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Abstract 
 
We propose and experimentally test a theory of strategic behavior in which players are cognitively 
imprecise and perceive a fundamental parameter with noise. We focus on 2 x 2 coordination 
games, which generate multiple equilibria when perception is precise. When adding a small 
amount of cognitive imprecision to the model, we obtain a unique equilibrium where players use 
a simple cutoff strategy. The model further predicts that behavior is context-dependent: players 
implement the unique equilibrium strategy with noise, and the noise decreases in fundamental 
volatility. Our experimental data strongly support this novel prediction and reject several alterna-
tive game-theoretic models that do not predict context-dependence. We also find that subjects are 
aware of other players’ imprecision, which is key to generating strategic uncertainty. Our 
framework has important implications for the literature on global games and, more broadly, 
illuminates the role of perception in generating both random and context-dependent behavior in 
games. 
JEL-Codes: C720, C920, D910, E710. 
Keywords: perception, efficient coding, coordination, global games. 
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1 Introduction

Over the past decade, economists have begun investigating the effects of cognitive imprecision

on individual decision-making (see Woodford 2020 for a review). This agenda proposes

that the decision-maker’s perception of the economic environment is noisy, and does not

coincide with the objective environment. To date, the emphasis of cognitive imprecision in

economics has largely been in the domains of choice under risk and intertemporal choice.

For example, theory has shown that even when an agent has linear utility and perfectly

patient time preferences, noisy perception of payoffs can lead agents to behave as if they

are risk averse (Khaw, Li and Woodford, 2021) and as if they discount the future (Gabaix

and Laibson, 2017). Initial experimental tests of these theories have produced encouraging

results (Gershman and Bhui, 2020; Khaw, Li and Woodford, 2021; Enke and Graeber, 2021;

Frydman and Jin, Forthcoming).

Motivated by the evidence from individual decision-making studies, it is natural to ask

whether cognitive imprecision also affects strategic behavior. This question is important

not only to test whether cognitive imprecision extends into other environments, but also

because noisy perception can fundamentally affect equilibrium predictions. Indeed, it is well

known that, in games often used to model bank runs, currency attacks, and revolutions,

there can be multiple equilibria.1 This multiplicity largely comes from the assumption that

players can precisely perceive a fundamental parameter, which then serves as a coordination

device. However, as pointed out by Woodford (2020), if one adds a small amount of cognitive

imprecision to the game so that each player perceives a slightly different fundamental, then

coordination becomes more difficult and multiplicity breaks down. This line of reasoning

follows directly from the vast literature on global games (Carlsson and Van Damme, 1993;

Morris and Shin, 2003; Angeletos and Lian, 2016) with the important distinction that, here,

we interpret the noise as arising from perceptual errors rather than from traditional sources of

asymmetric information (e.g., different opportunities that agents have to acquire information

about an uncertain state of the world).

In this paper, we theoretically develop and experimentally test the hypothesis that per-

ceptual noise systematically affects strategic behavior. The hypothesis enables us to apply

standard results from the global games literature without explicitly introducing private infor-

mation. Specifically, we analyze a 2×2 simultaneous-move game where players can choose to

invest or not invest in an asset. Each player’s payoff depends on the value of a fundamental

and on the action of the other player. While theory predicts multiple equilibria for a range

1For examples of game theoretic models in these domains, see Diamond and Dybvig (1983), Obstfeld
(1996), Morris and Shin (1998), Atkeson (2000), Goldstein and Pauzner (2005), and Edmond (2013).
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of fundamental values in the complete information version of the game, a small amount of

perceptual noise generates a unique equilibrium: each player invests if and only if their noisy

perception of the fundamental crosses a threshold. This is the classic conclusion from the

global games literature, which typically interprets the noisy observation of fundamentals as

capturing asymmetric information.2

Because we adopt the view that noise arises from perceptual error, we can leverage princi-

ples from psychology to generate even sharper equilibrium predictions. Specifically, we draw

on the principle of efficient coding, which states that the decision-maker’s perceptual system

optimally reallocates resources as the statistics of the environment change. In our setting,

efficient coding implies that perception of a given fundamental value will be more precise

when fundamental volatility is lower. The intuition is that each player has a limited set of

cognitive resources, and she optimally allocates these resources towards perceiving those fun-

damental values that she expects to occur more frequently.3 Thus, when the distribution of

fundamentals becomes more volatile, cognitive resources are dispersed more broadly, which

leads to larger perceptual errors (for values near the center of the distribution). Efficient cod-

ing therefore predicts context-dependent behavior: each player implements the equilibrium

threshold strategy with more precision as fundamental volatility decreases.

To test this prediction, we conduct a pre-registered experiment in which subjects play

a simultaneous-move game in each of three hundred rounds. The game is characterized by

the value of a fundamental parameter, which is clearly displayed to both subjects on each

round as a two-digit Arabic numeral, such as “45”. We rely on subjects’ inherent cognitive

imprecision to transform this “public” signal into a private signal, owing to idiosyncratic

perceptual errors. The perceptual error induces uncertainty over the fundamental. More

importantly, perceptual error also induces strategic uncertainty over the other player’s action,

which is key to breaking the multiplicity of equilibria. Our key experimental treatment is

to manipulate the volatility of the fundamental across a high volatility and a low volatility

condition, in order to test for context-dependent behavior.

Our data strongly support the novel prediction that equilibrium outcomes are context-

dependent. Specifically, we observe that the probability of investing is monotone in the

2Several previous experimental studies have found empirical support for the global games prediction
that the probability of investing is monotonic in the fundamental (Heinemann, Nagel and Ockenfels, 2004,
2009; Cabrales, Nagel and Armenter, 2007; Avoyan, 2019; Szkup and Trevino, 2020; Goryunov and Rigos,
2020). As we describe further below, one feature that differentiates our study from the existing experimental
literature on global games is that we invoke the global games arguments without explicitly endowing subjects
with private information

3Such an assumption has been validated in many papers on sensory perception (Girshick, Landy and
Simoncelli, 2011; Wei and Stocker, 2015; Payzan-LeNestour and Woodford, Forthcoming) and in economic
decision making (Polania, Woodford and Ruff, 2019; Frydman and Jin, Forthcoming).
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fundamental, and we find that this monotonic relationship is significantly stronger in the

low volatility condition than in the high volatility condition. In light of our model, we

interpret the observed treatment effect as a consequence of more accurate perception of

fundamentals in the low volatility condition. Further evidence comes from the distribution

of response times, which indicates that subjects choose their action significantly faster when

they are adapted to the low volatility distribution of fundamentals.

We emphasize that, in both experimental conditions, the strong monotonic relationship

that we observe between fundamentals and investing is not predicted under the complete

information version of the game. As such, our data suggest that even when subjects receive

no explicit private signals from the experimenter, private information is inherent in the

game because subjects encode the fundamental with idiosyncratic perceptual noise. Our

framework therefore provides a new explanation for earlier experimental papers that find a

high correlation between behavior and fundamentals, regardless of whether subjects receive

explicit private signals (Heinemann, Nagel and Ockenfels, 2004; Van Huyck, Viriyavipart

and Brown, 2018).4 Such a result may initially appear puzzling because, in the absence of

private information, there are multiple equilibria and behavior should not vary smoothly

with fundamentals. However, one can explain the correlation between fundamentals and

behavior by taking a broader view of the potential sources of private information to also

include perceptual errors.5

The data from our experiment can also separate between cognitive imprecision and several

alternative models from game theory. Perhaps the closest model to cognitive imprecision is

Quantal Response Equilibrium (QRE; McKelvey and Palfrey 1995, 1998). In QRE, each

player stochastically best responds to their opponent. Cognitive imprecision and QRE share

the prediction that, in equilibrium, behavior is random (even when players are not indifferent

between actions). However, a unique prediction generated by cognitive imprecision, that is

not shared by QRE, is that behavior depends on the distribution from which the fundamental

is drawn. In fact, this context dependence further separates cognitive imprecision from a

broader class of theories including level-k thinking (Stahl and Wilson, 1994, 1995; Nagel,

1995). We discuss these differences across theories in more detail in Section 5.

4Moreover, when discussing an experiment where there is no explicit private information about payoffs,
Heinemann, Nagel and Ockenfels (2009) argue that “Of course, players know the true payoff. Their uncer-
tainty about others’ behavior makes them behave as if they are uncertain about payoffs” (p. 203). Our
results indicate that it may well be the case that subjects do not know the true payoff, because of perceptual
error.

5Van Huyck and Stahl (2018) conduct an experiment by simultaneously varying both the range and the
mean of payoffs in a stag hunt game. However, because the fundamental in their experiment never takes
on values in the “dominance regions”, one cannot interpret the experimental results through the theory of
global games.
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In our model, perceptual error generates a unique equilibrium because each player is

uncertain about their opponent’s perception of the fundamental. The model therefore relies

on the assumption that each player is aware of their opponent’s imprecision. To investigate

the validity of this assumption, we conduct a second experiment, where subjects are asked to

classify whether a two-digit number is greater than a reference level of 55 (which is chosen to

be the same as the threshold in the unique equilibrium of the game in our first experiment).

We then incentivize subjects to report their beliefs about (i) the average accuracy of all other

subjects in the experiment and (ii) their own accuracy.

We find that subjects are aware of their own errors and, more importantly, they are aware

of others’ errors in the classification task. Subjects also report beliefs that discriminating

between a number close to the threshold, say “54”, is harder than discriminating between a

number far from the threshold, say “47.” This property has been shown theoretically to have

important implications for equilibrium selection (Morris and Yang, 2021), and has recently

been formalized in the rational inattention literature using a so-called “neighborhood cost

function” (Hébert and Woodford, Forthcoming). The data from our second experiment

therefore provide novel evidence supporting the assumption that subjects are aware that

others’ ability to discriminate between two states depends on the “distance” between states.

