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Abstract 

Increasing agricultural production and optimizing inorganic fertilizer (IF) use are imperative for 

agricultural and environmental sustainability. Mobile phone usage (MPU) has the potential to 

reduce IF application while ensuring environmental and agricultural sustainability goals. The 

main objectives of this study were to assess MPU, mobile phone promotion policy, and whether 

the mediation role of human capital can help reduce IF use. This study used baseline regression 

analysis and propensity score matching, difference-in-differences (PSM-DID) to assess the 

impact of MPU on IF usage. However, the two-stage instrumental variables method (IVM) was 

used to study the effects of mobile phone promotion policy on IF usage. This study used a 

national dataset from 7,987 rural households in Afghanistan to investigate the impacts of MPU 

and associated promotion policies on IF application. The baseline regression outcomes showed 

that the MPU significantly reduced IF usage. The evaluation mechanism revealed that mobile 

phones help reduce IF application by improving the human capital of farmers. Besides, evidence 

from the DID technique showed that mobile phone promotion policies lowered IF application. 

These results remained robust after applying the PSM-DID method and two-stage IVM to control 

endogenous decisions of rural households. This study results imply that enhancing the 

accessibility of wideband in remote areas, promoting MPU, and increasing investment in 

information communication technologies (ICTs) infrastructure can help decrease the IF 

application in agriculture. Thus, the government should invest in remote areas to facilitate access 

to ICTs, such as having a telephone and access to a cellular and internet network to provide an 

environment and facility to apply IF effectively. Further, particular policy support must focus on 

how vulnerable populations access the internet and mobile phone technologies. 

Keywords: mobile phone usage; propensity score matching; difference-in-difference; inorganic 

fertilizer usage; human capital; sustainable development; Afghanistan 



1. Introduction  

Food security is one of the main challenges for developing countries to feed a rapidly growing 

population [1, 2]. The current world population of 7.8 billion is expected to reach 9.8 billion by 

2050, increasing more than 25% from the current population [3–9]. Therefore, many developing 

economies widely adopted several methods, particularly, using more chemical or inorganic 

fertilizers (IF), to enhance food production and supply to face growing demand [10–14]. Growers 

and farmers apply chemical fertilizers, including nitrogen, phosphorous, and potassium, to 

increase crop production. However, when the fertilizer is not used effectively, or excessive 

fertilizer is not fully utilized by growing plants, it causes environmental degradation, including 

soil, air, and water pollution [15]. Environmental degradation associated with soil, air, and water 

significantly impacts human health, ecology, agricultural production, and climate [16]. For 

example, environmental degradation enhances greenhouse gas emissions that cause global 

warming, which negatively impacts climate change [17]. Also, polluted soil, air, and water affect 

food security and agricultural production [18, 19]. 

 

According to Savci [20], to meet the growing demand for food, the per unit area of agricultural 

land needs to achieve the highest efficiency and highest quality products. Plant nutrition is one of 

the most important factors to control agricultural productivity and food quality. For example, 

India has the world's largest arable land area, followed by the United States and China, according 

to Huang et al. [21]. To meet increasing food demand, India and China widely use chemical 

fertilizers [22]. If the IF is not used efficiently, which costs money, first, it could be a waste of 

money. Secondly, it could negatively impact the environment and human health because of the 

possibilities inhalation of ammonia and dust from the manure [6, 23–29]. Around the world, 

groundwater made an important contribution to the gradual realization of water rights. 

Groundwater is the main source of drinking water and irrigation water in many countries. 

Overuse fertilization leads to excessive groundwater pollution. Disproportionate use of IF 

damages groundwater quality and causes serious public health problems such as hemoglobin 

disorders, Alzheimer's disease, and diabetes mellitus [30–36]. Overall, the environmental 

sustainability of emerging countries is under threat due to the extensive use of IF [11,37,38]. 

Consequently, it is essential to identify the best relationship between IF usage and agricultural 

production. The fundamental solution to this challenge is to advocate reducing IF use while 



promoting the usage of organic fertilizer, which requires awareness, tools, and essential 

knowledge about the precise use of fertilizers and crop nutrients requirements [11,39]. Farmers 

and growers must understand the importance of new technology such as information and 

communication technologies (ICTs) to advance their essential knowledge about the appropriate 

use of fertilizers and crop nutrients requirements [40]. One of the most suitable and proper 

communication technologies is the mobile phone. Since most small growers cannot obtain 

advanced science-based agricultural equipment, mobile phone technology provides opportunities 

to shift from traditional agriculture to modern agriculture by providing information about 

advanced agricultural equipment as well as market trends and prices. The latest information on 

weather conditions and mobile phones can benefit farmers in developing countries and improve 

farmers’ access to agricultural information in Asian, African, and Latin American countries[41–

44]. According to Fabregas et al.[45], Nie et al.[46], and Zhao et al.[47],mobile phone and 

Internet technology (IT), especially smartphones, can bring advanced science-based agricultural 

advice to small growers to reduce IF and increase productivity, particularly in the context of 

rapid variations in economic and ecological conditions. 

