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Abstract 
 
The risk of recurrent outbreaks following the main waves of a pandemic has been acknowledged. 
We provide evidence of the scale and duration of this outbreak risk. We compile municipal public 
health records and use national data to model the stochastic process of mortality rates after the 
main pandemic waves of two historical pandemics across multiple locations. For the 1890-91 
influenza pandemic in England and Wales, as well as the 1918-19 influenza pandemic in the US 
and eight major UK cities, we find elevated mortality risk that persists for nearly two decades. 
The generality of the findings suggests that, without modern means of intervention, post-pandemic 
outbreak risk is likely to persist for an extended period, as we demonstrate in an application to 
COVID-19. 
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Introduction	
	
Pandemics	are	large	negative	system-wide	shocks,	increasing	health	and	income	
risk	and	affecting	humans	via	reductions	in	income	and	wellbeing	(e.g.	Madhav	et	
al.,	 (2017),	 Scheidel	 (2018),	 Marmot	 (2020),	 Marmot	 and	 Allen	 (2020)	 and	
Stantcheva	 (2021)).	However,	 pandemics	 are	not	 one-off	 events.	 Following	 the	
main	waves	of	a	pandemic,	the	risk	of	recurrent	outbreaks	may	remain	high	due	
to	 re-introductions	 of	 the	 virus,	 new	 variants,	 waning	 immunity,	 human	
behaviour	(e.g.	vaccine	refusal),	or	population	turnover	that	reduces	population-
level	 immunity	 (e.g.	 Anderson	 and	 May	 (1992)	 and	 Oxford	 (2000)).	 Indeed,	
researchers	 have	 expressed	 concern	 about	 disease	 outbreak	 risk	 following	
COVID-19	 in	 academic	 outlets	 (e.g.	 Giannitsarou	 et	 al.	 (2021),	 Kissler	 et	 al.	
(2020),	Lavine	et	al.	(2021),	Phillips	(2021))	and	the	media	(e.g.	McKie	(2021)).	
	
Given	 the	 effect	 of	 pandemics	 on	 health	 and	 socioeconomic	 outcomes	 (e.g.	
Marmot	 (2020),	 Marmot	 and	 Allen	 (2020),	 Angelopoulos	 et	 al.	 (2021b),	 and	
Mamelund	and	Dimka	(2021)),	a	characterisation	of	medium-run	mortality	risk	
and	the	rate	at	which	it	fades	is	essential	to	respond	appropriately	in	the	coming	
decades.	 Evidence	 from	 a	 period	 without	 recent	 advances	 in	 medicine,	 public	
health	 and	 technology	 can	 uncover	 the	 underlying	 epidemiological	 risk	 before	
the	effect	of	modern	means	of	intervention	and	thus	highlight	the	importance	of	
such	intervention.		
	
Empirical	observations:	post-pandemic	mortality	rates	
	
We	use	evidence	 from	two	 important	historical	pandemics	 to	shed	 light	on	 the	
persistence	of	 recurrent	outbreak	 risk	 following	 the	main	waves.	We	compiled	
data	 on	 historical	mortality	 rates	 from	 influenza	 for	 eight	 large	municipalities	
across	the	UK,	for	England	and	Wales	combined,	and	for	the	US.	Specifically,	we	
gathered	city-level	data	on	annual	 influenza	mortality	 rates	between	1895	and	
1950	 from	public	health	 records	kept	 at	 the	municipal	 level	 in	 the	UK,	namely	
the	 Medical	 Officer	 for	 Health	 (MOH)	 reports	 (for	 details	 see	 Supplementary	
Information	(SI)),	and	used	published	data	for	England	and	Wales	and	the	US.		
	
Figure	1	shows	the	time	series	of	annual	mortality	rates	 from	influenza	 for	 the	
different	geographies.	The	key	 insight	 from	the	 time	series	 in	Figure	1(a)-(j)	 is	
that	mortality	 rates	 remain	 elevated	 and	more	 variable	 for	 a	 long	period	 after	
pandemics.	 Focusing	 on	 the	 eight	 British	 municipalities	 (a)-(h),	 although	 the	
most	striking	feature	is	the	massive	increase	in	mortality	in	1918	and	1919	due	
to	 the	main	 pandemic	 waves,	 we	 also	 observe	 spikes	 of	 high	mortality	 in	 the	
series	 post-1920	 that	 continue	 for	 an	 extended	 period.	 Indeed,	 contemporary	
expert	 evaluations	by	 the	Medical	Officer	 for	 London	 also	 identify	 1922,	 1924,	
1927,	1929,	1933	and	1937	as	years	of	elevated	influenza	mortality	(see	SI).	The	
same	pattern	emerges	 for	 influenza	mortality	 rates	 in	 the	US	 (i),	 and	a	 similar	
pattern	 of	 disease	 outbreaks	 is	 observed	 in	 the	 aftermath	 of	 the	 1890-91	
influenza	pandemic	in	England	and	Wales	(j).	
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Figure	1.	Annual	mortality	rate	from	influenza.	Mortality	rate	in	deaths	per	million	population.	The	
upper	y-axis	tick	indicates	the	maximum	mortality	rate	for	each	data	series.	Data	for	UK	cities	are	
taken	 from	Medical	Officer	 for	Health	reports.	Data	 for	 the	US	are	 taken	 from	Lindner	and	Grove	
(1943)	and	Grove	and	Hetzel	 (1968).	Data	 for	England	&	Wales	are	 taken	 from	Langford	(2002),	
Table	5.	

	
Model	of	recurrent	outbreak	dynamics	
	
To	 characterise	 the	 persistence	 of	 disease	 outbreak	 risk	 quantitatively,	 we	
conduct	 formal	 statistical	 analysis,	modelling	 the	 time	 series	of	mortality	 rates	
following	 the	 main	 waves	 as	 outcomes	 drawn	 from	 a	 sequence	 of	 bounded	
Pareto	 distributions	 such	 that	 mortality	 risk	 and	 the	 probability	 of	 large	
outbreaks	declines	over	time.	The	size	of	outbreaks	has	been	shown	to	be	highly	
over-dispersed	and	is	therefore	well	modelled	by	a	fat-tailed	distribution	such	as	
a	bounded	Pareto	(e.g.	Cirillo	and	Taleb	(2020)).	We	assume	that	the	inverse	of	
the	tail	index	of	the	bounded	Pareto	distributions	decays	exponentially	after	the	
main	 waves	 of	 the	 pandemic.	 Denote	 the	 mortality	 rate	 in	 year	!	by	!! ,	 for	
! = 0,1,2,… ,!,	 where	 the	 time	 period	 refers	 to	(1920, 1921,… ,1950)	for	 the	
eight	cities	 in	 the	UK	and	 the	US	with	 reference	 the	1918-19	pandemic,	and	 to	
(1892, 1893,… ,1917)	for	 England	 and	 Wales	 with	 reference	 to	 the	 1890-91	
pandemic.		
	