Our results build directly on a set of papers that has begun testing whether principles of

cognitive imprecision are active in individual economic decision-making (Enke and Graeber,

2021; Gershman and Bhui, 2020; Khaw, Li and Woodford, 2021; Frydman and Jin, Forth-

coming; Polania, Woodford and Ruff, 2019). There has, however, not yet been a similar set

of tests in strategic settings. Our results provide clear evidence that cognitive imprecision

does indeed extend into strategic settings, and that subjects are aware of this feature of their

own and others’ perception. By testing whether similar cognitive mechanisms apply in in-

dividual and strategic decision-making, our work is related to recent brain imaging evidence

from Nagel, Brovelli, Heinemann and Coricelli (2018) who show that common neural circuits

are activated during lottery choice and games with strategic uncertainty.

The remainder of the paper proceeds as follows: Section 2 presents the model and derives

the theoretical predictions for our experimental manipulation. Sections 3 and 4 describe the

experimental design and report the experimental results for Experiment 1 (the simultaneous-

move game) and Experiment 2 (the number classification task), respectively. Section 5

discusses assumptions of our thoeretical framework and draws connections with the global

games literature and alternative game theory models. Section 6 concludes.
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Figure 1: The Game

2 Model

In this section, we present a model in which players imprecisely perceive their strategic

environment. We assume that each player forms a noisy perception of the “fundamental”

payoff in the game. As a consequence, each player’s perception of the fundamental payoff

will, in general, differ from the true fundamental and from their opponent’s perception of

the fundamental. We illustrate the strategic implications of noisy perception in the setting

of a 2 × 2 simultaneous-move game. We focus our analysis on those parameter values that

generate the essential features of a coordination game.

Consider the game in Figure 1, where b > a. In what follows, we always assume that a

and b are perceived precisely (i.e., without any noise) by both players, and we are interested

in the effect of imprecise perception of θ.6 As a benchmark, we first consider the predictions

of a model in which θ is perceived precisely, and then we relax this assumption to investigate

the implications of cognitive imprecision.

2.1 Benchmark: Precise Perception

When both players perceive θ precisely, the game is one of complete information and its

Nash equilibria depend on the true value of θ, as outlined below:

• If θ > b, then Invest is a strictly dominated action for each player, and (Not Invest,

Not Invest) is the unique Nash (and dominant strategy) equilibrium.

• If θ < a, then Not Invest is a strictly dominated action for each player, and (Invest,

Invest) is the unique Nash (and dominant strategy) equilibrium.

• If a ≤ θ ≤ b, then there are two Nash equilibria in pure strategies: (Not Invest, Not

Invest) and (Invest, Invest). There also exists one Nash equilibrium in mixed strategies.

Thus, when θ takes on values in the intermediate range [a, b], there are multiple pure

strategy Nash equilibria. This prediction relies on the assumption that each player pre-

cisely perceives θ. Precise perception generates common knowledge about θ, which enables

6Our assumption that a and b are perceived without noise can be justified, for example, through a
learning mechanism. In our experiment, we keep a and b constant across all rounds, so the amount of noise
in perceiving a and b is arguably minimal.

6



coordination and gives rise to multiple self-fulfilling equilibria. The predictions change dra-

matically, however, when we relax the assumption that players can perceive θ precisely.

2.2 Cognitive Imprecision

Suppose now that players perceive θ with noise. This assumption is backed up by a large

literature in numerical cognition, which finds that people encode numerical quantities with

noise, even when the quantities are presented symbolically (see Dehaene 2011 for a review).

To model the imprecision, we assume that all players have a common prior that θ is dis-

tributed normally: θ ∼ N (µθ, σ
2
θ). Our key assumption is that, instead of precisely observing

the realized value of θ, each player only has access to a noisy internal representation of θ.

Assumption 1 (Cognitive Imprecision) Each player i, i = {1, 2}, observes a noisy in-

ternal representation of θ, Si = m(θ) + εi, where each εi is independently and normally

distributed: εi ∼ N (0, σ2
S), with σ2

S > 0.

Assumption 1 says that each player’s internal representation is conditionally independent

and depends on θ through an encoding function, m(θ). We follow Khaw, Li and Woodford

(2021) and assume a linear encoding function with a “power constraint”:7

Assumption 2 (Encoding Function) The encoding function is linear: m(θ) = ξ + ψθ.

In addition, there is a power constraint, E[m2] ≤ Ω2 <∞.

The power constraint ensures that the encoded value, m(θ), does not vary too much,

which captures the idea that the brain cannot encode an arbitrarily large set of values. The

parameters of the encoding function, (ξ, ψ), are allowed to vary with the player’s environment

– which we characterize by the prior distribution of θ. Thus, the conditional distribution

of noisy signals can vary across environments. This assumption is built on substantial em-

pirical evidence, mainly from the literature on sensory perception, which demonstrates that

the distribution of noisy internal representations is optimally adapted to the statistical reg-

ularities of the environment. This principle is called efficient coding, and recent work has

empirically documented effects of efficient coding in economic choices (Polania, Woodford

and Ruff, 2019; Frydman and Jin, Forthcoming). To close the efficient coding model, we

need to specify the performance objective which drives the players’ optimal choice of the

encoding function parameters.

7Khaw, Li and Woodford (2021) assume a slightly different specification of the encoding function, which
is linear in the logarithm of a payoff value. See their Appendix C for details.
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Assumption 3 (Performance Objective) Payers choose the encoding function which min-

imizes the mean squared error between θ and its conditional mean, E[θ|si].

The previous three assumptions describe the perceptual constraints and the objective

function of each player. Given these constraints and objectives, we can derive the efficient

encoding function that each player optimally chooses.8

Proposition 1 (Efficient Coding) Given Assumptions 1-3, the optimal encoding function

features ξ? = − Ω
σθ
µθ and ψ? = Ω

σθ
. Consider the transformed internal representation, Zi ≡

(Si − ξ?)/ψ?. The conditional distribution of this transformed internal representation is

N(θ, ωσ2
θ), where ω = σ2

S/Ω
2. The variance of the transformed internal representation is

proportional to the variance of θ.

At an intuitive level, efficient coding implies that perceptual resources are allocated so as

to better discriminate between different values of θ that are expected to occur more frequently

under the players’ prior beliefs. Specifically, as the volatility of the prior decreases, perceptual

resources are reallocated towards the center of the distribution.

Given the optimal encoding function in Proposition 1, we can now solve for the equilibria

of the game. We restrict our analyses to monotone equilibria of the incomplete information

game, that is, equilibria in which actions are monotonic in the transformed internal represen-

tation, Zi. In a monotone equilibrium, players’ mutual best response is to choose Invest if and

only if their transformed internal representation is below a threshold k?. Adapting results

from the global games literature (Carlsson and Van Damme, 1993; Morris and Shin, 2003;

Morris, 2010) to the game in Figure 1, with the further assumption that µθ = (a+ b)/2 (as

in our experiment in the next section), we can establish there exists a monotone equilibrium

such that player i invests if and only if Zi ≤ µθ, for any value of σθ, σS and Ω. Furthermore,

if the noise in the transformed internal representation is sufficiently small, then this is the

unique monotone equilibrium.

Proposition 2 (Equilibrium Existence and Uniqueness) Suppose Assumptions 1-3 and

µθ = (a + b)/2. There exists an equilibrium of the game where each player invests if and

only if Zi ≤ µθ (or, equivalently, E[θ|Zi] ≤ µθ). Moreover, if
√
ω(1 + ω) <

√
6π

(b−a)
σ2
θ , this is

the unique monotone equilibrium of the game.

In deriving Proposition 2, we assume common knowledge of the distribution of internal

representations. However, precise knowledge of the underlying information structure is not

8In Section 5, we discuss the robustness of our main theoretical results to different assumptions about
the players’ performance objective.
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Figure 2: Predicted Probability of Investing as a Function of θ. Note: The solid
line denotes the prediction for a low volatility distribution with θ ∼ N(55, 20); the dashed
line denotes the prediction for a high volatility distribution with θ ∼ N(55, 400); we set the
following parameter values: a = 47, b = 63, and ω = 1.5.

necessary for this equilibrium to arise. As we show in Appendix C, in a simpler model where

m(θ) = θ, it is enough to assume that (i) µθ = (a+ b)/2, (ii) E[εi] = 0, (iii) the distribution

of εi is symmetric, quasiconcave and independent of the realized value of θ, and (iv) the

distribution of θ is symmetric and continuous on R.

Proposition 2 implies a particular set of comparative statics with respect to θ. The

probability of investing is pinned down by the distribution of the transformed internal rep-

resentation: Pr[Invest|θ] = Pr [Zi ≤ µθ|θ] = Φ
(
µθ−θ
ωσθ

)
, where Φ(·) is the cumulative density

function of the standard normal. This result indicates that, in the unique monotone equilib-

rium, the probability of investing is monotonically decreasing in θ. Moreover, the probability

of investing depends not only on θ but also on the prior distribution from which θ is drawn:

σθ modulates the optimal encoding rule and, thus, the noise in implementing the unique

monotone equilibrium strategy of the game. Thus, if we experimentally manipulate the

volatility of the prior, we should see that, in the unique equilibrium of the game obtained

when ω is sufficiently small, the probability of investing is more sensitive to θ when the prior

volatility is smaller. This prediction is summarized in the following proposition.
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Proposition 3 (Comparative Statics) Suppose Assumptions 1-3, µθ = (a + b)/2, and√
ω(1 + ω) <

√
6π

(b−a)
σ2
θ . In the unique monotone equilibrium of the game, the probability

that each player invests for a given value of θ is Pr[Invest|θ] = Φ
(
µθ−θ
ωσθ

)
. Decreasing

the variance of θ will increase the sensitivity of choices to θ, (that is, the rate at which

Pr[Invest|θ] decreases with θ) for values of θ close to µθ.