Mobile phone services allow users to use a variety of ICTs, reduce transaction prices, and 

increase market access effectively. The main financial services provided through value chain ICT 

solutions are transfer and payment, credit, savings, insurance, and financial derivatives. ICT can 

help improve the conditions of rural communities, mainly by persuading financial institutions to 

enter potential rural markets in unconventional ways [7,48,49]. Mobile phone usage (MPU) helps 

increase productivity and profitability [50–51], alleviates losses affected by environmental 

disasters [52,53], and mitigates environmental pollution [54].Compared to that of developed 

nations, the agricultural sector of emerging countries is dominated by small-scale farming, which 

can get optimum benefits from ICTs [7,55]. Several researchers assessed the significance of 

ICTs, such as the impact of MPU on farmers' lives and socioeconomic benefits in emerging 

nations. For instance, researchers conducted studies in remote areas of Iran, Pakistan, India, and 

China and observed that ICTs positively influence growers' welfare and profits [46,55–57]. 

Besides, several assessments examined the association between the adoption of ICTs and smart 

farming systems. For example, Kaila and Tarp [58] indicated that mobile phones and internet 

network access contributed 6.8% to the growth of Vietnam's agricultural output. Several 

researchers assessed that the use of computers in many countries improved agricultural land, 



reduced labor input, and increased farmers’ trading capabilities. Farmers rely on computers to 

help them evaluate and use data from satellite imagery and various other electronic monitoring 

systems on the farm. Using computers and related information through the internet can help 

control the application of certain fertilizers, herbicides, and pesticides through an automatic 

delivery system. The computer also allows the precise application of water through the irrigation 

system. The computer system can be used to apply irrigation according to the needs of the 

crop[59]. Additionally, researchers found that access to the correct information at the right time 

would accelerate growers' market contribution and sales decisions in local markets in Peru [7,60]. 

However, little empirical evidence exists on the impact of MPU on IF application in developing 

countries. Hence, it is essential to know whether MPU can reduce the IF application in an 

emerging nation. 

 

This study examined the influence of MPU on IF use in Afghanistan, where the use of IF was the 

usual practice in the agricultural sector for the past few decades [61, 62]. Farming practices in 

Afghanistan lack crop rotation, are limited in their use of organic residues and involve extensive 

tillage, which causes a decrease in crop yield and an increase in environmental degradation [63]. 

The Afghan government realized the importance of controlling IF usage and regards it as a 

crucial part of green farming evolution when climate change is already deteriorating the 

environment [63–66]. Meanwhile, mobile phone technology is becoming more popular in rural 

communities of Afghanistan. Since 2001, millions of residents, including farmers and growers 

are using mobile phones [67,68]. This increasing use of mobile phones provides an opportunity 

for empirical research on the influence of mobile phone technology usage on IF application in the 

context of an emerging economic system. 

 

The current study aimed to address the following research questions: (1) can MPU help reduce IF 

use by decreasing the intensity of fertilizer application?; (2) how can human capital mediate the 

effects of MPU on the intensity of IF application?; and (3) can mobile phone promotion policy 

decrease the intensity of IF usage? To answer these questions, this study conducted a baseline 

regression analysis to observe mobile phones' direct impact on IF usage. Afterward, it needed to 

reveal the mediation role of human capital between mobile phones and IF usage by growers. 

Propensity score matching, difference-in-differences (PSM-DID), and two-stage instrumental 



variables methods (IVM) were used to study mobile phone promotion policy impacts on IF 

usage. 

 

This research contributes to agricultural science and farming communities in the following ways. 

Firstly, empirically studied mobile phones' effect on IF usage in the context of an emerging 

economy. Though many studies explored the impact of mobile phones on agricultural 

advancement [69–71], few researchers observed the influence of mobile phones and IT on 

fertilizer application in the farming sector in developing countries [64,72]. Secondly, it explored 

the potential mediating role of human capital between mobile phones and IF usage. The existing 

studies aim to directly influence human capital, such as training, health, and education, on IF 

usage [25,73,74]. Thirdly, we used the DID method to study the impacts of mobile phone 

promotion strategy on household IF usage. Fourthly, we employed the PSM-DID and the two-

stage IVM to solve the endogeneity problem related to MPU. 

 

The remainder of the article is organized as follows. Section 2 provides the conceptual 

framework of the study. Section 3 introduces the study area, sampling and data, and data 

modeling. Section 4 describes the results and discussion of the study. The last section includes 

the conclusion and recommendations.  

 

2. Conceptual Framework of the Study 

The majority of Afghan farmers still live in remote areas with limited or no internet and 

computer facilities. However, the recent advancement in technologies for increased agricultural 

production demands the availability and use of mobile phones. Mobile phones would help 

advance communication, further raising awareness and understanding about the efficient use of 

IF on their farms. The conceptual framework shown in Figure 1 explains the impact of 

inputs/controlling factors with and without MPU on reducing IF use, which helps to achieve 

green and cleaner production in the long run. The inputs/controlling factors include external 

environments (e.g., NAEST, AEST, and governmental incentives), farmer's characteristics (e.g., 

age, education, training, and health), and farming characteristics (e.g., crop and cropping system, 

farm management, and farming practices). All three major controlling factors directly affect 



green and cleaner production. However, MPU helps change the behavior, awareness, and 

knowledge of local farmers, which reduces the application of inorganic/chemical fertilizers. 

 

 

Figure 1. Conceptual framework of the study. 