In	each	year,	mortality	rates	are	drawn	from	
	

!!~!"! !! ,!!,!! ,																(1)	
	

where	!"!	denotes	 the	 bounded	 Pareto	 distribution	 in	 period	 t,	!! > 0	is	 the	
time	 varying	 Pareto	 tail	 index,	 and	!! > 0	and	!! > !!  are,	 respectively,	 lower	
and	upper	bounds.	Defining	!! = 1 !! ,	we	assume	the	time	process	

!! = !!!!!" ,					 													(2)	
	
where	! > 0	determines	 the	 rate	 at	 which	 the	 inverse	 tail	 index	 decays	 over	
time,	while	!!	sets	the	initial	level	of	the	probabilities.	
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We	now	justify	our	 two	main	modelling	assumptions:	 firstly,	 that	 the	mortality	
rates	 follow	 a	 bounded	 Pareto	 distribution;	 and	 secondly,	 that	 mortality	 risk	
declines	 following	 the	main	waves.	 The	 bounded	 Pareto	 distribution	 has	 been	
used	previously	in	modelling	outbreak	fatality	risk	(see	Cirillo	and	Taleb	(2020))	
and	suits	our	purposes	because	it	offers	both	flexibility	and	tractability.	A	model	
of	 the	 dynamics	 of	mortality	 risk	 after	 the	main	 pandemic	waves	 needs	 to	 be	
sufficiently	 flexible	 to	 capture	 risk	 both	 during	 the	 period	 of	 relatively	 high	
mortality	 immediately	 after	 the	main	waves	 and	 that	 of	 lower	mortality	 a	 few	
decades	 later.	 It	 is	also	 important	 that	 the	underlying	distribution	 in	any	given	
year	can	simultaneously	capture	 the	potential	 for	 large	outbreaks	via	a	 fat	 tail,	
while	 the	mass	of	 the	distribution	 remains	 at	 the	 lower	end	of	mortality.	Over	
time,	 the	 tail	 becomes	 less	 important	 and	 the	 distribution	 converges	 to	 a	 very	
high	 concentration	 toward	 the	 lower	 bound	 of	 mortality	 rates.	 The	 bounded	
Pareto	distribution	has	the	flexibility	to	account	for	these	characteristics:	it	has	a	
fat	tail	while	the	most	likely	outcomes	remain	near	the	lower	bound	of	mortality.	
Further,	it	has	the	advantage	of	tractability	because,	conditional	on	the	bounds,	a	
transition	 in	 the	 tail	 probabilities	 is	 identified	 via	 changes	 in	 one	 parameter	
(further	discussion	on	these	points,	and	robustness,	can	be	found	in	SI).	
	
The	decline	in	mortality	risk	over	time,	captured	in	the	model	assumption	in	(1)-
(2)	 is	 motivated	 by	 the	 empirical	 observations	 shown	 in	 Figure	 1.	 These	
observations	 imply	 that	 influenza	 mortality	 risk	 immediately	 after	 the	 main	
pandemic	 waves	 starts	 from	 a	 relatively	 high	 level,	 eventually	 converging	 to	
background	mortality	(i.e.	a	level	comparable	with	that	immediately	prior	to	the	
relevant	pandemic,	as	well	as	several	decades	later).	Under	the	assumption	that	
risk	 decreases	 over	 time,	 the	 model	 in	 (1)-(2)	 describes	 the	 level	 and	 rate	 of	
decline	as	a	function	of	the	parameters	!!	and	λ,	which	determine	the	sequence	
!! !!!

! .	 Although	 (2)	 constrains	 the	 inverse	 of	 the	 tail	 index	!! 	to	 decay	
exponentially,	 it	 does	not	 impose	 such	a	 restriction	on	probabilities	 associated	
with	the	tails.	Indeed,	although	the	probabilities	of	different	mortality	rates	are	a	
monotonic	function	of	the	tail	index	and	thus	decrease	over	time,	the	inverse	of	a	
convex	function	does	not	have	a	predetermined	convexity,	and	λ>0	implies	that	
the	rate	of	decline	of	the	probabilities	can	take	on	a	range	of	forms.	This	feature	
is	evident	in	the	results.			
	
We	fit	the	model	to	the	data	after	the	main	pandemic	waves,	taking	as	given	the	
main	 pandemic	 event.	 During	 subsequent	 recurrent	 outbreaks,	 mortality	 is	
lower,	so	we	set	 the	upper	bound	of	mortality	rates	 to	 the	maximum	mortality	
rate	 of	 the	main	waves.	 Similarly,	 we	 set	 the	 lower	 bound	 of	mortality	 to	 the	
lowest	 mortality	 experienced	 in	 the	 longer	 run,	 i.e.	 background	 influenza	
mortality.	 Our	 main	 results	 are	 robust	 to	 modelling	!! 	and	!! as	 theoretical	
upper	and	lower	bounds	of	mortality	rates	(see	SI),	but	by	exploiting	information	
pertinent	to	the	pandemic	and	geographic	unit	 in	parameterising	!! 	and	!!,	 the	
model	 provides	more	 accurate	mortality	 risk	 predictions.	Moreover,	 by	 letting	
the	 bounds	 differ	 between	 geographical	 units,	 we	 allow	 for	 differences	 in	 the	
mortality	 of	 the	main	pandemic	waves,	 as	well	 as	 in	 latent	 socioeconomic	 and	
public	health	conditions	that	can	impact	mortality	associated	with	these	bounds.	
In	turn,	this	permits	applications	to	predict	medium-run	mortality	risk	after	the	
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main	waves	of	other	pandemics	by	conditioning	on	an	upper	and	 lower	bound	
that	are	relevant	for	the	pandemic	and	disease	in	question.	We	fit	the	models	to	
the	data	by	choosing	the	parameters	to	maximise	the	likelihood	function	(see	SI	
for	further	discussion	of	modelling	choices	and	for	the	estimated	parameters).	
	

