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Sammendrag 

Denne artikkelen studerer et forsøk med tilrettelagt matematikkundervisning på for elever med svake 

resultater fra nasjonale prøver. Tiltaket består av to deler: Kursing av lærere i didaktikk tilpasset elever 

med lav kompetanse i matematikk og tilrettelagt undervisning for elever i en klart definert målgruppe i 

to perioder på fire til seks uker på 8. trinn. Et flertall av målgruppeelevene fkk tilpasset opplæring i 

små grupper, bestående av elever med svake resultater fra nasjonale prøver, de øvrige elevene i større 

grupper. Tiltaket ble gjennomført som et randomisert forsøk, der 24 av 48 ungdomsskoler i Oslo ble 

tilfeldig valgt ut til å delta. Dette gjør at vi kan studere effekter av tiltaket ved sammenligne resultater 

for forskjellige grupper av elever i tiltaks- og kontrollskoler.  

 Vi finner at elever som fikk tilrettelagt undervisning av kursede lærere på 8. trinn får et 

resultat på nasjonal prøve i regning på 9. trinn som er omtrent 6 prosent av et standardavvik 

(tilsvarende 0,6 skalapoeng) høyere enn sammenligningsgruppen, og i mindre grad presterer på de 

laveste mestringsnivåene. En økonomisk verdsetting av denne effekten, basert på andre studier av 

sammenhengen mellom skoleresultater og arbeidsmarkedsutfall, tyder på at gevinsten er klart større 

enn kostnaden av tiltaket. 

 Vi finner ingen effekter på resultatene til elever som fikk opplæring av kursede lærere i 

store grupper. Vi finner heller ingen effekter på elever som, i det første forsøksåret, fikk opplæring i 

små grupper uten at lærerne fikk kursing. Verken kursing av lærere eller små grupper ser ut til å være 

tilstrekkelig til å gi mer læring hver for seg.   

 Klasseromsobservasjoner og læreres svar i spørreundersøkelser viser at undervisningen i 

de små gruppene med kursede lærere i stor grad bruker didaktikken de ble kurset i, mens dette i 

mindre grad er tilfellet i de store gruppene. I tillegg til å være mindre har de små gruppene mindre 

variasjon i elevenes faglige nivå, og lærerne som underviste små grupper fikk en litt annen kursing enn 

lærerne som underviste store grupper. Alt dette kan ha bidratt til forskjeller i bruk av didaktikken fra 

tiltaket og forskjeller i effekter for elevene. 



1 Introduction

Youths from families with low socioeconomic status (SES) are over-represented among those

who perform poorly in school and have lower prospects for labor market careers. Reducing

achievement gaps among socioeconomic groups and increasing educational attainment among

low SES students is high on the political agenda, and research points to the importance of

math skills to complete high school (e.g., Duncan et al., 2007). Although previous research

to a large degree concludes that early investments are more beneficial than later investments

(Carneiro and Heckman, 2003; Heckman, 2013), recent findings indicate high returns from

programs directed towards adolescents with low numeracy skills (Cook et al., 2014; Clotfelter

et al., 2015; Cortes et al., 2015; Fryer and Howard-Noveck, 2020; Guryan et al., 2021).1

This paper contributes to this burgeoning literature arguing that it is not too late to

implement interventions for adolescents falling behind. We design and test an intervention

targeting 8th-graders with low numeracy skills. The intervention combined customized train-

ing for qualified math teachers with targeted instruction in two periods (each lasting 4-6 weeks)

for low-performing students, mostly in small groups of six or fewer students. The intensive

math course replaced regular math classes during the intervention period, and the small group

instruction largely corresponds to what Fryer (2017) defines as high-dosage tutoring.2 Due

to organizational constraints, some target students got instruction in larger groups taught

by newly trained teachers, mostly in their regular classes. In the first year, some randomly

selected schools only got funding for small and large-group instruction, and no teacher train-

ing. While the ultimate objective of the intervention is to increase the proportion of students

completing high school, in this paper, we study shorter-term effects on numeracy skills in the
1Effective programs include accelerating algebra, charter school practices, and high-dosage

tutoring.
2Fryer (2017) describes high-dosage tutoring as being instructed in groups of 6 or fewer

for more than three days per week or being tutored at a rate that would equate to 50 hours
or more over 36 weeks. While the size of our small groups aligns with Fryer (2017), the total
extent of instruction (three hours per week for 9-12 weeks, i.e., 27-36 hours) may be somewhat
less than Fryer (2017) classifies as high-dosage.
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year after the treatment.

Our intervention combines small- and large-group instruction for low-performing students

with teacher training. The training program built on well-known didactic methods but focused

on how these specific targeted didactic principles and tools can be combined, re-composed,

and used to boost the achievement of low-performing students (Torgerson et al., 2012; Harder

et al., 2020; Pellegrini et al., 2021). Many of these methods have proven to be successful in

lower grades. The idea is to apply some of the didactic methods used in lower grade levels to

boost achievement among low-performing students in higher grades.

The intervention took place in 2016/17, 2017/18, and 2018/19. We randomly selected 24

out of 48 lower secondary schools in Oslo (the capital of Norway) to participate, one from

each of 24 matched pairs (following the recommendations of Bruhn and McKenzie, 2009).

Schools were matched on the number and share of low-performing students, and we show

that stratifying schools significantly reduced the ex-ante probability of imbalances. Still, we

demonstrate that our sample of 48 schools is sufficiently heterogeneous to produce imbalanced

groups with a high probability, even with pairwise matching, and we do find imbalances in

pre-determined characteristics across treatment and control schools. However, since we have

good controls for pre-existing differences, we can still provide credible effect estimates, despite

the imbalances (Lin, 2013).

We find that low-performing students predicted to receive small-group instruction by

newly-trained teachers increase their average test scores by about 6 percent of a standard

deviation in the year following the intervention. The share of low-performing students is re-

duced by about 3 percentage points, corresponding to a reduction of 5-25 percent for different

measures of low performance. Using other studies to value our results, we conclude that the

small-group intervention is cost-effective, with an estimated cost per small-group student of

USD 1200-1800 and estimated benefits of USD 3700. Our incomplete data on small-group

assignment suggest that 89 percent of students predicted to get instruction in small groups

actually do get it, implying a treatment effect of 0.067 SD on the treated. We find no impact
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on target students who receive instruction from newly-trained teachers in large groups. There

is also no indication from the first year that providing instruction in small or large groups

without teacher training influences achievement.

Our paper contributes to the literature on experimental teaching interventions in schools,

and has several similarities with Guryan et al. (2021). We find similar effect per dollar and

cost-benefit ratios for adolescents as Guryan et al. (2021).3 However, despite important sim-

ilarities, our intervention and context differ from Guryan et al. (2021) in several ways. First,

the teachers teach small groups of students, requiring fewer teachers than more individual-

ized one-on-one tutoring. Second, the targeted instruction in our case replaces regular math

instruction for two limited periods. While perhaps contributed to a lower effect, these dif-

ferences reduce the cost of the intervention. Guryan et al. (2021) rely on relatively low-cost

tutors. In other contexts, such tutors may not be the available.4 We demonstrate that we

can achieve effects per dollar similar to Guryan et al. (2021) with regular teachers and little

disruption to schedules (as the targeted instruction does not replace other subjects).

Extensive supplementary data allow us to further investigate and expand upon the find-

ings from the effect analyses, and contribute to the burgeoning literature on teacher fidelity

to implementing new didactic principles and tools (e.g., Durlak et al. 2011). Classroom ob-

servations and surveys to teachers show high teacher fidelity to the didactic methods in the

small groups, but lower in the larger groups. Teacher satisfaction is also higher in the small

group. The paper demonstrates how extra funding can help implement effective teaching
3Guryan et al. (2021) carried out an RCT among 9th and 10th graders in 12 public high

schools in Chicago located in economically disadvantaged neighborhoods. Students received
one-on-one/two-on-one math tutoring after school by instructors carefully selected through a
screening process (pedagogical background not required). Tutoring hours could be up to 140
per year. They find that personalization of the instruction increased math test scores by 0.16
percent of a standard deviation. They do not implement any particular didactic methods.
However, half of each session focused on re-mediating skill deficits and the other half on what
students were learning in their regular math classrooms.

4Andersen et al. (2020) find that, in Denmark, the cost of 14.5 hours of instruction by an
assistant without teacher training is the same as for 10.5 hours by a trained teacher.
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strategies, which has often proved difficult (e.g., Forgasz, 2010; Rønning et al., 2013; Jacob,

2017).5 Small-group instruction with homogeneous students simplifies the teaching task in

several ways. Teachers need to spend less time on classroom management and are left with

more time to concentrate their effort on teaching to one academic level (e.g., Connor et al.,

2013). Thus, our paper also relates to the literature on ability tracking (e.g., Duflo et al.,

2011).6

Finally, we contribute to the literature on the practical design and implementation of

moderate-scale RCTs. RCTs have a large and increasing role in educational research (Fryer,

2017; Jacob, 2017; Styles and Torgerson, 2018; Andersen et al., 2020; Haaland et al., 2021).

While the key virtue of RCTs is the expected balancing of treatment and control groups,

treatment and control may not be balanced ex-post (Bruhn and McKenzie, 2009; Athey and

Imbens, 2017). We investigate how our population of 48 schools can give imbalanced treatment

and control groups and to what extent this can be mitigated ex-ante by stratifying on different

variables. In particular, our findings highlight the tension between a desire to balance several

characteristics and to better balance one (c.f. Bruhn and McKenzie, 2009). In our case, a

small increase in the expected balance of school size comes at the cost of substantially reduced

expected balance in baseline outcomes. As the number of units randomized in our study is

typical for the studies in Fryer (2017), our inquiry is likely to be relevant for future RCTs.

The paper is organized as follows: Section 2 presents the institutional setting. Section 3

describes the didactic methods, organization, and implementation of the intervention. Section

4 presents the data and empirical strategy, investigates the similarity of the treatment and

control schools, and analyzes alternative approaches to randomization. Section 5 presents our
5The literature on teaching practices (e.g., Kane et al.,2011; Bietenbeck, 2014; Lavy, 2016;

and Aucejo, 2018) focuses on mapping teaching practices to student types. It is less concerned
with implementation issues.