We illustrate the implications of Proposition 3 in Figure 2. The figure shows that the

prior variance of θ strongly affects choice sensitiivty to θ. This dependence of equilibrium

behavior on the distribution of θ motivates our experimental design.

3 Experiment 1: Simultaneous-Move Game

3.1 Experimental Design

In this experiment, we test the model by incentivizing subjects to play a simultaneous-move

game, and we manipulate the distribution that generates the fundamental payoff, θ. We pre-

register the experiment and recruit 300 subjects from the online data collection platform,

Prolific.9 We restrict our sample to subjects who, at the time of data collection, (i) were UK

nationals and residents, (ii) did not have any previous “rejected” submissions on Prolific, and

(iii) answered all comprehension quiz question correctly. Subjects are paid 2 GBP (∼ 2.8

USD) for completing the experiment, and they have the opportunity to receive additional

earnings based on their choices and the choices of other participants.

The experiment consists of 300 rounds, and each subject participates in all rounds. In

each round, a subject is randomly matched with another subject and, together, they play the

simultaneous-move game in Figure 1. In all rounds, we set the payoff parameters a = 47 and

b = 63. The only feature of the game that varies across rounds is the value θ, which is drawn

from the condition-specific distribution f(θ). In each round, both subjects observe the same

realization of θ. In order to shut down learning about other participants’ behavior, we choose

not to provide subjects with feedback about their payoff or their opponent’s choice in a given

round. At the end of the experiment, one round is selected at random, and subjects are paid

according to the number of points they earned in that round, which in turn, depends on their

action, their opponent’s action, and the (round-specific) value of θ. Points are converted to

GBPs using the rate 20:1. The average duration of the experiment was ∼ 25 minutes and

average earnings, including the participation fee, were ∼ 5.5 GBP (∼ 7.7 USD).

Subjects are randomized into one of two experimental conditions: a high volatility con-

dition or a low volatility condition, which differ only based on the distribution of θ. In the

9The pre-registration document is available at https://aspredicted.org/IHU_KCE.
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high volatility condition, f(θ) is normally distributed with mean 55 and variance 400. In the

low volatility condition, f(θ) is normally distributed with mean 55 and variance 20. In both

conditions, after drawing θ from its respective distribution, we round θ to the nearest integer,

and we re-draw θ if the rounded value is less than 11 or greater than 99. We implement

these modifications to the normal distribution to control complexity and ensure that θ is a

two-digit number on each round. We do not give subjects any explicit information about

f(θ) in the instructions, as our intention is to test whether a subject’s perceptual system can

adapt to the statistical properties of the environment without explicit top-down information.

Moreover, we believe that such a design is more natural than explicitly telling subjects the

distribution of parameters they will experience, as this could artificially direct their atten-

tion to the distribution (a similar design feature is used in Frydman and Jin (Forthcoming)).

Each condition contains an identical set of instructions and comprehension quiz.10

Recall that, in the complete information version of the game, there are multiple equilibria

when θ is in the range [47, 63]. We therefore focus our analyses on games for which θ lies

in this range, which occurs on 93% of rounds in the low volatility condition and on 31% of

rounds in the high volatility condition. We pre-register that our main analyses are restricted

to those rounds for which θ ∈ [47, 63], which we call “common rounds.” This is a crucial

feature of our design, because it allows us to compare behavior across conditions using the

exact same set of games and varying only the context — which is characterized by the

distribution of games. In choosing the variance of f(θ) for each condition, we thus strike a

balance between generating a substantial number of common rounds to analyze and creating

a large difference in prior variance across conditions. As outlined in our pre-registration, we

also exclude the first 30 rounds from our analyses, in order to allow subjects time to adapt

to the distribution of θ.

Figure 3 provides a screenshot of a single round shown to subjects. In order to avoid

framing effects, we label the two options “Option A” and “Option B”, and the left-right

location of each option is randomized across rounds. The number “45” is the realized value

of θ on the specific round shown in Figure 3. We emphasize that — while the number is clearly

displayed to all subjects and, thus, would traditionally be interpreted as public information

— here we rely on cognitive imprecision to transform the fundamental value into private

information. In other words, we assume that the constraints on a subject’s perceptual

system make it impossible to perfectly perceive the fundamental value (Assumption 1).

Furthermore, efficient coding implies that the amount of imprecision varies endogenously

with the distribution of θ across conditions.

10The experimental instructions are available in Appendix D.
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Figure 3: Sample Screenshot Shown to Participants in Experiment 1. Note: In this
round, the realized value of θ is 45, which is clearly and explicitly displayed to both subjects.
Subjects choose either “Option A” or “Option B” by pressing one of two different keys on
the keyboard.

3.2 Experimental Results

Choice Behavior

Following our pre-registration, we restrict our analysis to common rounds in which subjects

execute a decision with a response time greater than 0.5 seconds, which generates a sample

of 50,129 decisions. Across both conditions, subjects choose to invest on 58.9% of rounds

and exhibit an average response time of 1.64 seconds.

In Figure 4, we plot the probability of investing as a function of the fundamental, sep-

arately for the two experimental conditions. One can see that, in both conditions, the

aggregate data are consistent with the hypothesis that subjects implement strategies that

are monotone in θ. This finding is in line with previous experimental results on coordination

games (Heinemann, Nagel and Ockenfels, 2004, 2009; Szkup and Trevino, 2020). Importantly,

the smooth decreasing relationship between θ and the probability of investing obtains even

without explicitly endowing subjects with any private signals about θ. We interpret this

result as subjects implementing a noisy threshold strategy in both experimental conditions,

which is consistent with the comparative static between θ and the probability of investing

in Proposition 3.

In order to provide a more targeted test of cognitive imprecision, we exploit the variation

in the distribution of θ across our two experimental conditions. Efficient coding predicts

context-dependent behavior, where the threshold strategy from the unique monotone equi-

librium is implemented with more precision in the low volatility condition. Figure 4 provides
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Figure 4: Empirical Frequency of Investing as a Function θ. Note: For each value of
θ between 47 and 63, we plot the proportion of rounds on which a subject chooses to invest,
separately for each of the two experimental conditions. Data are pooled across subjects and
are shown for rounds 31-300, after an initial 30-round adaptation period. Vertical bars inside
each data point denote two standard errors of the mean. Standard errors are clustered by
subject.

evidence consistent with this prediction: the frequency of investing is more sensitive to the

fundamental in the low volatility condition, compared to the high volatility condition.

To formally test the difference in slope, we estimate a series of mixed effects logistic

regressions. Column (1) of Table 1 confirms our main result: the coefficient on the interaction

term (θ − 55) x Low is significantly negative, indicating that the probability of investing

decreases in the fundamental more rapidly when a subject is adapted to the low volatility

condition. Columns (2) and (3) show that this result holds in both early (first 70 trials

after adaptation) and late (last 70 rounds of the session) subsamples. Column (4) indicates

that the treatment effect becomes moderately stronger over the course of the experiment.

The strengthening of the treatment effect over the course of the experiment suggests that

subjects have not fully adapted to the distribution by round 100, and additional rounds of

play provide the opportunity for further adaptation.

While subjects do not receive feedback after each round, it is still possible that they learn
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Dependent Variable: Pr(Invest) (1) (2) (3) (4)

(θ − 55) -0.458∗∗∗ -0.467∗∗∗ -0.577∗∗∗ -0.481∗∗∗

(0.033) (0.039) (0.051) (0.037)

(θ − 55) x Low -0.499∗∗∗ -0.351∗∗∗ -0.487∗∗∗ -0.374∗∗∗

(0.063) (0.059) (0.076) (0.061)

Low -0.182 -0.335 -0.170 -0.275

(0.386) (0.343) (0.423) (0.360)

Late -0.022

(0.121)

(θ − 55) x Late 0.013

(0.021)

Low x Late 0.092

(0.154)

Low x (θ − 55) x Late -0.065∗

(0.034)

Constant 1.351∗∗∗ 1.316∗∗∗ 1.465∗∗∗ 1.292∗∗∗

(0.221) (0.224) (0.222) (0.229)

Observations 50,129 13,196 12,861 25,864

Rounds 31-300 31-100 231-300 (31-100)

& (231-300)

Table 1: Treatment Effect Estimates. Note: Table displays results from mixed effects
logistic regressions. Observations are at the subject-round level. The dependent variable
takes the value 1 if the subject chooses to Invest and 0 otherwise. The variable Low takes
the value 1 if the round belongs to the low volatility condition and 0 otherwise. The variable
Late takes the value 1 if the round number is 231 or greater, and 0 otherwise. Only data
from rounds where 46 < θ < 64 are included in the regressions. There are random effects on
(θ − 55) and the intercept. Standard errors of the fixed effect estimates are clustered at the
subject level and shown in parentheses. ***, **, * denote statistical significance at the 1%,
5%, and 10% levels, respectively.
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about the strategic environment through repeated exposure to the game, as in Weber (2003)

and Rick and Weber (2010). Moreover, our experimental design implies that subjects in

different conditions will experience the same game, characterized by θ, a different number of

times (e.g., games characterized by a value of θ close to 55 will occur more frequently in the

low volatility condition). This raises the potential concern that our observed treatment effect

is due to the differential ability to learn, rather than to cognitive imprecision. To investigate

this alternative explanation, Table 2 presents results when we restrict to subsamples where

subjects have identical experience with a given game in both conditions. In particular, the

first column restricts to those rounds on which subjects in both conditions have previously

observed 3 games with the same value of θ as in the current round. Columns (2) – (4) further

restrict the data based on more and more experience with a given game. The regression

results indicate that our treatment effect obtains among each of the different subsamples.

Thus, learning cannot explain the entire treatment effect we observe.