 

3. Materials and Methods 

3.1. Study Area  

The study area included all 34 provinces of Afghanistan (Figure 2).With a geographic area of 

652,860 km2, Afghanistan has a vast territory comprising mountains, hills, plains, and deserts 

[61]. The Republic of Afghanistan comprises thirty-four provinces, divided into 398 districts, and 

subdivided into cities and villages. Approximately 63% of Afghanistan’s terrain is mountainous, 

while most southwestern areas are flat[75]. The total agricultural land in Afghanistan is 379,100 

km2, which is 58.07% of the country's total area[76]. Among all agricultural land, only 11.84% is 

cultivated. Approximately half of the cultivated area is used for farming, of which 0.27% is 

permanent cultivated land. The country’s farm size is considered small, such as 69% of the land 

under 5 ha, 16% over 10 ha, and 6.5% over 20 ha. The average area of irrigated farms is 1.4 ha, 

and the rain-fed is 6–7 ha. In Afghanistan, agriculture relies heavily on irrigation, and snowmelt 

is the primary source of water used for irrigation [61,77]. Smallholder farming in Afghanistan is 

based on nonmechanized skills and techniques, leading to subsistence agriculture with low 



productivity, low farm incomes, low marketed surplus, and all other concomitant features of 

traditional agriculture [78]. The role of the agricultural sector is critical for ensuring food 

security, improving livelihoods, and alleviating poverty in the country [61]. 

Figure 2. Map of the study area. 

3.2. Sampling and Data 

The data utilized in this research was acquired from the Current Living Conditions Survey of 

Afghanistan, organized by the Central Statistical Organization (CSO) [79]. In the first sampling 

stage, 10 villages from each province in mainland Afghanistan were selected using a multistage 

random sampling technique. Then, 65–85 households were selected from each village. The 

interviewer conducted annual follow-up interviews with the family unless the family died or 

permanently migrated to the city or elsewhere. The household survey questionnaire used contains 

information about families, MPU, and agricultural production. This study used data from 34 

provinces of Afghanistan between2010 and2014. The asset balance panel data used from2010 

to2014 includes 15,223 households annually. However, we excluded the 7,223 households using 

IF less than 150 kg/ha. We considered 7,987 households/farmers in this study which is 52.5% of 

the total surveyed households (Figure 3). Analysis showed that only 2.7% of farmers were not 

applying IF on their farms 42.8% were applying IF at 50 to 149 kg/ha (Figure 3). 



We defined the independent variable as IF per unit area, which aligns with the previous studies 

[11,74,80,81]. Besides, we included control variables based on existing literature. Farmer’s 

characteristics/behaviors may affect the use of IF. For instance, some studies indicated that the 

grower's age is one of the controlling factors of fertilizer usage [25,82]. Huang et al.[73]observed 

that the education level of the head of the household negatively influences fertilizer application 

practice. Ahmed and Shafique[81] found a very strong association between human health status 

and fertilizer use in farming. Therefore, keeping the facts in mind, the respondent's age, 

education level, and household head health status were added as control variables. Besides, the 

characteristics of the household also have a potential impact on IF use. For example, 

investigations found that household size, land ownership, profits, and agricultural products 

significantly impact IF use [11,82]. Furthermore, using ICTs could bring more nonagricultural 

employment opportunities to farmers/growers [46,83–85], which may change farmers' behavior 

concerning IF use. Therefore, we added household size, asset, land, income, IT, and cereal crop 

as control variables. Besides, this research considered mobile phones a dummy variable: where 1 

indicates that the household uses mobile phones, while 0 indicates otherwise. Monetary variables 

are modified through the authorized Consumer Price Index(CPI) and calculated in 2010 constant 

Afghanistan's Afghani rupees. 

 

Figure 3. IF application rates of 15,223 farmers/households in the study area. 
Threshold of 150 kg/ha is the average IF rate for 15,223 farmers’ application rates. 



3.3. Data Modeling 

To observe the influence of MPU on IF, we used the two-way fixed effects panel method 

(2FE).The 2FE model became the default method for estimating causal effects from panel data. 

Many researchers use the 2FE estimator to adjust for unobserved unit-specific and time-specific 

confounders at the same time. Model specifications are as follows: 

IFit= βMobilephoneit+ ∑kykControlit,k+ λi + τt + εit (1) 

where IFit is the IF utilize per unit area of the family, i in year t, Mobilephoneit is a dummy 

variable, which indicates whether or not a household uses the mobile phone. A set of control 

variables were added to the model, containing household size, age, health status, education, land, 

IT, asset, income, and cereal crop. Assuming that the data were balanced panel, λiis the 

household fixed effect, τtis added to control for undetected heterogeneous variations over time, εit 

represents an error term. 

Besides, we added an interaction term to examine the impact of cereal crop production on the 

association between ICTs and IF usage. The intuition is that cereal crop production is more 

fertilizer-intensive than other crops such as legumes, roots, and tubers. The model equation is 

presented as follows: 

IFit= aICTsit+ βCereal cropit+ ηICTsit × Cereal cropit + ∑kykControlit,k+ λi + τt 

+ υit 
(2) 

where ICTsit is the use of a mobile phone or IT. υit is the disturbance phrase. Later, we used 

human capital to study the feasible potential interactions between the usage of mobile phones and 

IF. The rationale is that MPU will build the capacity of households towards green and clean 

production. Also, well-trained and educated farmers would make better MPU and can make more 

environmentally friendly decisions. The model is specified as follows: 

Human Capitalit= βMobilephoneit+ ∑kykControlit,k+ λi + τt + µit (3) 

IFit = aHumanCapitalit= βMobilephoneit + ∑kykControlit,k+ λi + τt + ωit (4) 

We applied two dummy variables to assess human capital: Non-agricultural education or skills 

training and agricultural education or skills training, shown in Table 1. The µit&ωit are 

disturbance terms. 