6The evidence on ability tracking is mixed (Cortes and Goodman, 2014). Mainly, the effect
depends on to what extent the teaching matches the level of the ability group.That is, ability
tracking affects students in both the top and bottom halves of the achievement distribution if
the benefits of better-targeted pedagogy (i.e., personalization) outweigh the negative impact
of being exposed to lower-skilled peers (Duflo et al., 2011; Guryan et al., 2021).
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effect estimates, and section 6 discusses channels of impact, that is, the implementation quality

of the didactic methods. Section 7 provides a cost-benefit analysis and section 8 concludes.

2 Institutional setting

Compulsory education in Norway consists of seven years of primary education and three years

of lower secondary education. Children start primary school the year they turn six. Schools

at the primary and the secondary level are almost all public and have a local catchment area.7

Early/late starting and grade retention are rare, such that nearly everybody starts middle

school the year they turn fourteen. Ability tracking is controversial in Norway, and persistent

ability tracking is not allowed. There are standardized national tests in numeracy, literacy,

and English in 5th, 8th and 9th grade. In the 10th and final year, students sit exit exams.

Each municipality is in charge of its school policy. However, several explicit and implicit

national standards exist, such as a national curriculum and a fixed number of teaching hours

per subject. Oslo is the largest municipality and the capital of Norway. The student compo-

sition in Oslo is heterogeneous in terms of parents’ education and ethnic background. There

are substantial differences between schools, reflecting residential segregation. Within munici-

palities, school funding is compensatory, such that schools with students of less advantageous

backgrounds get increased funding.

High school is not compulsory, but students are entitled to three years of upper secondary

education. Almost all students start high school directly after lower secondary education.

However, about 25 percent do not complete within five years. For many students, passing

mathematics is a binding constraint for completing upper secondary education. Thus, better

numeracy skills will enable more students to graduate from high school. Furthermore, an

improved understanding of mathematics may create a greater sense of mastery, which low-

performers may be lacking. Low completion rates are a policy concern and the backdrop for
7Parents can apply for transfer to another school. The request will be subject to available

capacity at the receiving school. Less than 5 percent of students attend private schools.
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the intervention.

3 The intervention

The intervention ran during the school years 2016/17, 2017/18, and 2018/19 and consisted

of teacher training and targeted instruction of students in 8th grade with low proficiency in

mathematics. In the remainder of the paper, we denote these students as target students.

In the first part of the intervention, qualified teachers attended the training program that

provided them with didactic principles and tools adapted for students who perform poorly in

mathematics. Then, in the second part, target students from 24 treatment schools received

two periods (5-6 weeks during October-November and 4-6 weeks around April) of instruction

by the newly trained teachers. The targeted math instruction replaced regular instruction in

mathematics, typically three hours per week, during the intervention period.8 A majority of

the target students were in small groups consisting of six or fewer students. The remaining

minority stayed mainly in their regular classes (large groups). The small-group treatment fits

Fryer’s (2017) definition of high-dosage tutoring (see footnote 2). The first year served as a

pilot. We get back to how the pilot year differed from the last two years in section 3.3.

3.1 The didactic methods and organization of the teacher training

According to Valenta (2015), five components are crucial for understanding numerical rea-

soning: Conceptual understanding, calculation, application strategies, rational thinking, and

commitment. Previous tests and analyses by the local school authorities in Oslo (UDE) show

that the target students have poor comprehension of these five components, suffer from mis-

conceptions, and have little learning effect of ordinary teaching. Without (basic) knowledge
8Most schools have three math sessions of 60 minutes or four math sessions of 45 minutes

per week in 8th grade. There are 38 school weeks a year, so there will be 114 sessions of 60
minutes or 152 sessions of 45 minutes. The intervention thus replaced 25-30 percent of the
math instruction during 8th grade.
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and skills from primary education, the target students lack the prerequisites for mastering

mathematics at the lower secondary level, and their challenges propagate (Borg et al., 2014).

Identified shortcomings and misconceptions have influenced the mathematics content covered

and didactic methods used in the intervention.

UDE was responsible for the content and organization of the teacher training program.

The Danish School of Education (DPU) provided professional guidance. DPU has extensive

experience with research on students with low math skills. They have conducted several

interventions to improve students’ numeracy skills (Jankvist and Niss, 2015; Lindenskov and

Tonnesen, 2020; Harder et al., 2020).

The didactic methods are based on internationally acknowledged teaching practices and

supplemented with experience based on other Norwegian teacher training programs. The di-

dactic methods consist of principles and tools. DPU and UDE incorporated six principles

into the teacher training program and the instruction of students. (i) Create a link between

learning sessions to activate student memory of mathematical concepts and help form math-

ematical connections. (ii) Use low threshold and high ceiling tasks to ensure that all students

can get started and simultaneously make sure that the instruction is sufficiently differentiated

so everybody can reach their potential. (iii) Foster motivation leading to improved perfor-

mance, acknowledging that affection and cognition are aspects of learning mathematics. (iv)

Initiate conversations with and among students on mathematical processes and concepts to

support mathematical understanding. (v) Set realistic but high expectations to support stu-

dent motivation and engagement. (vi) Create a logbook to activate students’ concentration,

reflections, and long-term memory. See details in Appendix A.

Teachers can endorse these six principles in the classroom by using four didactic tools. (a)

The Singapore thinking blocks method, (b) persistent pairing of students (learning partner),

(c) organization of instruction and learning at three levels: individual - group - plenary, and

(d) linguistic expressions to enrich students’ oral communication.

UDE prepared and implemented the teacher training program with assistance from DPU.
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The teacher training program took place before and in parallel with the instruction of target

students. Treatment schools selected qualified math teachers for the intervention. To have a

pool of qualified teachers that could step in as substitutes, for instance, in case of illness, and

to further embed the didactic methods in the professional community, representatives from

the school administration also attended the training.

The teacher training program started with a meeting at the beginning of the school year

explaining the background and aim of the intervention. The teachers would then receive

lectures and participate in workshops during autumn and spring. The focus was on the

theoretical and practical aspects of implementing the new didactic methods for low-achieving

math students.

The teacher training program separated small and large group teachers. The six didactic

principles and four didactic tools were the same for small and large group teachers. However,

teachers selected to teach small groups got additional instruction materials, including concrete

lesson plans and exercises. Teachers teaching large groups did not receive any. The rationale

was to let the large group teachers themselves adapt standard materials when appropriate.

In designing the teaching material for the small groups, DPU and UDE (re)used many

elements from Numbers count.9 This program traditionally targets students in the lowest

grade levels and is proved effective (Torgerson et al., 2011). There is less evidence on how it

affects adolescents. As poorly performing students in the 8th grade in Oslo have challenges

related to curriculum objectives for much lower grade levels, we choose to deploy Numbers

count when designing learning materials for the small groups. Numbers count can be applied

in many ways, provided tailored to the students’ age, specific conditions, and motivation

structure.
9See, for instance, https://everychildcounts.edgehill.ac.uk/mathematics/numbers-count/.
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3.2 Organization and funding of small- and large-group instruction

The 24 treatment schools received funding for small-group instruction for the three years

the intervention lasted. The exact amount of funding depended on the number of students

belonging to the target group in 8th grade in 2015/16 (i.e., the year before the first year of the

intervention). The remaining 24 control schools only received information (at the management

level) about the experiment.

Providing small-group instruction for all target students would require many small groups

in some schools, putting demands on available classrooms and qualified teachers. In coordi-

nation with UDE, we decided that there would be a maximum of (three) small groups per

school. Schools that had 18 or fewer target students received funding to form up to three

small groups. Schools with more than 18 target students received financial support to create

two small groups for the 12 lowest-performing students and a smaller amount of funding to

facilitate instruction in line with the didactic methods of the intervention in larger groups for

the remaining target students. Based on information from UDE, large groups coincide with

regular classes minus the low-performing students receiving small-group instruction. The fact

that the lowest-performing target students were taken out of regular math classes during the

treatment implies that non-target students also experienced a change in didactic methods,

class size, and class composition during the treatment periods.

The students take the 8th-grade numeracy test in late September/early October. The

results were available shortly after and were used to identify target students. The selection of

students to small- or large-group instruction followed explicit assignment rules. Intervention

instruction would start early/mid-October, and UDE followed up with the schools during the

treatment years. Before each intervention year, UDE informed the treatment schools about the

intervention and what it meant in terms of extra funding, teacher training, student selection,

implementation of small-group instruction, and reporting.
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3.3 The pilot year

Due to limited time for preparing the teacher training program, the first year (the school year

2016/2017) served as a phase-in and a pilot. Only eight of the 24 treatment schools received

training for teachers and implemented the full treatment the first year. The remaining 16

treatment schools only received funding for group instruction. They got identical directions

concerning which students to assign to small and large groups, teacher qualifications, and the

extent and timing of group instruction. However, teachers from these schools did not receive

training the first year. In the remainder of the paper, we denote this treatment as funding-

only. The size of the small groups was eight students the first year, meaning that schools with

up to 24 target group students would have three small groups in the pilot year.10

A survey following the first intervention period in 2016 showed that fidelity to the didactic

methods among teachers was very low. It was mainly due to a shortage of information and

course material (see more in Appendix B.1). Based on experiences from the first year, there

were changes also to the teacher training program. In the first year, the sessions were, to a

large extent, theoretically oriented and focused primarily on presenting the didactic principles

and tools, followed by teacher reflections. To raise fidelity, that is, induce a high-quality im-

plementation of the didactic methods, the training sessions in the two following years included

additional workshops. The latest workshop of the training program included practicing and

observations in classrooms.