Dependent Variable: Pr(Invest) (1) (2) (3) (4)

(θ − 55) -0.384∗∗∗ -0.389∗∗∗ -0.364∗∗∗ -0.447∗∗∗

(0.039) (0.041) (0.036) (0.047)

(θ − 55) x Low -0.266∗∗∗ -0.275∗∗∗ -0.285∗∗∗ -0.299∗∗∗

(0.051) (0.054) (0.052) (0.063)

Low -0.317 -0.356 -0.129 -0.207

(0.276) (0.285) (0.283) (0.317)

Constant 1.067∗∗∗ 1.202∗∗∗ 0.993∗∗∗ 1.174∗∗∗

(0.181) (0.199) (0.192) (0.217)

Observations 4,263 4,053 3,677 3,255

Rounds of Experience with Game (θ) 3 4 5 6

Table 2: Controlling for Experience with θ. Note: Table displays results from mixed
effects logistic regressions. Observations are at the subject-round level. The dependent
variable takes value 1 if the subject chooses to Invest and 0 otherwise. The variable Low
takes value 1 if the round belongs to the low volatility condition and 0 otherwise. Only data
from rounds where 46 < θ < 64 are included in the regressions. There are random effects on
(θ − 55) and the intercept. Standard errors of the fixed effect estimates are clustered at the
subject level and shown in parentheses. ***, **, * denote statistical significance at the 1%,
5%, and 10% levels, respectively.

It is important to point out that the results in Figure 4 are aggregated across subjects.

Therefore, while the data are consistent with the prediction that, at the individual subject

level, signals are drawn from a noisier distribution in the high volatility condition, there

is another potential explanation based on aggregation. Specifically, suppose that subjects
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perceive θ perfectly and that they use a potentially non-equilibrium cutoff strategy. Further

suppose that there is heterogeneity with respect to the cutoff that each subject adopts. If

some subjects use low cutoffs, while others use high cutoffs, then this heterogeneity would

give rise to the decreasing relationship observed in both aggregate curves in Figure 4. In

addition, if the variance in cutoff strategies across subjects is larger in the high volatility

condition, then this alternative hypothesis could explain the weaker relationship between θ

and the probability of investing in the high volatility condition. To investigate this alternative

hypothesis, based on heterogeneity of cutoff strategies, we structurally estimate the model

to obtain subject-specific cutoffs and measures of perceptual noise.

Structural Estimation

According to the model described in Section 2, subject i chooses the parameters of the

encoding rule, mi(θ) = ξi + ψiθ. She then observes a noisy internal representation, Si =

mi(θ)+εi. If we define a transformed version of the noisy internal representation as Zi = (Si−
ξi)/ψi, then, for a cutoff Z?

i , our model predicts that she invests if and only if Zi ≤ Z?
i . In the

unique monotone equilibrium of the game with cognitive imprecision, all subjects in the same

treatment choose the same (ξi, ψi, Z
?
i ). Here, we allow subjects to make heterogeneous (non-

equilibrium) choices and we structurally estimate these parameters using behavior observed

in the experiment.

Consider subject i who adopts a cutoff value of Z?
i and, in round t, receives a noisy

internal representation Sit = ξi + ψiθt + εit. The probability that subject i invests in round

t is the probability that her transformed noisy internal representation is below her cutoff:

IP(Invest|θt, σS, ψi, Z?
i ) = Φ

(
Z?
i − θt
σS/ψi

)
(1)

We structurally estimate the model using maximum likelihood estimation. In particu-

lar, for each subject, we estimate the standard deviation of the transformed noisy internal

representation, σi = σS/ψi, and the cutoff Z?
i .11 We maximize the following log-likelihood

11We cannot separately identify σS and ψi since these two parameters are perfect substitutes in the
conditional density of Zi. At the same time, while ψi is an endogenous variable, we interpret σS as an
exogenous parameter, capturing the degree of a subject’s perceptual acuity. In Section 2, we assumed σS
is homogeneous. Even if we allowed for heterogeneity across subjects, the randomization into experimental
conditions would guarantee a similar distribution of σS in the two sub-populations. For this reason, we
attribute any difference in the distribution of the estimated σi’s across conditions to differences in ψi.
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function over (σi, Z
?
i ), using behavior in rounds 31 – 300:

LL (σi, Z
?
i ,yi) =

300∑
t=31

yit · log (IP(Invest|θt, σi, Z?
i )) + (1− yit) · log(1− IP(Invest|θt, σi, Z?

i )),

(2)

where yi ≡ {yit}300
t=31 and yit denotes the subject’s choice in round t, with yit = 1 if the

subject chooses to invest and yit = 0 if the subject chooses not to invest. We maximize the

log-likelihood function in (2) by searching over grid values of [σi, Z
?
i ] ∈ [0.1, 50.1]× [11, 99],

in increments of 0.5 along each dimension.

Figure 5 plots the distribution of estimated parameters for the 300 subjects (150 in each

condition). Beginning with the upper panel, we see that, for most subjects, the estimated

cutoff lies between 50 and 60. The mean cutoff in the high volatility condition is 58.5 and

the mean cutoff in the low volatility condition is 57.2. These means are not significantly

different from one another (p = 0.15). The average cutoff in each condition is, however,

significantly greater than 55. As can be seen from the figure, this difference relative to 55 is

driven mainly by the right tail of the distribution, which captures a small fraction of subjects

who almost always choose to invest.

More importantly, we find that the standard deviation of estimated cutoffs is not signif-

icantly different across conditions (8.4 in high volatility vs. 7.5 in low volatility, p = 0.43

Levene’s test). This suggests that heterogeneity in cutoffs is not driving our main result.

If it were, we would have observed a more concentrated distribution of cutoffs in the low

volatility condition and, thus, a significantly lower standard deviation of estimated cutoffs

in the low volatility condition.

Instead, the lower panel of Figure 5 reveals that the difference in behavior across con-

ditions stems from the standard deviation of the noisy internal representations. The mean

estimated value of σi is significantly higher in the high volatility condition (14.4 vs. 5.9,

p < 0.001). One can easily see from the figure that this effect holds not only on average,

but across the whole distribution. In summary, while the aggregate data in Figure 4 are

consistent with subjects in the high volatility condition exhibiting (i) a wider dispersion of

cutoffs or (ii) a higher amount of noise in the internal representation of the fundamental, our

structural estimation indicates that the effect is coming only through the second channel, as

predicted by the theory developed in Section 2.

Response Times

Here we analyze the distribution of response times in both conditions. As outlined in our

pre-registration, we hypothesize that if subjects are implementing cutoff strategies, then
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Figure 5: Empirical CDFs of Subject-Level Structural Estimates. Note: Upper panel
is empirical CDF of estimated cutoffs. Lower panel is empirical CDF of estimated standard
deviations of noisy internal representations.

response times should peak at the cutoff value. Figure 6 shows that response times are

longer in the high volatility condition. Moreover, in the high volatility condition, the peak

response time is at 55, whereas in the low volatility condition, the peak is at 54. If subjects

are implementing the unique equilibrium threshold strategy, which involves discriminating

whether the fundamental is above or below 55, then models of sequential sampling from the

mathematical psychology literature (Ratcliff, 1978; Krajbich, Armel and Rangel, 2010) would

predict that response times should peak at the predicted threshold of 55, since these are the

most “difficult” discrimination problems. The response time data provide some support for
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Figure 6: Average Response Time as a Function of θ in Experiment 1. Note:
Response times are averaged across subjects and across rounds. Vertical bars denote two
standard errors of the mean. Standard errors are clustered by subject.

this prediction.

4 Experiment 2: Number Classification Task

Here we report results from a second experiment that is designed to investigate whether

subjects are aware of their own imprecision and the imprecision of others. If subjects are

not aware of the cognitive imprecision of others, then this would shut down the channel that

generates strategic uncertainty in our model, which is key to generating the unique threshold

equilibrium.

4.1 Experimental Design

Our method for studying awareness of imprecision is to create a simplified version of the

previous experiment, but one that retains the core individual decision-making prediction

that subjects play a threshold strategy. We employ a task from the numerical cognition

literature where subjects are incentivized to quickly and accurately classify whether a two-

digit number is larger or smaller than the number 55. Note that this threshold strategy is
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identical to the equilibrium strategy in the previous experiment; the main difference is that

here, we exogenously impose the strategy on subjects without any strategic considerations

or equilibrium requirements. We then incentivize subjects to report beliefs about errors in

their own classification and in the classification of others. These beliefs are the main object

of study in this experiment.

We recruit 300 subjects from Prolific who did not participate in Experiment 1. We pay

subjects 1 GBP for completing the study, in addition to earnings from three phases of the

experiment. In Phase 1, on each of 150 rounds, subjects are incentivized to quickly and

accurately classify whether a two-digit Arabic numeral on the experimental display screen is

larger or smaller than 55. Subjects earn (1.5×accuracy−1× speed) GBPs, where ‘accuracy’

is the percentage of trials where the subject classifies the number correctly, and ‘speed’ is

the average response time in seconds.12 As in Experiment 1, there are two conditions, and

the only difference across conditions is the distribution from which the two-digit Arabic

numeral (which we again denote by θ) is drawn. We use the same two distributions as in

Experiment 1: in the high volatility condition, θ ∼ N (55, 400), and in the low volatility

condition, θ ∼ N (55, 20). We then round each value of θ to the nearest integer and re-draw

if the rounded integer is less than 11 or greater than 99 (again, to ensure that each number

contains exactly two digits).

We note that one difference in incentives between Experiment 1 and Experiment 2 in-

volves decision speed. Here, in Experiment 2, we penalize subjects for the time it takes

them to respond. The reason we impose the speed incentive in Experiment 2 comes from the

well known “speed-accuracy tradeoff” in perceptual decision-making: one can obtain higher

accuracy in classification as decision speed slows down. Thus, in order to increase statistical

power to detect how accuracy differs for values of θ close and far from the threshold, we

jointly reward speed and accuracy.