	
Figure	 2:	 Simulated	 median	 (solid	 black	 line),	 interquartile	 range	 (dark	 shading)	 and	 80%	
prediction	 interval	 (light	 shading),	 based	 on	 1m	 random	 draws	 of	 the	 model	 fitted	 using	 the	
average	mortality	rates	across	cities,	with	data	overplotted	in	red.	

Figure	 2	 shows	 the	 time	 series	 of	 data	 points	 overlaid	 on	 model	 simulations,	
defining	as	the	geographical	unit,	the	average	rate	across	the	UK	cities	to	set	the	
bounds	 on	 the	 Pareto	 distributions,	 and	 confirm	 that	 most	 observations	 are	
contained	 within	 the	 interquartile	 range	 of	 simulated	 outcomes.	 Observed	
outcomes	 outside	 these	 bounds	 are	 indeed	 those	 of	 the	 rarer	 events:	 the	 very	
large	outbreak	of	1929	in	four	cities,	and	outbreaks	in	later	decades	that	are	less	
affected	by	 the	modelled	pandemic.	Model	predictions	 for	 the	US,	 and	England	
and	Wales	following	the	1890-91	pandemic,	are	consistent	with	this	pattern	(see	
Figure	C-1	in	SI).	
	
By	 fitting	 the	models	 to	 the	 data,	we	 obtain	 the	 time	 series	 of	 distributions	 of	
mortality	 rates	 in	 the	 decades	 that	 follow	 the	 main	 pandemic	 waves.	 We	 can	
therefore	 calculate	 the	 probability	 of	 specified	 mortality	 rates	 by	 year	 and	
compute	 the	 time	 series	 of	 disease	 outbreak	 risk	 by	 defining	 an	 outbreak	 as	
mortality	above	a	threshold.	Figure	3	shows	the	post-pandemic	disease	outbreak	
probabilities	 for	different	 thresholds,	defined	 taking	 into	account	 the	 impact	of	
the	main	 pandemic	waves.	 In	 particular,	 for	 the	 1918-19	 pandemic,	we	 define	
two	disease	 outbreak	 thresholds	 at	 500	 and	1000	deaths	per	million.	The	500	
per	million	threshold	is	about	one	third	of	the	rate	of	the	main	waves	(1918	and	
1919)	and	significantly	higher	than	any	mortality	rate	between	1900	and	1918	
(i.e.	after	the	1890-91	pandemic	effects	had	died	out).	It	also	corresponds	to	that	
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observed	 during	 the	 main	 waves	 of	 the	 1890-91	 pandemic	 and	 subsequent	
outbreaks.	For	 the	period	after	1920,	 this	 threshold	 identifies	as	outbreaks	 the	
same	years	as	those	described	as	having	exceptionally	high	mortality	in	the	MOH	
reports	 for	 London.	 The	 1000	 per	million	 threshold	 corresponds	 to	 recurrent	
disease	outbreaks	approaching	the	levels	experienced	in	some	cities	during	the	
main	 pandemic	 waves	 of	 1918-19	 and	 approximates	 that	 of	 the	 severe	 1929	
outbreak.	 More	 generally,	 this	 threshold	 identifies	 particularly	 severe	 disease	
outbreaks	that	were	possible	given	the	dynamic	process	for	mortality	risk,	even	if	
unrealised	ex	post.	Following	a	similar	reasoning,	for	the	1890-1891	pandemic	in	
England	and	Wales,	we	show	post-pandemic	disease	outbreak	probabilities	 for	
different	 thresholds	 that	are	motivated	by	mortality	during	the	main	pandemic	
waves	and	prior	to	the	pandemic.	
	
Figure	 3	 shows	 the	 probabilities	 of	 a	 disease	 outbreak	 exceeding	 different	
thresholds.	 Two	 main	 results	 stand	 out.	 First,	 the	 probability	 of	 a	 disease	
outbreak	 remains	 high	 for	 about	 two	decades	 after	 the	main	pandemic	waves,	
and	 unlike	 the	 exponential	 decline	 of	 the	 tail	 parameter,	 declines	 only	 very	
slowly	 during	 this	 period.	 Second,	 the	 pattern	 of	 the	 time	 evolution	 is	 similar	
across	all	geographical	units,	despite	considerable	differences	in	the	scale	of	the	
main	waves	and	in	background	influenza	mortality	(Figure	1).	
	
Application	to	COVID-19:	Lessons	from	the	past	for	the	present	
	
We	 use	 the	 historical	 mortality	 risk	 estimates	 to	 simulate	mortality	 dynamics	
after	 the	main	waves	 of	 COVID-19,	with	 the	 aim	 of	 uncovering	 the	 underlying	
epidemiological	 risk	 before	 the	 effect	 of	 modern	 means	 of	 intervention.	 The	
generality	of	the	main	qualitative	characteristics	of	the	dynamic	risk	patterns	in	
Figure	3,	 across	geographical	units	with	different	experience	of	 the	main	wave	
and	background	mortality,	suggests	 that	 the	model	 in	(1)	–	(2)	can	be	used	 for	
counterfactual	 analysis.	 Nevertheless,	 the	 quantitative	 predictions	 are	
dependent	 on	 the	 bounds	 of	 the	 Pareto	 distributions,	 as	 well	 as	 the	 specific	
sequence	 !! !!!

! 	used,	or	equivalently	on	the	underlying	parameter	values	for	!!	
and	λ.	The	bounds	of	the	Pareto	distributions	are	determined	by	the	experience	
of	 the	 pandemic	 to	which	 the	model	 predictions	 apply.	We	 thus	 set	 the	 upper	
bound	on	future	mortality	to	be	determined	by	COVID-19	mortality	in	the	UK	in	
2020	and	the	lower	bound	to	reflect	mortality	in	the	non-pandemic	state	in	the	
coming	decades,	which	we	approximate	by	background	influenza	mortality	pre-
2020.	
	