4 Data and empirical strategy

In this section, we describe our data, the student population, randomization and balancing

across treatment and control schools, and how we will analyze the intervention effect.
10According to Fryer’s (2017) definition (see footnote 2), the small group instruction in the

pilot year is not defined as high-dosage tutoring.
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4.1 Data and target students

The data are mainly from national registers or registers from the municipality of Oslo. Ad-

ditionally, we use self-collected data from teacher surveys and classroom observations to shed

light on mechanisms. The national employer-employee register allows us to track teachers

across employers. From the National Education Database (NUDB), we have detailed infor-

mation on students’ previous results from standardized national tests in 5th grade (NP5) and

8th grade (NP8). NUDB also provides information on birth year, sex, and family background,

i.e., parents’ highest educational attainment and immigration status. From UDE, we obtained

individual-level data on students enrolled in special-need education and results on national

tests in 9th grade (NP9). UDE also collected data on group assignments in treatment schools.

Our complete student sample includes all students in 8th grade in Oslo in the school years

2016/17, 2017/18, and 2018/19, about 5500 students per year. We focus on 2017/18 and

2018/19 for our main analysis of the intervention and separately study the treatments in the

pilot year as described in section 3.3.11 We exclude students receiving special needs education,

as they already receive customized instruction and were not eligible for targeted instruction in

the intervention. Furthermore, we exclude students with no data from the 8th-grade numeracy

test, as we are not able to detect whether these students belong to the target group or not.

In total, we exclude about 10 percent of the gross sample.12

We define target students as those who score at the two lowest proficiency levels (out of

five) on the standardized national test in 8th grade, NP8. Figure A1 in Appendix C shows the

distribution of test scores on NP8 for fall 2017 (the other years have a very similar distribution).

The target group constitutes about 20 percent of the students, i.e., about 1100 students per
11The intervention follow the pre-registration published in July 2017 (Kirkebøen, 2017) with

one exception: Initially, the treatment was planned to be identical in the three intervention
years. Given the changes made in the size of the small groups and the teacher training from
the first to the second year, we believe it is more reasonable to analyze the pilot separately as
we do in this paper.

124.4 percent lack NP8 while 8.1 percent receive special-need education, with some overlap
between these two groups.

14



year. To ease interpretation of the estimated intervention effects, we will normalize the test

scores with the national mean and standard deviation.

Table 1 presents descriptive statistics for our main estimation sample, where we also sepa-

rate between target and non-target students. 49 percent of the students are female, 36 percent

have parents without higher education, and 31 percent have two foreign-born parents. As ex-

pected, there is an over-representation of boys and students of lower educated and foreign-born

parents among the target students.

Compared to the national average test score, students in Oslo score about 37 percent of a

standard deviation better, both on the 8th grade and the 5th-grade numeracy tests. Target

students, selected on their 8th-grade performance, score almost 1.1 standard deviation below

the national average in grade five and 0.8 standard deviation below in grade eighth. We will

use the numeracy test score in 9th grade, which is directly comparable to the 8th-grade score,

to measure treatment effects. The average progress from 8th to 9th grade corresponds to

about 32 percent of a standard deviation. However, the average improvement of the students

belonging to the target group is only about 17 percent. While 20 percent of all students in

the sample perform at proficiency level one or two in 8th grade, only 12 percent do so in 9th

grade. Among the target students, 10 percent perform at the lowest proficiency level in 9th

grade and another 44 percent at the second lowest. Few non-target students perform at the

two lowest levels.

4.2 Randomization and implementation of the different treatments

We conducted a randomized controlled trial (RCT) at the school level to evaluate the interven-

tion.13 The randomization took place in May 2016. Principals of all lower secondary schools in

Oslo were informed about the project in February 2016. Shortly after randomization, schools

knew whether they were in the treatment or control group, and the treatment schools started
13By conducting the randomization at the school level, we avoid spillover effects between

treatment and control groups within the same school. This is the same motivation as, e.g.,
Andersen et al. (2020).
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Table 1: Descriptive statistics, main estimation sample

Estimation Target Non-target
sample students students

Student background
Female 0.492 0.408 0.513
Low parental education 0.355 0.671 0.276
Foreign-born parents 0.312 0.576 0.246

Pre-determined test scores
Grade 5 numeracy (y5) 0.36 -1.08 0.72
Grade 8 numeracy (y8) 0.37 -0.79 0.61

Outcomes
Grade 9 numeracy (y9) 0.69 -0.62 0.99
Proficiency level 1, grade 9 (DL1) 0.020 0.103 0.001
Proficiency level 2, grade 9 (DL2) 0.123 0.540 0.025

Number of students 9929 1977 7952
Note: The sample consists of students sitting 8th-grade numeracy test in 2017 or 2018 in Oslo
who do not receive special needs education.

to make plans for teacher training and small and large group instruction.

Schools in Oslo are heterogeneous, with the number of target students in 2015/16 (the

year before the intervention and the most recent available test results at the time of ran-

domization) ranging from six to 64. To increase the likelihood of the treatment and control

groups being similar, the 48 lower secondary schools were matched on the number and shares

of students in the target group in 2015/16 and divided into 24 pairs (strata). From each stra-

tum, we randomly selected one school for treatment.14 This way of stratifying schools prior
14Matching was done by constructing a distance measure based on standardized numbers

and shares of target students. The number of target students crucially impacts the imple-
mentation of the intervention (number of small groups and number of target students in large
groups), while the share of low-performing students measures the average performance level
at the school. To ensure a sufficient number of target students in large groups, in both control
and treatment schools, the number of target students was given twice the weight as the share
of target students when matching schools. Randomization was done by writing a script that
randomized schools. After testing, a random seed was set, and it ran once.
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to the randomization follows the recommendations of Bruhn and McKenzie (2009).15 For the

pilot intervention in 2016/17, we randomly selected eight of the 24 treatment schools to full

treatment in the following way: After sorting the strata, we pooled them into groups of three

(eight groups in total) and selected one of the three treatment schools from each group to

full treatment the first year. The remaining 16 treatment schools received the funding-only

treatment in 2016/17. In 2017/18 and 2018/19, all 24 treatment schools received the full

intervention, including teacher training and funding for small and large groups.

According to the assignment rules and administrative data, 560 target students in treat-

ment schools got instruction in small groups and 400 in larger groups in the school years

2017/18 and 2018/19. In the pilot year, 2016/17, about 130 target students in the eight full-

treatment schools got small-group instruction, and another 50 target students got instruction

in larger groups. The 16 funding-only schools had 375 target students, of which 234 got

small-group instruction and 141 instruction in larger groups.

The upper left panel of Figure 1 shows the number of target students assigned to small or

large groups in the school year 2015/16, i.e., the year used as the basis for stratifying schools for

randomization in our sample. The remaining panels show how we distributed target students

in small and larger groups in 2016/17 - 2018/19. The number of target students varies, partly

due to differences in school size (ranges from 37 to 203 target students) and partly due to

differences in test scores (school average test scores range from 0.68 SD below the national

mean to 1.03 SD above). Figure A2 in Appendix C is equivalent to Figure 1 apart from that

it reports the share of target students instead of the number.

For the 2017/18 students, we have data from the municipality in Oslo on actual assignments

to small and larger groups. Of 466 target students in treatment schools, 299 got small-group

instruction and 154 large-group instruction. Only 13 target students were not recorded as

receiving treatment. In Figure A3 in Appendix C, we compare the predicted and observed
15Athey and Imbens (2017) recommend having at least two treated and two control units

in each stratum.
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Figure 1: Number of target students by school and year
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Note: Each bar represents the number of target students in one school and year. The bars
distinguish between target students predicted to get instruction in small and large groups if
the school participates in the intervention. In 2015 (the year used as the basis for stratifying
schools) and 2016 (the first intervention year), we use the 2016 maximum small-group size of
eight students, while in 2017 and 2018, the reduced group size of six students. Schools are
sorted by the number of target group students in 2015.

numbers. For the lowest-performing students, there is a vast overlap between observed and

predicted treatment. 89 percent of the lowest-performing students, who should get small-

group instruction according to the assignment rule, do get small-group instruction. However,

about 1/3 of the target students predicted to get large-group instruction are reported to get

small-group instruction16, and in some schools, a substantial number of non-target students

are reported to get large-group instruction.17

16About half of these students come from three schools which report having 22-26 students
in small groups. We do not know if these schools had more groups or larger groups than
stipulated or misreported the number of students getting small-group instruction.

17In total, 329 non-target students are reported to get large-group instruction. All these
students, apart from 16, belong to seven schools that report that all their students, including
non-target students, get small- or large-group instruction. Likely, this is due to mixing large-
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Small and large groups differ in within-group student heterogeneity. The within-group

standard deviation of the 8th-grade numeracy score is approximately 30 percent of the overall

SD in the small groups and 70 percent in the large groups (both for predicted and reported

small-group students).

4.3 Empirical strategy

As we assigned students to small- and large-group treatments based on observed test scores,

we can identify the corresponding groups of students in control schools, i.e., the counterfac-

tual outcome. Hence, we can identify the effects for the following groups. (i) The (lowest-

performing) target students in small groups, (ii) the remaining target students in large groups,

and (iii) spillovers to non-target students.

We estimate intention-to-treat effects (ITT) by using the following equation:18

yist = β0 + θTs + γt + δs + µXi + εist (1)

In the main effect analyses, yist is the 9th-grade test score of student i at school s in year t.

Ts equals 1 if school s is a treated school, 0 otherwise. We control for differences between

cohorts (γt) and the 24 strata from the randomization (δs), as well as student characteristics

Xi (gender, family background, and previous achievements such as 5th and 8th-grade test

scores). We allow for the residuals εist to be correlated over time within schools and adjust

standard errors for school-level clustering. The number of schools (48) is in line with the

group target students with non-target students.
18The comparison of predicted and actual assignment in the previous sub-section suggests a

minor attenuation bias due to mismeasurement of the small-group treatment. We will briefly
comment on the treatment effect on the treated when presenting the results. Athey and
Imbens (2017) caution against studying RCTs with regression models and recommend using
re-sampling methods. While the randomization is done by strata based on data for previous
student cohorts, in line with the recommendation of Athey and Imbens (2017), we also have
pre-treatment data for the actual participants. Adjusting for individual baseline outcomes has
a large impact on precision, our ability to handle (random) imbalances, and heterogeneous
effects.
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rule-of-thumb, the minimum number of clusters for cluster-robust estimation, to be reliable.