In Phase 2 of the experiment, we incentivize subjects to report beliefs about others’

performance in the task. Furthermore, we collect data on whether subjects believe that

others are more imprecise when the number on screen is closer to the reference level of 55,

compared to when the number is farther from the reference level. This feature of beliefs

is important because the equilibrium predictions from our previous experiment depend on

the noise structure in perception. In particular, recent theoretical work has shown that an

important property of the noise structure for determining equilibrium is that discriminating

between nearby states is harder than discriminating between far away states (Morris and

Yang, 2021; Hébert and Woodford, Forthcoming)13. We ask subjects to consider the 149

12The experimental instructions are available in Appendix D.
13For example, an alternative model of imperfect perception that does not feature the property that
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other participants in their experimental condition of the study, who also just completed

Phase 1. We then ask subjects the following two questions:

1. Consider only trials where the number on screen was equal to 47. In what percentage

of these trials do you think the other participants gave a correct answer, that is, they

correctly classified whether the number was smaller or larger than 55?

2. Consider only trials where the number on screen was equal to 54. In what percentage

of these trials do you think the other participants gave a correct answer, that is, they

correctly classified whether the number was smaller or larger than 55?

For each of the two questions, we pay the subject 0.5 GBP if their forecast is within

1% of the true percentage.14 Question 1 elicits beliefs about others’ imprecision when the

distance between the number is far from the threshold (47 vs. 55), whereas Question 2 elicits

beliefs about others’ imprecision when the distance is close (54 vs. 55). While we could

have asked subjects about their beliefs about others’ imprecision for a range of numbers —

rather than the single numbers 47 and 55 — this would have introduced a confound, since

the distribution of numbers is different across conditions.

In Phase 3, we ask subjects about their own performance on the number classification

task (that they completed in Phase 1). This question is not trivial because we do not provide

subjects with feedback after any round in Phase 1 (nor after the end of Phase 1). Here, we

are also interested in subjects’ awareness of their own imprecision for numbers that are close

and far from the threshold. Specifically, we ask subjects the following two questions:

1. Consider only trials where the number on screen was between 52 and 58. In what

percentage of these trials do you think you correctly classified whether the number was

smaller or larger than 55?

2. Consider only trials where the number on screen was less than 52 or greater than 58.

In what percentage of these trials do you think you correctly classified whether the

number was smaller or larger than 55?

For each of these two questions, we again reward subjects with 0.50 GBP if they provide

an answer that is within 1% of their true accuracy. All subjects first go through Phase 1,

and the order of Phase 2 and Phase 3 is randomized across subjects. We note that one

nearby states are harder to distinguish than far away states is proposed in Gul, Pesendorfer and Strzalecki
(2017).

14Following Hartzmark, Hirshman and Imas (2021), we choose this elicitation procedure as opposed to
a more complex mechanism such as the Binarized Scoring Rule (BSR) due to recent evidence showing that
the BSR can systematically bias truthful reporting (Danz, Vesterlund and Wilson, 2020).
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potential concern with our design, is that when asking subjects about their performance in

Phase 1, we are testing memory, not ex-ante beliefs. This is a reasonable concern, and an

alternative is to have subjects forecast their performance before undertaking the classification

task. However, under this alternative design, subjects’ classification performance would be

endogenous to their beliefs, and would invalidate the incentive compatibility of our belief

elicitation procedure. For this reason, we opt to implement Phase 1 first for all subjects.

4.2 Experimental Results

The upper panel of Figure 7 replicates the classic result from previous experiments on num-

ber discrimination, whereby subjects exhibit errors, and these errors increase as the number

on screen approaches the threshold (Dehaene, Dupoux and Mehler, 1990). Moreover, we see

that, for numbers between 47 and 63, errors are systematically higher in the high volatility

condition (Frydman and Jin, Forthcoming). Similar patterns are reflected in the response

times shown in the lower panel of Figure 7: response times increase as the number approaches

the threshold of 55, and response times are systematically longer in the high volatility con-

dition.

The purpose of Phase 1 is to create a dataset about performance, over which we can ask

subjects about their beliefs in Phases 2 and 3. In the left panel of Figure 8, we see that

subjects believe their behavior in the classification task exhibits imprecision (that is, beliefs

about accuracy are less than 100%). Moreover, we see that subjects are aware that mistakes

are more likely for numbers closer to the threshold (greater than 52 and less than 58) than

for numbers farther from the threshold (less than 52 or greater than 58; p < 0.001).

The results in the middle panel of Figure 8 help validate a crucial assumption in our

model. Specifically, we see that subjects are aware of other subjects’ imprecision. Moreover,

subjects believe that others are less accurate when discriminating 54 vs. 55 compared with

discriminating 47 vs. 55 (p < 0.001). When embedded in a game, these beliefs are sufficient

to generate strategic uncertainty: if player i believes that player j perceives θ with error,

then player i is uncertain about player j’s perception. The data in the middle panel of Figure

8 therefore provide support for the mechanism that generates strategic uncertainty in our

model.

Finally, our data also enable us to test one other feature of beliefs about others’ impre-

cision. As outlined in our pre-registration, we test whether beliefs about others’ accuracy

on rounds when θ = 54 is higher for those subjects who experience the low volatility dis-

tribution in Phase 1.15 Such a test investigates the hypothesis that subjects are aware that

15Pre-registration document is available at https://aspredicted.org/OGG_XNK.
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Figure 7: Accuracy and Response Times in the Classification Task in Experiment
2. Note: Upper panel shows the proportion of rounds on which subjects correctly classify θ
as greater than or less than the reference level of 55. Lower panel shows the average response
time on rounds where subjects correctly classify θ. In both panels, the vertical bars denote
two standard errors of the mean. Standard errors are clustered by subject.

others’ perception of a given number varies as a function of the experienced distribution.

Indeed, the right panel of Figure 8 shows that, for θ = 54, subjects who experience the high

volatility distribution in Phase 1 report that others make more errors, compared to those

subjects who experience the low volatility distribution in Phase 1 (p = 0.048).
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Figure 8: Beliefs about Own and Others’ Accuracy in the Classification Task.
Note: Left panel shows the average belief about own accuracy for values of θ that are far
(θ < 52 or θ > 58) and close (51 < θ < 59) to the threshold 55. Middle panel shows the
average belief about others’ accuracy for values of θ that are far (θ = 47) and close (θ = 54)
to the threshold 55. Right panel shows the average belief about others’ accuracy when
θ = 54, split by experimental condition. In all panels, vertical bars denote two standard
errors of the mean.

5 Discussion

5.1 Interpretation of Signals in Global Games

One theme that emerges from both our theoretical and experimental analyses is that the noise

that is assumed in models of global games can be interpreted literally as irreducible error

stemming from perceptual constraints. This theme is related to the idea from Heinemann,

Nagel and Ockenfels (2009), that behavior in a complete information coordination game

can be interpreted as if players are observing a fundamental parameter with noise. Like us,

Heinemann, Nagel and Ockenfels (2009) structurally estimate a global games model, and find

a sizable standard deviation of private signals. However, Heinemann, Nagel and Ockenfels

(2009) argue that the (only) source of the estimated standard deviation of private signals is

strategic uncertainty. In contrast, we argue that the standard deviation of private signals

is driven by cognitive imprecision. By adopting an “as is” interpretation of noise in private

signals, we are able to generate and test novel hypotheses about how the standard deviation

of private signals varies across environments.

Another important implication for the literature on global games has to do with the role

of public vs. private signals. A series of papers has argued that when an institution like

the government or a financial market can generate public signals, then a unique equilibrium

may no longer obtain in a global games model (Angeletos and Werning 2006, Atkeson 2000,
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Hellwig, Mukherji and Tsyvinski 2006). The argument is that a sufficiently precise public

signal can act as a coordination device, and thus restore multiple equilibria. However, our

theory and experimental results suggest that there is an important difference between access

to a public signal and precise perception of public signal. Specifically, even if all players

have access to the public signal, each player’s perceptual system will process the same public

signal slightly differently. This perceptual friction therefore transforms the public signal into

private information, thus making it difficult to use the public signal as a coordination device.

Our results therefore imply that the provision of a public signal is not enough to overturn

the classic global games result. The ability to precisely perceive public information is also

necessary and, as we have shown, this cannot be taken for granted.

5.2 Efficient Coding Assumption

Here we revisit the assumption about efficient coding in our model. The specific performance

objective that we assume in Section 2 is only one of several plausible specifications (Ma and

Woodford, 2020). In particular, there are other possible objective functions that players

may have, besides minimizing the mean squared error of the estimate of θ. For example, a

prominent alternative efficient coding objective from the literature on sensory perception is

to maximize the mutual information between the state and its noisy internal representation.

In the proof of Proposition 1, we confirm that the coding rule we use in our model is robust

to this alternative objective.

Yet another alternative objective that has been examined in the economics literature is

maximization of expected reward. In Appendix B, we show that the result in Proposition 1 is

robust to using this alternative objective function. Specifically, we maintain the constraints

in Assumption 2 and we analyze a two-stage game. In the first stage, each player optimally

chooses parameters of the encoding function. In the second stage, players choose strategies

in the simultaneous-move game, conditional on their chosen encoding function from the first

stage. We show that the optimal encoding function still takes the form characterized in

Proposition 1. Thus, our theoretical predictions are robust to three performance objectives:

(i) minimizing mean squared error of the estimate of θ, (ii) maximizing mutual information

between the noisy internal representation and θ and (iii) maximizing expected reward.

5.3 Comparison with Quantal Response Equilibrium

In our model, stochastic perception of θ immediately generates stochastic strategic behavior.

As such, our model is related to Quantal Response Equilibrium (QRE; McKelvey and Pal-

frey 1995, 1998, Goeree, Holt and Palfrey 2016), which is a workhorse model of stochastic
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behavior in experimental game theory.16 In QRE, the utility associated with a given action

is subject to a random shock, and each player best responds given the distribution of these

shocks. For some parameter values, the models of QRE and cognitive imprecision deliver

similar predictions, in that both theories predict that the probability of investing decreases

monotonically in θ.