Regarding	 the	 parameters	!!	and	 λ,	 inspection	 of	 the	 historical	 parameters	 (SI	
Table	B-1)	suggests	that	even	though	these	are	relatively	similar,	there	is	some	
variation	across	geographical	units.	This	generates	model	uncertainty	regarding	
the	 risk	 projections	 because	 it	 creates	 uncertainty	 about	 which	 sequence	 of	
bounded	 Pareto	 distributions	 generates	 the	 data.	 This	 is	 a	 different	 kind	 of	
uncertainty	from	the	epidemiological	uncertainty	that	governs	the	probability	of	
an	 outbreak	 in	 each	 year	 for	 a	 given	 sequence	 of	 distributions.	 To	 account	 for	
uncertainty	 regarding	 the	 dynamic	 path	 of	 disease	 outbreak	 risk,	 given	 the	
bounds	for	the	Pareto	distributions,	we	use	the	range	of	values	of	!!	and	!	across	
the	different	geographical	units	from	our	historical	analysis	to	approximate	the	
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joint	distribution	of	possible	parameter	values.	Then,	for	one	million	draws	from	
this	 joint	 distribution,	 we	 compute	 the	 disease	 outbreak	 probabilities	 and	
compute	relevant	percentiles.		
	

	
Figure	3.	Outbreak	risk	following	the	historical	1918-19	and	1890-91	pandemics	and	COVID-19.	(a)-
(b)	Outbreak	probabilities	computed	from	models	fitted	to	each	city	and	the	US,	for	thresholds	of	(a)	
500	 deaths	 per	 million	 and	 (b)	 1000	 per	 million.	 (c)	 Outbreak	 probabilities	 computed	 from	 the	
model	 fitted	 to	 data	 for	 England	 and	 Wales	 following	 the	 1890-91	 pandemic,	 for	 different	
thresholds.	 (d)-(e)	 Simulated	 outbreak	 probabilities	 for	 COVID-19,	 showing	 median	 (solid	 black	
line),	interquartile	range	(dark	shading)	and	80%	prediction	interval	(light	shading),	based	on	1m	
random	draws.	Outbreak	probabilities	are	computed	from	model	parameterisations	that	are	drawn	
from	a	distribution	of	η0	and	λ	implied	by	the	models	fitted	to	historical	data.	The	upper	bound	on	
future	mortality	 (du	 =	 1858)	 is	 set	 equal	 to	COVID-19	mortality	 in	 the	UK	 in	2020	and	 the	 lower	
bound	 (dl	 =	 24)	 to	 reflect	 mortality	 in	 the	 non-pandemic	 state,	 approximated	 by	 background	
influenza	mortality	pre-2020	(data	sources	in	SI).	

	
Figure	 3	 (d)-(e)	 shows	 model-predicted	 probabilities	 of	 disease	 outbreaks	
(mortality	 rates	 exceeding	 500	 and	 1000	 per	 million)	 from	 a	 counterfactual	
analysis	 after	 the	 main	 waves	 of	 COVID-19,	 allowing	 for	 model	 uncertainty.	



	 8	

These	 results	 demonstrate	 elevated	 disease	 outbreak	 risk	 for	 two	 decades.	 In	
90%	of	model-predicted	dynamic	paths,	 the	probability	of	outbreaks	exceeding	
500	 deaths	 per	 million,	 which	 is	 20	 times	 higher	 than	 seasonal	 influenza,	 is	
above	 20%	 for	 a	 decade	 and	 remains	 above	 10%	 for	 two	 decades.	 Regarding	
outbreaks	 closer	 in	 scale	 to	 mortality	 during	 the	 first	 main	 wave,	 in	 90%	 of	
model-predicted	 dynamic	 paths,	 the	 probability	 of	 outbreaks	 exceeding	 1000	
deaths	per	million	is	above	10%	for	a	decade.	
	
Concluding	remarks	
	
The	 similarity	 of	 the	 pattern	 of	 disease	 outbreak	 dynamics	 across	 geographic	
units	with	different	socioeconomic	characteristics	and	two	historical	pandemics	
highlights	the	generality	of	our	finding	that	mortality	risk	remains	elevated	for	a	
prolonged	period	after	the	main	pandemic	waves.		
	
Our	 findings	 can	 inform	 research	 to	understand	 the	 implications	of	pandemics	
for	a	range	of	health	and	socioeconomic	outcomes	by	quantifying	post-pandemic	
mortality	 risk	 and	 its	 persistence	 over	 time.	 Disease	 outbreak	 risk	 generates	
health	 and	 economic	 uncertainty,	 which	 has	 significant	 and	 unequal	
consequences	 for	 socioeconomic	 outcomes	 across	 the	 population.	 Given	 that	
disease	 outbreaks	 imply	 a	 deterioration	 in	 health	 outcomes	 that	 is	 not	
symmetric	across	the	population	(e.g.	Quinn	and	Kumar	(2014),	Marmot	(2020),	
Marmot	 and	 Allen	 (2020)	 and	 Mamelund	 and	 Dimka	 (2021)),	 a	 period	 of	
increased	 disease	 outbreak	 risk	 implies	 the	 possibility	 of	 repeated	 negative	
shocks	 to	 health	 inequality.	Moreover,	 outbreak	 risk	 generates	 social,	 political	
and	economic	uncertainty,	stemming	from	possible	impacts	of	the	disease	itself	
and	 of	 containment	 measures	 on	 economic	 activity.	 Increased	 aggregate-level	
uncertainty	 further	 impacts	 economic	 decision-making,	 income	 inequality	 and	
economic	 fluctuations,	 either	 directly	 or	 via	 increased	 idiosyncratic	 risk	 (e.g.	
Heathcote	et	al.	(2010),	Bloom	(2009),	Bloom	et	al.	(2018)	and	Angelopoulos	et	
al.	(2021a,	2020)).	
	