However, with heterogeneous cluster sizes, the effective number of clusters is smaller (Cameron

and Miller, 2015). Also, in some analyses, we have fewer clusters. Therefore, we also have

applied wild bootstrap tests to the estimates and will comment on these tests when presenting

the results.19

Our parameter of interest, θ, indicates the difference between treatment and control schools

and can be estimated separately for target students in small and large groups and non-target

students (spillovers). Regarding pre-determined student- and school characteristics, we can

use the same model framework to investigate whether the treatment and control schools are

similar, as expected from the randomization. If alike, we interpret θ as a causal effect of

the intervention for post-intervention outcomes. If the treatment and control groups are not

alike, we will still get an unbiased effect estimate if we, through γ, δ, and X, manage to

control for all differences between the treatment and control groups that are not effects of the

intervention. Lin (2013) justifies such OLS adjustments to experimental data.

4.4 Balancing of treatment and control schools

The basic idea behind stratified randomization is to ensure balance across schools belonging

to the treatment and control schools. However, as we only have a limited number of schools,

we may still get imbalances by chance.

Table A1 in Appendix C compares treatment and control schools. There is little evidence

of systematic differences between treatment and control schools. The only difference which is

significant (only at the 10 percent level) is the share of female teachers when weighting with

the number of students. There are, however, insignificant differences in student composition.

Students in treated schools are: more likely to have parents with tertiary education, less likely
19For the main estimates, we have used Stata’s cluster option. For the wild bootstrap tests,

we use a boot-test with the standard 999 replications (Roodman, 2015). As the wild bootstrap
is sampling-based, p-values and confidence sets will vary between replications. We have fixed
the random seed to make the results presented reproducible.
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Table 2: Balancing - check of randomization, all students 2017/18 and 2018/19

(1) (2) (3) (4) (5) (6)
Dummy Background 8th grade Dummy Small- Large-

main index score target group group
sample (ŷ9) (y8) group instruction instruction

Effect estimates from specification with
No controls 0.001 0.099** 0.076* -0.022* -0.011 -0.011

(0.011) (0.035) (0.045) (0.012) (0.008) (0.011)

Family controls -0.005 0.004 0.006 -0.002
(0.026) (0.007) (0.008) (0.010)

N 11106 9930 9930 9930 9930 9930
ȳ 0.894 0.596 0.363 0.199 0.115 0.084

Note: Each cell gives an estimate of θ from equation (1) for a given outcome (column) and set
of controls (rows). Outcomes are (1) dummy for being in the main sample (i.e., observed 8th-
grade numeracy and not special needs education), (2) 9th-grade numeracy score predicted from
observed family background, (3) 8th-grade numeracy score, (4) dummy for being in the target
group (i.e., low 8th-grade numeracy score), (5) dummy for getting small-group instruction if
treated and (6) dummy for getting large-group instruction if treated. The sample in column
(1) consists of all students in 8th grade, whereas the sample in other columns consists of
the students belonging to the main sample. The specifications in the first row only control
for student cohort and strata (group in randomization), while the second row adds controls
for family background. Cluster (school) robust standard errors in parentheses. Statistical
significance: ** 5 percent level and * 10 percent level.

to have immigrant parents, and have higher average 8th-grade numeracy scores.

In Table 2, we investigate the similarity of the treatment and control schools. We analyze

pre-determined characteristics according to the design specified in section 4.3. Each cell

represents a separate regression. The columns indicate the outcome variable studied, while

rows which control variables we include.

We start by looking at the first-row specifications, controlling for strata in the random-

ization and cohort. In the first column, we investigate whether there is a difference across

treatment and control schools in the number of students from the full sample who have non-

missing test scores from grade eight and are not receiving special needs education, and thus

are in the main sample. We find no such difference. In both treatment and control schools, we
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include just under 90 percent of students in the analyses (cf. outcome means in the bottom

row of Table 2).

In the following columns, we investigate differences in student characteristics within the

estimation sample and find significant differences. Column (2) shows the difference in an

index of student and parental background, constructed as the predicted score on the numeracy

test in grade 9. This index is about 10 percent of a (test score) standard deviation higher

in treatment schools than in the control schools. The difference in measured score on the

grade eight numeracy test in column (3) is slightly smaller and amounts to 7.6 percent of

a standard deviation. As a result of the better prior performance of the students in the

treatment schools, fewer students belong to the target group in treatment schools than in

control schools. This difference amounts to 2.2 percentage points (column (4)) and can be

compared to the sample average of 20 percent target students. Finally, columns (5) and

(6) decompose the target students into those that would get small-group and large-group

instruction if treated. For both treatments, the share of target students is 1.1 percentage

point lower in the treatment schools, but the differences are not significant. In the second

row, we add controls for family background. Family background explains the differences in

both test scores and the share of target students (column (3)). In the effect analyses, we will

study several samples, corresponding to different treatments.

In Table A2 in Appendix C, we show differences in family background and 8th-grade nu-

meracy score for the small-group, large-group, and non-target samples. In particular, in the

small-group sample, we find substantial treatment-control differences in both family back-

ground and 8th-grade numeracy, with family background unable to explain the difference in

numeracy. We will address this imbalance by adding different sets of pre-determined controls

when analyzing the effects, primarily controls for 8th-grade numeracy.
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Figure 2: Treatment-control differences across many randomizations

(a) 8th grade numeracy
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(b) Predicted 9th grade numeracy
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Note: Figures show the distributions of the treatment-control differences from 10,000 random-
izations. The shaded areas indicate the share of randomizations with an absolute difference
larger than the observed differences in the experiment, 0.076 and 0.099.

4.5 Investigating stratified randomization

With the random assignment of schools, we may be surprised to see significant (and substan-

tial) differences between treatment and control schools. However, while we expect schools to

be similar on average (across many randomizations), the limited number of schools combined

with differently-sized schools and a heterogeneous student population (cf. Table A1) make

differences like those we observe somewhat likely. In Figure 2, we present the distribution of

differences in 8th-grade numeracy scores and predicted 9th-grade scores between treatment

and control schools across 10,000 randomizations. Sub-figure (a) shows that we find abso-

lute differences in 8th-grade numeracy as large or larger than those we observe in Table 2

in 33 percent of the randomizations, as indicated by the shaded areas. The difference in

predicted 9th-grade numeracy is as big or bigger than what we observe in 5.9 percent of the

randomizations (cf. sub-figure (b)).

We stratified schools before randomization to increase the likelihood of balanced treatment

and control groups. In Figure A4 in Appendix C, we show how 8th-grade numeracy scores in

the main estimation sample (consisting of 2017/18 and 2018/19 students) vary with treatment

23



status and strata (based on the 8th-grade scores of the 2015/16 students). There is a clear

tendency for average scores to be lower in higher strata, as predicted. However, the relationship

is not monotone. Many schools have lower average scores than other schools in higher strata.

Also, while many strata have minor within-strata differences, in several strata, the differences

are substantial. It is not entirely unexpected. Figure 1 is sorted by the number of target

group students in 2015/16, such that a school retains its position in subsequent years. We see

that the number of target students (and the share of target students in Figure A2) does not

increase monotonously with rank in later years, while the number of target students correlates

over the years, the ranking of schools does change.

Given the imperfect sorting of schools into strata, it is reasonable to ask if we could

have done better regarding stratified and randomized schools. In Table A3 in Appendix C, we

compare the performance of alternative stratification schemes. In addition to the stratification

used for the randomization (numbered 1 in Table A3), we have investigated randomization

without stratification (0), a two-year version of the implemented scheme (2), stratification

based on one- (3) and two-year mean 8th-grade score (4), the number of target students (5),

and the share of target students (6). The two-year schemes (i.e., 2 and 4) use data from

2014/15 and 2015/16, i.e., the most recent years available when randomizing. These different

schemes produced similar but not identical stratifications of the schools. Looking at the

correlation matrix for the different schemes, most correlations between schemes are close to

or greater than .9, and the scheme used correlates more than .86 with all alternatives.

For each scheme, we stratify schools and randomize to treatment and control within strata

10,000 times. For each randomization, we find the treatment-control difference in the 8th-

grade test score, controlling for strata dummies. The first column in Table A3 shows the

share of randomizations that give an absolute student-weighted difference between treatment

and control schools greater than the observed difference. We see that the stratification we

used produced a difference in 33 percent of the randomizations. Without stratification, we get

differences in 56 percent of the randomizations. However, most other stratification schemes
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perform better than the one we implement. The only exception is the scheme where we use

the number of target students, which produces differences in 35 percent of the randomizations.

For the remaining, the share ranges from 8 to 22 percent.

The same pattern is visible for the mean absolute difference in the next column. With

our chosen stratification, this is 6.1 percent of a standard deviation. With no stratification,

the mean absolute difference is 10.4 percent, and for the other schemes, it ranges from 3.5

percent (when stratifying by average score) to 6.4 percent (when stratifying by the number

of target students). While student heterogeneity between schools is the main reason for these

differences, differences in school sizes also contribute. We see this by comparing the student-

weighted differences in the second column with the unweighted school differences in the third.

For the stratification used, the mean absolute unweighted difference is 5.1 percent of a standard

deviation, almost 20 percent smaller than the weighted difference.

Table A3 demonstrates that stratifying partly by the number of target students produces

larger average differences in test scores than if schools were stratified exclusively by average test

scores. However, the stratification was also based on the number of target students because

the intervention depends crucially on the number of target students and to ensure sufficiently

many target students receiving instruction in large groups both in treatment and control

schools. The fourth and fifth columns of Table A3 show the student-weighted and unweighted

absolute mean difference in the number of target students between the treatment and control

schools. With an unweighted mean absolute difference of 2.5 students, the stratification used

is the second best-performing, beaten only by stratification by the number of target students.