Table 1. Variables’ description and descriptive statistics. 

Variables Names Description Mean (S.D) 

Inorganic fertilizer Use of inorganic fertilizer (kg/ha) 198.40 (36.98) 

Mobile phone 
Whether the household uses mobile phone  

(1 = yes; 0 = no) 
0.17 (0.42) 

Age  Age of the respondent (year) 43.16 (14.23)  

Health status Health status of head1 6.45 (2.83) 

Education Education of head (year) 5.63 (3.41) 

Household size Household member (numbers) 6.45 (2.83) 

Land area Land area per capita (ha) 2.85 (2.14) 

IT  Number of households using Internet technology 2.85 (3.52) 

Income Per capita income (Afghani) 
27,984.19 

(41,846.61) 

Asset Fixed assets produced per capita (Afghani) 
25,72.16 

(16,292.17) 

Cereal crop 

Whether the cereal crops are the major product (1 = 

cereal income ratio 50%; 0 = ratios of cereals profits to 

farming profits fewer than 50%) 

0.55 (0.49) 

Agricultural  

Education 
If the household received AEST (1= yes, 0= no) 0.20(0.41) 

Non-Agricultural 

Education  
If the household received NAEST (1= yes, 0= no) 0.42 (0.50) 

Notes: 1Self-described health status, assessed from one (disabled) to five (good); 
Standard deviations (S.D) are in parentheses. 

In addition, we analyzed the effect of the government's MPU promotion policy on IF usage. An 

empirical analysis was carried out using the DID model to estimate this impact. A similar 

empirical analysis, which includes the DID model, was conducted by various researchers 

[26,35,86,87]. We used the ICTs Construction Initiative Plan in Paktya Province of Afghanistan 

as an example. The plan was launched in 2012 and was initiated by the Afghan Ministry of 

Communications and Information Technology (MCIT). The program’s main goal was to increase 

the construction of ICTs infrastructure to provide agricultural-related telecommunication services 

to the growers [43,88]. The program's main objective was to increase the availability of mobile 

phones and the internet network. The specifications of the DID model is as follows: 

IFit+ β0 + β1Treatit×Tit + β2Treatit + β3Tit + ∑kβk Controlit,k+ ψit (5) 

The treatment set "Treat" is a dummy variable. The value 1 indicates that rural households live in 

Paktya Province, and the 0 value indicates that rural households live in other provinces. Also, T 

is a dummy variable denoting the period. T = 1 represents the rural ICTs construction plan from 

2012 to 2014, and the T = 0 means that there is no rural ICTs construction plan from 2010 to 



2011. The interaction coefficient term between the treatment dummy variable and the year 

dummy variable β1displays the influence of the MPU promotion strategy. The ψit represents the 

error term. Based on the outcomes of DID technique, it could have a sample selection bias issue. 

To solve this problem, we applied the widely used PSM-DID model [89–93].  

Compared with the simple PSM method, a key benefit of this PSM-DID method is not only 

solving the selection bias caused by observable values but also eliminates any selection bias 

related to time-invariant unobservable values. For two time periods, as in the case of this article, 

the PSM-DID estimator is formally defined as: 

δATT
PSM−DID =

1

𝑛1
∑𝑖∈Treat 1

∩ 𝑆𝑝{(IF𝑖1
𝑡1 − IF𝑖1

𝑡0) − ∑𝑖∈𝑇𝑟𝑒𝑎𝑡 0 ∩ 𝑆𝑝 𝑊(𝑖, 𝑗)(IF𝑖0
𝑡1 − IF𝑖0

𝑡0)} 

(6) 

where, Spis the common assist shared through the treatment set “Treat1”, control set “Treat0”, and 

n1denotes the figure of matched samples in the connection between Treat1 and Sp. 

4. Results and Discussion 

4.1. Baseline Outcomes: Effect on IF Usage 

Table 1 indicates that the average IF consumption was 198.40 kg/ha, and only 17% of remote 

families utilized mobile phones. Regarding household characteristics, each household had an 

average of 6.45 members and an average age of 43.16 years, while health status and education 

averaged 6.45 and 5.63. The per capita land size was 2.85 ha, and the per capita fixed assets were 

25,72Afghani (AFN), whereas the annual average household profits were 27,984Afghani (AFN). 

Moreover, 55% of households used cereal crops as their primary production crop, and 2.09% of 

them used IT. On average 0.42, and 0.20 household members received Non-Agricultural 

Education or Skills Training (NAEST) and Agricultural Education or Skills Training (AEST), 

respectively. This result aligns with the finding of Khan et al. [94], which is that farmers' 

education level and modern media play a significant role in reducing the excessive use of 

pesticides because it broadens their horizons and exposes them to potentially unknown aspects of 

agriculture related to the environment and agricultural sustainability. 

 

Table 2 presents the impact of MPU on applying IF based on the 2FE panel method. The data 

showed that MPU has a significant negative impact on growers’ IF usage (β = −0.126, Р < 0.01), 



which means that the household using mobile phones has a 17.4% lower intensity of fertilizer use 

compared with that of a household without the mobile phone. Moreover, health status is 

positively associated with IF use. 

