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Abstract 
 
The main waves of a pandemic and subsequent disease outbreaks in the following years influence 
the evolution of the distributions of health and wealth, leading to differences in the ability to 
mitigate future income shocks. We study consumption smoothing and precautionary behaviour 
associated with the main pandemic waves and recurrent outbreak risk in a model in which health 
and wealth are jointly determined under income and health risk that are related to disease outbreak 
risk. We calibrate the model to the UK and find that the impact shock of COVID-19 and recurrent 
outbreak risk amplify existing inequalities in wealth and health, implying persistent increases in 
wealth inequality that are characterised by increases in wealth for households in higher income 
groups and/or with higher initial wealth, and decreases for those in lower income groups and/or 
with lower wealth. These changes lead to inequality in exposure to post-pandemic income risk 
and, in particular, an increase in the vulnerability of those already with very little wealth prior to 
the pandemic. We assess public insurance policy to mitigate income losses for those with low 
wealth and find that, by disincentivising wealth accumulation and incentivising investment in 
health for those with low wealth and health, it reduces health inequality and, in the short run, the 
probability of low consumption, but increases wealth inequality and, in the medium run, the 
probability of low consumption. 
JEL-Codes: E210, D310, I140, D150, E620. 
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1 Introduction

Pandemics create health and economic crises that a§ect households in an unequal manner.
The di§erential e§ects of the first waves of COVID-19 on income and health across the
population have been examined in several studies (see, e.g. Stantcheva (2021) for a
review of income inequality implications, and Marmot et al. (2020) focusing on health
inequality). However, given the persistence of wealth and health, which reflect current
as well as past outcomes, pandemic-induced increases in wealth and health inequality
and their implications, can be long lasting. The inequality implications can be further
amplified by potential recurrent outbreaks that follow the main pandemic waves (e.g.
Kissler et al. (2020), Giannitsarou et al. (2021), Phillips (2021) and Torjesen (2021), for
analysis of this potential following the main waves of COVID-19, and Schroeder et al.
(2021) for evidence from previous pandemics). Recurrent outbreaks may occur due to re-
introduction of the virus, new variants, waning immunity, human behaviour (e.g. vaccine
refusal), or population turnover leading to reductions in population-level immunity (e.g.
Anderson and May (1992)).
To understand how pandemic-induced changes in wealth a§ect household wellbeing,

it is essential to account for three key factors: the worsening of health inequality ac-
companying increases in wealth inequality; the increase in vulnerability to future shocks
implied by reductions in existing levels of household wealth; and pre-existing inequalities.
Regarding the first, the strong link between health outcomes and income/wealth (see, e.g.
Marmot (2004), Semyonov et al. (2013) and Marmot et al. (2020)) implies that changes
in wealth, and its variation across households, matter for household wellbeing via both
health and consumption outcomes. The health inequality implications of wealth inequal-
ity can be more severe when they follow a pandemic twith substantial direct negative
health e§ects because a deterioration in health driven by changes in wealth applies to an
already worsened state of health. Regarding increased vulnerability, persistent increases
in wealth inequality imply increased risk exposure for households whose wealth is reduced
because the means to self-insure against future income shocks are also reduced. Regard-
ing e§ects of pre-existing inequalities, the magnitude and severity of reductions in wealth,
consumption and health depend critically on the pre-pandemic household conditions to
which the reductions apply.
We study changes in wealth and health driven by the main pandemic waves and

subsequent outbreaks, across households and over the decades that follow the pandemic.
We emphasise the dependency of these changes on di§erent household-level pre-pandemic
conditions, and the di§erential vulnerability to income risk and health risk that they
imply. Post-pandemic changes in health and wealth reflect the e§ect of exogenous shocks
and household choices in response to them and to changes in risk associated with the
pandemic and recurrent outbreaks. Hence, to understand household behaviour, we firstly
examine household incentives for consumption smoothing in response to pandemic shocks,
and for precautionary behaviour in response to changes in risk. We then compute the
dynamic evolution of the joint distribution of health and wealth following the COVID-19
shock, which incorporates household responses across the distribution, in a calibration
that accounts for pre-existing inequalities in the UK and the e§ect of both the first waves
of COVID-19 and recurrent outbreak risk.
The model and computational analysis build on research that models household het-
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erogeneity under imperfectly insured idiosyncratic shocks.1 In our model, households
derive utility from both consumption and health and choose the levels of two state vari-
ables, health and wealth, in response to household-specific shocks to income and health
that they experience, and the risk of future shocks.2 Households use their income for
consumption, savings that increase future wealth, and expenditure that improves future
health. Choices depend on the levels of current income, wealth and health, which reflect
the history of health and income shocks received, and on probabilistic assessments of
future outcomes. Households belong to di§erent socioeconomic groups, defined by pro-
fessions, and transitions between groups are stochastic. Household-specific income and
health shocks depend on the socioeconomic group, reflecting a social gradient in health,
and are conditional on the aggregate state, particularly on disease outbreaks. Aggregate
level uncertainty is modelled as a stochastic epidemiological process of disease outbreaks
and is informed by estimates of recurrent outbreaks from previous pandemics. Disease
outbreaks increase health risk, influence income and limit consumption asymmetrically
across the population.
In addition to permitting a positive relationship between shocks to income, socioeco-

nomic group and health, the model links health and wealth via household choices. Higher
resources allow increased savings to augment future wealth and expenditure to improve
health. Because income shocks are imperfectly insured, households who have had higher
income (as a result of a series of good income shocks) also tend to have higher wealth
and health, leading to positive cross-sectional relationships between income, health and
wealth. These relationships are consistent with existing research (Marmot (2004), Mar-
mot et al. (2020)), and are reflected in national-level survey data for the UK from the UK
Household Longitudinal Study, Understanding Society (ISER (2020))), and the Wealth
and Asset Survey (ONS (2018)) that we analyse in Section 2.
Despite the positive cross-sectional relationship between health and wealth, theoretical

analysis reveals that at the household level these act as substitutes in household responses
to the e§ects of the pandemic. In particular, household behaviour incorporates incentives
to treat them as substitutes in smoothing consumption following negative income shocks
and in responding to changes in income risk, provided that the utility function does not
imply strong preferences to substitute health for consumption. On the one hand, because
allocating resources to future wealth or health reduces available resources for consumption
via the budget constraint, a larger allocation to wealth (health) creates incentives for a
smaller allocation to health (wealth). On the other hand, substitutability in consumption
and health in the utility function generates incentives for complementarity in the response
of health and wealth. As long as substitutability between consumption and health is
su¢ciently bounded, a bigger response in wealth (health) is met by a smaller response
in health (wealth), and even allows as a possibility that health (wealth) changes in the
opposite direction. These incentives are embedded in household responses to negative
income shocks and heightened risk implied by the pandemic, and have opposite e§ects:
following an unexpected income drop consumption smoothing requires that at least one

1Studies in this literature extend original contributions of Bewley (1986), Imrohoroglu (1989), Huggett
(1993), and Aiyagari (1994) (see DeNardi (2015) and Krueger et al. (2016) for reviews).

2Research using models with imperfectly insured idiosyncratic shocks (without, or, conditional on,
aggregate shocks) and more than one state variables typically focuses on di§erent financial assets, or
human capital in addition to physical assets (see Krebs (2003), Toda (2014) and Kaplan et al. (2018)).
Here, we model health jointly with wealth as endogenous state variables.
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of wealth and health (but not necessarily both) must fall; while precautionary motives
require building bu§er stocks of at least one of health and wealth (but not necessarily
both). The substitutability between health and wealth in response to the pandemic,
combined with the conflicting e§ects of consumption smoothing and precaution, imply
that the e§ects of the pandemic on the joint evolution of health and wealth inequality
depend on a quantitative evaluation of underlying trade-o§s, which further depends on
initial conditions associated with the pre-pandemic distribution.
Our quantitative analysis focuses on the UK. Analysis of data from the UK House-

hold Longitudinal Study and the Wealth and Asset Survey shows that households in
socioeconomic groups with higher mean income also have higher wealth and self-reported
health. They also face lower health risk, as measured by the probability of experiencing
a severe health event that substantially deteriorates their health. The data also reveal
more variation in terms of both wealth and self-reported health within socioeconomic
groups with lower mean income, suggesting that di§erences within socioeconomic groups
are particularly important when the interest lies in understanding e§ects on lower-income
households. We calibrate the model to match several key properties of the pre-COVID-19
UK health and income distributional characteristics, including di§erences in mean health,
health and labour income risk by socioeconomic group, and mobility between socioeco-
nomic groups. To evaluate the model, we examine its fit with respect to the di§erences
between socioeconomic groups in terms of within-group inequality in income, wealth and
health, which were not included as calibration targets. We find that household behaviour
and the mechanisms and channels in the model structure generate the stylised empirical
properties of within-group health and wealth inequality.
We then examine the stochastic dynamics following the shock in 2020, which we cali-

brate using information on drops in post-policy income obtained from the HM Treasury
distributional model, increase in health risk (e.g. excess mortality and reductions in
treatment for other ailments; Marmot et al. (2020), Roser et al. (2020) and Gardner and
Fraser (2021)), and a consumption limit, motivated by economic restrictions, to match
the observed change in consumption/savings for the top quintile (Davenport et al. (2020),
Hacioglu-Hoke et al. (2021), Tenreyro (2021)). The aggregate-level risk of disease out-
breaks is captured by uncertainty about the length of the main pandemic waves and by
a ∼25% probability per year of a recurrent outbreak for a decade after the main waves,
based on estimates in Schroeder et al. (2021)3, with outbreaks having half the e§ects of
the main waves on income, health and limits on consumption.
The model environment implies a distribution of possible joint cross-sectional distrib-

utions for each year after 2020, depending on realisations of the stochastic epidemiological
process, which we use to make probabilistic statements regarding the endogenous cross-
sectional distributional outcomes, i.e. wealth and health inequality, with reference to
initial conditions and pre-existing inequality. Examining outcomes for households at the
left tails of these distributions reveals the scale of wealth reduction for the wealth-poor
and allows us to quantify the extent and implications of the increase in risk exposure for
these households that result from the pandemic.
Our first main result from the computational solution for the UK is that the pandemic

amplifies pre-existing inequalities in wealth and health. In particular, we find persistent

3Schroeder et al. (2021) use mortality risk estimates from di§erent geographical regions after the main
waves of the 1918-19 and 1890-91 pandemics to inform a model of mortality dynamics post-2020 in a
procedure allowing for model uncertainty.
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increases in wealth inequality, which are characterised by: increases in the levels of wealth
and health for households in the higher labour income groups or with higher initial wealth
(e.g. a 10% increase for households at the 90% percentile of the pre-COVID-19 wealth
distribution); and decreases for those in the lower labour income groups or with lower
initial wealth (e.g. a 10% (12%) decrease for households at the 25th (10th) percentile
of the pre-COVID-19 wealth distribution). In addition to the reduction in the level of
wealth at the left tail of the distribution, there is also an increase in the thickness of the
tail, resulting from an increase in the proportion of households that are in debt and with
very low wealth. Model simulations suggest that the increase in inequality persists for
more than a decade. Comparisons with a scenario in which there are no further disease
outbreaks after the main pandemic waves suggest that the risk of recurrent outbreaks
implies inequality e§ects that are more adverse and last longer.
These results are driven by the combined e§ects on household choices of: first, con-

sumption smoothing and limits on consumption associated with the initial e§ect of the
pandemic in the first year; and second, precautionary incentives induced by outbreak risk.
Regarding the initial e§ect of the first year, the shock associated with the initial waves
of the pandemic includes income drops and limits on consumption. The drops in income
imply consumption smoothing incentives, which tend to reduce at least one of wealth
and health, while the limit on consumption tends to increase at least one of the assets.
Our quantitative analysis shows that consumption smoothing incentives dominate for
households with low initial wealth and in low-income socioeconomic groups and drive an
overall reduction in wealth. On the other hand, for high-income groups and high-wealth
households, the e§ects from the limit on consumption are stronger than the consumption
smoothing incentive, thus explaining overall increases in wealth associated with the upper
tail of the wealth distribution. Regarding recurrent outbreak uncertainty, following the
regressive drop in wealth after the initial pandemic impact, precautionary incentives in
response to outbreak risk amplify further wealth inequality and increase its persistence
over time. The increase in wealth inequality happens because households that increased
their wealth during the main waves have increased resources to create and maintain addi-
tional bu§ers relative to households that depleted their wealth to compensate for income
drops.
Our second main result from the computational solution for the UK is that house-