Randomization without stratification stands out with poor performance, as for average test

scores. However, stratification by average test scores gives mean absolute differences in the

number of target students of about 3, only moderately higher than the difference for the

stratification used.
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5 Results

In this section, we present our effect estimates. We first investigate the effects on target

students receiving high-dosage tutoring, large-group instruction, and spill-overs to non-target

students. We then study the treatments in the pilot year.

5.1 Effects of the main intervention

High-dosage tutoring

In Table 3, we report the results on student achievement of receiving instruction from trained

teachers in small groups. Each cell represents a separate regression. We study different

outcome variables (indicated by the columns) and include various control variables (indicated

by the rows). As shown in section 4, we have found evidence of random differences between

treatment and control schools. We will thus need to take pre-existing differences into account

when estimating treatment effects.

We start by establishing (in column (1)) that the difference in test-taking across treatment

and control schools is essentially zero, irrespective of controls. It is reassuring as marginal

test-takers will typically be low-performing students. If the intervention affected test-taking,

this could mask or exacerbate an effect on test scores.

In column (2), we present the effects on our main outcome variable, the 9th-grade test

score (for the 89 percent of the students that took the 9th-grade test). Low-performing

students receiving small-group instruction perform 0.12 SD better than the similar students

in the control schools (cf. the top row, without controls). A large part of this difference is

attributable to their more advantageous background. When conditioning on family controls in

row two, the point estimate decreases to 0.10. In row three, we further add controls for prior

achievement (8th-grade test scores) and obtain a statistically significant difference of 0.06 SD

in favor of the treated students. As this estimate is conditional on prior performance, and

there is no impact on test-taking, we argue that this is a credible estimate of the intention-to-
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Table 3: Treatment effects, target students in small groups 2017/18 and 2018/19

(1) (2) (3) (4)
9th grade Lowest Low

Dummy score proficiency proficiency
has y9 (y9) (DL1) (DL2)

Effect estimates from specification with
No controls 0.001 0.122** -0.052** -0.069**

(0.017) (0.036) (0.019) (0.025)
Family controls 0.001 0.104** -0.048** -0.061**

(0.015) (0.032) (0.018) (0.021)
Family +y8 controls -0.003 0.060** -0.035** -0.028*

(0.015) (0.021) (0.014) (0.016)
Family +y5 controls 0.004 0.104** -0.048** -0.060**

(0.015) (0.030) (0.017) (0.022)

N 1142 1015 1015 1015
N clusters 48 48 48 48
ȳ 0.889 -0.720 0.141 0.603

Note: Each cell gives an estimate of θ from equation (1) for a given outcome (column) and
set of controls (rows). Outcomes are (1) dummy for whether the student has a 9th-grade
numeracy score, (2) 9th-grade numeracy score, (3) dummy for 9th-grade numeracy score at
lowest proficiency level and (4) dummy for 9th-grade numeracy score at two lowest proficiency
level. The specifications in the first row control for student cohort and strata (group in
randomization), the second row adds controls for family background, while the third and the
fourth rows include (third-degree polynomials) 8th-grade or 5th-grade numeracy test score.
The sample is target students predicted to get instruction in small groups in years 2017/2018
and 2018/2019 and corresponding students in control schools, and except for column (1) have
a 9th-grade test score. Cluster (school) robust standard errors in parentheses. Statistical
significance: ** 5 percent level and * 10 percent level.

treat effect of a target student predicted to get small-group instruction by trained teachers.20

Assuming that the 2017/18 share of 89 percent of predicted small-group students getting such

instruction is representative for both years and that there is no effect on the remaining 11

percent that do not receive small-group instruction, this corresponds to a treatment effect on

the treated of about 0.067 SD for the students receiving small-group instruction by trained

teachers. In columns (3) and (4), we study differences in the share of students performing

at the lowest and either of the two lowest proficiency levels on the 9th-grade test. In line
20This effect is also significant in a wild bootstrap test (p = .041).
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with the positive effect on test scores, we find a reduction of 3-4 percentage points in either

measure of low-scoring students, with base levels of about 14 and 60 percent, corresponding

to about 25 and 5 percent.21

Although test score in grade eight is the best proxy for prior performance and thus gives

the lowest residual variance and the most precise estimates, it is potentially endogenous to the

treatment. The test in 8th grade is conducted about 1.5 months into the school year, which is

after the teacher training has started. In the last row, we substitute 8th-grade test scores with

5th-grade test scores, which are indeed pre-determined. We find a significant difference of 0.10

SD in favor of the treated students, very similar to the results where we only control for family

background. While less vulnerable to endogeneity for the treatment, this specification takes

less account of pre-existing random differences between the treatment and control schools. We

will thus focus on the results conditional on 8th-grade scores as our main effect estimates.

Large-group instruction

Table 4 presents the effects on target students receiving instruction by trained teachers in

larger groups. The set-up is identical to Table 3. As for small-group instruction, there are

no large differences in test-taking across treatment and control schools (column (1)). Turning

to our main outcome variable, 9th-grade test scores in column (2), the point estimate is

negative and insignificant in all specifications and close to zero, particularly in the preferred

specification where we control for the 8th-grade test score. Consistent with no impact on test

scores, we find no effects on the share of low-performing students in columns (3) and (4). The

confidence interval for effect on test scores is (-.07, 05).

There are fewer students in the large-group sample than in the small-group sample. Fur-

thermore, we only have 25 schools (11 treatment and 14 control), which reduces the power

of the large-group analysis. A wild bootstrap test produces a confidence set of (-0.08, 0.08).
21A wild bootstrap test of the former effect is significant at the 10 percent level (p = .059)

but not for the latter.
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Table 4: Treatment effects, target students in large groups 2017/18 and 2018/19

(1) (2) (3) (4)
9th grade Lowest Low

Dummy score proficiency proficiency
has y9 (y9) (DL1) (DL2)

Effect estimates from specification with
No controls 0.010 -0.036 0.012 0.022

(0.012) (0.031) (0.008) (0.035)
Family controls 0.014 -0.041 0.015 0.029

(0.012) (0.032) (0.010) (0.036)
Family +y8 controls 0.016 -0.010 0.006 0.005

(0.013) (0.029) (0.011) (0.034)
Family +y5 controls 0.015 -0.035 0.014 0.025

(0.011) (0.027) (0.010) (0.035)

N 835 760 760 760
N clusters 25 25 25 25
ȳ 0.910 -0.483 0.053 0.455

Note: Each cell gives an estimate of θ from equation (1) for a given outcome (column) and set of
controls (rows). See note to Table 3 for details. The sample is target students predicted to get
in instruction in large groups in years 2017/2018 and 2018/2019 and corresponding students
in control schools. Cluster robust standard errors in parentheses. Statistical significance: **
5 percent level and * 10 percent level.

Thus, a positive effect larger than .05-.08 SD is highly unlikely, and the small point estimates

(particularly when controlling for y8) do not point to substantial effects that we are unable

to detect due to low precision. Even though the confidence intervals for the impacts on test

scores in tables 3 and 4 overlap, a formal t-test reject equality of effects (p = .015), while a

wild bootstrap test only rejects equality at the 10 percent level (p = .066).22

Spillovers to non-target students

Table A4 in Appendix C reports results for non-target students, similar to those for target

students. Concerning the main outcome variable, 9th-grade test scores, all estimates, regard-
22We estimate the model fully interacted with students belonging to the small-group sample

on data for all target students to compare the effects. With robust standard errors, this is
equivalent to separate regressions.
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less of controls included, are close to zero. Although less precise, wild bootstrap estimates are

qualitatively similar and rule out effects like the main effect in Table 3.23 There is also no sig-

nificant effect on the share of non-target students who perform at the lowest proficiency level

on the 9th-grade test, but there is an increase in the share of non-target students on either

of the two lowest levels. The latter should, however, be interpreted in light of test-taking:

marginal test-takers are often low-performing. If a large share of the extra test-takers among

the non-target students in the treatment schools (as is indicated in column (1) in Table A4)

perform at the lowest two levels, this is sufficient to explain the difference in the share of

low-performing non-target students.24

Overall, there is little indication of effects neither on non-targeted students or target

students in large groups. Recall that non-target students often were mixed with target students

randomized to large groups , suggesting that there were some changes regarding teacher

training, class composition, and class size for these students, still the changes were probably

not very large.25 Previous studies have found no class size effects in middle schools in Norway

(Leuven et al., 2008; Leuven and Løkken, 2020). Moreover, even if teachers instructing large

groups participated in the teacher training program, the variation in the academic level of

these adolescents (spanning from proficiency level 2-5, see Table A1 in appendix C) may have

been too high for endorsing the newly learned didactic methods (Duflo et al., 2011). We

discuss channels of impact, that is, teacher fidelity to the didactic principles and tools, in

section 6.
23Wild bootstrap produces a confidence interval of (-0.038, 0.037). A t-test comparing the

main effects on test scores of the small-group students and the non-target students gives a
p-value of .005, while a wild bootstrap test gives a p-value of .044.

24A wild bootstrap test gives no significant effect (p-value = .180).
25Many schools reported that all non-target students received large-group instruction (cf.

section 4.2). It may indicate that large-group instruction did not deviate much from ordinary
classroom instruction.
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Heterogeneous effects

Tables A5 and A6 in Appendix C, report effect estimates by student and school characteris-

tics. Despite problems with balancing, there are indications of effect differences by student

characteristics for the small group treatment. We find significant effects on boys and students

with parents with higher education, while effects on girls and students with lower parental

education are close to zero and insignificant. However, we cannot reject that the effects are the

same. There are no clear differences by 8th-grade test score, immigration status, or cohort.

Although, we find indications of heterogeneous effects among large group students, we are

reluctant to emphasize or interpret them. The number of students randomized to large groups

is smaller than in small groups and distributed across fewer schools. As we find no indication

of an average effect in Table 4, any significant estimate for a subgroup is likely spurious. The

estimates for non-target students are all close to zero.