 

Two interaction items, one between cereal crops and mobile phones and the other between cereal 

crops and IT were added, which were estimated using equation (2). The Akaike Information 

Criteria (AIC) value in column 4 is the smallest of columns 2–4, which means that the outcomes 

in column 4 are more suitable for the data. Both interaction items have obvious positive 

indications. This shows that cereals as the major crops can increase the impact of MPU on IF 

application. It also shows that more households are involved in cereal crop production. They use 

more IF for cereal farming. Growers who are primarily engaged in noncereal crops mainly grow 

fruits, vegetables, and cash crops. They understand the significant role of mobile phones or IT to 

increase the production of non-cereal crops and reduce the application of IF. In emerging nations, 

consumer demand for organic noncereal crops is usually greater than for cereal crops. Moreover, 

noncereal crops are highly competitive in developing countries, and the government covers the 

cereal crop marketplace under the cereal purchasing and storage policy [95]. Thus, growers who 

are primarily involved in cereal crops are less susceptible to market variations and demands, and 

their IF consumption is less affected by the MPU and internet technologies. 

Table 2. Influences of mobile phones on inorganic fertilizer usage. 

Explanatory  

variables 

Column  

(1) 
S.E 

Column  

(2) 
S.E 

Column  

(3) 
S.E 

Column 

(4)  
S.E 

Age  −0.002 0.082 −0.005 0.082 −0.002 0.082 −0.006 0.082 

Health status  0.085*** 0.028 0.083*** 0.028 0.086*** 0.028 0.085*** 0.028 

Education  0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 

Household size  −0.015 0.007 −0.015 0.007 −0.014 0.008 −0.014 0.008 

Land area −0.260*** 0.030 −0.260*** 0.030 −0.260*** 0.030 −0.261*** 0.030 

IT 0.000 0.002 0.000 0.002 −0.062*** 0.013 −0.056*** 0.013 

Income  0.064*** 0.009 0.064*** 0.009 0.064*** 0.009 0.064*** 0.009 

Asset  0.088*** 0.006 0.088*** 0.006 0.089*** 0.006 0.088*** 0.006 

Cereal crop 2.573*** 0.041 2.529*** 0.042 2.447*** 0.049 2.419*** 0.049 

Mobile phone  −0.126** 0.053 −0.355*** 0.075 −0.117** 0.053 −0.321*** 0.352 

Mobile phone× cereal crop - - 0.395*** 0.091 - - 0.352*** 0.092 

IT× cereal crop - - - - 0.063*** 0.013 0.058*** 0.013 

Constant  0.504 3.181 0.943 4.171 0.561 4.171 0.872 4.171 

Individual effect  Yes - Yes  - Yes  - Yes - 

Year effects  Yes  - Yes - Yes  - Yes  - 

Area dummies Yes  - Yes - Yes - Yes  - 

Observation numbers  31,036 - 31,036 - 31,036 - 31,036 - 

Group number 7514 - 7514 - 7514 - 7514 - 



F-stat 361.34 - 344.19 - 344.24 - 328.64 - 

Notes:***,**, and * indicate that it is statistically significant at 1%, 5%, and 10% levels, respectively; 
Standard errors (S.E.) clustered at the farmer level; IF, land, asset, and income are all in logarithmic form; 
The area dummies are signified through North, East, Central, and West in the regression method. 

4.2. The Mediating Role of Human Capital 

Human capital recognizes the intangible assets and qualities that improve worker performance 

and benefit the economy [96]. We performed a mediation evaluation to examine the role of 

human capital on the relationship between mobile phones and IF applications using equations (3) 

and (4)(Table 3). The MPU led to more NAEST (β = 0.479, Р <0.01) but had no significant 

influence on AEST (β = −0.085, Р > 0.1). This outcome explains that MPU can accelerate 

growers' human capital with nonagricultural information rather than farming information. Using 

mobile phone technology, farmers will receive low-cost customized recommendations to 

improve farm practices, input utilization, pest management, environmental sustainability, and 

market access. This result is consistent with current research findings that ICTs adoption 

provides rural growers more opportunities to participate in nonagricultural activities [46,55], 

which ultimately enhances the benefits of growers. In column 2, the NAEST has a negative 

influence on the IF usage (β = −0.117, Р < 0.05). This result aligns with the finding of Huang et 

al.[73], which shows strengthening informational education could help growers reduce IF use. 

Hence, mediation assessment shows that MPU enhances growers' human capital, especially 

NAEST, which ultimately decreases the use of IF. The explanation for this outcome is that 

NAEST could help increase the diversity of income resources, reduce the high reliance on crop 

production and lower impetus to consume IF. 

 

 

 

 

 

 

 

 

 

 



Table 3. Mediating impacts of human capital between mobile phone and IF usage. 

Described  

Variables  
NAEST S.E IF S.E AEST S.E IF S.E 

Fixed-Effects  

Models  

Logit Linear  Logit Linear 

Column (1) Column (2) Column (3) Column (4) 