The	potentially	high	persistence	of	disease	outbreak	risk	for	many	years	after	a	
pandemic	 highlights	 the	 value	 of	 scientific	 and	medical	 developments.	 Indeed,	
medicine,	 public	 health,	 technology,	 and	 better-informed	 and	 prepared	 policy	
intervention	 offer	 the	 opportunity	 in	 the	 modern	 world	 to	 confront	 post-
pandemic	recurrent	outbreak	risk	better	than	a	century	ago.	The	overall	message	
from	our	analysis	is	that	ongoing	prevention	strategies	and	policy	preparedness	
to	 mitigate	 outbreaks	 are	 likely	 to	 be	 required,	 even	 well	 after	 the	 main	
pandemic	waves.	
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A. Data	sources	
	
City-level	data	were	compiled	from	Medical	Officer	of	Health	(MOH)	reports.	These	
reports	were	 annual	 administrative	 documents	 covering	 a	 range	 of	 public	 health-
related	issues	at	the	municipal	level.	The	first	reports	begin	in	the	mid-19th	century,	
and	 coverage	 extends	 to	most	municipalities	 in	 the	UK	until	 the	 early	 1970s.	 The	
reports	 used	 here	 have	 been	 digitised	 and	 can	 be	 viewed	 on	 the	Wellcome	 Trust	
Collection	website	(Wellcome	Trust,	2021).	
	
We	 collected	 influenza	 mortality	 data	 between	 1895	 and	 1950	 for	 eight	 large	
municipalities	 from	across	 the	UK:	Belfast,	Birmingham,	Cardiff,	 Glasgow,	 London,	
Liverpool,	Manchester	and	Sheffield.	To	do	this,	we	searched	relevant	MOH	reports	
for	 each	 municipality.	 Generally,	 annual	 mortality	 rates	 by	 cause	 of	 death	 are	
presented	in	tables	within	the	report	or	its	appendices	(or	could	be	computed	as	the	
ratio	of	the	number	of	deaths	to	the	population	size).	Despite	changes	over	time	to	
the	 taxonomy	 of	 causes	 of	 death,	 influenza	 was	 reported	 in	 the	 MOH	 reports	
throughout	 the	 decades.	 During	 the	 war	 years,	 1914-1919	 and	 1939-1945,	 some	
reports	are	missing,	or	the	data	provided	is	incomplete.	In	these	cases,	we	recovered	
the	missing	 information	 by	 assessing	 statistics	 for	 these	 years	 from	 later	 reports,	
where	 possible.	 The	 dataset	 collected	 from	 the	 MOH	 reports	 underlying	 this	
research	paper	is	available	on	GitHub	at	https://github.com/maxschr90/Schroeder-
et-al.-2021--How-long-do-pandemics-last-.	
	
The	narrative	provided	in	the	MOH	reports	for	London	County	Council	confirms	that	
the	two	decades	after	the	three	initial	waves	of	the	pandemic	were	characterised	by	
several	 further	 large	 influenza	 outbreaks.	 In	 particular,	 we	 examined	 available	
London	 County	 Council	 MOH	 reports	 between	 1920	 and	 1957	 to	 identify	
discussions	of	increased	prevalence	of	influenza	in	a	given	year.	In	each	report,	we	
performed	 a	 search	 for	 the	 phrase	 influenza.	 As	 public	 health	 officials	 were	
particularly	 attentive	 to	 influenza	 after	 the	 1918-19	 pandemic,	 virtually	 every	
annual	 report	 contains	 at	 least	 some	 discussion	 of	 the	 disease.	 Generally,	 the	
language	of	 the	 reports	 is	 clear	on	whether	a	 certain	year	 is	 considered	 to	have	a	
notable	 outbreak	 of	 influenza.	 Some	 reports	 further	 included	 retrospective	
reflections	 on	 past	 influenza	 outbreaks.	 The	 reports	 identify	 1922,	 1924,	 1927,	
1929,	 1933	 and	 1937	 as	 years	 of	 heightened	mortality	 from	 influenza	 relative	 to	
other	years.	
	
Data	 for	 the	US	 are	 taken	 from	 the	 annual	 vital	 statistics	 reports	 compiled	by	 the	
National	Center	for	Health	Statistics.	Specifically,	we	rely	on	the	two	special	volumes	
(Grove	and	Hetzel	(1968)	and	Linder	and	Grove	(1943))	covering	the	period	1900-
1960.	Both	volumes	are	available	on	the	CDC’s	website.	Data	for	England	and	Wales	
between	 1838	 and	 1917	 are	 taken	 from	 Langford	 (2002,	 Table	 5),	 who	 compiles	
mortality	rates	from	different	sources.		
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To	obtain	COVID-19	mortality	for	the	analysis	in	Figure	2	(d)-(e),	we	combined	the	
total	number	of	UK	COVID-19	deaths	between	6th	March	2020	and	6th	March	2021	
(124,654)	 (Ritchie	 et	 al.	 2020).	With	mid-year	 population	 data	 from	 the	 ONS	 for	
2020	(67,081,000)	(ONS,	2021a).	This	implies	a	mortality	rate	of	1,858	per	million.	
Pre-2020	deaths	from	influenza	are	taken	from	the	2018-19	total	mortality	figures	
for	 England	 &	 Wales	 from	 the	 ONS	 (ONS,	 2021b)	 together	 with	 the	 mid-2018	
population	figures	for	England	&	Wales	(ONS,	2019).	
	
	 Population	 Population	density	
	 1920s	 1930s	 1940s	 1920s	 1930s	 1940s	
Belfast	 422,130	 425,202	 442,935	 -	 -	 -	
Birmingham	 947,923	 1,023,811	 1,053,157	 5,185	 4,938	 5,185	
Cardiff	 219,894	 222,658	 227,861	 5,185	 4,444	 1,728	
Glasgow	 1,079,858	 1,088,829	 1,089,368	 12,593	 8,642	 6,667	
Liverpool	 837,595	 858,783	 720,112	 9,877	 7,901	 -	
London	 4,540,000	 4,230,295	 2,863,548	 -	 -	 -	
Manchester	 749,970	 746,974	 641,040	 8,642	 7,160	 5,926	
Sheffield	 519,224	 517,967	 492,093	 1,728	 3,457	 3,210	
	
Table	 A-1:	 Population	 and	 density	 for	 UK	 cities.	 Population	 and	 population	 density	 numbers	 refer	 to	

decadal	averages	compiled	from	available	data	in	the	MOH	reports.	Population	density	is	measured	in	

persons/km2.	
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B. Details	of	model	of	mortality	risk	dynamics	