holds with initially lower resources to mitigate income shocks are more vulnerable to
income shocks following the pandemic. The post-pandemic increased variation in wealth
accumulation between households in high- and low-income groups and with high and low
initial wealth implies di§erential exposure of these households to exogenous reductions
in income. Households with low wealth or in low-income socioeconomic groups prior to
the pandemic are particularly vulnerable to post-pandemic income drops because reduc-
tions in wealth during the main waves have hampered their ability for self-insurance. For
example, the elasticity of the reduction of consumption to a surprise one-o§ reduction
in income that happens three years after the main pandemic waves is around 40% for
households at the lower wealth deciles (10th to 25th percentiles) prior to COVID-19; this
elasticity is around only 10% for households at the 90th percentile.
The post-pandemic increases in vulnerability to income risk reflect the inability of

low wealth households to implement their optimal self-insurance plans because of the
reduction of their wealth during the main pandemic waves. Indeed, further counterfac-
tual analysis shows that the low wealth and highly risk-exposed households would have
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increased their wealth in response to the increase in income risk in the absence of the
e§ects of the first waves. The increased vulnerability, especially because it reflects lim-
ited potential for self-insurance, can motivate policy to mitigate income losses for those
with low wealth. We assess such policies and find that they reduce health inequality and
vulnerability in the short run by reducing the share of households with very low con-
sumption. However, they also imply a trade-o§ between health and wealth inequality
and an intertemporal trade-o§ regarding safeguarding consumption from income risk. In
particular, given the substitutability in health and wealth in responding to income drops
and changes in risk, public insurance of income risk crowds in investment in health and
crowds out self-insurance via wealth accumulation for households with low wealth.
Our analysis focuses on pandemic e§ects for wealth and health inequality and the

increase in vulnerability to income risk that they imply in the decades that follow a
pandemic. Our results contribute to research on the inequality implications of pandemics,
which has: (i) either focused on the short-run, in the case of COVID-194, or on an
examination of common patterns in terms of longer-run implications5, whereas we use
the short-run e§ects to inform the medium-run dynamics; and (ii) focused on pandemic
e§ects on di§erent measures of income or health (see e.g. the studies in (i)), whereas we
emphasise the co-determination of health and wealth, and its implications for increased
risk exposure.6 To analyse the joint evolution of the cross-sectional distributions of health
and wealth induced by changes brought about by the pandemic requires information on
the pre-pandemic distributions of health and wealth and the e§ects of the pandemic. The
experience of COVID-19 has highlighted the importance of understanding the implications
of pandemic-induced inequality and also generated the information needed to permit a
counterfactual model analysis to isolate pandemic e§ects from confounding factors.7

The paper is organised as follows. In Section 2, we use survey data to summarize
relevant properties of the distributions of health, income and wealth in the UK before
COVID-19. In Section 3 we present the model and stochastic processes and analyse
theoretically incentives incorporated in household choices in response to changes in the
aggregate-level process capturing e§ects of the pandemic. In Section 4 we explain the
calibration of the model and of the e§ects of the pandemic on the exogenous stochastic
processes. Results from the computational solution and policy assessment are analysed
in Section 5, before summarising concluding remarks in the Section 6.

4See e.g. Adams-Prassl et al. (2020), Blundell et al. (2020), Bourquin et al. (2020), Davenport et al.
(2020), Glover et al. (2020), Jorda et al. (2020), Cribb et al. (2021), Crossley et al. (2021), Hacıoğlu-
Hoke et al. (2021), Miescu and Rossi (2021), and Stancheva (2021), for economic e§ects, and Banks et
al. (2020), Dennis et al. (2020), Gardner and Fraser (2021) and Marmot et al. (2020) for health.

5See e.g. Furceri et al. (2020) for an empirical analysis and Scheidel (2018) for historical analysis.
6Reseach focusing on the economic implications of COVID-19 often incorporates health shocks in

economic models (e.g. Eichenbaum et al. (2021), Farboodi et al. (2021), Glover et al. (2021), Kaplan et
al. (2020), whereas we distinguish health shocks from an endogenous health state variable.

7Here, we focus on the legacy of changes in income, consumption and health during the main pandemic
waves and subsequent outbreaks, in the form of their implications for wealth and health inequality, and
risk exposure. We note that post-pandemic inequality may change for additional reasons, such as changes
in the labour market, or in institutions and policies, or additional aggregate-level shocks. Some of these
changes might arise as longer-run, structural implications of the pandemic.
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2 Health, wealth and income pre-COVID-19

To summarise key characteristics of pre-existing health and wealth inequality, we examine
selected aggregate level empirical properties of inequality in health and wealth, using data
from the UK Household Longitudinal Study, Understanding Society, for the UK and the
Wealth and Asset Survey for Great Britain. Understanding Society (UnSoc) is a large
longitudinal survey covering a wide range of social and economic factors, including in-
formation about respondents’ health, which has been recorded annually since 2009-2010.
The Wealth and Assets Survey (WAS) is a biannual survey of household wealth and a
range of household socioeconomic characteristics, with the first wave in 2006-2008.8 Al-
though UnSoc does not include measures of wealth and WAS does not include measures
of health, both include information on the socioeconomic classification of the respondents’
employment, thus allowing us to examine health and wealth inequality by socioeconomic
groups defined by this classification. For both datasets, we define as household members
the head of a household, aged between 25 and 60, and their spouse or partner (if applica-
ble). Details of the data, sample selection and the construction of variables are shown in
Appendix A.
In this paper, we use a measure of the overall level of health and a measure of a

severe health event. For the first, we use information on self-assessed health status,
and for the second, information on severe health events. The UnSoc data includes a
measure of self-assessed health, the SF-12 Physical Component Summary (PCS), which
is observed repeatedly for each individual. The SF-12 PCS measure is commonly used in
public health research to compare di§erent groups of individuals (see, e.g. Dundas et al.
(2017)). We standardise this measure to take values in the interval [0.1, 1] and calculate
the average across household members as a proxy for household-level health. We also
utilize information on the following (severe) health events: heart disease, heart failure,
emphysema, chronic bronchitis, stroke, heart attacks and cancer.
In Table 1, we show the mean value of self-assessed health for di§erent socioeconomic

groups. In particular, we follow the 8-class National Statistics Socioeconomic Classifica-
tion (NS-SEC) (for details, see Rose et al. (2005)) of professional classes and allocate
each household to the highest-ranked profession of the head or the spouse. We group the
8 NS-SEC classes plus all those classed as economically inactive and unemployed into four
groups with clear di§erences, and which makes the group classification here comparable
to the discretisation we employ in the model analysis below. We term these four groups
Professional, Intermediate, Routine, and Non-employed (which includes the inactive and
unemployed households; for details, see Appendix A) and calculate the mean household
income per group. Household income here is the post-policy labour income from the head
and spouse (see also Appendix A for details).
Columns [1] and [2] in Table 1 reveal that households in socioeconomic groups with

higher mean income also have higher health on average and are thus indicative of a social
gradient in health, in the form of between-group health inequality, which has been analysed
in the literature (see, e.g. Marmot (2015, 2020) and Payne (2017)).9 We complement these

8We aim to present results for the UK, where possible, and complement these with results for Great
Britain from WAS. The results in this Section from UnSoc for the UK are very similar if we use the
sample for Great Britain instead (see Appendix A).

9The link between health and income in Table 1 for the UK using UnSoc data is also broadly consistent
with patterns in the US from the PSID data; see, e.g. Cole et al. (2019).
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results by examining how within-group variation in health and health risk are related to
income, another aspect of the social gradient in health. In column [3], we show the
Gini measures of concentration of good health within each of the socioeconomic groups,
which reveal that groups with lower mean income also have higher within-group health
inequality. We also show in column [4] the proportion of households with a member (i.e.
head or spouse) who has experienced a severe health event as a measure of health risk.
Again, groups with lower mean income are also more likely to have experienced a severe
health event. Therefore, socioeconomic group, income, health risk, and the level and
variation of health are related, implying that health inequality has multiple dimensions.

Table 1: Income, health and health risk by socioeconomic group
[1] [2] [3] [4]

Socioeconomic Group Mean income Mean health Gini health Severe health event
(relative to A ll) (relative to A ll) (% of households)

Professionals 1.57 1.06 0.05 1.9
Intermediate 1.08 1.03 0.07 1.9
Routine 0.75 1.00 0.08 2.3
Non-employed 0.46 0.84 0.17 6.1
All 1 1 0.09 2.7

Income is household-level labour income, after taxes and including transfers.

Health is the SF-12 Physical Component Summary standardised in [0.1, 1] and
averaged across head and spouse. Source: Pooled Sample UnSoc Waves 1-9.

Table 2: Socioeconomic mobility
Transitions of households that have not experienced a severe health event
t \ t+ 1 Professional Intermediate Routine Non-employed

Professional 0.903 0.083 0.008 0.006
Intermediate 0.034 0.923 0.029 0.014
Routine 0.009 0.0992 0.858 0.041
Non-employed 0.006 0.069 0.103 0.822

Transitions of households that have experienced a severe health event
t \ t+ 1 Professional Intermediate Routine Non-employed

Professional 0.903 0.082 0.009 0.007
Intermediate 0.028 0.915 0.032 0.024
Routine 0.003 0.080 0.856 0.062
Non-employed 0.002 0.018 0.038 0.942
Note: Transitions are between UnSoc waves (wave to wave).

Source: UnSoc Waves 1-9.

We also examine the relationship between health and socioeconomic mobility. To do
so, we construct a socioeconomic mobility matrix that shows the proportion of households
that move between the four groups from one year to the next, distinguishing between two
groups of households, those for whom one member has experienced a severe health event,
and those that have not experienced a severe health event. The two social mobility
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matrices are shown in Table 2.
The results in Table 2 first show that mobility is low, both before and after a severe

health event. They also show that the most important household labour income risk,
namely a move to the non-employment group (implying zero earnings from the highest
potential earner in the household), increases following a severe health event. In particular,
the probability of moving to the non-employment group is higher for all groups when a
household member has experienced a severe health event. Hence, health risk also has
labour income risk implications. Furthermore, the matrices in Table 2 show that the
increase in labour income risk depends on current conditions, particularly on the current
socioeconomic group. Specifically, a household faces an increased conditional probability
of moving to the non-employment group if it currently belongs to a socioeconomic group
with a lower mean labour income.
Wealth inequality in WAS has been analysed in e.g. Angelopoulos et al. (2019, 2020).

Here, we summarize the main properties for groups of households constructed from WAS
to match as closely as possible the selection criteria and groups used for the results from the
UnSoc data. Table 3 summarizes between and within-group wealth inequality for the same
socioeconomic groups as in Tables 1 and 2. As can be seen, there is significant between-
group wealth inequality, and within-group wealth inequality is higher for socioeconomic
groups with lower mean income.

Table 3: Wealth inequality
Socioeconomic Group Mean wealth Gini wealth % in debt
Professionals 1.91 0.60 7%
Intermediate 1.08 0.66 14%
Routine 0.37 0.80 31%
Non-employed 0.23 1.00 48%
All 1 0.71 19%

Note: Wealth is household-level net worth (see Appendix A). Gini can take

values above one because net worth takes negative values. Source: WAS Waves 1-5.

The evidence presented in this section suggests that health, wealth, income and so-
cioeconomic group are interrelated. In the next section, we present an economic model
that can account for these relationships, modelling households whose wellbeing is derived
from both consumption and good health, and whose choices can a§ect both quantities in
an uncertain environment.

3 A model with health and wealth heterogeneity

We consider an economy composed of a continuum of infinitely lived household dynasties
distributed on the interval I = [0, 1]. Households derive utility from consumption and
health, and they can use their income to consume, invest in a single financial asset, and
improve their health in an environment where both income and health are subject to ex-
ogenous shocks. In particular, households may randomly experience a severe health event
and receive shocks that determine their labour income. The distributions of these shocks
depend on aggregate conditions meaning that they are allowed to di§er between normal
periods and periods during and after a pandemic crisis. Time is discrete and denoted by
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t = 0, 1, 2, ..., which refer to annual steps. We model quantities at the household level.
Although household dynasties are infinitely lived, household members, and thus house-

holds, are stochastically replaced over time following a process that captures severe health
events. We restrict our attention to severe health events that represent a significant health
deterioration, and we define them as health shocks from which a household member does
not fully recover. Therefore, they may include the death of a member. Although the
household member does not fully recover from a severe illness implied by the health
events we model, the household may recover, stochastically, by replacing the ill member
with a new healthy member (e.g. an o§spring). This implies that severe health events
are persistent at the level of the household-dynasty, but not permanent.10 It also implies
that, over time, household dynasties di§er in the number and duration of severe health
events their members have experienced, which is in addition (and related) to the spells
with higher and lower labour income.