Age  0.359 0.228 0.001 0.083 0.004 0.236 −0.001 0.083 

Health status  0.045 0.077 0.085*** 0.028 −0.016 0.081 0.085*** 0.028 

Education  −0.041 0.038 0.018 0.015 −0.017 0.040 0.018 0.014 

Household size 0.104*** 0.0340 −0.012 0.009 −0.004 0.029 −0.013 0.009 

Land area  −0.261*** 0.030 −0.261*** 0.030 −0.260*** 0.030 −0.260*** 0.030 

IT 0.279*** 0.042 0.000 0.002 −0.055 0.049 0.000 0.002 

Income  0.072*** 0.027 0.064*** 0.010 −0.023 0.026 0.064*** 0.010 

Asset  0.009 0.016 0.087*** 0.007 0.035* 0.018 0.087*** 0.007 

Cereal crop 0.034 0.124 2.573*** 0.041 0.110 0.125 2.572*** 0.041 

Mobile phone 0.479*** 0.138 −0.123** 0.053 −0.085 −0.166 0.126** 0.053 

Agricultural  

Education 
- - - - - - 0.210*** 0.063 

Non-Agricultural 

Education 
- - −0.117** 0.055 - - - - 

Constant  - - 0.510 4.277 - - 0.554 4.277 

Individual effect  Yes - Yes - Yes - Yes - 

Year effect  Yes - Yes - Yes - Yes - 

Area dummies  Yes - Yes - Yes - Yes - 

Observation 

numbers  
4957 - 31,036 - 3948 - 31,036 - 

Group numbers  1047 - 7514 - 833 - 7514 - 

F-value -- - 444.90 - -- - 335.45 - 

Likelihood ratio 

test 
170.29 - -- - 42.64 - -- - 

Notes: ***, **, and * indicate that it is statistically significant at 1%, 5%, and 10% 
levels, respectively; Standard errors (S.E.) clustered at the farmer level. 

4.3. Policy Assessment: DID Method 

Paktya is one of the 34 provinces of Afghanistan, situated in the eastern part of the country. It has 

an underdeveloped economic system, rich biodiversity, and superior environmental conditions. 

Unlike other provinces, Paktya's economic growth is mainly due to the significant karst 

landforms and less environmental pollution[97–100]. In many rural areas, people have practiced 

organic farming, which reduces the IF used. For financial and technological reasons, the price of 

mobile phone network development and infrastructure construction in rural and hilly areas are 

higher than in urban areas, limiting the availability of wideband connections in remote areas 

[97,101]. This is particularly true for remote communities of Paktya province, where 59.8% of 

the land areas are mountainous [41,102,103]. Therefore, the Afghan government issued the 



“Rural ICTs Network Construction Plan” which focuses on improving the mobile phone and IT 

networks construction for remote areas in 2012 [41–43]. The two core goals of this strategy 

include a wireless network, mobile phone, and IT within reach to rural communities and provide 

farming-linked telecommunication facilities. In general, Paktya needs to reduce IF usage. It has a 

relatively underdeveloped internet network infrastructure, which makes it an ideal region for 

investigating the effect of mobile phone promotion policy on IF application intensity.  

 

The DID method was used to study the impact of implementing a mobile phone promotion 

policy on reducing IF usage. Paktya Province of Afghanistan as used as a treatment group. 

Considering the similar climate and farming structure, five provinces of Afghanistan were chosen 

as the control group (Kabul, Herat, Mazar-i-Sharif, Kandahar, and Jalalabad). Table 4 shows the 

outcomes of DID technique, assessed using equation (5). The term interaction coefficient is 

−0.365, which is very substantial at the level of 10 percent (i.e., in column 2). It explains that the 

mobile phone advancement policy substantially diminished IF use. However, we added 

interaction items between the Treat (i.e., treatment before matching) and year dummy variables 

to assess the effect at a particular time. In column 4, the coefficient of the binary interaction 

items Treat×2012 and Treat×2013 are significant with negative coefficients, showing that the 

mobile phone advancement policy is efficient for remote areas within two years because it 

reduced the application of IF over the period. Overall, mobile phone and IT usage has a 

significant positive effect on economic well-being and upgrade policy and is important for 

growers in rural areas because it helps them obtain information about reducing the IF, market 

prices, environment, and other related information. Similar results reported by Zhao et al. [47] 

showed that with the in-depth application of information technology, more and more farmers had 

obtained information about seeds, pesticides, fertilizers, and pest control technologies. Use the 

relevant software and information programs on the mobile phone or directly refer to the online 

opinions for IF use and clean farmland production. 

 

 

 

 

 



Table 4. Influences of mobile phone promotion policy on IF usage DID method. 

Described 

variables: IF 

Column 

(1) 
S.E 

Column 

(2) 
S.E 

Column 

(3) 
S.E 

Column 

(4) 
S.E 

Treat × T −0.525** 0.230 −0.375* 0.217     

Treat×year2012 -  - - −0.690** 0.285 −0.515* 0.270 

Treat×year2013 - - - - −0.657** 0.305 −0.572** 0.273 

Treat×year2014 - - - - −0.217 0.295 −0.034 0.274 

Treat −0.281 0.170 −0.666*** 0.162 −0.278 0.170 −0.065*** 0.170 

Constant 3.707*** 0.122 −1.724*** 0.571 3.777*** 0.111 −1.725*** 0.560 

Year dummy  Yes - Yes - Yes - Yes - 

Control variables  No - Yes - No - Yes - 

Observation 

numbers 
6411 - 6411 - 6411 - 6411 - 

F-value  25.00 - 67.40 - 27.09 - 66.71 - 

Notes: ***,**, and * indicate that it is statistically significant at 1%, 5%, and 10% 
levels, respectively; Standard errors (S.E.) clustered at the farmer level. 

4.4. Robustness Test: PSM-DID Model 

Two issues have to be addressed; the first one is associated with the various changes between the 

treatment group (Paktya) and control group (the added five provinces of Afghanistan) before the 

implementation of the mobile phone promotion policy [98]. The second one is that Paktya mobile 

phone advancement policy was not randomly allocated but linked to societal and financial 

characteristics [90,104]. Therefore, we adopted the PSM technique to resolve possible 

heterogeneity issues and further consistent observed findings. The primary stage is to assess the 

PSM based on nine variables (such as the age of the respondent, health status, education level, 

household size, land area, asset, income, IT, and cereal crops), which are included as covariates 

in the logistic technique. Afterward, also applied the nearest neighbor algorithm to perform a 

one-to-one match amid the experimental and control groups. 