Details	of	baseline	model	
The	model	 in	 (1)	 –	 (2)	 assumes	 that	mortality	 rates	 after	 the	main	waves	 of	 the	
pandemic	are	 the	outcomes	of	a	 sequence	of	bounded	Pareto	distributions,	where	
the	 inverse	of	 the	 tail	 index	of	 these	distributions	decays	exponentially	over	 time.	
The	parameters	!! > 0	and	!! > !! 	scale	the	range	of	mortality	rates	that	the	model	
predicts.	We	fit	the	model	to	the	data	for	each	geographical	unit	and	conditional	on	
its	experience	of	the	pandemic.	Hence,	we	choose	the	bounds	to	reflect	the	realised	
range	 of	 mortality	 rates	 for	 the	 geographical	 unit	 over	 the	 period	 modelled.	
Conditional	on	!! 	and	!!,	the	two	parameters	!!	and	!	then	determine	the	dynamics	
of	mortality	and	disease	outbreak	risk	via	controlling	the	level	and	time	evolution	of	
probabilities	of	outcomes	associated	with	the	tail	of	the	Pareto	distributions.		
	
We	obtain	!	and	!!	by	maximising	the	likelihood	function:	

! !, !! = !!!!!"
!! !! !!!!!"

!!
!! ! !!!!!"

!!
!!

!! !!
!!

!!!!!"
!!

!
!!! ,							(3)	

given	a	sample	of	mortality	rates	 !! !!!
! .	To	maximise	the	 log	 likelihood	function,	

we	 use	 MATLAB’s	 fmincon	 routine,	 using	 a	 sequential	 quadratic	 programming	
algorithm.	Derivatives	are	approximated	by	central	numerical	derivatives,	 and	 the	
relevant	termination	criteria	are	set	to	1e-12.	To	account	for	potential	nonconvexities	
and	 the	presence	of	 local	maxima,	we	begin	 the	maximisation	 from	1000	 random	
seed	values.	Parameters	are	provided	in	table	B-1	below:	
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	 λ	 !!	 dl	 du	
City	average	 0.151	

(0.030)	
76.867	
(48.638)	

24	 3059	

Belfast	 0.119	
(0.025)	

24.859	
(14.042)	

22	 3644	

Birmingham	 0.144	
(0.034)	

58.442	
(47.222)	

30	 2497	

Cardiff	 0.184	
(5.094)	

360.214	
(491.962)	

13	 2671	

Glasgow	 0.166	
(0.033)	

74.119	
(57.663)	

33	 1812	

Liverpool	 0.166	
(0.031)	

126.778	
(83.284)	

23	 1775	

London	 0.11	
(0.025)	

26.352	
(12.899)	

23	 4458	

Manchester	 0.18	
(0.034)	

208.861	
(160.107)	

23	 3067	

Sheffield	 0.169	
(0.033)	

202.69	
(143.300)	

12	 4550	

US	 0.278	
(0.034)	

802.709	
(642.435)	

31	 3018	

England	&	Wales	 0.111	
(0.057)	

7.684	
(8.956)	

113	 574	

	

Table	 B-1:	 Model	 parameters.	 Maximum	 likelihood	 estimates	 of	 the	 baseline	 model	 specification	

described	in	the	main	text.	Numerical	standard	errors	in	parentheses.	
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Model	with	common	mortality	bounds	
The	 choice	 of	 the	 bounds,	 !! 	 and	 !!, scales	 the	 range	 of	 mortality	 rates.	 In	 the	
baseline	application,	!!	for	each	city	is	set	to	the	mortality	rate	of	1918	for	that	city,	
and	!! 	 to	 lowest	mortality	experienced	in	the	 long	run	in	each	city,	or	the	average	
across	cities	 for	 the	model	 fitted	 to	 the	average.	For	 the	US	 following	 the	1918-19	
pandemic,	 !! 	 and	 !! are	 the	 lowest	 post-1918	 and	 the	 1918	 mortality	 rates	
observed	 in	 the	 US	 time	 series;	 for	 the	 1890-91	 post-pandemic	 mortality	 rate	
dynamics,	 these	 parameters	 refer	 to	 the	 lowest	 between	 1891	 and	 1917,	 and	 the	
1891	 mortality	 rates	 in	 the	 respective	 time	 series	 for	 England	 and	Wales.	 These	
parameters	are	provided	in	table	B-1.		
	
The	advantage	of	letting	!! 	and	!! be	specific	to	the	geographical	unit	studied	is	that	
we	allow	 for	differences	 in	 the	experience	of	 the	pandemic	and	 in	 conditions	 that	
influence	 background	 infectious	 disease	 mortality	 to	 have	 a	 bearing	 on	 risk	
dynamics.	By	allowing	for	such	latent	variation,	our	finding	of	a	general	pattern	of	
mortality	and	disease	outbreak	risk	dynamics	 is	 stronger.	 Indeed,	 if	we	set	!! 	 and	
!! to	 be	 common	 across	 all	 cities,	 specifically	 to	 the	 lowest	 and	highest	mortality	
rate	observed	across	them,	 the	overall	pattern	 is	very	similar	across	cities;	 that	 is,	
compared	with	the	results	in	Figure	3	(a-b),	even	greater	similarity	is	observed.	In	
contrast,	 the	results	 in	Figure	3	(a-b)	reassure	us	that	the	general	pattern	remains	
similar	even	after	controlling	for	variation	between	cities.	The	results	 from	setting	
common	bounds	are	shown	in	 figure	B-1	below.	This	agnostic	modelling	of	!! 	and	
!!	 confirms	high	and	persistent	mortality	 risk	after	 the	main	pandemic	waves,	 as	
well	as	similarity	across	geographical	units,	but,	compared	with	the	post-pandemic	
experience,	 it	 exaggerates	 it	 relative	 to	 actual	 experience.	 On	 the	 other	 hand,	
exploiting	 the	 information	pertinent	 to	 the	pandemic	 in	parameterising	!! 	 and	!!	
leads	to	more	accurate	mortality	risk	predictions.	
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Figure	 B-1:	 Outbreak	 risk	 following	 the	 1918-19	 pandemic	 (model	 with	 common	 bounds).	 Outbreak	