However, there is one fundamental difference in the assumptions of the two theories, which

generates distinguishing predictions. When applying QRE to our experimental games, player

i’s utility from not investing is θ + εi, where εi is mean zero noise. Crucially, QRE assumes

that player i knows both θ and his private shock εi. This implies that player i believes that

his opponent’s utility from not investing is centered at θ (even if player i does not know

player j’s shock, εj). In this sense, θ is common knowledge. In contrast, in our model of

cognitive imprecision, the stochastic element of the theory is embedded in the perception of

θ, rather than in the utility of not investing. Therefore, in cognitive imprecision, player i

does not observe θ, but a noisy signal Zi = θ + εi. This implies that player i believes that

his opponent’s perceived utility of not investing is centered at θ + εi. Thus, in contrast to

QRE, there is no common knowledge of θ in cognitive imprecision.

This difference in assumptions leads to two important distinguishing predictions. The

first difference is that, in QRE, each player has precise perception of θ, and thus there is

no role for a prior distribution over θ. The prior does, however, play a key role in cognitive

imprecision, since it impacts the perception of θ and, more importantly, player i’s beliefs

about player j’s perception of θ. Our main result, displayed in Figure 4, clearly shows that

the prior distribution has a systematic effect on behavior, which supports the prediction of

cognitive imprecision.

While the noise structure in QRE is almost alway taken to be exogenous, efficient coding

may offer one such source for noisy responses in QRE. Interestingly, in the original QRE

paper, McKelvey and Palfrey (1995) propose that “...to the extent that we can find observable

independent variables that a priori one would expect to be correlated with the precision of

these [expected payoff] estimates, one can make predictions about the effects of different

experimental treatments that systematically vary these independent variables” (pg. 7-8).

Efficient coding provides one such independent variable, which is the volatility of the payoff

distribution.17

The second difference between QRE and cognitive imprecision involves the theoretical

16For other models of strategic interaction with stochastic choice, see Goeree and Holt (2004), Friedman
and Mezzetti (2005), Gonçalves (2020), and Goeree and Louis (Forthcoming).

17In related work, Friedman (2020) proposes a model that endogenizes the precision parameter in QRE,
though it is the set of payoffs in the current game that determine the precision parameter — rather than
the distribution of payoffs within a class of games, as in our model.
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conditions that are sufficient to generate a unique equilibrium. As shown in Proposition

3, cognitive imprecision generates a unique equilibrium when the noise in perception is

sufficiently small. One interpretation of this condition, is that when players pay sufficient

attention to the coordination game, so that the variance of the internal representation Zi

is below a threshold, then uniqueness obtains under our theory of cognitive imprecision.

In contrast, QRE delivers a unique equilibrium when the variance of the shock to utility is

sufficiently large (Ui, 2006). While our data do not enable us to test between this difference in

conditions for uniqueness, one implication is that when players devote a substantial amount

of attention to the coordination game, the multiplicity of equilibria is more likely to be

eliminated under cognitive imprecision, compared with QRE.

5.4 Comparison with Level-k Thinking

Our results also relate to another behavioral theory of games called Level-k Thinking (Stahl

and Wilson, 1994, 1995; Nagel, 1995). In one prominent version of this theory, there are

different types of players, and each type best responds to another type who exhibits one less

degree of strategic sophistication. For example, a Level-0 type would be characterized by no

strategic sophistication and, thus, would exhibit purely random behavior. A Level-1 type

would then best respond to a Level-0 player, and a Level-2 player would best respond to a

Level-1 player, and so on. What are the predictions of Level-k Thinking for the game in our

first experiment? Given that Level-0 players randomize, the expected utility of a Level-1

player from Invest is

EUL1(Invest) =
1

2
a+

1

2
b

Thus, EUL1(Invest) > EU(Not Invest) if and only if θ < (a + b)/2. Next, under the

assumption that Level-2 players believe they are facing a Level-1 opponent, the expected

utility from Invest for a Level-2 player is

EUL2(Invest) =

b if θ < (a+ b)/2

a if θ > (a+ b)/2

When θ < (a + b)/2, then EUL2(Invest) = b > θ. Conversely, when θ > (a + b)/2, then

EUL2(Invest) = a < θ. Thus, Level-2 players choose Invest if and only if θ < (a + b)/2.

Using the same logic, we obtain the same prediction for all upper levels.
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In sum, the fraction of subjects who choose Invest is:

Pr[Invest] =

Pr[L0]1
2

+ (1− Pr[L0]) if θ < (a+ b)/2

Pr[L0]1
2

if θ > (a+ b)/2

where Pr[L0] is the fraction of Level-0 players in the population. The theory therefore

predicts that, in the aggregate, the probability of investing is monotone in θ and exhibits a

sharp decrease at θ = (a+ b)/2. However, Level-k Thinking does not predict any difference

across our experimental treatments; thus the theory would need to be augmented with some

extra feature in order to explain the clear context-dependence we observe in our data.

6 Conclusion

We have provided and experimentally validated a framework for analyzing strategic behavior

when players have imprecise perception of a fundamental parameter. Our results are in

line with previous experiments on global games, which find evidence consistent with an

equilibrium where all players invest once the fundamental crosses a threshold (Heinemann,

Nagel and Ockenfels, 2004, 2009; Cabrales, Nagel and Armenter, 2007; Szkup and Trevino,

2020; Goryunov and Rigos, 2020). At the same time, our experimental data suggest that the

predictions from the global games literature may be more applicable than previously thought:

even when there is no explicit private information given to players, imprecise perception can

serve as a source of private information. Interestingly, the particular manner in which we

model imprecise perception is closely connected to the noise structure used in the global

games literature to select a unique equilibrium.

We also find empirical evidence of context-dependent strategic behavior, which is con-

sistent with efficient coding. This context-dependence rules out several alternative game-

theoretic models. We argue that the unstable strategic behavior that we observe across

experimental conditions is a consequence of the efficient use of cognitive resources. In our

setting of a 2× 2 coordination game, efficient coding provides a mechanism that modulates

the probability that two players coordinate and play the same action. One important direc-

tion for future research is to understand the implications of cognitive imprecision in more

general games. The idea that “public” payoffs may be perceived as private information, is

likely to have important implications for other strategic behavior outside the coordination

games we study here.
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A Proofs

Proof of Proposition 1

Here we adapt the theoretical derivation of efficient coding from Khaw, Li and Woodford

(2021) to our framework where the distribution of θ is normal rather than lognormal. Ac-

cording to Assumption 1, the internal representation S of θ is drawn from

S|θ ∼ N(m(θ), σ2
S) (3)

where the encoding rule, m(θ), is a linear transformation of θ, m(θ) = ξ+ψθ, which satisfies

the power constraint in Assumption 2. Parameters ξ and ψ are endogenous while the preci-

sion parameter σS is exogenous. The efficient coding hypothesis requires that the encoding

rule m(θ) is chosen (among all linear functions satisfying the constraint) so as to maximize

the system’s objective function, for a given prior distribution of θ. As in Khaw, Li and

Woodford (2021), we assume that the system produces an estimate of θ on the basis of S,

θ̃(S), and that the goal of the design problem is to have a system that achieves as low as

possible a mean squared error of this estimate. Given a noisy internal representation, the

estimate which minimizes the mean squared error is E[θ|S] for all S. The goal of the design

problem is, thus, to minimize the variance of the posterior distribution of θ.

Consider the transformed internal representation, Z ≡ (S − ξ)/ψ. The distribution of

the transformed internal representation conditional on θ is Z|θ ∼ N(θ, σ2
S/ψ

2). Thus, the

distribution of θ given the transformed internal representation is

θ|Z ∼ N

(
µθ +

σ2
θ

σ2
θ + (σ2

S/ψ
2)

(Z − µθ),
σ2
θ(σ

2
S/ψ

2)

σ2
θ + (σ2

S/ψ
2)

)
(4)

The variance of the posterior distribution of θ is strictly increasing in the variance of
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Z, σ2
S/ψ

2. Thus, it is desirable to make ψ as large as possible (in order to make the mean

squared error of the estimate as small as possible) consistent with the power constraint.

When the distribution of θ is normal, we have

E[m2] = ξ2 + ψ2E[θ2] + 2ξψE[θ] = (ξ + ψµθ)
2 + ψ2σ2

θ ≤ Ω (5)

The largest value of ψ consistent with this constraint is achieved when

ξ = −ψµθ , ψ =
Ω

σθ
(6)

Thus, m?(θ) = − Ω
σθ
µθ + Ω

σθ
θ and

Z|θ ∼ N

(
θ,
σ2
S

Ω2
σ2
θ

)
(7)

The same optimal coding rule obtains under an alternative goal of the system. Consider

the more conventional hypothesis from sensory perception literature, whereby the encoding

rule is assumed to maximize the Shannon mutual information between the objective state

θ and its subjective representation S. Denote with ρθ the precision of θ and with ρS the

precision of S. We have θ ∼ N
(
µx,

1
ρθ

)
, S|θ ∼ N

(
ξ + ψθ, 1

ρS

)
, Z|θ ∼

(
θ, 1

ρZ

)
, and θ|Z ∼

N
(
ρθµθ+ρZZ
ρθ+ρZ

, 1
ρθ+ρZ

)
, where Z = S−ξ

ψ
and ρZ = ψ2/σ2

S. The Shannon mutual information

between θ and Z is

I(θ, Z) =
1

2
log2

(
σ2
θ

σ2
θ|Z

)
=

1

2
log2

(
1 +

ρZ
ρθ

)
(8)

which is strictly increasing in ρZ and, thus, strictly decreasing in σ2
Z . This means that, as for

the previous goal, it is desirable to make ψ as large as possible (consistent with the power

constraint).