3.1 Household level choices and constraints

Each household11 wishes to maximise their expected lifetime utility:

E0

1X

t=0

βtu(ct, ht+1), (1)

where β 2 (0, 1) is a parameter capturing discounting of future periods, ct is consumption,
and ht is the level of health of the household, defined as the average level of health across
members.12 The level of health is a state variable, whose law of motion will be specified
below, following the convention that ht denotes the state at the beginning of the period,
and thus ht+1 incorporates the changes in the level of health during period t. Consumption
is non-negative, i.e. ct ≥ 0, and health, ht, takes values in a closed and bounded set,
reflecting the finiteness of the human body, i.e. ht 2 H = [hmin, hmax], where hmin ≥ 0.
The utility function u : R≥0 × H ! R is bounded, twice continuously di§erentiable,
strictly increasing and strictly concave.13

The household receives income from existing asset holdings at, determined by an in-
terest rate r(zt), where zt is a stochastic process capturing the aggregate state of the
economy. It also receives labour income, w(nt, lt, st, zt), which is determined by idiosyn-
cratic, household-specific, random factors, nt, lt, and st, as well as the aggregate state, zt.
The idiosyncratic factor nt determines the highest profession of the household, while lt
captures remaining idiosyncratic variation in productivity between households, for exam-
ple, determined by the profession of additional members, how well the members’ skills are
valued in their jobs, how supportive or productive their work environment is, and personal
circumstances that may a§ect productivity. The stochastic processes determining these
household-specific shocks (nt, lt) depend on the aggregate economic state zt, as well as on
the idiosyncratic, household-specific health shock, st, which also depends on the aggregate
state zt. We define the joint stochastic process of nt, lt and st as et = (nt, lt, st).

10These considerations inform the calibration of the health process, which is analysed in Section 4.
11To simplify notation, we suppress the indexation of household level variables by the household iden-

tifier i 2 I and present the problem of a “typical” household without the i superscripts.
12We assume perfect sharing of consumption and asset ownership across household members.
13For a more general introduction to health in economic models, see Grossman (2017).
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The household uses its income in period t for consumption, purchase of assets at+1 that
will generate income in the next period, and expenditure to improve health, xt 2 R≥0.
The budget constraint is given by:

ct + at+1 + xt = (1 + r(zt))at + w(et, zt), (2)

where at 2 A = [amin,+1), and amin ≤ 0 defines a borrowing limit. The random variables
are given by r(zt) : Z !

(
−1, 1−β

β

)
, w(et, zt) : E × Z ! R≥0, where the state spaces

defining the domains will be defined in the next sub-section and the ranges are chosen so
that the economic problem is well defined (see e.g. Aiyagari (1994), Acikgoz (2018) and
Zhu (2020)).
Health evolves according to:

ht+1 = δ(et, zt)ht +m (xt) . (3)

The random variable δ(et, zt) : E × Z ! D 2 (0, 1), where D is a compact set, denotes
stochastic health persistence and captures the e§ects of adverse health shocks that work
to increase the rate at which health deteriorates. The function m (xt) : X 2 R≥0 ! R≥0,
capturing improvements in health via own activity (xt), is twice continuously di§eren-
tiable, increasing and concave, and satisfies limxt!0mxt = +1.

3.2 Exogenous processes

The aggregate state zt is determined by a stochastic process that follows a Markov chain
with the (ez × ez) transition matrix QZ and state space Z = [z1, z2, ..., zez]. We normalise z1
to denote a pandemic period, z2, ..., zez−1 to capture periods that follow a pandemic and
in which recurrent disease outbreaks are possible, and zez as periods that are su¢ciently
distanced from a pandemic that any new disease outbreak is a new pandemic.
There are three exogenous stochastic processes, (nt), (lt) and (st), which generate the

household-specific shocks. The respective state spaces are given by N = [n1, n2, ..., nen],
L = [l1, l2, ..., lev], and S = [s1, s2, ..., ses]. Conditional on (zt)

1
t=0 2 Z, the stochastic process

for the joint distribution (et)
1
t=0 = (nt, lt, st)

1
t=0 is assumed to follow a Markov chain,

Qz
0
,with a

((
en× el × es

)
×
(
en× el × es

))
transition matrix that depends on next period’s

aggregate state z0, and state space E = N×L×S = [e1, e2, ..., eee], with ee = en×el×es. The
elements of the transition matrix Qz

0
are denoted πz

0
(et+1|et), and give the probability

that in period t+1, when the aggregate state in t+1 is given by zt=1 = z0, the household will
be in idiosyncratic state et+1, conditional on being in state et in period t. Therefore, the
realisation of the aggregate state in period t+1 matters for the conditional probability of
idiosyncratic shocks. In particular, the probability of household level economic and health
shocks period t+1 di§ers depending on whether t+1 is a period of pandemic or not, for
the same household-level state in period t. The transition matrices for all z0 2 Z satisfy
that

P
et+12E

πz
0
(et+1|et) = 1 for all et 2 E, where the superscripts denote the dependence

of conditional probabilities on the aggregate state in period t + 1. Conditional on the
aggregate state, households draw idiosyncratic shocks from (Qz

0
, E) independently from

each other, but, for a given household, the draws from the underlying (nt), (lt) and (st)
need not be independent.
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At the level of household, uncertainty is summarized by the stochastic process (yt)
1
t=0 =

(et, zt)
1
t=0, which follows a Markov chain with a ((ee× ez)× (ee× ez)) transition matrixQ and

state space Y = E×Z = [y1, y2, ..., yey], with ey = ee×ez.14 The elements of the transition ma-
trix Q are denoted π (yt+1|yt) ≡ π (et+1, zt+1|et, zt), and

P
zt+12Z

P
et+12E

π (et+1, zt+1|et, zt) = 1

for all et 2 E and zt 2 Z. We assume that the Markov chain (Q, Y ) has a unique invariant
distribution, with probability measure ξ.

3.3 Stochastic processes for health and wealth

The stochastic processes for the household level endogenous variables (at+1)
1
t=0, (ht+1)

1
t=0,

(ct)
1
t=0 and (xt)

1
t=0 encapsulate the e§ect of the exogenous (household and aggregate level)

stochastic processes and of household decision making in the stochastic environment. Each
household determines the stochastic processes for the household-level economic and health
variables, as the plans (at+1)

1
t=1, (ht+1)

1
t=1, (ct)

1
t=1 and (xt)

1
t=1 that maximise (1) subject

to (2) and (3), for given initial values (a1, h1, y1) 2 A×H×Y . These stochastic processes
across households give rise to the relevant cross-sectional distributions of endogenous
outcomes for each time period. The cross sectional distribution of households over the
joint state space of household-level state variables, A × H × E, which is denoted by
λt (at, ht, et; zt) changes over time as a result of time variation in the aggregate state zt.

3.4 E§ects of pandemic-induced changes on choices

A change in the aggregate-level process (zt) in period t requires adjustments in health and
wealth on the part of the household. Insights on how pandemic-induced a§ect household
choices of wealth accumulation and improvement of the level of health can be obtained
by theoretical analysis of the model. We first examine household incentives to adjust
health and wealth that the optimal response incorporates, and then discuss factors that
contribute to changes in health and wealth inequality.

3.4.1 Household choices of health and wealth

We examine the first-order necessary conditions for optimality that link two consecutive
periods. Assuming interior solutions, optimality requires that the two Euler conditions
are satisfied15:

uct = βE
[
uct+1(1 + r(zt+1)

]
, and (4)

uctxht+1(ht,ht+1)− uht+1 = βE
[
uct+1

(
−xht+1(ht+1,ht+2)

)]
, (5)

where x(ht,ht+1) = m−1 (ht+1 − δ(et, zt)ht) is obtained using (3) and expresses the cost
required to achieve a level of health given the current level of health and shocks to health.
Assume that:

−uctct +
uctht+1

xht+1(ht,ht+1)
> 0. (6)

14See also Imrohoroglu (1989) for a similar representation of household level uncertainty, in an envi-
ronment with aggregate as well as idiosyncratic uncertainty.
15We examine later implications of a binding borrowing limit, which does arise in the calibrated solution.

On the other hand, the bounds for health are not binding in the calibration.
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The assumption in (6) requires that if health decreases the marginal utility of consump-
tion, uctht+1 < 0, then this e§ect, standardised by the marginal cost of health in con-
sumption units, xht+1(ht,ht+1), needs to be bounded in absolute value by the e§ect of
consumption on the marginal utility of consumption, uctct. Assumption (6) is satisfied
if we assume that preferences are additively separable, or supermodular, in health and
consumption. If uctht+1 < 0, a su¢cient condition for the results below, derived from (6),
is that uctct < uctht+1 , for every c, h, if xht+1(ht,ht+1) > 1. Our calibration satisfies this
su¢cient condition.

Figure 1: Choice of at+1 and ht+1.

Note:

Lemma 1 in Appendix B shows that for a given stochastic process (zt), for any
(at, at+2) 2 A, (ht, ht+2) 2

(
hmin, hmax

)
, and et 2 E, if at+1 and ht+1 that satisfy (4)

in period t exist, the locus of their combinations is a downward slopping function. Simi-
larly, the locus of combinations of at+1 and ht+1 that satisfy (5) in period t is a downward
slopping function. Moreover, when ht+1 ! δ(et, zt)ht, higher values for at+1 are required
to satisfy (5), compared with (4). Denote the locus of at+1 and ht+1 that satisfy (4) and
(5) by the functions f ea, at+1 = f ea (ht+1) and f eh, at+1 = f eh (ht+1), respectively. An
example of these functions is plotted in Figure 1.
The combination of at+1 and ht+1 that solves both (4) and (5) for given (at, ht, et,

at+2, ht+2) is an intersection point of f ea and f eh that is within the feasibility constraints.
These determine an area defined by the vertical lines at δ(st, zt)ht and hmax for hmint+1 and
hmaxt+1 , respectively, the horizontal line at a

min for amint+1, and the function a
max
t+1 = b (ht+1) =
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(1+ r(zt))at+w(yt)− x(ht,ht+1) (see Lemma 1 in Appendix B).16 The situation depicted
in Figure 1 is an example, because, for di§erent (at, ht, et, at+2, ht+2) there may be more
than one intersections within the permissible region, or none. However, the optimal choice
of at+1 and ht+1, for any given (at, ht, et), which is made jointly with (at+j, ht+j)1j=2, must
be an intersection point of downward slopping f ea and f eh functions.17 Therefore, the
properties that apply to the intersection point of f ea and f eh will also apply to the optimal
choice of at+1 and ht+1 for the problem in sub-section 3.1.

