states which option minimized the absolute
difference of payoffs.

Table C.3: Summary Statistics, by Treatment

Treatments Baseline Externality Offspring Offspring Switch
Switch

% Females 60.29 41.18∗∗ 51.67 51.61 57.81
Mean age in years 24.28 26.18∗∗ 23.28 23.97 25.14

(0.60) (0.66) (0.34) (0.39) (0.61)
% Studies in Economics 33.82 44.12 41.67 38.71 43.75

Mean nb Semesters 7.01 7.94 6.60 7.55 7.33
(0.42) (0.57) (0.41) (0.54) (0.41)

Mean grade 1.96 2.06 1.97 1.88 1.97
(0.08) (0.07) (0.07) (0.07) (0.07)

Mean expenses 1.41 1.53 1.47 1.58 1.47
(0.07) (0.08) (0.08) (0.08) (0.08)

N 68 68 60 62 64

Notes: The table displays summary statistics on the participants’ sociodemographic characteristics, by
treatment. Standard errors of means are in parentheses. Grade refers to the German Abitur grade and
ranges from 1.0 (best) to 6.0 (worst). Expenses are on a weekly basis and coded by 1 (less than 100 Euros),
2 (between 101 and 200 Euros), and 3 (more than 200 Euros). The tests reported are based on comparisons
with the Baseline condition. These tests are Fisher’s exact tests for all the variables, except age, grade and
semester, for which we use t-tests. ∗∗ p < 0.05.
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Table C.4: Relative Frequency of Choices of the Selfish Option X, by Treatment and Relative Position of
the Dictator

Treatments Nb Obs. Option X
[Advantageous]

p–values Option X
[Disadvantageous]

p–values

Baseline 34 57.94%
(0.0417)

〉
0 .581

79.42%
(0.0273)

〉
0 .816

Externality 34 61.18%
(0.0407)

〉
0 .705

78.53%
(0.0261)

〉
0 .456

Offspring 30 59.00%
(0.0399)

〉
0 .011

81.00%
(0.0188)

〉
0 .000

Offspring Switch 31 46.77%
(0.0243)

〉
0 .416

67.42%
(0.0266)

〉
0 .045

Switch 32 50.00%
(0.0308)

〉
0 .135

75.00%
(0.0258)

〉
0 .246

Baseline 34 57.94%
(0.0417)

79.42%
(0.0273)

Treatments Nb Obs. Option X
[Mixed]

p–values

Baseline 34 73.53%
(0.0355)

〉
1 .000

Externality 34 73.53%
(0.0286)

〉
0 .177

Offspring 30 79.00%
(0.0277)

〉
0 .000

Offspring Switch 31 61.94%
(0.0229)

〉
0 .227

Switch 32 66.56%
(0.0300)

〉
0 .141

Baseline 34 73.53%
(0.0355)

Notes: The table reports the relative frequency of the choice of option X, by treatment and according to
the relative position of the dictator in the game (advantageous, disadvantageous, or mixed), with standard
errors of means in parentheses. One observation corresponds to one dictator. p-values refer to two-sided
t-tests for differences in means. The Baseline appears twice to report comparisons with both Externality
and Switch treatments.
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Table C.5: Relative Frequency of Choices of the Selfish Option X, by Treatment and Efficiency

Treatments Nb Obs. Option X
[X efficient]

p–values Option X
[Y efficient]

p–values

Baseline 34 96.32%
(0.0101)

〉
0 .500

48.63%
(0.0502)

〉
0 .893

Externality 34 95.10%
(0.0150)

〉
0 .242

49.61%
(0.0526)

〉
0 .306

Offspring 30 91.94%
(0.0228)

〉
0 .156

56.44%
(0.0376)

〉
0 .000

Offspring Switch 31 95.70%
(0.0229)

〉
0 .287

26.88%
(0.0344)

〉
0 .033

Switch 32 92.45%
(0.0268)

〉
0 .171

38.33%
(0.0395)

〉
0 .115

Baseline 34 96.32%
(0.0101)

48.63%
(0.0502)

Notes: The table reports the relative frequency of the choice of option X, by treatment and according to
the efficiency of the option in the game, with standard errors of means in parentheses. Efficiency refers
to the sum of payoffs. One observation corresponds to one dictator. p-values refer to two-sided t-tests for
differences in means. The Baseline appears twice to report comparisons with both Externality and Switch
treatments.

Table C.6: Relative Frequency of Choices of the Selfish Option X, by Treatment and Relative Inequality

Treatments Nb Obs. Option X
[X fairer]

p–values Option X
[Y fairer]

p–values

Baseline 34 79.71%
(0.0272)

〉
0 .940

57.65%
(0.0420)

〉
0 .656

Externality 34 79.41%
(0.0277)

〉
0 .415

60.29%
(0.0417)

〉
0 .667

Offspring 30 82.33%
(0.0213)

〉
0 .000

57.67%
(0.0441)

〉
0 .026

Offspring Switch 31 68.06%
(0.0280)

〉
0 .025

46.13%
(0.0253)

〉
0 .643

Switch 32 76.88%
(0.0263)

〉
0 .458

48.13%
(0.0343)

〉
0 .086

Baseline 34 79.71%
(0.0272)

57.65%
(0.0420)

Treatments Nb Obs. Option X
[equal]

p–values

Baseline 34 73.53%
(0.0355)

〉
1 .000

Externality 34 73.53%
(0.0286)

〉
0 .177

Offspring 30 79.00%
(0.0277)

〉
0 .000

Offspring Switch 31 61.94%
(0.0229)

〉
0 .227

Switch 32 66.56%
(0.0300)