 

Table 5 provides the balance test outcomes. They showed that most of the covariates become 

more correlated after matching, and the variation between the treatment and the control groups 

was not statistically significant. Figure 4also depicts the balance test outcomes before and after 

matching. The study outcome showed that the propensity score distribution of the control was 

consistent with that of the treatment group, which indicated that the covariate variations between 

the binary groups were greatly reduced while employing the PSM technique. 

 



Table 5. Propensity score matches balance test outcomes. 

Result: IF 

Unmatched 

(Matched) 

Matched Mean Percent 

Bias 

Percent 
Reduce 

Bias 

T-Test 

Control Treatment T-Value P-Value 

Age U(M)1 37.20(37.20) 36.74(35.38) −19.0(−2.4) (87.6) −6.05(−0.62) 0.00(0.53) 

Health status  U(M) 4.59(4.59) 4.38(4.58) 43.8(3.3) (92.4) 13.15(0.88) 0.00(0.38) 

Education U(M) 7.99(7.99) 7.01(6.93) −5.8(−2.0) (65.1) −1.83(−0.53) 0.07(0.60) 

Household 

size 
U(M) 4.28(4.28) 4.64(4.20) −19.1(4.6) (75.7) −6.50(1.23) 0.00(0.214) 

Land area U(M) −0.32(−0.32) −0.24(−0.41) −9.4(9.8) (−4.4) −2.75(2.34) 0.01(0.02) 

Income  U(M) 8.72(8.72) 8.67(8.77) 2.3(−2.2) (3.4) 0.70(−0.58) 0.49(0.56) 

Asset  U(M) 6.30(6.30) 5.20(6.25) 31.4(1.4) (95.5) 9.57(0.40) 0.00(0.70) 

IT U(M) 1.73(1.73) 2.30(2.59) −5.0(−7.6) (−51.3) −1.29(−1.13) 0.21(0.25) 

Cereal crop U(M) 0.59(0.59) 0.53(0.59) 13.1(1.4) (89.5) 5.13(0.85) 0.00(0.88) 

Notes: (M)1 indicates the matched values in parentheses. 

 

Figure 4. PSM distribution of treatment and control groups. 

The empirical findings of PSM-DID methods are presented in Table 6, assessed using 

equation(6). The terms interaction coefficients Treat×T, Treat×year2012, and Treat×year2013 are 

still significant and with negative coefficients, consistent with the outcomes presented in Table 4, 



which indicates that the mobile phone promotion policy reduced the IF usage. This result is 

consistent with the findings of Zhao et al. [47] which indicates that farmers who can effectively 

use IT resources have stronger production safety capabilities and are more likely to reduce the IF 

used. Therefore, in addition to the shallow IT use, the in-depth use of this modern technology 

may also be an important factor affecting farmers to reduce pesticides. 

                 Table 6. Outcomes of PSM-DID method. 

Described  

Variables  

Column 

(1) 
S.E 

Column 

(2) 
S.E 

Column 

(3) 
S.E 

Column 

(4) 
S.E 

Treat × T −1.237*** 0.198 −0.996*** 0.260     

Treat × year2012 - - - - −1.233*** 0.370 −1.068*** 0.345 

Treat × year2013 - - - -- −1.396*** 0.381 −1.002*** 0.356 

Treat × year2014 - - - - −1.389*** 0.371 −0.919*** 0.348 

Treat  0.139 0.217 −0.110 0.203 0.139 0.217 −0.110 0.203 

Constant  3.237*** 0.193 1.343 0.835 3.237*** 0.193 1.360 0.837 

Year dummy Yes - Yes - Yes - Yes - 

Control variables  No - Yes - No - Yes - 

Observation 

numbers  
2610 - 2610 - 2610 - 2610 - 

F-value  12.38 - 31.57 - 9.43 - 30.71 - 

Notes:***, **, and * indicate that it is statistically significant at 1%, 5%, and 10% level, 

respectively; Standard errors (S.E.) clustered at the farmer level. 

4.5. Robustness Test-Two: Instrumental Variables Method (IVM) 

Due to unobservable factors and reverse causality, the PSM-DID model could not solve the 

endogeneity problem. Considering that MPU is measured as a possible endogenous variable 

[46,105], we adopted more techniques to resolve the endogeneity issues. We reviewed the 

existing literature [42,46] and adopted a two-stage IVM to solve the endogeneity problems 

related to MPU. 

 

For this aspect, the MPU ratio as an instrumental variable was measured as the proportion of 

growers from the same village that used a mobile phone. The rationale for using the IVM is that 

the relatives and fellow growers may influence growers' decisions on MPU. On the other hand, 

growers' decision to use IF would not be directly affected by other farmers' MPU. Table 

7presents outcomes of the two-stage IVM where the F-value in the first stage is 444.90, which is 

greater than 10, indicating no weak IVM issues. In column 2, the independent variable (MPU) 

has a significant negative symbol, persistent with the baseline regression results. 



 

         Table 7. Outcomes of two-stage IVM. 