3.4.2 Pandemic-induced changes and household incentives

The insight that the optimal choice of at+1 and ht+1 under a specific stochastic process (zt)
is the intersection of downward slopping f ea and f eh functions has useful implications re-
garding the analysis of pandemic e§ects on household choices via changes in the aggregate-
level process (zt). We study incentives incorporated in the optimal choice of health and
wealth for the household problem in sub-section 3.1 following a surprise change in (zt),
by examining the choice of at+1 and ht+1 for given (at, at+2) 2 A, (ht, ht+2) 2

(
hmin, hmax

)

(see Lemma 2 in Appendix B) that is, in e§ect, in a two-period version of the household’s
problem. Note that in the fully dynamic problem (at+j, ht+j)1j=2 are also chosen optimally
following the change in (zt), and (at+2, ht+2) matter for the choice of (at+1, ht+1) (see
Lemma 3 in Appendix B). However, because the results below apply for any at+2 2 A,
and ht+2 2

(
hmin, hmax

)
, the incentives incorporated in the choice of (at+1, ht+1) are also

included in the optimal choice of (at+1, ht+1) of the fully dynamic problem in sub-section
3.1.
We make use of Lemma 2 in Appendix B, which shows that if a household in period

t under process (zst ) chooses (a
s
t+1, h

s
t+1) 2

((
amin,+1

)
,
(
hmin, hmax

))
that satisfy (4)

and (5), then under a di§erent aggregate-level stochastic process (zpt ) that implies higher
rhs relative to the lhs for (4) and (5) conditional on (at, at+2) 2 A, and (ht, ht+2) 2(
hmin, hmax

)
, at least one of at+1 and ht+1 increase (decrease) relative to (ast+1, h

s
t+1). In

terms of Figure 1, an increase (decrease) in the rhs of (4) and (5) relative to the lhs shifts
the f ea and f eh functions outwards (inwards).18

Moreover, as shown in Lemma 2, the change in at+1 relative to ast+1 is a negative
function of the change ht+1 relative to hst+1, and vice versa. The result in Lemma 2
implies substitutability in using the two assets to respond to the change in the exogenous
process. This result reflects preferences and constraints over health and consumption. To
achieve the adjustment in the marginal utility of consumption needed following a change
in the exogenous process so that the household responds optimally (i.e. so that the Euler
conditions in (4) and (5) are satisfied), health and wealth need to change. On the one
hand, the budget constraint implies that a bigger response in wealth (health) allows for
a smaller response in health (wealth) to respond to the change in the exogenous process.
This is because the budget constraint implies that allocating resources to savings (future
wealth) and to health reduces consumption. At the same time, the changes in wealth
or health are evaluated in terms of utility. Suppose preferences imply substitutability

16Note that, given at and ht, amaxt+1 is a negative and concave function of ht+1, as a result of the
assumptions imposed on the m (xt) function.
17This is because the optimal choice of at+1 and ht+1 must be the choice of at+1 and ht+1 for some

(at, ht, et, at+2, ht+2) and Lemma 1 implies that the choice of at+1 and ht+1 is an intersection point of
downward slopping fea and feh functions for any (at, ht, et, at+2, ht+2).
18An example is depicted in Figure B1 in Appendix B.
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between health and consumption. In that case, when consumption drops because of an
increase in savings to respond to exogenous changes, the marginal utility of health is
increased, which tends to increase health as a response, to maintain optimality. Hence,
on the other hand, substitutability in consumption and health in the utility function tends
to increase both wealth and health as a response to exogenous changes, thus to create a
complementarity in the response of health and wealth. Strong substitutability between
health and consumption (in particular, one that violates (6)), leaves open the possibility
of a response where changes in wealth are a positive function of changes in health. The
condition in (6) requires that the e§ect of a change in consumption on the marginal utility
of health, expressed in the marginal utility of consumption via the standardisation by the
marginal cost of health in terms of consumption, is less important than its direct e§ect
on the marginal utility of consumption. As long as substitutability between consumption
and health is su¢ciently bounded, a bigger response in wealth (health) is met by a smaller
response in health (wealth), and even allows as a possibility that health (wealth) changes
in the opposite direction.
The incentives embedded in the response to changes in the exogenous process also

characterise responses to pandemic-induced changes. Consider changes in the process
(zst ) at period t that are associated with e§ects of a pandemic, in period t, and/or as a
result of increased post-pandemic recurrent outbreak risk. In particular, assume that the
household chose ast and h

s
t in period t−1 under the process (zst ) and then, at the beginning

of period t, (zst ) changes to (z
p
t ), also implying changes in idiosyncratic processes to (e

p
t ).

The household draws the period t idiosyncratic shock from (ept ), and makes choices given
(ast , h

s
t , e

p
t ) and assuming future shocks will be determined by (z

s
t , e

s
t). Proposition 1 in

Appendix B summarizes the e§ects of some of these changes, conditional on at+2 2 A,
and ht+2 2

(
hmin, hmax

)
. In particular:

i) A surprise drop in labour or asset income in period t leads to a fall in at least one
of at+1 and ht+1 (i.e. a

p
t+1 ≤ ast+1 and/or h

p
t+1 ≤ hst+1).

ii) A surprise upper limit on consumption cl in period t leads to an increase in at least
one of at+1 and ht+1 (i.e. a

p
t+1 ≥ ast+1 and/or h

p
t+1 ≥ hst+1) for the subset of households for

which (apt+1, h
p
t+1) implies c

p
t > c

l.
iii) An increase in the probability of future drops in labour or asset income leads to

an increase in at least one of at+1 and ht+1 (i.e. a
p
t+1 ≥ ast+1 and/or h

p
t+1 ≥ hst+1).

iv) A positive probability for a future upper limit on consumption leads to a fall in at
least one of at+1 and ht+1(i.e. a

p
t+1 ≤ ast+1 and/or h

p
t+1 ≤ hst+1).

The changes in (zt) capture e§ects of the pandemic on household income during the
initial outbreak year (in (i)), or restrictions on consumption during the outbreak year
(in (ii)), and e§ects of post-pandemic outbreak risk on household income (in (iii)) and
on restrictions on consumption (in (iv)). Another e§ect of a pandemic is the increase in
health risk, working via the random variable δ(et, zt) to a§ect periods from t onwards.
However, the e§ects of such a change on (4) and (5) cannot be singed for all possible
parameter values and state variables.
The analysis shows that the model incorporates incentives for consumption smoothing

and for precaution, using either asset. In particular, the results regarding the income drop
as a result of the pandemic shock in (i) reflect consumption smoothing incentives, while
the results regarding income risk in (iii) a form of precautionary behaviour.19 However,
it is useful to note that the options o§ered to the households by having a portfolio of two

19The results in (ii) and (iv) are natural implications of exogenous restrictions.
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assets, health and wealth, imply that consumption smoothing in this context does not
necessarily imply reduction in both health and wealth, and precaution does not necessarily
imply building bu§er stocks of both health and wealth. In fact, a bigger change in one asset
requires a smaller change in the same direction of the other asset (see part b) of Lemma
2 in Appendix B). In this sense, the households view the two assets as substitutes in
smoothing consumption and in responding to changes in risk. More generally, the results
in Lemma 2 and Proposition 1 in Appendix B leave open the possibility of increases in
one asset, as a result of income losses, and of decreases in one asset as a result of changes
in income risk.

3.4.3 Implications for inequality

The adjustments in health and wealth on the part of the household following a change
in the aggregate-level process (zt) in period t impact health and wealth inequality if the
change a§ects households asymmetrically and/or if the response depends on initial con-
ditions. Indeed, Lemma 3 in Appendix B confirms that health and wealth choices di§er
across households that di§er in their initial combination of (at, ht). The di§erent possi-
bilities o§ered by the portfolio of assets for responses to shocks and risk (compared with
a single-asset economy) implies more variation in the range of possible responses, because
household responses to a pandemic-induced change refer to whether both assets change
in the same direction, which asset changes more, and which asset increases/decreases, if
assets change in di§erent directions. In addition, it implies a dependence of the response
on the initial levels of health and wealth as well as on the combination of (at, ht). As a
result, pandemic-induced changes can have significant e§ects on the cross-sectional distri-
butions of health and wealth, and for their relationship, even when the pandemic implies
only change in (4) and (5), and when this change is the same across all households. In
reality, the health and wealth inequality implications of a pandemic are further compli-
cated by the fact that the pandemic changes considered in the previous sub-section occur
simultaneously (e.g. there may be a drop in current income and an increase in income
risk), and by the fact that each one need not be symmetric across households (e.g. income
losses or increase in health risk may be asymmetric).
Moreover, the inequality implications of a pandemic can be significantly dampened or

amplified by the choices of households that are borrowing constrained. For a household
that is borrowing constrained under the (zst ) process, the Euler equations are:

uct > βE
[
uct+1(1 + r(z

s
t+1)

]
, and (7)

uctxht+1(ht, h
s
t+1)− uht+1 = βE

[
uct+1

(
−xht+1(h

s
t+1, ht+2)

)]
. (8)

In this case, a change in period t to (zpt ) that increases the lhs in (7) and (8) relative to
the rhs (for example, due to income drops in period t) does not change savings behaviour:
the household remains borrowing constrained. This household must instead reduce next
period health to satisfy (8). A change that increases the rhs relative to the lhs (for exam-
ple, increased probability of future income drops due to new outbreaks, or a consumption
limit in t) is likely to lead to an increase in next period assets for some households, but not
for others, depending on the size of the increase of the rhs and on households’ (ast , h

s
t , e

p
t ).

For households that do not increase their assets, health must increase to satisfy (8).
These considerations imply that for pandemic-induced changes that increase the lhs
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relative to the rhs (e.g. income drops in t), while households with assets above the bor-
rowing limit decrease their assets and/or health, households on the borrowing limit will
only decrease health. This will tend to decrease the wealth inequality impact of the pan-
demic, and increase the health inequality impact. On the other hand, for changes that
increase the rhs relative to the lhs (e.g. probability of future income drops associated with
new outbreaks, a consumption limit in t), while households with assets above the borrow-
ing limit increase their assets and/or health, a fraction of households on the borrowing
limit will not increase wealth but will increase health. This will tend to increase wealth
inequality. Given that in the data for the UK about 19% of households are borrowing
constrained, these e§ects can be substantial.

4 Calibration and exogenous processes

We calibrate the model to pre-COVID-19 health and income data, and confirm that its
predictions are consistent with pre-COVID-19 health and wealth inequality. We then use
information on the e§ects of COVID-19 to calibrate the shock to households’ health risk
and income in 2020, and estimates of the probability of recurrent outbreaks based on data
from previous pandemics and analysis for COVID-19 in Schroeder et al. (2021).

4.1 Calibration to pre-COVID-19 distributions

The economy pre-COVID-19 is characterised by the long term absence of pandemics
and decision making that does not account for the possibility of future pandemics. We
model this as the stationary equilibrium of a version of the model economy described in
Section 3 where pandemics do not happen, and the exogenous aggregate state remains
fixed over time at the level zez ≡ z∗. In this special case where the aggregate state is
equal to z∗ in each period ex ante (i.e. with certainty), we assume that the Markov
chain (Q∗, E) for the joint distribution (et) has a unique invariant distribution, with a
probability measure that we denote by ξ∗. Households make decisions believing that
pandemics will not happen in the future, so that the stochastic processes for (at+1)

1
t=0,

(ht+1)
1
t=0, (ct)

1
t=0 and (xt)

1
t=0, when the initial period t = 0 is in the stationary regime,

are generated by setting zt = z∗ 8t. In such a stationary environment, the cross-sectional
distribution of wealth and health also does not change over time. In particular, this
environment gives rise to a stationary equilibrium that is characterised by the cross-
sectional distribution over households λ∗ (at, ht, et).20 Household-level quantities, on the
other hand, are characterised by sequences of economic and health variables that vary
over time as a result of the exogenous household-specific processes and household decision
making. In particular, household decisions depend on the history of the shocks that
have been experienced and on uncertainty about future household-level outcomes, which
is captured by the joint process et = (nt, lt, st) associated with transition matrix Q∗ =
π∗ (et+1|et).
We calibrate the model to annual data so that the stationary equilibrium matches

properties of the data when the Markov chain (Q∗, E) reflects the stochastic environment
in the UK before the COVID-19 pandemic. We first explain how we calibrate parameters
in (Q∗, E) using information about the relevant stochastic environment directly. We then

20The mathematical representation of this environment is in Appendix C.
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describe how we calibrate the remaining parameters of the model, some by using infor-
mation directly from the data or existing empirical analysis, and others via a simulated
minimum distance procedure that minimizes the distance between model predictions and
relevant data targets. Finally, we show that the stationary equilibrium predicted by the
model fits the empirical properties of the wealth and health distributions that we have
not targeted. Further details on the data and methods used to calibrate the model are in
Appendix D.

4.1.1 Stochastic processes

We use household level information from the UnSoc to construct model relevant variables
of health and labour income. In particular, to measure health outcomes, we use the
SF-12 Physical Component Summary (PCS) score, and to measure health risk, we use
information for severe health events, as in Section 2. We use the NS-SEC classification to
allocate households in each period into socioeconomic groups, and, to obtain a measure
of labour income relevant for the decision making that we model, we construct total
household post-policy labour income.21 For all these quantities, the definitions of the
household, household members and household level quantities are the same as in Section
2 and are discussed in more detail in Appendices A and D.