Proof of Proposition 2

First, we show that, when the conditions in the statement of the Proposition are satisfied,

there exists a unique monotone equilibrium of the game. Remember that Zi ∼ N (θ, σ2
Z),

where σ2
Z = ωσ2

θ = (σ2
S/Ω

2)σ2
θ . Thus, player 1’s posterior distribution of θ given Z1 is

θ|Z1 ∼ N
(

σ2
Z

σ2
θ + σ2

Z

µθ +
σ2
θ

σ2
θ + σ2

Z

Z1,
σ2
θσ

2
Z

σ2
θ + σ2

Z

)
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Therefore, we have:

EU [Not Invest|Z1] = E[θ|Z1] =
σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

On the other hand, player 1’s expected utility from investing is

EU [Invest|Z1] = a+ (b− a)Pr[Opponent Invests|Z1]

Assume player 1 believes his opponent uses a monotone strategy with threshold k. In

this case, player 1’s expectation that the opponent invests is Pr[Z2 ≤ k|Z1]. Player 1’s belief

about the distribution of Z2 given Z1 is:

Z2|Z1 ∼ N
(
E[θ|Z1] =

σ2
Z

σ2
θ + σ2

Z

µθ +
σ2
θ

σ2
θ + σ2

Z

Z1,
2σ2

θσ
2
Z + σ4

Z

σ2
θ + σ2

Z

)
Thus, we have:

Pr[Z2 ≤ k|Z1] = Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

where Φ(·) is the cumulative distribution of the standard normal.

Player 1’s best response is to invest if and only if

σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

≤ a+ (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)
(9)

If we write Z(k) for the unique value of Z1 such that player 1 is indifferent between

investing and not investing (this is well defined since player 1’s expected payoff from not

investing is strictly increasing in Z1 and player 1’s expected payoff from investing is strictly

decreasing in Z1), the best response of player 1 is to follow a monotone strategy with threshold

equal to Z(k), that is, to invest if and only if Z1 ≤ Z(k).

Observe that as k → −∞ (that is, player 2 never invests), EU [Invest|Z1, k] tends to a,

so Z(k) tends to
(σ2
θ+σ2

Z)a−σ2
Zµθ

σ2
θ

. As k →∞ (that is, player 2 always invests), EU [Invest|Z1]

tends to b, so Z(k) tends to
(σ2
θ+σ2

Z)b−σ2
Zµθ

σ2
θ

. A fixed point of Z(k) — that is a value k? such

that Z(k?) = k? — is a monotone equilibrium of the game where each player invests if and

only if his signal is below k?. Since Z(k) is a mapping from R to itself and is continuous

in k, there exists k ∈
[

(σ2
θ+σ2

Z)a−σ2
Zµθ

σ2
θ

,
(σ2
θ+σ2

Z)b−σ2
Zµθ

σ2
θ

]
, such that Z(k) = k and a threshold

equilibrium of this game exists.
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When is there a unique equilibrium? Define W (Z(k), k) as

W (Z(k), k) =
σ2
Zµθ + σ2

θZ(k)

σ2
θ + σ2

Z

− a− (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ(k)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

At a fixed point, Z(k?) = k?. Thus, we have:

W (k?) =
σ2
Zµθ + σ2

θk
?

σ2
θ + σ2

Z

− a− (b− a)Φ

(
σ2
Z√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

(k? − µθ)

)

Then,

∂W (k?)

∂k?
=

σ2
θ

σ2
θ + σ2

Z

− φ

(
σ2
Z√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

(k? − µθ)

)
σ2
Z(b− a)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

And there is a unique fixed point if and only if ∂W (k?)
∂k?

> 0 at the fixed point. When
∂W (k?)
∂k?

< 0, there are at least three fixed points. Since φ(y) ≤ 1√
2π

, this is a sufficient

condition for ∂W (k?)
∂k?

> 0:

σ2
θ

σ2
θ + σ2

Z

>
1√
2π

σ2
Z(b− a)√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

σ2
θ

√
2σ2

θσ
2
Z + σ4

Z

(b− a)σ2
Z

√
σ2
θ + σ2

Z

>
1√
2π

√
2π >

(b− a)σ2
Z

√
σ2
θ + σ2

Z

σ2
θ

√
2σ2

θσ
2
Z + σ4

Z

The condition
√
ω(1 + ω) <

√
6π

(b−a)
σ2
θ is obtained by replacing σZ = ωσθ in the condition

above and re-arranging terms. Thus, this shows that, when the conditions in the statement

of the Proposition are satisfied, there exists a unique monotone equilibrium of the game.

Second, we show that, when µθ = (a+b)
2

, there exists a monotone equilibrium of the game

where k? = µθ for any value of σθ, σS and ω (or, equivalently, for any value of σθ and σZ).

Assume player 2 uses a threshold strategy where he invests if and only if Z2 ≤ k = µθ. Is

this an equilibrium, that is, is Z(µθ) = µθ? Z(µθ) is the value of Z1 such that the following

equation is satisfied with equality:
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σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

= a+ (b− a)Φ

(
(σ2

θ + σ2
Z) k − σ2

Zµθ − σ2
θZ1√

2σ2
θσ

2
Z + σ4

Z

√
σ2
θ + σ2

Z

)
σ2
Zµθ + σ2

θZ1

σ2
θ + σ2

Z

= a+ (b− a)Φ

(
σ2
θµθ − σ2

θZ1√
2σ2

θσ
2
Z + σ4

Z

√
σ2
θ + σ2

Z

)

If we set Z1 = µθ, we get:

µθ = a+ (b− a)Φ (0)

µθ =
(a+ b)

2

which is true by one of the assumptions in the statement of the Proposition.

Proof of Proposition 3

From Proposition 2 and the condition in the statement of Proposition 3, we know that there

exists a unique monotone equilibrium of the game where each player invests if and only if his

transformed internal representation is smaller than µθ. In this equilibrium, Pr[Invest|θ] =

Pr [Zi ≤ µθ|θ] = Φ
(
µθ−θ
ωσθ

)
and ∂Pr[Invest|θ]

∂θ
= −φ

(
µθ−θ
ωσθ

)(
1
ωσθ

)
. Thus, Pr[Invest|θ] grows

with σθ if θ < µθ and it decreases with σθ is θ > µθ. Moreover, the sensitivity of choices to

θ decreses with σθ for values of θ around the cutoff.

Indeed, we have

∂Pr [Invest|θ]
∂θ∂σθ

= φ

(
µθ − θ
ωσθ

)(
1

ωσ2
θ

)
+ φ′

(
µθ − θ
ωσθ

)(
µθ − θ
ωσ2

θ

)(
1

ωσθ

)
= φ

(
µθ − θ
ωσθ

)(
1

ωσ2
θ

)
−
(
µθ − θ
ωσθ

)
φ

(
µθ − θ
ωσθ

)(
µθ − θ
ωσ2

θ

)(
1

ωσθ

)
= φ

(
µθ − θ
ωσθ

)(
1

ωσ2
θ

)
− φ

(
µθ − θ
ωσθ

)(
(µθ − θ)2

ω3σ4
θ

)
= φ

(
µθ − θ
ωσθ

)(
ω2σ2

θ − (µθ − θ)2

ω3σ4
θ

)
which is positive if and only if (µθ − θ)2 < ω2σ2

θ .

(In the second line, we used the fact that φ′(x) = −xφ(x).)
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B Alternative Model of Efficient Coding

Assumption 4 (Alternative Performance Objective) Players choose the encoding func-

tion which maximizes their expected reward in the simultaneous-move game.

Consider the following two-stage game: in stage 1, each player i = {1, 2} chooses simul-

taneously and independently the parameters of his encoding function, (xii, ψi), to maximize

the performance objective in Assumption 4 under the constraints in Assumption 2; in stage

2, players participate to the simultaneous-move game endowed with the encoding functions

chosen in the previous stage. We solve this game by backward induction.

Stage 2: Simultaneous-Move Game (with Exogeneous Encoding Functions)

For each player i = {1, 2}, we have Si|θ ∼ N (mi(θ), σ
2
S), where mi(θ) = ξi + ψiθ.

Consider the transformed internal representation Zi = (Si − ξi)/ψi. We have:

Zi|θ ∼ N
(
θ, β2

i

)
where βi = (σS/ψi).

Proposition 4 Suppose Assumptions 1, 2, 4 and µθ = (a + b)/2. Regardless of σθ, σS,

(ξ1, ψ1), and (ξ2, ψ2), there exists an equilibrium of the game where each player invests if

and only if Zi ≤ µθ. Moreover, if
σ2
θ

√
β2
i (2σ2

θ+β2
i )

(b−a)β2
i

√
σ2
θ+β2

i

> 1√
2π

for all i = {1, 2}, this is the unique

monotone equilibrium of the game.

Proof. Since the likelihood function of Zi is conjugate to the prior distribution of θ, we have

a closed form solution for the distribution of player i’s posterior beliefs over θ. In particular,

player 1’s posterior distribution of θ given Z1 is

θ|Z1 ∼ N
(
β2

1µθ + σ2
θZ1

σ2
θ + β2

1

,
σ2
θβ

2
1

σ2
θ + β2

1

)
Thus, we have:

EU [Not Invest|Z1] = E[θ|Z1] =
β2

1µθ + σ2
θZ1

σ2
θ + β2

1

On the other hand, player 1’s expected utility from investing is

EU [Invest|Z1] = a+ (b− a)Pr[Opponent Invests|Z1]
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Assume player 1 believes his opponent uses a monotone strategy with threshold k2. In

this case, player 1’s expectation that the opponent invests is Pr[Z2 ≤ k2|Z1]. Player 1’s belief

over the distribution of Z2 conditional on Z1 is:

Z2|Z1 ∼ N
(
β2

1µθ + σ2
θZ1

σ2
θ + β2

1

,
σ2
θ (β2

1 + β2
2) + β2

1β
2
2

σ2
θ + β2

1

)
Thus, we have:

Pr[Z2 ≤ k2|Z1] = Φ

(
k2 (σ2

θ + β2
1)− β2

1µθ − σ2
θZ1√

σ2
θ + β2

1

√
σ2
θ (β2

1 + β2
2) + β2

1β
2
2

)

where Φ(·) is the cumulative distribution of the standard normal.