probabilities	computed	from	models	fitted	to	each	city.	Upper	and	lower	bounds	are	common	and	set	to	

be	the	highest	and	lowest	mortality	rates	within	the	sample	of	cities	respectively.	 	
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Model	with	theoretical	mortality	bounds	
We	next	compare	the	approach	of	specifying	the	bounds	of	the	Pareto	distribution	
conditionally	 on	 the	 mortality	 range	 relevant	 to	 the	 geographical	 unit	 to	 a	 more	
agnostic	approach	of	setting	!!	and	!!  to	be	determined	theoretical	upper	and	lower	
bounds	of	mortality	rates.	Figure	B-2	reproduces	Figures	3	(a-b)	under	the	agnostic	
modelling	 approach.	 As	 can	 be	 seen,	 in	 Figure	 B-3	 the	 probability	 of	 a	 disease	
outbreak	remains	high	until	the	1940s,	the	dynamic	pattern	is	different	from	that	in	
Figure	3	(a-b),	implying	disease	outbreak	risk	that	is	very	high	initially	and	declines	
more	rapidly.	Overall,	agnostic	modelling	of	!! 	and	!!	confirms	high	and	persistent	
mortality	 risk	 after	 the	 main	 pandemic	 waves,	 as	 well	 as	 similarity	 across	
geographical	 units,	 but,	 compared	 with	 the	 post-pandemic	 experience,	 it	
exaggerates	 it	 relative	 to	 the	 actual	 experience.	 On	 the	 other	 hand,	 exploiting	 the	
information	pertinent	 to	 the	pandemic	 in	parameterising	!! 	 and	!!	 leads	 to	more	
accurate	mortality	risk	predictions.	
	
	

	
	

Figure	B-2:	Outbreak	risk	 following	the	1918-19	pandemic	(model	with	theoretical	bounds).	Outbreak	

probabilities	 computed	 from	models	 fitted	 to	 each	 city.	Upper	and	 lower	bounds	are	 set	 to	1,000,000	

and	1	respectively.	
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Model	with	estimated	mortality	bounds	
Technically,	!! 	and	!!	can	be	estimated	jointly	with	!!	and	!	using	the	time	series	
following	the	main	pandemic	waves	(i.e.,	without	exploiting	the	information	on	the	
mortality	 effect	 of	 the	 main	 pandemic	 waves).	 In	 this	 case,	 (3)	 is	 maximised	 by	
choosing	 all	 four	parameters,	 following	 the	 same	optimisation	methods	 as	 for	 the	
model	in	(1)	–	(2).	Figures	B-3	and	B-4	reproduce	Figures	2	and	3	(a-b)	under	this	
methodology.	
	
However,	the	model	predictions	in	this	case	do	not	capture	disease	outbreak	risk.	In	
particular,	although	fitting	the	model	in	(1)	–	(2)	by	estimating	all	four	parameters	
from	the	time	series	of	data	following	the	main	pandemic	waves	may	be	useful	for	
some	 applications	 (e.g.	 if	 the	 interest	 is	 in	 summarising	 historical	 experience),	
conceptually,	 this	 is	 no	 longer	 a	 model	 of	 mortality	 and	 disease	 outbreak	 risk	
dynamics,	i.e.	of	the	time	evolution	of	the	probability	of	disease	outbreaks.	Instead,	
!! 	 and	!!	 should	 be	 interpreted	 as	 parameters	 chosen	 to	maximise	 the	 fit	 of	 the	
process	to	the	data,	and	thus	are	chosen	by	the	optimisation	routine	to	be	in	effect	
the	maximum	and	minimum	mortality	observed	between	1920	and	1950.	 In	 turn,	
this	 rules	 out	 the	 possibility	 of	 disease	 outbreaks	 that	 are	 higher	 than	 those	
observed	ex	post,	even	if	theoretically	they	could	have	happened.	An	analysis	of	risk	
dynamics	must	 account	 for	 the	 possibility	 of	 higher	mortality	 than	 that	 that	 was	
actually	 observed.	 Our	 modelling	 approach	 views	 bounds	 as	 possible	 even	 if	
unrealised	mortality	rates,	given	the	experience	of	the	pandemic,	which	determines	
the	 upper	 bound,	 and	 given	 the	 expectation	 about	 background	 mortality	 that	 is	
unaffected	 by	 the	 pandemic,	 which	 determines	 the	 lower	 bound.	 Indeed,	 if	 we	
simply	fit	the	model	to	the	post-pandemic	data	by	estimating	!! 	and	!!	jointly	with	
!!	and	!	using	the	time	series	following	the	main	pandemic	waves,	we	find	that	the	
model	 predicted	 mortality	 is	 close	 to	 the	 actual	 path	 of	 mortality,	 while	 disease	
outbreak	probabilities	for	large	outbreaks	are	reduced.		
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Figure	 B-3:	 Model	 predicted	 influenza	 mortality	 rates	 following	 the	 1918-19	 pandemic	 (model	 with	

estimated	 bounds).	 Simulated	median	 (solid	 black	 line),	 interquartile	 range	 (dark	 shading)	 and	 80%	

prediction	 interval	 (light	shading)	are	based	on	1m	random	draws.	Simulated	outcomes	are	based	on	

the	model	fitted	using	the	average	across	cities.	Upper	and	lower	bounds	are	fitted	to	the	data.	Data	are	

overplotted	in	red.	Data	for	UK	cities	are	taken	from	Medical	Officer	for	Health	reports.	

	
	

	
	

Figure	B-4:	Outbreak	 risk	 following	 the	 1918-19	pandemic	 (model	with	 estimated	bounds).	Outbreak	

probabilities	computed	from	models	 fitted	to	each	city.	Upper	and	lower	bounds	are	fitted	to	the	data	

(1920-1950)	for	each	city.	
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One-parameter	Weibull	model	
To	 further	 illustrate	 key	 points	 of	 the	 relevance	 of	 the	 Pareto	 distribution,	 we	
describe	and	fit	a	model	with	an	alternative	one-parameter	distribution	that	allows	
for	 high	 probabilities	 for	 outcomes	 associated	 with	 the	 tail,	 the	 one-parameter	
Weibull-type	 distribution	 (Alexopoulos	 (2019)).	 In	 this	 case,	 mortality	 rates	 are	
drawn	from:	
	

!!~!! !! ,						(4)	
	
where	!! ∈ 0,1 ,	noting	that	the	tail	contracts	as	!!	decreases.	Assume	that:	
	

!! = !!!!!" .			(5)	
	
Conditional	 on	 the	 time	 process	 in	 (5),	 and	 thus	 conditional	 on	 the	 sequence	
!! !!!