Health shocks process We assume that the state space of shocks to health, S, includes
three possible outcomes, a state s1 where no household member has experienced a severe
health event22, a state s2 where a household member is experiencing a severe health event
during the current period, and a state s3 where the household has a member who has
experienced such an event in previous years. This state space is motivated by empirical
observation, as described in Appendix D. In particular, in the data, a severe health event
is associated with a sharp drop in the level of self-reported health before recovering to a
state with lower health than prior to the health event. Indeed, we find that on average
across the households, health ht drops by almost 10% after going from s1 to s2, whereas
s3 is about 5% lower than s1.23

These observations on the evolution of health after severe health events, in conjunction
with data availability and the model structure, lead us to assume the following structure
for the transition probabilities of the stochastic process capturing shocks to health. A
household in the state s1 faces a positive probability of moving to state s2 and a zero
probability of moving to state s3. We allow the transition probability from s1 to s2 to
depend on the socioeconomic group (i.e. on the states in N ), to capture the social
gradient in health (see, e.g. Marmot (2003, 2004), Wilkinson and Pickett (2008), Pickett
and Wilkinson (2015)), which is summarized in Tables 1 and 2 as the di§erence in health
risk between socioeconomic groups.24 We calculate these probabilities using UnSoc data.

21We use post-policy labour income (i.e. after taxes and including benefits) because this is the quantity
that the households have available to allocate to consumption, savings, and expenditure to promote health.
22See Section 2 and Appendix A for the definition of a severe health event.
23See also Figure D1 in Appendix D. As shown in Appendix D, these results are robust to removing

several observable components from health, as well as medical conditions other than the severe health
events.
24In our sample, we observe very few households with more than one member experiencing a severe

health event. For simplicity, we treat these households the same as those where only one member has
received a severe health shock.
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Once in s2, we assume that households transition in the next period to s3 with probability
one. In other words, we use s2 to capture the impact e§ect of the severe health shock,
while s3 captures long-term e§ects.
We next consider transitions from s3. In the data, we do not observe individuals who

fully recover from a severe health event, resulting from the nature of the health shocks
that we study. However, our model, structured around infinitely lived household dynasties,
assumes that after some years, household members are replaced by a new healthy member
(e.g. their o§spring), i.e. a new member in state s1. Hence, when a household member
su§ers a severe health event, the household will, at some point, recover. Our sample and
variable definitions in Section 2 focus on household members’ health and income under the
age of 60, implying a general replacement age of 60. The average age of first experiencing
a severe health event is 48.8, which implies an average of 11.2 years spent in state s3.25

Nevertheless, some households spend more (less) time in this state because they moved to
s2 before (or after) the average age for severe illnesses. Therefore, in terms of the process
(st), we assume that once a household reaches s3, it can move back to state s1 with some
probability that reflects the randomness in the time spent in s3. In particular, we assume
that when a household moves to s3, it faces an expected duration of remaining in this
state of 11.2 years, implying an exit probability from s3 and back to s1 of 8.95%. We set
this exit probability to be the same for all states in N .
Overall, our modelling and calibration imply that household dynasties di§er in the

number and duration of spells of illnesses they have faced over time. Some households
have long runs of s1, while some experience a severe illness for one of their members,
which costs them one year in s2 and then another few years in s3. Some of these latter
households face short spells in s3 and some longer spells. Because we do not observe deaths
from severe health events in the sample (see Appendix A), calculating the transition
probability from s1 to s2 as we describe here underestimates the true extent of health
risk a household faces. As the discussion in Appendix A shows, this bias should not be
very strong because the proportion of such deaths is small in the pre-COVID-19 period.26

However, as explained later, we capture the increase in health risk during pandemics via
the increased probability of death for working-age households (due to the pandemic). To
inform our calibration of changes in the transition probability from s1 to s2 during the
pandemic, we use excess mortality data. In this sense, the transition probability from
s1 to s2 in the pre-COVID-19 economy can be viewed as including the normalization of
health risk with respect to death from severe health events.

Income process We have defined N by four states representing the socioeconomic
groups in Section 2. Note that these have been defined to include a group for house-
holds with inactive and/or unemployed members (called non-employed), because of the
importance of this state for health outcomes apparent in Section 2, but also because this
situation implies the worst labour income state, and is thus important in terms of mea-
suring variation in labour income.27 In particular, a movement from any other state in
25Generally, households that have experienced a severe health event are liable to experience further

events. We focus on the first health event and incorporate e§ects of subsequent health events into the
post-event state.
26As noted, deaths above the age of 60 are not part of the model structure and thus are not part of

the health risk we study.
27In particular, we want to allow our model to capture the situation of individuals who leave the labour

force for health-related reasons. As these individuals are unlikely to be actively looking for employment,
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N to the non-employed state represents the most important labour income change for a
household, and thus these relevant transition probabilities capture a significant part of
income risk.
The process (lt) captures shocks that generate variation in labour income within

groups. To obtain an empirical measure for this type of labour income shocks, we use
post-policy labour income, wi,t, for household i in period (wave) t, by removing the e§ects
of household characteristics which are known, as opposed to stochastic factors, as well as
socioeconomic group membership that we want to condition on.28 In particular, we run
a regression of the natural logarithm of wi,t on a number of household characteristics for
which we have information from UnSoc:

ln(wi,t) = β0 + β1Di,t + ϵi,t. (9)

In this specification, Di,t contains a third order polynomial of age and dummy variables
capturing the region of residence, sex of the head of the household, year in which the
interview took place, the natural logarithm of household size, and a dummy for the
household’s socioeconomic group.29 We use the residuals, ϵi,t, from (9) to construct the
process of labour income for each group.
We obtain the state space for (lt), L, by assuming in each case that for each socioeco-

nomic group, n, Ln has three states: i) lower than the 30th percentile of the distribution
of the residuals from (9) for the specific n; ii) between the 30th and 70th percentile and
iii) above the 70th percentile. The discretisation of the distribution of within-group resid-
ual post-policy labour incomes is motivated by Groes et al. (2015), who show that this
discretisation captures essential properties of the earnings implications of worker mobility
between occupations. Our approximation allows for 12 states in N × L to capture di§er-
ences in mean post-policy labour income between socioeconomic groups and the variation
in residual post-policy labour income within each group, thus capturing variations in post-
policy labour income risk by class. Using UnSoc data, we have information about whether
a household is in any of the twelve states in N × L in di§erent years, separately for the
state s1 and the states s2 and s3. Therefore, we calculate the transition probabilities
between the N ×L states by the respective proportions of households who move between
the N ×L states separately for st = s1 and st = s2, s3.30 Since the household is in s2 only
for one period, we assume that the transition probabilities between the N × L states are
the same for illness states s2 and s3.
We show in Appendix D the constituent parts and the construction of the 36 × 36

transition matrix Q∗ for the joint distribution (nt, lt, st) implied by the above calibration
strategy. This transition matrix captures the dependence of health risk on socioeconomic
conditions and the dependence of income risk on health status observed in the data (see
Table 1 in Section 2). The transition probabilities from s1 to s2 in Q∗ are calculated as
the share of households in each group that have experienced a severe health event in a
given period, conditional on not having experienced a severe health event in the past.

we would miss these households if we only considered the unemployed.
28See, e.g. Kambourov and Manovskii (2009) for a similar approach to obtain a proxy for earnings risk

within professional groups, albeit in a setting that does not model the state of health.
29Note that some of the variables in Di,t are time-invariant, whereas others are common across house-

holds. To simplify the presentation, we include all these observable characteristics that we need to partial
out in Di,t.
30We denote these transition matrices as Q∗pre (for st = s1) and Q

∗
post (for st = s2, s3) in Appendix D.

19



Moreover, the transition probabilities Pr (nt+1 | nt, st = s1) and Pr (nt+1 | nt, st = s2, s3)
implied by Q∗ in Appendix D are those in Table 2 in Section 2.
To calibrate the possible outcomes of the random variable w(et) that measures the

level of labour income for any state in the Markov process for labour income, we use ϵt
from (9),31 re-centred around the conditional mean of post-policy labour income, relevant
for each group, so that we approximate cross-household variation in post-policy labour
income net of variation in the factors we control for in (9).32 We re-scale w(et) so that its
expected value across the population in the invariant distribution ξ∗ is normalized to 1.
These outcomes for w(et) are shown in Appendix D Table D2.
The Markov process for labour income captures between-group labour income in-

equality and transitions between these groups by construction. As shown in Table 4,
our modelling and calibration also capture di§erences between socioeconomic groups in
terms of within-group variation in residual post-policy labour income, as measured by
the Gini index or the variance of logarithms. The between-group di§erences in residual
post-policy labour income variation reflect di§erences in higher moments of the income
distribution, and they also reflect between-group di§erences in income risk, conditional
on the socioeconomic group.

Table 4: Comparison of data and model labour income
Relative Mean Gini Var Log

Groups UnSoc Model UnSoc Model UnSoc Model
Professionals 1.53 1.49 0.22 0.19 0.18 0.13
Intermediate 1.07 1.03 0.24 0.21 0.23 0.16
Routine 0.74 0.71 0.21 0.18 0.17 0.12
Non-employed 0.49 0.48 0.25 0.21 0.28 0.18
All 1 1 0.29 0.27 0.34 0.26

Note: Labour income in UnSoc refers to re-centred residuals of

post-policy labour income; for details see Appendices A and D

Data source: Pooled sample UnSoc Waves 1-9.

As can be seen in Table 4, in the data as well as in the invariant distribution implied
by the Markov chain, moving between groups from the group of professional occupations
to the group of non-employed, within-group inequality in residual post-policy labour in-
come rises, falls and rises again, with the non-employed group demonstrating the highest
inequality. Overall, the Markov chain approximation captures the qualitative properties
we see in the data.

4.1.2 Model parameters

We set the discount factor in the utility function β = 0.96, which is commonly used
with annual frequency data for the UK (see, e.g. Faccini et al. (2011), Harrison and
Oomen (2010) and Angelopoulos et al. (2020)). We allow the return to savings to di§er

31Partialing out variation due to non-stochastic factors that are not included in the model is typical in
the literature; see, e.g. Meghir and Pistaferri (2011).
32In the UnSoc data, post-policy labour income does not di§er substantially between the three states

of shocks to health, once the socioeconomic group has been accounted for. Therefore, we calculate the
average value of re-centred residual post-policy labour income as w(nt, lt) for each subset of households
in N × L, and independently of st = s1, s2, s3.
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from the borrowing rate. In particular, we set the return to savings r (zt = z∗) to equal
0.56% to match the average real long-term bond yield in the UK between 2009-2018,
and assume that the borrowing rate includes a penalty of 1%, so that r (zt = z∗) equals
1.56% for households with negative wealth. We normalise the lower and upper bounds
for health, hmin and hmax respectively, to [0.1, 1] (see Appendix A for details). The health
depreciation rate in the absence of severe health shocks, δ(st = s1), is set to be 0.9624,
which implies a household can spend a maximum of 60 years before reaching the lower
bound on health unless they make additional investments in health.
We choose the remaining parameters to minimise the distance between model predicted

quantities and their empirical counterparts, and we summarize them in Table 5. We first
specify the utility and health improvement functions, u (ct, ht+1) and m (xt), respectively.
The utility function takes a standard constant relative risk aversion form33:

u (ct, ht+1) =
(cφt h

1−φ
t+1 )

1−σ

1− σ
, (10)

where φ 2 (0, 1) is a parameter determining the relative weights of consumption and
health in the utility function, and σ is a coe¢cient that determines risk aversion. The
coe¢cient of a relative risk aversion for consumption is estimated to be about 1.5 for the
UK (Faccini et al. (2011)), which pins down σ as 1 + (0.5/φ). The functional form for
m (xt) takes the form of a production function and is given by:

m (xt) = qx
γ
t , (11)

where γ 2 (0, 1) measures the marginal e§ect of investments in health in terms of health
improvements, and q ≥ 0 is a linear productivity parameter.

Table 5: Calibrated parameters
β σ amin r γ
0.96 1.6504 -0.0059 0.0056 0.5190

δ(st = s1) δ(st = s2) δ(st = s3) φ q
0.9624 0.8128 0.9606 0.7687 0.1018

Note: For details on the calibration procedure, see Appendix D.