We find an effect in schools with higher average 8th-grade test scores and no impact in

schools with lower average test scores. It is the only case where the effects for different school

subgroups are significantly different. However, it does not point clearly to any mechanism.

Schools with higher average test scores have fewer target students and a higher share of target

students receiving small-group instruction than schools with lower average scores.

5.2 Treatments in the pilot year

Table A7 in Appendix C shows results based on the first year of the intervention for each

combination of student group (target students randomized to small and large groups) and

treatment (full treatment or funding only).

We see that the imbalance in pre-intervention characteristics notably regards the small-

group students in schools implementing the full intervention. Adjusting for the difference in

8th-grade score yields substantial but imprecise negative effect estimates - for both groups of

target students - and in particular for students in large groups. The estimates are significant at

the 10 percent level. However, as the treated students belong to only eight schools, the cluster-
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robust estimates may under-reject. Wild bootstrap confidence sets are wider. In particular for

students in large groups, and insignificant both for small- and large-group students. Imbalance

in pre-determined characteristics for the small-group students makes these estimates hard to

interpret.26 Similarly, the low number of students and the conflicting differences in background

and 8th-grade scores make the estimates for large-group students also hard to interpret.

Schools only receiving funding are more similar to their control schools before the interven-

tion, and thus the estimates for these schools are easier to interpret. We find an insignificant

negative effect of 0.07 SD for small-group students and a negative effect of 0.08 SD, significant

at the 10 percent level, for other target students. For each of the main effect estimates in

column (4) of Table A7, a t-test rejects equality of effects with the main estimate from Table

3. Wild bootstrap tests only reject equality of the full treatment and the main intervention for

small groups, and only at the 10 percent level. Taken at face value, the funding-only treatment

suggests that small group instruction for low-performing students (i.e., ability grouping) with-

out customized didactic methods is not sufficient to improve student achievement. However,

recall that the group size in the first year is beyond what Fryer (2017) defines as high-dosage tu-

toring. And, even though schools got detailed instruction on how to spend the extra resources,

including how to group students, we cannot guarantee the lack of discretionary adjustments.

6 Teacher fidelity to the didactic methods

For students to benefit, it is necessary that the teachers apply the targeted didactic meth-

ods they learned during their training. Fidelity, i.e., a high-quality implementation, means

endorsing the didactic principle and tolls intended by the program.

During autumn 2017 and spring 2018, DPU collected data on fidelity through non-participative

observations in randomly selected (treated) classrooms. In total, DPU observed 47 interven-
268th-grade test scores are strongly related to 9th-grade scores. If there is a difference in the

8th-grade score, a bias when controlling for the 8th-grade score can give a substantial relative
bias in the estimated effect.
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tion sessions, 35 in small groups and 12 in large groups. Each classroom observation followed

one intervention session from start to end. DPU developed and used observation forms to

assess the fidelity of implementing the six didactic principles and the four didactic tools.27

Overall, we find higher fidelity to the didactic principles and tools among small-group

teachers than large-group teachers. We find that principle 2 (use low threshold-high ceiling

tasks), primordial for differentiated instruction, hence suited for the large and relatively het-

erogeneous groups of students, is little used. Teachers only applied this principle in one-third

of the observed large-group sessions, suggesting that conducting differentiated instruction in

a classroom of heterogeneous students is hard to achieve. It may explain the lack of impact

on target students in large groups, as indicated in Table 4. Durlak et al. (2011) find that a

lower-quality program implementation induces poorer student outcomes than a higher-quality

or more complete implementation.

Given the existing findings in the literature, it is not surprising that small-group teachers

show greater fidelity to the didactic methods of the intervention. The small groups consist

of more homogeneous students, enabling teachers to concentrate their instruction on where

students are academically and adjust to one academic level (Duflo et al., 2011; Guryan et al.,

2021). That is, the teacher can personalize the instruction relative to classroom teaching in

large groups. Teachers teaching small groups also got additional teaching materials and more

detailed instruction plans, incorporating the didactic principles and tools. Research shows

that programs are more effective when they are easy to follow. Together, ability grouping and

teaching materials may have facilitated the instruction for small group teachers and thereby
27These forms are available upon request. A brief example: The aim of principle 1 is to

activate the memory of mathematical concepts and help students form mathematical connec-
tions. Adherence to this principle was coded with five observation nodes to qualify fidelity. (i)
No linking, (ii) the teacher states organizational link, (iii) students state organizational link,
(iv) the teacher states mathematical link, and (v) students state mathematical link. We find
that about half of the small group sessions and less than 20 percent of large-group sessions
had teachers or students asserting mathematical links. A third of all large-group sessions did
not explicate any links to neither former nor following sessions, which was only the case in
very few small group sessions.
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increased their fidelity to the didactic methods. Responses from teacher surveys (Kirkebøen

et al., 2018) also point to more enthusiasm and satisfaction among small-group teachers.28

The didactic principles and tools are not unique to the intervention. Comparing survey

responses from schools, we detect that the didactic methods are not unfamiliar to teachers in

control schools (Kirkebøen et al., 2018; see also Appendix B.2). However, when asked about

using the different didactic methods, there is a clear difference between treatment and control

schools with principles and tolls endorsed more in treatment schools.

We restricted access to the teacher training program and the didactic material specific to

the intervention to treatment schools. Thus, control school teachers were not directly exposed,

provided they did not change school along the way. From matched employer-employee data,

we identify 2211 teachers working in control or treatment schools in October 2017.29 When

inquiring about where they worked in March 2019, we find that only 18 out of 1115 teachers

working in treatment schools moved to control schools. We cannot identify teachers receiving

training in the linked data, but the low number suggests that direct contamination through

job changes is not a big issue. Note, there are few job changes between sample schools, but

not low mobility in general. 19 percent of the October 2017 teachers are not working at the

same school in March 2019.30

28For a thorough analysis of the classroom observations and teacher fidelity, see Lindenskov
and Gunnes (2021).

29We define teachers as employees with non-zero working hours and a
teacher/headteacher/principal occupation code.

30Both from treatment and control schools, about 3 percent move to other sample schools,
6-7 percent to other schools (schools outside Oslo or not lower secondary schools), and 10
percent do not work at schools anymore. The teachers we identify from the register data
include 192 principals and other managers. One manager moves from a treatment to a control
school (and one from control to treatment). In total, 36 of 192 managers changed workplace.
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7 Costs and benefits

In section 5, we found a significant intention-to-treat (ITT) effect of the small-group interven-

tion of .06 SD, corresponding to an average treatment effect on the treated (ATT) of about

.067 SD. In this section, we discuss how we can value this effect and how this value compares

to the cost of the intervention. As we found no effect of large-group instruction, we only focus

on the small groups.

The cost of the small-group instruction was about USD 1200 per small-group student,

while the cost of the entire intervention was about USD 1800 per small-group student. To

inform policy, we care about the cost of continuing or introducing the small-group intervention,

which will require funding for small-group instruction and some administrative overhead.31

We conclude that USD 1200 is a lower bound for the per-student cost, while USD 1800 is

a reasonable upper bound. Thus, for the small-group treatment, we find an ITT effect of

0.033-0.050 SD per 1000 USD and an ATT effect of 0.037-0.056 SD per 1000 USD. These

effects are slightly lower than what Guryan et al. (2021) find in their study.

We use Kirkebøen (2021) - who studied the effect of school quality on long-term student

outcomes - to value this effect. A 0.06 SD effect on numeracy early in lower secondary can be

expected to increase end-of-compulsory school grades by 0.04 SD, high school completion rates

by 0.6 percentage points, and earnings by 0.5 percent, or USD 265 per year. This is similar or

slightly lower than the valuation of test score effects in Guryan et al. (2021), based on Chetty

et al. (2011).32 With about 600 students receiving effective small-group instruction during the
31The total costs of the intervention (not including the research) were around USD 1.7M.

The intervention included extra administrative resources for UDE to communicate with and
provide data to the researchers. Furthermore, some administrative costs pertain to the large
groups. For small-group intervention only, the total administrative will be lower than in the
current intervention. The per-student administrative cost will, however, depend on the scale
of the intervention. Some of the costs are likely to be one-time costs, e.g., costs of teaching
materials.

32Kirkebøen (2021) finds that 0.1 SD higher school value-added on 8th-grade test scores
increases 10th-grade exam scores by about 0.067 SD and the share completing high school
by about 1 percentage point. 0.1 SD difference in exam value-added is associated with 1.7
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main intervention years, this corresponds to 3-4 more students completing high school. Even

if this is a small number and any pay-off in the labor market will be several years into the

future, the intervention may well be cost-effective. Using a discount rate of 4 percent (as the

Norwegian Ministry of finance recommends for public investments), the present value of the

above earnings effect from ages 23-59 is about USD 3700, twice the total costs per student,

and three times the cost of small-group instruction.33 Thus, if there are sustained effects on

employment and earnings similar to what we can expect from the shorter-term impact, the

small-group instruction will be highly cost-effective.

8 Conclusion

Is it too late to implement measures to help adolescents falling behind? This paper adds to

the burgeoning literature on this essential topic by designing and evaluating a high-dosage

tutoring intervention, aiming to improve the performance of low-performing 8th graders in

mathematics. While it is too early to conclude about longer-term effects (e.g., completion of

upper secondary education, the main objective), the short-term impact is promising.

A majority of the target students in our sample were randomized to small groups consisting

of a maximum of six students where they received customized instruction by newly-trained

teachers. The findings indicate that these students increased their average test scores by about

6 percent of a standard deviation in the year following the intervention. The share of low-

percentage points higher completion rates and 1.5 percent higher earnings around age 30.
Chetty et al. (2011) find that a one-percentile point increase in the 8th-grade test score is
associated with USD 150 higher earnings at age 27. Guryan et al. (2021) find that percentile
rank increases by one for about every 0.026 change in test scores, such that an effect of 0.06
SD corresponds to 2.25 percentile points or USD 340.