! ,	!!	 is	 independently	 distributed	 over	 time	 following	 (4).	 The	 likelihood	 is	
given	by:	
	

! !,!! = !"#! !!!!!"
!"# !!!!!" !!

!!!
!!! !! + 1 !!!!!"

!! ,	
	
for	a	sample	of	mortality	rates	 !! !!!

! .	The	results	from	this	model,	shown	in	figures	
B-5	and	B-6	also	reveal	that	mortality	risk	remains	high	for	a	long	period	after	the	
main	pandemic	waves,	and	 that	 its	dynamic	pattern	 is	 similar	across	geographical	
units.	 However,	 the	 predicted	 probabilities	 for	 disease	 outbreaks	 are	 higher	 than	
those	 in	 Figure	 3	 (a-b).	 This	 is	 an	 implication	 of	 the	 one-parameter	Weibull	 form	
that	 delivers	 a	 fat	 tail	 by	 shifting	 the	 mass	 of	 the	 distribution	 away	 from	 lower	
numbers	 (Alexopoulos,	 2019).	 Moreover,	 disease	 outbreak	 risk	 inherits	 a	 rate	 of	
rapid	 decline	 from	 the	 exponential	 decay	 of	 !! ,	 the	 Weibull	 parameter	 that	
determines	 the	 thickness	of	 the	 tail.	This	analysis	demonstrates	 the	 importance	of	
the	property	of	 the	Pareto	distribution	 that	 it	 can	accommodate	a	 fat	 tail	with	 the	
mass	of	the	distribution	near	the	lower	bound	of	outcomes.	Alternative	distributions	
that	 can	 deliver	 a	 concentration	 at	 lower	mortality	 levels	 while	 also	 allowing	 for	
high	 probabilities	 associated	 with	 tail	 outcomes	 require	 more	 parameters	 to	 be	
specified	 (e.g.	 lognormal,	 Gaussian	 mixture)	 and	 require	 more	 assumptions	
regarding	the	dynamic	transition.	In	particular,	the	model	must	specify	the	dynamic	
evolution	 of	 two	 or	 more	 parameters	 and	 a	 means	 to	 identify	 the	 specific	
combination	 of	 the	 dynamic	 processes	 of	 these	 parameters	 that	 characterises	 the	
evolution	of	tail	probabilities	and	of	mortality	risk	more	generally.	Data	availability	
restricts	 these	 options.	 Being	 a	 one-parameter	 distribution	 conditional	 on	 the	
bounds	 for	mortality	rates,	 the	bounded	Pareto	offers	a	 transparent	way	to	model	
the	post-pandemic	dynamic	evolution	of	mortality	and	disease	outbreak	risk.		
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Figure	B-5:	Model	predicted	influenza	mortality	rates	following	the	1918-19	pandemic	(One-parameter	

Weibull	 model).	 Simulated	 median	 (solid	 black	 line),	 interquartile	 range	 (dark	 shading)	 and	 80%	

prediction	 interval	 (light	shading)	are	based	on	1m	random	draws.	Simulated	outcomes	are	based	on	

the	model	assuming	a	sequence	of	one-parameter	Weibull	distributions	fitted	using	the	average	across	

cities	 (1920-1950).	Data	are	overplotted	 in	 red.	Data	 for	UK	cities	are	 taken	 from	Medical	Officer	 for	

Health	reports.	

	
	

	
	

Figure	B-6:	Outbreak	risk	 following	the	1918-19	pandemic	(One-parameter	Weibull	model).	Outbreak	

probabilities	computed	from	models	fitted	to	each	city	assuming	a	sequence	of	one-parameter	Weibull	

distributions.	
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Details	of	modelling	uncertainty	
To	account	for	model	uncertainty,	we	assume	that	the	parameters	!!	and	!	that	are	
relevant	to	a	new	pandemic	are	drawn	from	the	same	distribution	from	which	the	
parameters	 in	 table	B-1	are	drawn,	 and	 then	perform	a	Monte	Carlo	 analysis	 that	
provides	a	distribution	of	possible	outcomes	as	a	function	of	draws	of	!!	and	!	from	
that	distribution.	Using	the	parameter	values	of	!!	and	!	 in	table	B-1,	we	estimate	
the	underlying	distribution	and	approximate	it	as	a	joint	lognormal:	
	

log !!
log ! ~!"# !,! 	

 
! = −1.85

4.5 ,! = 0.08 0.37
0.37 1.96 	

 
We	 then	 draw	 one	 million	 pairs	 of	 !!	 and	 !	 from	 the	 implied	 joint	 density	 and	
summarise	 relevant	 percentiles	 of	 the	 generated	 distribution	 of	 predicted	
probabilities	of	mortality	rates	in	Figure	3	(d-e).	
	

	
	

Figure	B-7:	Distribution	of	η0	and	λ	implied	by	the	models	fitted	to	previous	pandemics.	Kernel	density	

estimates.	
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C. Additional	Figures	

	

	
	

Figure	 C-1:	Model	 predicted	 influenza	mortality	 rates	 following	 the	 1918-19	 and	 1890-91	 pandemics	

(deaths	per	million).	Simulated	median	(solid	black	line),	 interquartile	range	(dark	shading)	and	80%	

prediction	 interval	 (light	shading)	are	based	on	1m	random	draws.	Simulated	outcomes	are	based	on	

the	model	fitted	to	each	city,	the	US	and	England	&	Wales.	 	Data	for	UK	cities	are	taken	from	Medical	

Officer	for	Health	reports.	Data	for	the	US	is	taken	from	Lindner	and	Grove	(1943)	and	Grove	and	Hetzel	

(1968).	Data	for	England	&	Wales	are	taken	from	Langford	(2002),	Table	5.	
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