The two further possible outcomes of the random variable δ(st = s2) and δ(st = s3),
capturing depreciation in health for households that have experienced a severe health
shock, the parameters γ, q, φ and the borrowing limit amin are chosen to minimise the
distance between model predicted quantities and their empirical counterparts, using model
simulations. We describe this procedure in detail in Appendix D.We target the conditional
mean of health for the three states in S, the variance of health across the population (which
is 0.014 using UnSoc data), the share of households with non-positive wealth (which is
19%, using data from WAS), and the share of private health expenditure in consumption,

33This utility function satisfies the conditions lim
c!0

uc(·) = +1, lim
c!1

uc(·) = 0, lim
h!0

uh(·) = +1,

lim
h!1

uh(·) = 0, and lim
c!1

inf −ucc(·)
uc(·)

= 0. These assumptions imply that the household should choose

a positive level of consumption and health, and also incorporate incentives for a finite maximum desired
level of consumption and health. On assumptions regarding the utility function when modeling economic
choices under idiosyncratic risk, see, for example, Aiyagari (1994), Acikgoz (2018) and Zhu (2020).
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which is 8.9%.34 Table 5 summarizes the calibrated parameters.

4.1.3 Health and wealth inequality in the stationary distribution

We solve the calibrated model to obtain the stationary equilibrium and confirm that it
captures the key stylised facts regarding wealth and health inequality presented in Section
2. In Table 6, we present relevant model outcomes for household health and wealth.

Table 6: Model outcomes for health and wealth
[1] [2] [3] [4] [5]

Socioeconomic Gr. Mean health Gini health Mean wealth Gini wealth % in debt
(relative to A ll) (relative to A ll) (% of households)

Professionals 1.10 0.08 1.88 0.45 8%
Intermediate 1.01 0.09 1.01 0.54 14%
Routine 0.93 0.10 0.47 0.65 33%
Non-employed 0.87 0.11 0.31 0.74 40%
All 1 0.10 1 0.59 19%

Note: % in debt refers to the share of households with zero or less than zero assets.

Comparing means and Gini coe¢cients by socioeconomic group in the first two columns
of Table 6 with those obtained from the data (presented in Table 1), it can be seen that
the model matches the data well, despite the calibration not explicitly targeting any
group-specific means or measures of variation of health within groups. In terms of means,
there is a clear social gradient in health that matches the patterns we observed in the
data. Quantitatively, the professional occupations group is healthier in relative terms in
the data, but the model ranking is correct, and relative di§erences between the three
remaining groups are also quantitatively similar. In terms of within-group variation in
health, the model predictions also follow the pattern outlined in Table 1: within-group
health variation increases as mean health decreases.
We also examine the model outcomes regarding wealth inequality, captured by the

variation in wealth between and within socioeconomic groups (see also Angelopoulos et
al. (2019) for wealth inequality analysis under socioeconomic groups). In the remaining
columns of Table 6, we present the relevant model outcomes. The model captures the
empirical variation in wealth inequality between socioeconomic groups we presented in
Table 3. In particular, between-group wealth inequality in the model tracks the data very
well, and the model also captures the qualitative features of within-group inequality by
group.
The model further allows us to study the relationship between health and wealth go-

ing beyond comparison of outcomes between socioeconomic groups. To quantify health
inequality across the population in the data, we calculate the Erreygers and Wagsta§ in-
dices that measure the concentration of health across the income distribution (Erreygers
(2009) and Wagsta§ et al. (1991); see also Appendix D for more details). In the pooled
UnSoc sample, the Erreygers and Wagsta§ indices take a value of 0.081 (0.089), indicating
a positive relationship between income and health. The Erreygers (Wagsta§) index for
health with respect to earnings in the model is 0.105 (0.115). In addition to health in-

34This is based on Stoye (2017) and is discussed further in Appendix D.
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equality defined in terms of income, our model also allows us to measure health inequality
in terms of co-determination of health with wealth. In this case, the Erreygers (Wagsta§)
index is about twice as large, 0.215 (0.234), suggesting that health has a much stronger
concentration with respect to wealth than with respect to income. Many studies find links
between wealth and health (for example, Seymonov et al. (2013), Cesarini et al. (2016)
and Schwandt (2018)), and, conceptually, this relationship is indeed at the heart of the
social gradient explanations of health inequality (see, e.g. Marmot (2003, 2004), Wilkin-
son and Pickett (2008), Pickett and Wilkinson (2015)). Our results quantify the strength
of the wealth-health nexus relative to the income-health nexus using national-level data
across households.

4.2 Post-pandemic exogenous processes

After the surprise impact of COVID-19 in 2020, there is uncertainty about disease out-
breaks. In particular, there is uncertainty about how long the main waves will last and
whether, and for how long, there will be recurrent outbreaks. This is reflected in the tran-
sition matrix for zt, which we discuss first. In turn, an outbreak a§ects the idiosyncratic
shock processes, and we explain how we capture this next.

4.2.1 Disease outbreak uncertainty

Drawing on current research and historical evidence, we specify the state space Z of the
aggregate level stochastic process (zt) as Z = {C,R, U,O}. If zt = C, there is a pandemic,
which a§ects the stochastic processes defining idiosyncratic health and income uncertainty.
If zt = R, there is a disease outbreak, which also a§ects economic and health outcomes,
although not as severely as during the pandemic state C. These states correspond to
periods of outbreaks that may follow the pandemic. Periods where zt = U refer to years
of low disease incidence, without health or economic impacts, although there remains
the probability of a disease outbreak in the near future (i.e. an R in the near future is
possible). Together, R and U characterise the medium-run environment after a pandemic,
when there is still risk of recurrent outbreaks. In contrast, the last state zt = O indicates
a period where there is no outbreak and it is su¢ciently distanced from the pandemic
so that future outbreaks are very unlikely. Hence, the O state represents a situation
where the disease has been completely brought under control through vaccinations or
other methods.
The above modelling also informs the calibration of the transition matrix of the ag-

gregate state QZ . We set the expected duration of the pandemic period C to two years,
which is in line with the main waves of the 1890-91 and 1918-19 pandemics and expecta-
tions about the COVID-19 pandemic. Using data from historical pandemics, we employ
a Markov switching model to estimate the probability of exiting the post-pandemic pe-
riod of recurrent outbreak risk to be 7.9%, implying an expected duration of 12.66 years
(see Appendix D for details of the model and estimation results). We set, therefore, the
probability of moving from the states R or U to O accordingly. Once in O, there is a pos-
sibility of further pandemics.35 We also set this to the probability of the pandemic state

35Medical researchers and public health experts have warned of the rising possibility of global epidemics
brought about by intensifying animal agriculture, increasing urbanisation and global connectivity and
antibiotic resistance (Zappa et al. (2009), Alirol et al. (2011), MacIntyre and Bui (2017)).
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occurring as estimated from the Markov switching model, 2.7%, implying a pandemic
roughly every 35 years. Finally, we set the probability of an outbreak, conditional on
being in the post-pandemic period, to 28.6%, using estimates from the post-COVID-19
model predictions for outbreaks exceeding 500 deaths in Schroeder et al. (2021). The
aggregate state transition matrix is thus given by:

QZ :

zt\zt+1 C R U O
C 0.5 0.143 0.357 0
R 0 0.263 0.658 0.079
U 0 0.263 0.658 0.079
O 0.027 0 0 0.973

.

4.2.2 Pandemic e§ects on exogenous processes

This subsection describes the assumptions made about the characteristics of the idiosyn-
cratic processes in each of the four aggregate states of the process zt. Further details are
in Appendix D. The state O has been defined as a state where the e§ects of the pan-
demic and its subsequent turbulent period on idiosyncratic health and income risk have
faded. Therefore, we assume that in terms of idiosyncratic processes, O is identical to the
situation before COVID-19 (see base calibration in Section 4.1).
The first e§ect of a major disease outbreak (zt = C) is an increase in health risk. This

feature is captured in the model by increasing the probability of experiencing a severe
health event relative to the base calibration for the pre-COVID-19 period. We assume
an increase in health risk by 50% on average. Some of this higher risk is due to excess
mortality. The excess mortality rate among 15 to 64 year olds during the first year of
the COVID-19 epidemic, in particular from the last week of March 2020 to the last week
of March 2021, was 20.17% while for the whole 2020 was 10.43% (using data in Roser
et al. (2020)). However, excess mortality underestimates the increase in health risk.
There are also implications from the so-called "long-COVID" and an increase in health
risk from other diseases due to the congestion e§ects of the pandemic on health care.
For example, compared with 2019, in 2020 there was a reduction of 28% in completed
treatment pathways, and of 20% in hospital referrals (Gardner and Fraser (2021)) and
a reduction in emergency admissions by 20% (NHS England data on Adjusted Monthly
A&E Attendance and Emergency Admissions data). Moreover, the increase in health risk
di§ers by socioeconomic group (e.g. Marmot et al. (2020), Windsor-Shellard and Nasir
(2021), Bambra and Lynch (2021)), being higher for socioeconomic groups with lower
mean income. Therefore, we assume an increase in health risk by 14%, 43%, 100% and
50% for professionals, intermediate, routine, and non-employed, respectively. Note that
because of the correlation between transitions in socioeconomic group and level of health
(see Section 4.1), the increase in health risk also implies an increase in income risk by
increasing the probability of moving to non-employment.
The second e§ect of zt = C is a loss in net labour income. HM Treasury (2021)

have calculated the COVID-19 induced drops in household income (post policy), over and
above earnings increases and drops up to 10% of earnings (which could be associated with
a non-pandemic period).36 We use the HMTreasury (2021) results to calibrate the implied
income drops that correspond to the pre-COVID-19 income levels in the model. These
36HM Treasury (2021) used Understanding Society data to estimate, for di§erent earnings levels, the

probability of job losses, earnings drops more than 10%, and furlough, and calculated income changes
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are in addition to the usual income gains/losses via the idiosyncratic income process.37

The HM Treasury (2021) estimates imply progressivity in income drops, i.e. income
drops were bigger for higher income deciles. This finding is consistent with existing
evidence suggesting that despite the potential of COVID-19 e§ects to increase earnings
inequality, post-policy income inequality did not increase during 2020 (see, e.g. Stantcheva
(2021)). To translate the HM Treasury (2021) estimates of income losses to losses per
socioeconomic group, we convert the per income decile drops to the groups we model using
the pre-COVID-19 income distribution (see Appendix D). Although these are progressive
in terms of net labour income and socioeconomic groups, when we express them in terms
of total resources, the drop is only mildly regressive.
The third e§ect of zt = C takes the form of restrictions in consumption implied by

measures to mitigate the spread of the disease. Evidence suggests that restrictions in
consumption during the pandemic drive increased savings, with the e§ect being stronger
for higher income groups (see Hacioglu-Hoke et al. (2021), Bank of England (2020),
Tenreyro (2021) for the UK, Dossche and Zlatanos (2020) for the EU, and Miescu and
Rossi (2021) for the US). In particular, evidence in Davenport et al. (2020) suggests that
amongst the two highest income quintiles, consumption dropped approximately 25% in
the first months of the crisis, with smaller changes for lower income groups (consistent
with patterns in Bank of England (2020), Tenreyro (2021) for later in the year). For
the top quintile, this drop in consumption is bigger than what the income drop on its
own predicts. Therefore, to align the model with the data, we impose an upper limit
on consumption, calibrated so that the average consumption level of the top quintile fell
by 25% compared to their pre-COVID mean consumption level. The model predictions
for the change in savings/consumption by quintile in 2020 follow the data patterns (see
Appendix D).
Regarding periods of subsequent outbreaks, R, we assume that the increase in health

risk is half of its increase in C and that losses in income are half of those in C. Moreover,
the upper limit on consumption of the top income quintile is set to imply half of the drop
in consumption for the top quintile, compared with C. During periods U , all idiosyncratic
health and income processes are assumed to be the same as in state O; what distinguishes
U from O is the transition probabilities to R and C.38

Consistent with the experience during COVID-19, we assume that the return to savings
is zero during C periods. The return to savings in the remaining aggregate states is
calibrated as follows: i) the expected long-run rate of return to savings, in O, is equal to
the interest rate prevailing in the stationary world: E(r) = r(z∗); ii) the interest rates
are raised cautiously following pandemics so that r(R) = r(U) = r(O)

2
. The penalty for

borrowing is assumed to remain at 1% throughout.