〉
0 .141

Baseline 34 73.53%
(0.0355)

Notes: The table reports the relative frequency of the choice of option X, by treatment and according to
whether the option is fairer than the other option or not, with standard errors of means in parentheses.
Fairness refers to the absolute difference in payoffs. One observation corresponds to one dictator. p-values
refer to two-sided t-tests for differences in means. The Baseline appears twice to report comparisons with
both Externality and Switch treatments.
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Table C.7: Probability of Choosing the Selfish Option X - Regression Analysis with Socio-Demographic
Controls

Dependent variable: Aggregate Baseline Externality Offspring Offspring Switch Switch
Share of choices of option X
Female 0.0294 0.0497 0.000833 0.0612 0.0484 0.0162

(0.0232) (0.0614) (0.0549) (0.0496) (0.0434) (0.0508)

Age 0.000379 0.0111∗∗ -0.0167∗ 0.00947 0.00191 -0.00907
(0.00305) (0.00524) (0.00847) (0.0121) (0.00778) (0.00741)

Nb Semesters 0.00135 -0.00813 0.0152∗∗ 0.00647 -0.00280 -0.00119
(0.00321) (0.0103) (0.00683) (0.00837) (0.00491) (0.00681)

Studies in Economics 0.0709∗∗∗ 0.0769 0.0886 0.0752 0.0186 0.0274
(0.0245) (0.0623) (0.0580) (0.0442) (0.0488) (0.0495)

Abitur grade 0.0102 -0.0690 0.0824 0.00458 0.0121 -0.0435
(0.0214) (0.0470) (0.0516) (0.0525) (0.0416) (0.0464)

Average weekly spending 0.0363∗ 0.0694 0.0568 0.0368 0.0550 -0.0165
(0.0191) (0.0559) (0.0405) (0.0428) (0.0386) (0.0402)

Constant 0.540∗∗∗ 0.480∗∗∗ 0.718∗∗∗ 0.332 0.430∗ 0.954∗∗∗
(0.0787) (0.144) (0.204) (0.217) (0.242) (0.175)

N 161 34 34 30 31 32
R2 0.086 0.300 0.323 0.222 0.174 0.179

Notes: The table reports the estimation results from OLS regressions of the share of selfish options X on
socio-demographic measures. Standard errors are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D Appendix Figures

Figure D.1: Distribution of the Shares of Selfish Choices by the Dictators, by Treatment

Notes: The figure displays the distribution of the shares of choices of the selfish option X by the dictators
in the 30 periods of the game, by treatment.
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Figure D.2: Distribution of the Shares of Selfish Choices by the Dictators, by Treatment (Restricted Sample)

Notes: The figure displays the distribution of the shares of choices of the selfish option X by the dictators
in the sub-set of games characterized by conflicting interests (that is, games in which the dictator strictly
prefers option X while the receiver strictly prefers option Y), by treatment. These games correspond to
what is characterized in the analysis as the “restricted sample”.

45

Electronic copy available at: https://ssrn.com/abstract=4002578



 

Leibniz Institute for Financial Research SAFE | www.safe-frankfurt.de | info@safe-frankfurt.de 

Recent Issues 

No. 334 Ilya Dergunov, Christoph 
Meinerding, Christian Schlag 

Extreme Inflation and Time-Varying Expected 
Consumption Growth 

No. 333 Vincent R. Lindner Solidarity without Conditionality. Comparing 
the EU Covid-19 Safety Nets SURE, 
Pandemic Crisis Support, and European 
Guarantee Fund 

No. 332 Gyozo Gyöngyösi, Judit Rariga, 
Emil Verner 

The Anatomy of Consumption in a Household 
Foreign Currency Debt Crisis 

No. 331 Ruggero Jappelli, Loriana Pelizzon, 
Alberto Plazzi 

The Core, the Periphery, and the Disaster: 
Corporate-Sovereign Nexus in COVID-19 
Times 

No. 330 Jan Krzyzanowski, Uwe Walz Bank Regulation, Lending and Patenting: 
Evidence from the EBA Capital Exercise 

No. 329 Jana Eisenkopf, Steffen Juranek, 
Uwe Walz 

Responsible Investment and Stock Market 
Shocks: Short-Term Insurance and Persistent 
Outperformance Post-Crisis? 

No. 328 Hoang Ha Nguyen Thi, Alfons 
Weichenrieder 

C and S Corporation Banks: Did Trump’s Tax 
Reform Lead to Differential Effects? 

No. 327 Fincap team Non-Standard Errors 

No. 326 Wenhui Li, Peter Ockenfels, 
Christian Wilde 

The Effect of Ambiguity on Price Formation 
and Trading Behavior in Financial Markets 

No. 325 Alperen A. Gözlügöl The Clash of ‘E’ and ‘S’ of ESG: 
Just Transition on the Path to Net Zero and 
the Implications for Sustainable Corporate 
Governance and Finance 

No. 324 Massimiliano Caporina, Michele 
Costola 

Time-Varying Granger Causality Tests for 
Applications in Global Crude Oil Markets: A 
Study on the DCC-MGARCH Hong Test 

No. 323 Alexandre Corhay, Thilo Kind, 
Howard Kung, Gonzalo Morales 

Discount Rates, Debt Maturity, and the Fiscal 
Theory 

No. 322 Gianluca Anese, Marco Corazza, 
Michele Costola, Loriana Pelizzon 

Impact of Public News Sentiment on Stock 
Market Index Return and Volatility 

No. 321 Ignazio Angeloni, Johannes 
Kasinger, Chantawit Tantasith 

The Geography of Banks in the United States 
(1990-2020) 

Electronic copy available at: https://ssrn.com/abstract=4002578