Player 1’s best response is to invest if and only if

β2
1µθ + σ2

θZ1

σ2
θ + β2

1

≤ a+ (b− a)Φ

(
k2 (σ2

θ + β2
1)− β2

1µθ − σ2
θZ1√

σ2
θ + β2

1

√
σ2
θ (β2

1 + β2
2) + β2

1β
2
2

)

Assume k2 = µθ. We want to show that player’s best response is to use the same cutoff.

In this case, player 1’s best response is to invest if and only if

E
β2

1µθ + σ2
θZ1

σ2
θ + β2

1

≤ a+ (b− a)Φ

(
σ2
θ (µθ − Z1)√

σ2
θ + β2

1

√
σ2
θ (β2

1 + β2
2) + β2

1β
2
2

)

First, note that the LHS is a convex combination of µθ and Z1 and that, thus, it is a) equal

to µθ when Z1 = µθ, b) smaller than µθ when Z1 < µθ, and c) larger than µθ when Z1 > µθ.

Second, remember that µθ = (a + b)/2 and note that the RHS is a) equal to µθ when the

argument of Φ(·) is 0 (that is, when Z1 = µθ, since the denominator is strictly positive); b)

larger than µθ when the argument of Φ(·) is strictly positive (that is, when Z1 < µθ), and c)

smaller than µθ when the argument of Φ(·) is strictly negative (that is, when Z1 > µθ). This

means that, when player 2 invests if and only if Z2 ≤ k2 = µθ, then player 1’s best response

is to invest if and only if Z1 ≤ µθ. This proves that there exists an equilibrium where both

players use a monotone strategy with cutoff equal to µθ for any value of (ξ1, ψ1), (ξ2, ψ2),

σS and σθ. Finally, to show that, when the condition in the statement of the proposition is

satisfied, this is the unique equilibrium of the game, we can use the same steps in the proof

of Proposition 2 to show that the best response mapping is a contraction (and that, thus, we

can apply the contraction mapping theorem). In particular, it is sufficient to show that the

derivative of the best response function of player 1 with respect to k2 and the derivative of

the best response function of player 2 with respect to k1 have both an absolute value strictly
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smaller than 1.

Stage 1: Encoding Function Choice

When deriving the optimal choice of the encoding function in stage 1, we assume that, in

stage 2, players use the cutoff strategy in the (unique) equilibrium from Proposition 4.

Proposition 5 Suppose Assumptions 1, 2, 4, and µθ = (a + b)/2. The optimal encoding

function is the same for both players and is given by m?(θ) = ξ? + ψ?θ = −Ωµθ
σθ

+ Ω
σθ
θ.

Proof. In stage 2, each player i = {1, 2} invests if and only if Zi ≤ µθ. Given the conditional

distribution of Zi, the probability player i invests for a given θ and encoding function is

IPi(Invest|θ, ψi) = Φ

(
µθ − θ
σS/ψi

)
Thus, the expected utility player i gets from the game with a given value of θ is

EUi(θ, ψi) = IPi(Invest|θ, ψi) (a+ IP−i(Invest|θ, ψ−i)(b− a)) + (1− IPi(Invest|θ, ψi))θ

= θ + Φ

(
µθ − θ
σS/ψi

)(
a+ Φ

(
µθ − θ
σS/ψ−i

)
(b− a)− θ

)
where we use −i to denote i’s opponent. How does this expected utility change with ψi

(taking ψ−i as given)?

∂EUi(θ, ψi)

∂ψi
= φ

(
µθ − θ
σS/ψi

)(
µθ − θ
σS

)(
a+ Φ

(
µθ − θ
σS/ψ−i

)
(b− a)− θ

)
(10)

Since φ(·) is strictly positive for any argument, the sign of equation (10) is determined

by the product of its second and third term. First, note that the second term is a) equal

to 0 when θ = µθ, b) strictly positive when θ < µθ and c) strictly negative when θ > µθ.

Second, note that — since IP−i(Invest|θ, ψ−i) is greater than 1/2 if and only if θ < µθ and

µθ = (a+ b)/2) — the third term is a) strictly positive when θ < µθ and b) strictly negative

when θ > µθ. This means that the product of the second and third term of equation (10) is

always positive, with the exception of the case when θ = µθ, in which case it is 0.

We have shown that the expected payoff in a game with a given θ is strictly increasing

in ψi for any value of θ 6= µθ and it is constant in ψi for θ = µθ. This means that, from an

ex-ante perspective (that is, when a player knows the distribution of θ but does not know its

actual realization), each player’s expected reward from the simultaneous-move game — that

is, EUi(ψi) =
∫
EUi(θ, ψi)f(θ)dθ — is strictly increasing in ψi. Therefore, it is desirable to
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make ψi as large as possible consistent with the power constraint. When the distribution of

θ is normal, we have

E[m2] = ξ2 + ψ2E[θ2] + 2ξψE[θ] = (ξ + ψµθ)
2 + ψ2σ2

θ ≤ Ω

The largest value of ψ consistent with this constraint in Assumption 2 is achieved when

ξ = −ψµθ , ψ =
Ω

σθ

Thus, m?(θ) = − Ω
σθ
µθ + Ω

σθ
θ.

C Robustness of Monotone Equilibrium with k? = µθ

Let us introduce the following definitions from Chambers and Healy (2012):

Definition 1 A random variable with cumulative density function F and mean µ is sym-

metric if, for every a ≥ 0, F (µ+ a) = 1− limx→a− F (µ− a).

Definition 2 A random variable is quasiconcave (or unimodal) if it has a density function

f such that for all x, x′ ∈ R and λ ∈ (0, 1), f(λx+ (1− λ)x′) ≥ min{f(x), f(x′)}.

Definition 3 The error term εi satisfies symmetric dependence with respect to the ran-

dom variable θ if, for each realization of θ, εi|θ has a continuous density function fεi|θ satis-

fying fεi|θ(εi|µθ + a) = fεi|θ(εi|µθ − a) for almost every εi and a in R. (Note that error terms

that are independent of θ satisfy this definition).

Consider the following assumptions:

(A1) Si = θ + εi

(A2) E[θ] = µθ <∞

(A3) θ is a symmetric random variable and its density is continuous on R

(A4) E[εi|θ] = 0 for each θ

(A5) εi is a symmetric and quasiconcave random variable

(A6) εi satisfies symmetric dependence with respect to θ
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Lemma 1 (Chambers and Healy 2012, Proposition 2) Assume A1-A6. A Bayesian

agent updates his beliefs over θ in the direction of the signal, that is, for almost every Si ∈ R,

there exists some α ≥ 0 such that E[θ|Si] = αSi + (1− α)µθ.

Proposition 6 Assume A1-A6 and µθ = (a+ b)/2. There exists a monotone equilibrium of

the game where k? = µθ.

Proof of Proposition 6 The proof can be carried out with general values for a and b

(such that b > a). For ease of exposition, we focus on the experimental parameters: a = 47,

b = 63, µθ = 55. Assume that player j uses threshold kj = 55, that is, he invests if and

only if Sj < 55. We want to show that player i’s best response is to use the same threshold,

ki = 55. Player i prefers to invest if and only if EU [Not Invest|Si] < EU [Invest|Si, kj].
Thus, we want to show that (1) when Si = 55, EU [Not Invest|Si] = EU [Invest|Si, kj = 55];

(2) when Si < 55, EU [Not Invest|Si] < EU [Invest|Si, kj = 55]; and (3) when Si > 55,

EU [Not Invest|Si] > EU [Invest|Si, kj = 55].

By Lemma 1, EU [Not Invest|Si] = E[θ|Si] = αSi+(1−α)µθ where α ≥ 0. Note also that

EU [Invest|Si, kj = 55] = 47 + (63 − 47)Pr[Sj < kj = 55|Si]. First, we prove (1). Assume

Si = 55. We want to show that EU [Not Invest|Si] = EU [Invest|Si, kj = 55]. By Lemma 1,

EU [Not Invest|Si = 55] = αSi + (1 − α)µθ = α(55) + (1− α)(55) = 55. Thus, the equality

we want to show becomes 55 = 47 + (63 − 47)Pr[Sj < kj = 55|Si = 55]. This equality is

satisfied if and only if Pr[Sj < kj = 55|Si = 55] = 1/2. By A1 and A4 (and linearity of

expectation), E[Sj|Si] = E[θ|Si] = 55. By A5, the density of of Sj|Si is symmetric. Thus,

the probability Sj takes a value below its posterior mean (55) is 1/2. This proves (1).

Second, we prove (2). Assume Si < 55. By Lemma 1, EU [Not Invest|Si] = αSi +

(1 − α)55. This is smaller than 55 for any positive α. This also means that, by A1 and

A4, E[Sj|Si] = E[θ|Si] < 55. The probability that the opponent invests is the posterior

probability that his signal is below 55 (given Si). Since the conditional distribution of the

opponent’s signal is symmetric around its mean (by A5), the median is equal to the mean.

This means that the conditional CDF of the opponent signal equals 1/2 at the posterior

mean, is greater than 1/2 for values of Sj above the mean and is lower than 1/2 for values of

Sj below the mean. Since the posterior mean of the opponent’s signal is lower than 55, the

probability that player j’s signal is lower than 55 (conditional on Si < 55) is greater than

1/2. Thus, EU [Invest|Si, kj = 55] = 47 + (63 − 47)Pr[Sj < kj = 55|Si] > 55. This proves

that EU [Invest|Si, kj = 55] > 55 > EU [Not Invest|Si]. (3) can be proven analogously.
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D Experimental Instructions

Experiment 1

43



44



45



Experiment 2
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