5 Inequality and risk exposure post-COVID-19

To study post-pandemic distributional dynamics, we numerically solve the households’
problem described in Sections 3 and 4 using dynamic programming and compute the time

using the HM Treasury distributional analysis model.
37These transition matrices are denoted as QCpre (for st = s1) and Q

C
post (for st = s2, s3) in the Appendix

D.
38These transition matrices are denoted as QRpre, Q

U
pre, Q

O
pre (for st = s1) and Q

R
post, Q

U
post, Q

O
post (for

st = s2, s3) respectively in the Appendix D.
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series of the cross-sectional distribution λt, across households, using methods we discuss
in Appendix C. In our analysis post-COVID-19, we focus on the specific time series of
λt obtained by selecting the initial state variables to be determined in a pre-COVID-
19 stationary equilibrium. In particular, conditional on initial values obtained from the
pre-COVID-19 stationary distribution, households are surprised by the emergence of the
pandemic in 2020 but form expectations about future outcomes that follow the impact
shock in 2020 using the updated exogenous processes.
We compute statistics that summarize key properties of the distributions of health

and wealth over time under uncertainty about outbreaks post-2020. To this end, we need
to calculate the probability distribution of statistics regarding the cross-sectional distri-
butions over possible paths of the aggregate state for all points in time. To obtain these
distributions, we first simulate a panel of 5000 sequences of the evolution of the aggregate
state, initializing each sequence from the invariant distribution λ∗, associated with Q∗,
i.e. without pandemic risk. Then, we simulate the evolution of the distribution of all ex-
ogenous and endogenous variables, using the solution to the typical household’s problem,
and beginning from the distribution λ∗, for every path of aggregate state variables. The
result of this Monte-Carlo procedure is a panel of joint distributions of health and wealth,
relating the exogenous and endogenous variables of the model to possible paths for the
aggregate state. This procedure allows us to analyse possible distributional outcomes in
terms of the probability that they will arise. For details of this Monte-Carlo procedure
and how it is applied to generate the results shown in the figures and table in this Section,
see Appendix C.
Our analysis of the results is organised as follows. We first summarize key charac-

teristics of the increase in inequality. We then examine the factors contributing to the
increase and analyse the implications of the form and scale of the increase in inequality
for risk exposure and vulnerability to future shocks. Finally, we examine the e§ects of
policy intervention to support those lacking means of self-insurance.

5.1 Scale and form of increase in inequality

We show results for economy-wide statistics in Figure 2 and also by socioeconomic group in
Figure 3. Figure 2 shows the Gini indices for wealth and health, the Wagsta§ index of the
relationship between health and wealth concentration, and the proportions of households
in debt, with low assets and with low consumption. In Figure 3, we show mean wealth,
wealth Gini index, and the share of indebted households for each of the four socioeconomic
groups. In all cases, we plot the median value of these statistics across the distribution
of their possible outcomes over realisations of the aggregate-pandemic state in each time
period.39 We also show the interquartile range (the 50% interval around the median) and
the 80% interval around the median.
Dynamic paths of measures that capture relevant properties of the wealth distribution

across the population are in Figure 2. Following the 2020 shock, the wealth Gini index in-
creases, remains at elevated levels for about a decade and declines slowly to pre-pandemic
levels after a further decade. Wealth inequality increases by more than 2.5 Gini points
at the peak in half of the simulated post-pandemic paths. We also look more closely

39As explained previously, we have a distribution of 5000 descriptive statistics that relate to the joint
distribution of health and wealth at every point in time. Each cross-sectional distribution has been
obtained under a random realisation of the path of the aggregate state relating to disease outbreaks.
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at the low wealth part of the distribution, particularly the proportion of households in
debt and those below a threshold for wealth, defined the maximum level of wealth of
the bottom third of the pre-COVID-19 distribution of wealth.40 We see that the pro-
portions of low-wealth households also increase significantly, implying that the increase
in inequality is characterised by increases in the thickness of the left-tail of the wealth
distribution. Moreover, there is also a persistent increase in the proportion of households
with low consumption, defined as households consuming less than the 20th percentile of
the consumption distribution before pandemic. We analyse further the implications of
the increase in inequality for di§erent socioeconomic groups and pre-pandemic conditions
below.

Figure 2: Post-pandemic inequality
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Note: Simulated post-pandemic paths of measures of inequality. Median (solid black line), p25-p75

(dark shading) and p10-p90 intervals (light shading) are based on 5,000 random paths of disease

outbreak states. One-o§ pandemic (dashed line) is obtained assuming that there is no disease outbreak

risk after the main pandemic waves in 2020 and 2021. Low wealth (consumption) households are those

that own wealth (consume) less than the 33rd (20th) percentile in the pre-pandemic distribution.

There are also persistent increases in health inequality, as can be seen by the increases
in the health Gini and the increase in the Wagsta§ index, implying a stronger association
between health and wealth.41 As analysed in Section 3.3 (see also Lemma 2 in Appendix
B), household behaviour with two assets, wealth and health, implies that in response to

40This implies wealth less than about £9.2k in 2019, assuming a mean income of ∼£36,900 for the
financial year ending in March 2020 (see O’Neill (2021)).
41Persistence of health inequality has been highlighted in the literature (e.g. Marmot (2004) and Font

et al. (2011)).
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disease outbreak shocks and the risk of future shocks, health and wealth are perceived as
substitutes and thus need not move in the same direction. This substitutability can reduce
the impact of the pandemic on the relationship between health and wealth concentration,
and thus the extent of increases in health inequality measured in this way. However, the
changes reported in Figure 2 in terms are comparable with changes we observe regarding
the Wagsta§ index of the relationship between net income and health in Understanding
Society, which ranges between 0.085 and 0.091 in the ten years since 2009.
We next analyse in more detail wealth inequality between and within socioeconomic

groups, based on Figure 3. We first examine mean wealth per socioeconomic group relative
to the pre-COVID-19 stationary equilibrium and note stark di§erences in the changes
between the groups. On average, professionals increase their wealth and maintain higher
wealth levels for nearly two decades; intermediate professions are characterised by smaller
increases in wealth, whereas the group of households with routine jobs has a big drop in
average wealth, which also takes a long time to return to pre-pandemic levels. Regarding
the non-employed group (inactive plus unemployed), we observe an increase in mean
wealth.42

Figure 3: Post-pandemic inequality by socioeconomic group
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Note: Simulated post-pandemic paths of measures of inequality. Median (solid black line), p25-p75
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outbreak states. One-o§ pandemic (dashed red line) is obtained assuming that there is no disease

outbreak risk after the main pandemic waves in 2020 and 2021.

Increased between-group inequality is accompanied by increases in within-group in-
equality, except for within-group inequality f or professionals in the short-run after the
pandemic, as the second row in Figure 3 suggests. The increase in within-group inequal-

42Since we assumed no change in the non-market income for this group (i.e. in benefits policies) during
the pandemic, changes for this group reflect changes for the households in other groups that become
non-employed, and, in this sense, reflect mainly the changes in wealth inequality already studied. We
thus we do not discuss the group of non-employed further below.

28



ity is inversely related to the changes in mean wealth since higher (lower) wealth implies
that the idiosyncratic income variation within each group is relatively less (more) impor-
tant. Comparing, for example, professionals to routine households, the reduction in mean
wealth (and thus in asset income) for the latter group implies that variation in labour
income becomes a more important determinant of variation in wealth. The increase in
within-group inequality is also manifested by an increase in the proportion of households
in debt, shown in the last row of Figure 3. The plots in this row also demonstrate that the
increase in the thickness of the left tail of the wealth distribution a§ects the socioeconomic
groups with lower mean income and wealth more.
We examine the quantitative contribution of uncertainty about future outbreaks to

inequality by comparing the results summarized in Figures 2-3 with those obtained from
a one-o§ pandemic counterfactual, which is shown as the dashed red line in these figures.
We define the one-o§ pandemic scenario as the hypothetical case where 2020 and 2021 are
pandemic years with the same e§ects as those in the baseline simulations but assuming
that the pandemic ends in 2021 without risk for further outbreaks.43 The main patterns
of inequality after the pandemic are the same without uncertainty about post-pandemic
disease outbreaks. However, when disease outbreak uncertainty is also considered, the
inequality e§ects of the pandemic are generally more adverse, last longer, and can become
particularly severe with a sizeable probability. Indeed, the di§erences between the two
scenarios become larger in the medium run, and especially when we examine worse paths
of the aggregate state. For example, the 50th percentile of the wealth Gini under recurrent
outbreaks di§ers from the one-o§ pandemic by about one Gini point in the decade that
starts a few years after the pandemic, the 75th percentile di§ers by two and the 90th by
three Gini points. Under uncertainty about recurrent outbreaks, big increases in inequality
remain plausible for at least a decade.
We then examine changes in inequality from the perspective of households with dif-

ferent characteristics at the onset of the pandemic. We compute the changes in wealth
and health after 2020 for groups of households that di§er in their wealth in 2019 and the
profession of the head of the household in 2019, on average across health and di§erent
future realisations of shocks to income and health.44 Figure 4 plots the expected percent-
age deviation of wealth and health for these groups relative to a counterfactual situation
where the pandemic never happened.
The plots in Figure 4 confirm the increase in inequality documented in the previous

results and reveal its implications for households with low levels of wealth or who worked in
occupations with lower mean earnings before the pandemic. In particular, Figure 4 reveals
that while levels of wealth and health increase for households who were already in an
advantageous position before the pandemic, for households with below-median level initial
wealth, or in socioeconomic groups with lower wealth and health on average, there are
persistent decreases in both wealth and health.45 These findings imply that the pandemic
amplifies existing inequalities. The reductions in wealth and health for households in
percentiles below the median are substantial, up to about 10% of wealth on average for

43See Appendix D for the aggregate-level transition matrix in this case.
44See Appendix C for more details on the computation of changes in inequality conditional on pre-

pandemic characteristics.
45In Figure 4, we demonstrate an increase in the health gap between households that di§er in terms of

pre-pandemic wealth. Similar results are obtained for health between households that di§er in terms of
the combination of pre-pandemic health and wealth (see Appendix E for these results).
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the 10th to 25th percentile, and about half a percent in terms of health. To contextualise
an average fall in the health variable of about half a percent across households in the
lower deciles, recall from the discussion of the UnSoc data in Section 4 that a severe
health event (e.g. heart attack, stroke) implies a drop in household-level health of about
10% on average. Therefore, an average reduction of 0.5% is equivalent to the fall in health
that would have been observed if 5% of households in these deciles had a member who
experienced a severe health event.

Figure 4: Post-pandemic inequality by initial conditions
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simulated paths without Covid-19 and disease outbreak uncertainty. Lines in the top panels refer to

households starting at the respective percentiles of the wealth distribution in 2019. Lines in the

bottom panels refer to households of the respective socioeconomic groups in 2019.

5.2 Shock and risk as drivers of di§erential wealth accumulation

The di§erences in wealth accumulation after 2019 are driven by the di§erential response to
the unexpected 2020 shock and by the di§erential response to the uncertainty associated
with recurrent outbreak risk. We examine these factors by revisiting the theoretical
analysis of household incentives for asset accumulation following unexpected shocks and
increased income risk in Section 3.
The response to the 2020 shock incorporates two forces that have opposite e§ects

on wealth accumulation. First, the surprise fall in income creates consumption smooth-
ing incentives that tend to reduce at least one of wealth and/or health. Second, a limit
on consumption, which tends to increase at least one of the assets (see the analysis in
Section 3.3). Since all employed households lost income because of the pandemic, the
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incentives for consumption smoothing in 2020 characterise them all.46 However, the limit
on consumption spending has a smaller actual e§ect on increased savings potential for
the households with lower resources, which are predominantly households that had low
health and wealth and were in the socioeconomic groups with lower earnings prior to the
pandemic, because these households do not typically have high consumption.47 On the
other hand, for the high income - high wealth households, the restrictions in consumption
imply substantial drops in consumption, both according to empirical evidence and in the
model, and thus substantial increases in asset accumulation. For high income, high wealth
households, the e§ects from the limit on consumption are stronger than the consumption
smoothing incentive and drive the increases in wealth accumulation associated with the
upper tail of the wealth distribution seen in Figures 3-4. To demonstrate the importance
of the consumption limit, we repeat the analysis in Section 5.1 without imposing the limit
on consumption as an e§ect of the pandemic shocks and report the results in Appendix
E. These confirm that the consumption limit is the key driver of increases in wealth for
households with high initial wealth and/or in socioeconomic groups with higher mean
earnings. For the households below median initial wealth and/or in socioeconomic groups
with lower mean earnings, consumption smoothing incentives are stronger and drive the
reduction in wealth. Indeed, as can be seen in Appendix E, the consumption limit matters
less for the results for this group of households.
The precautionary response to increased risk also di§ers across households, as result

of the di§erent potential for self-insurance due to the initial e§ect of the pandemic shock.
The increase in income risk, implied by the possibility of future disease outbreaks, creates
incentives to increase the level of wealth or health to create bu§ers to smooth potential
future shocks (see the analysis in Section 3.3). Households with high initial wealth and/or
in socioeconomic groups with higher mean earnings have increased potential to accumulate
wealth to serve as insurance because of the freeing up of resources due to the consumption
limits, relative to households below median initial wealth and/or in socioeconomic groups
with lower mean earnings. For the latter groups of households, the drops in wealth due to
the direct pandemic e§ect in 2020 imply that they lack the resources to accumulate the
required bu§ers. The implication is that due to precautionary incentives, wealth inequality
increases and remains high because the first group of households retains increased wealth
as a bu§er for future shocks, while the second needs time to build the required bu§ers.
Precautionary incentives in response to disease outbreak risk amplify wealth inequal-

ity and increase its persistence over time when outbreak risk follows a regressive drop in
wealth. To demonstrate this mechanism, we compute model outcomes from a counterfac-
tual scenario where the pandemic did not directly a§ect households in 2020-21, but only
implies post-2021 disease outbreak risk, modelled as in the baseline scenario. We plot
model outcomes from this counterfactual in Figure 5, for the same quantities shown in
Figure 4. Wealth accumulation under this counterfactual reflects the level of wealth ac-
cumulation that households would optimally want to achieve as a means of self-insurance
given uncertainty about disease outbreaks and conditional on their pre-pandemic level
of resources. By comparing results in Figures 4 and 5, we see that households below