33Falch et al. (2009) estimate the social return to completing high school at USD 151k (ad-
justed for earnings growth since 2009), meaning that an effect on completion of 0.6 percentage
points is valued at USD 900 per student. However, this disregards any impact of increased
mathematics skills not operating through high school completion. Some international esti-
mates of the value of completion are much higher. For the US, Levin et al. (2012) estimate
the private return to high school to USD 258k and the social return to USD 756k.
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performing students is reduced by about 3 percentage points, corresponding to a reduction of

5-25 percent for different measures of low performance. The intervention is cost-effective with

an estimated cost per small-group student of USD 1200-1800 and estimated benefits of USD

3700. It is a similar effect per dollar and similar cost-benefit ratios as Guryan et al. (2021),

but with a different intervention and context.

Some target students were randomized to large groups, mainly their regular classes, in-

structed by newly-trained teachers. We find no impact on these students. Although teachers

in large groups applied the didactic principles and tools promoted by the intervention more

than teachers in the control schools, classroom observations and teacher surveys suggest low

teacher fidelity to the didactic methods in these groups. Low-quality implementation of the

didactic methods in large groups may be due to different reasons. First of all, larger groups

may require more time and effort spent on classroom management, leaving less opportunity

for conscious changes of the teacher’s practices. Second, the larger groups were more heteroge-

neous than the small groups and, therefore more challenging to manage due to differentiated

instruction being necessary. Finally, unlike small-group teachers, teachers in large groups did

not get any concrete lesson plans and teaching materials to facilitate the use of the promoted

principles and tools.

The results from the funding-only treatment point indicate zero impact, suggesting that

small-group instruction and ability grouping is not sufficient to increase performance among

low-performing adolescents if no better pedagogy is involved. However, these results need to

be interpreted with caution as group size is not directly comparable across the pilot year and

the remaining two years (25 percent larger in the pilot year).

Nevertheless, even though we cannot separate the effect of the different elements in our

intervention, we have sufficient evidence to conclude that ability grouping and a detailed

instruction plan in small groups seem to be salient channels of impact. Together with our

uplifting cost-benefit estimates, we, therefore, advocate implementing the small group inter-

vention in settings where the purpose is to ameliorate the math skills among low-performing
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adolescents.
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A The six chosen didactic principles and their scientific

background

Principle 1: Create a link between learning sessions

The aim of principle 1 is to encourage teachers to help students experience connections be-

tween sessions to support their memory consolidation and tuning-in. As a consequence of the

first international comparison of student achievement in mathematics (TIMSS 1995), West-

ern mathematics educators studied high-achieving countries, like Japan. Japanese classrooms

were characterized by teachers clarifying to students how the content and working methods

of one session relate to previous sessions and possibly also to future sessions (Okazaki et al.,

2019). The hypothesis is that coherent elements can help the students form mathematical con-

nections by supporting concentration, memory consolidation, perception of meaningfulness,

and a deeper understanding in students.

Principle 2: Use Low threshold-high ceiling tasks

Boaler (2011) finds that students benefit from non-tracking. The rationale is that teachers -

independently on whether students perform at a low, medium, or high level - endorse teach-

ing practices consisting of rich assignments, formative assessment, and high expectations of

students. Forgasz (2010), on the other hand, finds benefits of tracking for high-performing stu-

dents but disadvantages for low-performing students. Although teachers allow high-achievers

to engage in mathematical challenges, they offer simple math for low-performing students,

restricting their learning opportunities. Endorsing activities where all students have sufficient

prerequisites to get started (low entry threshold) and continue the activities in more complex

variants as far as the situation allows (high ceiling) is an essential principle of differentiated

instruction. For the small group teachers, Principle 2 is embedded in the formulated tasks

in the specific detailed teaching material. In the large groups or regular classes with target

students included, the teachers should themselves create new or adapt existing ones into low
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threshold-high ceiling tasks to let all students engage in real mathematical challenges from a

safe starting point to as much as they can master. The teacher training sessions in years 2

and 3 presented ideas and examples of how to adapt to existing tasks.

Principle 3: Initiate motivation that leads to improved performance

At the beginning of this century, affective aspects were hidden variables in mathematics ed-

ucation research (Leder et al., 2002). Nowadays, affective aspects take a growing focus in

mathematics education research. Some scholars focus on affection as a cause for cognition,

while others focus on the other way round. The relationship also goes beyond causes and

effects: Cognition is affective, and affection is cognition. These aspects are interwoven. A

feeling is a belief of what mathematics is and why mathematics is essential to master, which

is part of students’ motivation. At the teacher training sessions, the interwovenness was pre-

sented with the abbreviation MO-FORMANCE from MOtivation-perFORMANCE. Principle

3 states that it is part of the teachers’ responsibility to support the students’ motivational

and cognitive development in mathematics.

Principle 4: Initiate conversations with and among students on mathematical

processes and concepts to support mathematical understanding

In international comparisons like TIMSS and PISA, students’ ability to communicate their

mathematical results is part of the measures. Communicative competence is a goal for math-

ematics instruction. Besides, communication is a means for mathematics instruction, as stu-

dents develop their mathematical thoughts and ideas by reading, listening, writing, drawing,

and telling mathematical and everyday words and symbols. Students’ mathematical under-

standing and skills develop through individual activities but also interactions with peers and

teachers. Principle 4 states the teacher’s decisive role in setting the scene for these interactions

and initiate conversations with and among students on mathematical processes and concepts.
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Principle 5: Set realistic, but high expectations

The rationale for encouraging teachers to set realistic, but high expectations for students, is

partly based on research on student ability tracking and partly based on teacher perceptions

of students with mathematics difficulties. Scherer et al. (2017) discuss causes of mathe-

matics difficulties, where one extreme is to consider difficulties as errors by the individual

(neurological or psychological), and the other extreme is that they arise due to failures in

the educational system (didactic) or other social features (sociological). Scherer et al. (2017)

argue that teachers relating to neurological and psychological theories see these students as

being in deficit, cumbersome, and unable to learn. Those with more relational views on math

difficulties think that all students have the potential to learn mathematics. Faragher et al.

(2008) provide evidence that everyone can learn math by referring to students with Down

syndrome. Another inspiration comes from the mathematics education literature on equity.

This literature enlarges the opportunities-to-learn concept to include access to mathematical

content and discourse practices, as well as positional identities (Esmonde, 2011), which un-

derline teachers’ expectations of students’ potentials as decisive for effect. Principle 5 focuses

on the importance of avoiding setting too low expectations for low achieving students - as it

might delimit their learning opportunities.

Principle 6: Create a logbook to activate students’ concentration and reflections

and to support long-term memory

Writing a journal (i.e., logbook) is recommended to activate students’ reflections. Students

follow several different subjects during a school day, rushing from, for instance, history class to

mathematics class, and further on to a foreign language class, which may challenge students’

memory skills. Reserving some minutes at the end of each session to summarize and document

a few thoughts about the content, recorded in written notes or orally, seems to help students

remembering what they have learned. As underlined by Bligh (2000), teachers need to guide

their students. Bligh recommends advising students to document their experienced questions
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and problems immediately, or else they will forget (p.145). Students’ notes are valuable for

their teachers, too. These notes allow teachers to get a sense of what students have learned and

what confuses students. Instant feedback from students, for instance, few minutes prompted

writing at the end of a session, can help teachers adjust the following sessions to students’

needs (Center for Excellence, 2021).
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B Evidence based on the autumn 2016-survey

In Appendix B, we provide more details on the pilot year (B.1), and on compliance, group

sizes, and organization of small-group instruction in treatment and control schools (B.2).

B.1 The pilot year

In the survey following the first intervention period in 2016, only about 25 percent of the pilot

school teachers answer that they had received sufficient information, and 35 percent that the

teacher training enabled them to implement the intervention as intended. This partly reflected

implementation challenges, e.g., that lesson plans and material for the small group teachers

were not ready at the start of the intervention. There was also confusion regarding what it

meant that the intervention was part of a research project. Schools and teachers, in general,

accepted the group assignment rules. However, some were unsure about implementing the

didactic methods and to what extent they were allowed to use their professional judgment.

UDE, previously unfamiliar with implementing experiments, was not always able to provide

clear answers. Partly, it reflected a hands-off approach from the researchers and a desire from

UDE for the intervention to be like a standard intervention.34 After the initial months, lesson

plans and other materials were ready. By the second year, 75 percent of the teachers answered

having sufficient information and 70 percent enough training.

The schools receiving funding but no teacher training got explicit instructions on group

sizes and which students to include in the small and large groups, but the didactic methods

were for the schools and teachers to decide. Reports from these schools suggest nothing but
34With experimental interventions, there is always a question of to what extent we can

extrapolate the effects to non-experimental settings. To mimic a regular non-experimental
intervention, the researchers initially had limited contact with the teachers. Because there
was confusion concerning what the teachers were supposed to do, researcher visibility increased
during the first year. It may have reduced the external validity of the experiment. However,
researchers were limited to present the project and avoid confusion that would not be present
in a non-experimental setting.
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satisfaction with the extra funding. Still, we cannot rule out that there might have been issues

associated with the fact that this was indeed a pilot year. The size of the small groups in the

pilot year was beyond Fryer’s (2017) definition of high-dosage tutoring (see footnote 2).

B.2 Small-group instruction in treatment and control schools

After the 2016 intervention period, we surveyed teachers in full intervention, funding-only,

and control schools. Several teachers in each school type could participate, and we got at

least one answer from almost every school. Among the questions asked were the use of small-

group instruction and the sizes of such groups. Most teachers in the full intervention and

funding-only schools and about 40 percent in the control schools report using small-group

instruction. In Figure A5 in Appendix C, we display students and the number of groups in

the funding-only and control schools.35 We see that in both funding-only and control schools,

there is extensive use of small-group instruction. However, in funding-only schools, the group

sizes are more homogeneous and in line with the intervention (which limited group size to

eight students in the first year). Disregarding groups of more than 12 students, 70 percent

of students receiving only funding are in groups of 5-8 students versus 45 percent in control

schools.