Described  

Variables  

Column (1) S.E Column (2) S.E 

First-Stage Two-Stage Least Squares 

Mobile Phone IF 

IV  0.727*** 0.446 -- -- 

Mobile phone  -- -- −0.543*** 0.187 

Age  −0.002 0.010 −0.002 0.083 

Health status  0.003 0.003 0.076*** 0.021 

Education  −0.001 0.002 0.015 0.013 

Household size  0.004*** 0.001 −0.014 0.008 

Land area  −0.003 0.003 −0.262*** 0.030 

IT 0.000 0.000 0.000 0.002 

Income 0.003*** 0.001 0.053*** 0.009 

Asset  0.001*** 0.001 0.089*** 0.006 

Cereal crop −0.001 0.005 2.662*** 0.032 

Year effect Yes  - Yes - 

Area dummies  Yes  - Yes  - 

Individual effect Yes  - Yes  - 

Observation numbers  15,223 - 15,223 - 

First stage F statistic (P) 444.90 0.000 -- - 

Note: ***, **, and * indicate that it is statistically significant at 1%, 5%, and 10% levels, 
respectively; Standard errors (S.E.) clustered at the farmer level. 

5. Conclusions and Recommendations 

This research investigated the impact of MPU on IF in Afghanistan. Based on the actual national 

household data set, we examined the direct influence of MPU on the intensity of fertilizer usage 

and studied the potential mediating role of human capital. Besides, DID, PSM-DID, and two 

stages IVM were applied to assess the influences of MPU promotion policies on IF application 

intensity. 

 

This research contributes to agricultural science and farming communities in the following ways. 

Firstly, we empirically study mobile phones' effect on IF usage in the context of an emerging 

economy. Though many studies explored the impact of mobile phones on agricultural 

advancement, few researchers observed the influence of mobile phones and IT on fertilizer 

application in the farming sector in developing countries. Secondly, we explore the potential 

mediating role of human capital between mobile phones and IF usage. The existing studies aim 

to directly influence IF usage by human capital, such as training, health, and education. Thirdly, 

we use the DID method to study the impacts of mobile phone promotion strategy on household 



IF usage. Fourthly, we employ the PSM-DID and the two-stage IVM to solve the endogeneity 

problem related to MPU. 

 

The empirical results showed that the MPU substantially reduced the use of IF. The household 

that uses mobile phones has a 17.4% reduction in IF use intensity than the household that does 

not. When the primary income of growers does not come from cereal crops, the effect of MPU in 

reducing IF use becomes weaker. Mechanism investigation shows the mediation role of human 

capital in mobile phone and IF usage nexus. The outcomes reveal that the mobile phone 

promotion program in remote regions can help reducing IF usage. The finding is that mobile 

phone upgrade policy is important to growers in rural areas, which helps them obtain information 

about lowering IF, market prices, the environment, and other relevant information. 

 

We can derive some essential policy implications from these findings. Firstly, considering that 

MPU would have an environmentally friendly influence on IF usage in Afghanistan and other 

developing economies, therefore, authorities need to eliminate restrictions that prevent growers 

from using mobile phones and IT. For instance, mobile phone equipment subsidies help reduce 

the cost of growers. Secondly, human capital (skill training/technical education, etc.) has a 

mediating role in mobile phones and IF usage. Improving the technical education on MPU and 

access to internet facilities can increase the efficiency of agricultural production, reducing the IF 

usage and environmental pollution. Studies found that human capital's significance in promoting 

IF usage decrease should also be considered, particularly instructions, education, and training 

related to MPU. In addition, other strategies, such as ICTs literacy guidance skills (for example, 

email, MMS, SMS, call, etc.), should help reduce IF application. Thirdly, mobile phone 

technology infrastructure is critical in promoting MPU among farmers and reducing IF usage. 

Fourthly, particular policy support and attention should be focused on how vulnerable 

households use the internet and mobile phone technologies. Such focus and support can entail, 

inter alia, farmers’ education and training employing online programs, hence providing 

incentives for these farmers to leverage digital technology, benefit from digital dividend 

externalities, address concerns surrounding their specific capital disadvantages, and mitigate their 

use of chemical pesticides. Therefore, the government should carry out long-term investments 

and increase the investment to facilitate access to ICTs in remote areas, as having a telephone 



and access to a cellular and internet network would provide enabling conditions for 

environmentally friendly IF usage. 

 

However, this study has a few limitations. This study only had the total quantity of overall IF 

sources utilized by farmers/growers due to limited information, but not the total amount of 

particular types of fertilizers (such as compound fertilizer or phosphorus, nitrogen, potassium). 

This empirical study was only focused on farmers growing cereal crops.  

 

Also, this study does not recommend the rate of application of IF on a particular province or farm 

for optimum crop production. This study only focused on the importance of mobile phones and 

IT, which can help reducing IF use or use IF efficiently for optimum crop production. Total 

nitrogen inputs to the cropland can be in the form of manure, IF, symbiotic fixation, and 

atmospheric deposition. The IF optimization depends on several factors, such as local 

environments (e.g., soil temperature, amount and frequency of rainfall), soil characteristics (e.g., 

texture, organic matter, porosity, density), and management practices. 

 

In the future, more comprehensive research on various types of fertilizers can be considered. 

Besides, this study is based on data collected from Afghanistan alone. Therefore, it is necessary 

to conduct comparative studies with data from multiple developing countries to understand better 

the relationship among new technologies such as smartphones, mobile phones, the internet, and 

IF usage in various socioeconomic contexts.  
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