In total, 108 students get small-group instruction in the funding-only schools, and 157

students in groups of 12 students or less in control schools, mostly being made up of groups of

9-12 students. It is hard to know to what extent the data from the control schools are accurate

and complete. However, as we have responses from all control schools (either group sizes or

an answer that they do not use small-group instruction), the number may be representative.

Thus the intervention approximately doubled the number of students receiving small-group
35We got survey responses from teachers in 15 out of 16 funding-only schools and all 24

control schools. 28 teachers from 14 funding-only schools and 24 teachers from 14 control
schools reported using small-group instruction. The reports from teachers at funding-only
schools were typically approximately consistent, while there was more variation within the
control schools. In Figure A5, we have used the answer that reports the largest number of
groups.
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instruction (cf. the 299 students that got small-group instruction in the treated schools in

2017/18) during the intervention period.

While the funding-only schools got the same rule for assigning students to small groups

as the schools receiving teacher training, the control schools got no such instructions. We

may expect that the students receiving small-group instruction in the control schools overlap

with our target group. Small-group instruction often applies for remedial teaching for low-

performing students, so target students are likely over-represented among students receiving

small-group instruction in control schools.
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C Supplementary figures and tables

Figure A1: The distribution of numeracy test scores of 8th graders, fall 2017
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Note: Test scores have a national average of 50 and a standard deviation of 10. Vertical lines
separate proficiency levels 1-5: Level 1 is test score ≤36, level 2 is test score ∈ [37, 44] etc.
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Figure A2: Share of target students per school and year

0

.2

.4

.6

0

.2

.4

.6

2015 2016

2017 2018

Small groups Large groups

Note: Each bar represents the share of target students in one school and year. The bars distin-
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schools) and 2016 (the first intervention year), we use the 2016 maximum small-group size of
eight students, while in 2017 and 2018, the reduced group size of six students.
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Figure A3: Predicted and reported treatment by 8th-grade score, autumn 2017

(a) Predicted treatment
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(b) Reported treatment
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Figure A4: Average 8th-grade score by strata and treatment status
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Figure A5: Number of groups and the total number of students in groups, autumn 2016
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Table A2: Balancing by student group, 2017/18 and 2018/19

(1) (2) (3) (4) (5) (6)
Small-group Large-group Non-target

students students students
Family 8th grade Family 8th grade Family 8th grade
index score index score index score
(ŷ9) y8 (ŷ9) y8 (ŷ9) y8

Effect estimates from specification with
No controls 0.080* 0.075** 0.026 -0.027 0.092** 0.037

(0.040) (0.034) (0.024) (0.019) (0.036) (0.033)
Family controls 0.058* -0.032* -0.005

(0.031) (0.018) (0.023)

N 1015 1015 760 760 7597 7597
N clusters 48 48 25 25 48 48
ȳ 0.220 -1.217 0.122 -0.860 0.710 0.729

Note: Each cell gives an estimate of θ from equation (1) for a given outcome and student
sample (column) and set of controls (rows). See note to Table 3 for details. Cluster robust
standard errors in parentheses. Statistical significance: ** 5 percent level and * 10 percent
level.
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Table A4: Treatment effects, non-target students 2017/18 and 2018/19

(1) (2) (3) (4)
9th grade Lowest Low

Dummy score proficiency proficiency
has y9 (y9) (DL1) (DL2)

Effect estimates from specification with
No controls 0.012** 0.043 0.000 0.002

(0.005) (0.035) (0.000) (0.003)
Family controls 0.009** -0.008 0.001 0.007**

(0.005) (0.022) (0.001) (0.003)
Family +y8 controls 0.009** -0.001 0.001 0.006*

(0.005) (0.013) (0.001) (0.003)
Family +y5 controls 0.010** 0.000 0.001 0.005*

(0.004) (0.018) (0.001) (0.003)

N 7953 7597 7597 7597
N clusters 48 48 48 48
ȳ 0.955 0.994 0.001 0.025

Note: Each cell gives an estimate of θ from equation (1) for a given outcome (column) and
set of controls (rows). See note to Table 3 for details. The sample is non-target students in
years 2017/2018 and 2018/2019. Cluster robust standard errors in parentheses. Statistical
significance: ** 5 percent level and * 10 percent level.
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Table A5: Heterogeneous treatment effects, student characteristics

(1) (2) (3) (4) (5) (6)
Family 8th grade 9th grade Lowest Low
index score Dummy score proficiency proficiency
(ŷ9) y8 has y9 (y9) (DL1) (DL2)

Student’s sex
Male 0.046 -0.020 0.166** 0.119** -0.062** -0.073**

(0.040) (0.023) (0.063) (0.046) (0.028) (0.034)
Female 0.095** 0.016 0.091** 0.019 -0.017 0.002

(0.039) (0.021) (0.039) (0.035) (0.020) (0.026)

8th grade proficiency
Level 2 0.064** 0.009 0.120** 0.056* -0.008 -0.033

(0.024) (0.019) (0.038) (0.033) (0.022) (0.024)
Level 1 0.004 -0.021 0.054 0.066 -0.080** -0.021

(0.033) (0.034) (0.068) (0.054) (0.038) (0.033)

Parental education
No higher education 0.045 0.024 0.062 0.031 -0.028 -0.004

(0.042) (0.021) (0.046) (0.031) (0.021) (0.026)
Higher education 0.105** -0.049* 0.193** 0.108** -0.047 -0.070*

(0.042) (0.029) (0.053) (0.051) (0.032) (0.039)

Immigrant background
Native 0.117** -0.002 0.193** 0.094** -0.060** -0.026

(0.029) (0.028) (0.051) (0.044) (0.025) (0.036)
Immigrant 0.034 0.043 0.095 0.082 0.018 -0.044

(0.074) (0.056) (0.121) (0.108) (0.069) (0.066)
Second gen. 0.019 -0.008 0.035 0.015 -0.025 -0.026

(0.050) (0.023) (0.050) (0.042) (0.028) (0.035)

Cohort (year of 8th grade test)
2017 0.081* 0.025 0.136** 0.061 -0.043* -0.043

(0.045) (0.025) (0.062) (0.046) (0.024) (0.036)
2018 0.067 -0.021 0.108* 0.058 -0.028 -0.015

(0.052) (0.028) (0.061) (0.047) (0.025) (0.035)

Controls for background and y8 Yes Yes Yes
Note: Each cell gives an estimate of θ from equation (1) for a given outcome (column) and
sub-sample (row). See note to Table 3 for details. Heterogeneous effects are estimated from
fully interacted models (corresponding to separate regressions for each sub-sample). The
sample is target students predicted to get in instruction in small groups in years 2017/2018
and 2018/2019. Cluster robust standard errors in parentheses. Statistical significance: ** 5
percent level and * 10 percent level.
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Table A6: Heterogeneous treatment effects, school characteristics

(1) (2) (3) (4) (5) (6)
Family 8th grade 9th grade Lowest Low
index score Dummy score proficiency proficiency
(ŷ9) y8 has y9 (y9) (DL1) (DL2)

Wave school among start in 2016 or start in 2017
Start 2016 (pilot year) 0.187** -0.019 0.237** 0.083** -0.061** -0.066**

(0.050) (0.034) (0.065) (0.030) (0.022) (0.013)
Start 2017 0.022 0.011 0.067* 0.049* -0.024 -0.011

(0.040) (0.020) (0.040) (0.028) (0.017) (0.022)

Average 8th grade test score
Lower -0.064 -0.017 -0.072 -0.018 0.011 -0.019

(0.058) (0.020) (0.053) (0.035) (0.019) (0.037)
Higher 0.152** 0.019 0.239** 0.113** -0.067** -0.033

(0.034) (0.023) (0.043) (0.038) (0.020) (0.029)

Controls for background and y8 Yes Yes Yes
Note: Each cell gives an estimate of θ from equation (1) for a given outcome (column) and sub-
sample (row). See note to Table 3 for details. Heterogeneous effects are estimated from fully
interacted models (corresponding to separate regressions for each sub-sample). The sample is
target students predicted to get instruction in small groups in years 2017/2018 and 2018/2019.
Cluster robust standard errors in parentheses. Statistical significance: ** 5 percent level and
* 10 percent level.
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Table A7: Effects of treatments in the pilot year for different student groups, 2016/17 students

(1) (2) (3) (4) (5) (6)
Family 8th grade 9th grade Lowest Low
index score Dummy score proficiency proficiency
(ŷ9) y8 has y9 (y9) (DL1) (DL2)

Treatment: Teacher training and funding
Predicted small groups 0.221** 0.244** 0.041 -0.098* 0.017 0.047

(0.063) (0.063) (0.034) (0.057) (0.037) (0.036)
Predicted large groups 0.104 0.039 -0.023** -0.183* 0.077* 0.160

(0.090) (0.025) (0.007) (0.109) (0.041) (0.110)
Non-target students 0.185** 0.110 0.021** -0.011 0.001 0.014**

(0.033) (0.067) (0.007) (0.038) (0.002) (0.006)

Treatment: Funding-only
Predicted small groups 0.022 -0.038 0.049 -0.065 -0.038** 0.024

(0.038) (0.043) (0.032) (0.052) (0.016) (0.039)
Predicted large groups 0.048 -0.021 -0.030 -0.083* 0.038** -0.016

(0.031) (0.042) (0.025) (0.044) (0.015) (0.040)
Non-target students 0.020 -0.034 -0.009 0.005 -0.000 0.011*

(0.053) (0.041) (0.006) (0.023) (0.000) (0.006)

Family and y8 controls No No No Yes Yes Yes

N 4955 4955 5261 4955 4955 4955
N clusters 48 48 48 48 48 48
ȳ 0.652 0.324 0.942 0.668 0.030 0.137

Note: Each cell gives an estimate of θ from equation (1) for a given outcome (column) and
treatment (rows). Sample is all students in 2015/2016, with separate specifications for each
group of students, similar to Tables 3, 4 and A4. See note to Table 3 for details about
outcomes. All specifications control for strata, controls for family background and cubic in y8

where indicated. Cluster robust standard errors in parentheses. Statistical significance: ** 5
percent level and * 10 percent level.

62