46Note that some households may increase their income during the pandemic because of the idiosyn-
cratic component of income shocks. However, the e§ect of the pandemic was calibrated to be negative
for all households conditional on (nt, lt, st).
47As noted in Section 4, this model property is consistent with evidence on the e§ect of restrictions on

consumption in, e.g. Davenport et al. (2020).
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median initial wealth and/or in socioeconomic groups with lower mean earnings would
have had higher wealth had they not lost a significant part of their wealth in an e§ort to
smooth the implications of the 2020 shock. Therefore, without the regressive e§ects of
the 2020-2021 shocks on wealth, increased disease outbreak risk would actually work to
reduce inequality. Given that disease outbreaks a§ect mainly the households with lower
wealth and income, it is optimally these households that would need to increase their
wealth bu§ers more to self-insure against possible future income drops. In this respect,
the persistent increase in inequality in the decade following the pandemic reflects a lack
of opportunity for low income/low wealth households to respond optimally to changes in
income risk.

Figure 5: E§ects of disease outbreak risk by initial conditions
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Note: Expected percentage deviations of simulated paths without Covid-19 under disease outbreak

uncertainty versus simulated paths without Covid-19 and disease outbreak uncertainty. Lines in the

left panels refer to households starting at the respective percentiles of the wealth distribution in 2019.

Lines in the right panels refer to households of the respective socioeconomic groups in 2019.

As can also be seen in Figure 5, households in lower wealth quintiles, as well as in
socioeconomic groups with lower mean income, decrease health while increasing wealth, in
response to exogenous increases in income risk; households in higher wealth quintiles, as
well as in socioeconomic groups with higher mean income, decrease health while increasing
wealth. These changes reflect the substitutability between health and wealth in response
to exogenous changes in the stochastic processes, analysed in Section 3. In particular, for
households in lower wealth quintiles, or in socioeconomic groups with lower mean income,
the budget constraint e§ects are stronger, since they have lower initial levels of assets and
consumption, and thus dominate the complementarity incentives via the utility function.
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On the contrary, for households in higher wealth quintiles, or in socioeconomic groups
with higher mean income, the complementarity in consumption and health dominates
and leads to an increase in both health and wealth.

5.3 Di§erential risk exposure and vulnerability
Figure 6: E§ect of a surprise income shock
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income shock of 1% that happens in 2023. Lines in the top panels refer to households starting at the

respective percentiles of the wealth distributions in 2019. Lines in the bottom panels refer to house-

holds of the respective socioeconomic groups in 2019.

The post-pandemic increased variation in wealth accumulation for households with
di§erent characteristics implies di§erential changes in the exposure of these households to
future exogenous reductions in income. In particular, households with high pre-pandemic
wealth and/or in high-earnings socioeconomic groups at the onset of the pandemic or
during the pandemic increase their wealth due to the impact e§ects of the pandemic shock;
and they sustain the increased bu§er levels for a prolonged period (Figures 3-5) as a result
of recurrent outbreak risk. Conversely, as a result of the impact e§ects of the pandemic
shock, households with low pre-pandemic wealth and/or in socioeconomic groups with
lower mean earnings at the onset of the pandemic or during the pandemic decrease their
wealth and are unable to accumulate wealth bu§ers to self-insure for a prolonged period
(Figures 3-5). The implication is an increase in the inequality of risk exposure in the
medium run following the pandemic.48 Therefore, the first group of households is better
prepared to absorb shocks to income without big drops in consumption, while the second

48Furthermore, there is an increase in the proportion of households with low or non-positive wealth
following the pandemic (Figures 2-3).
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group is worst insulated, and thus their consumption will drop more if there is a negative
income shock.
We illustrate the inequality in post-pandemic income risk exposure in terms of drops

in consumption, health and utility in response to a surprise income drop. To this end, we
compute the paths of consumption and health for groups of households that di§er in their
wealth/health and the socioeconomic group at the onset of the pandemic, when there is an
unexpected drop in income of 1% for all households three years after the main pandemic
wave.49 In Figure 6, we plot the percentage di§erence between paths where the income
drop happens and paths where the income drop does not occur. The results in Figure 6
show substantial inequality in income risk exposure after the pandemic, the e§ects of which
are more severe for households that were already wealth poor prior to the pandemic. In
Table 7, we show the gap in the levels of consumption and health between the highest and
lowest groups prior to the surprise shock, to which the drops in consumption and health
following the income shock in Figure 6 apply. Together, Figure 6 and Table 7 reveal the
vulnerability of low wealth households to post-pandemic income risk: the substantial e§ects
of the income shock are experienced by households with very low consumption prior to the
surprise shock. Indeed, vulnerability to income risk for low wealth households is reflected
in the falls in utility following the surprise shock that are seen in Figure 6.

Table 7: Relative consumption and health in the year prior to the surprise shock
Relative Relative Relative Relative

Percentiles Consumption Health Soc. Groups Consumption Health
90th 1.25 1.20 Professional 1.27 1.15
75th 1.12 1.10 Intermediate 1.02 1.02
50th 0.95 1.00 Routine 0.79 0.91
25th 0.80 0.89 Non-employed 0.64 0.84
10th 0.76 0.83

Notes: Consumption and health are relative to the median of pre-Covid-19 distribution, in 2019.

Percentiles refer to households at the nth percentile of the wealth distribution in 2019.

Socioeconomic groups refer to households of the respective socioeconomic group in 2019.

5.4 Social insurance

The vulnerability of consumption and health to post-pandemic negative shocks to income
for low wealth households, especially because it reflects inability to implement household-
level optimal self-insurance, implies that there is scope for policy intervention to mitigate
income drops arising from exogenous shocks. Focusing on the e§ects of recurrent disease
outbreaks, income support can mitigate the e§ect of income drops associated with disease
outbreaks on household consumption and health, following the pandemic.
We assess a social insurance policy that provides income support to households to

mitigate income drops that are caused by a recurrent outbreak, if they have wealth that is
less than a critical level. Denote by qd (zt) ≡ w(nt, lt, st; zt = z∗)−w(nt, lt, st; zt = C,R, ),
the drop in income for the household that is due to a pandemic outbreak relative to the
pre-pandemic economy. This implies that qd (zt) = 0 when zt 6= R and zt 6= C. For time
period t that is greater than two years after the pandemic, the budget constraint of a

49See Appendix C for more details regarding the implementation of this counterfactual analysis.
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household in (2) under this policy changes to:

ct + at+1 + xt = (1 + r(zt))at + w(nt, lt, st, zt) + q
s (at, zt;ea) ,

qs (at, zt;ea) = !qd (zt) , if zt = C,R and at ≤ ea and,
qs (at, zt;ea) = 0, if at > ea,

where ! 2 (0, 1) reflects the income replacement ratio and ea 2 A is a parameter that
captures the coverage of the policy.

Figure 7: The e§ect of policy on post pandemic inequality
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Note: Percentage change in measures of inequality with and without policy. Median (solid black line),

p25-p75 (dark shading) and p10-p90 intervals (light shading) are based on 5,000 random paths of

disease outbreak states. Low wealth (consumption) households are those that own wealth (consume)

less than the 33rd (20th) percentile in the pre-pandemic distribution.

Our main finding is that there are trade-o§s as a result of this policy, having both
an intertemporal dimension and a health-wealth dimension. The emerging trade-o§s do
not depend on the generosity of the policy, measured by the parameters ! and ea, which
determines the magnitude of the e§ects. Therefore, to illustrate the trade-o§s we show
in Figure 7 results that compare key outcomes under a policy that sets ! = 0.8 and ea to
be equal to the wealth of the 33rd percentile of the pre-COVID-19 wealth distribution.50

The cost of such a policy is, on average across the two post-pandemic decades, about
0.14% of aggregate income per year. Results for di§erent ! and ea are in Appendix E.
The plots in Figure 7 show that the policy intervention in e§ect is reducing the in-

crease in the share of households with low consumption in the short run following the

50This is the threshold used in our analysis earlier to define low wealth households.
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pandemic, thus helping more households smooth consumption after aggregate-level in-
duced income drops in the first years that follow the pandemic. It also reduces health
inequality compared to the baseline results without intervention, both by mitigating the
increase in the health Gini and the Wagsta§ indices. However, these positive e§ects come
at the cost of increased wealth inequality (see wealth Gini), and in particular, an increase
in the thickness of the left tail of the wealth distribution (see the percentage of households
with negative or low wealth). In turn, the increased share of households with low wealth
also implies an increased share of households that are vulnerable to income drops via
reduced own self-insurance potential, leading to an increase in the share of households
with low consumption in the medium run. The magnitude of the e§ects depends on the
generosity of the policy, and as shown in Appendix E, they are stronger for policies that
imply higher expenditure, albeit at a decreasing rate when the e§ects are normalized by
the cost. However, the direction of the e§ects is robust when fiscal spending is accounted
for, and di§erent spending levels are considered.
The results suggest that intervention implies a trade-o§ between e§ective insurance

from income drops in the short- and medium-run, and another trade-o§ between health
and wealth inequality. The first trade-o§ arises because public insurance e§ectively crowds
out household self-insurance by reducing household-level incentives to accumulate wealth
for this purpose. The disincentives are stronger for households at higher risk, i.e. house-
holds with low wealth, which underlies the increase in wealth Gini and the increases in
the shares of households with low wealth. In other words, the wealth distribution does
not simply shift to the left, but the left tail becomes thicker as well. The second trade-
o§ arises because of the substitutability in the use of health and wealth to respond to
income drops and increases in income risk, which we analysed in Section 3, and given
the aim of the policy intervention to mitigate income (as opposed to health) risk and
its crowding-out e§ects on household wealth. In e§ect, therefore, public insurance policy
against income risk crowds in investment in health. In particular, given that households
with low health and wealth reduce wealth due to the reduction in income risk exposure,
they instead invest a higher share of their resources in improving their health and thus
being in a better position to mitigate health shocks. For example, the public insurance
policy examined corrects about a quarter of the reduction in average health for households
in the lowest quintile of the wealth and health distribution over the first 20 years of the
policy. This implies that the health Gini is reduced, but also, by increasing health for
low wealth households, there is a reduction in the health-wealth concentration captured
by the Wagsta§ index.

6 Conclusions

Pandemics, via their main waves and stochastic recurrent outbreaks, include a combina-
tion of shocks to income and health and increases in income and health risk, while policy
intervention can restrict the potential for consumption, all of which are non-uniformly
distributed across the population. These e§ects generate incentives for households to
smooth consumption and create precautionary bu§ers under an altered set of constraints
imposed on the household budget. These incentives and changes in constraints imply that
either wealth and/or health can be used for consumption smoothing and precautionary
choices, substituting one another in this process. The complexity of options a§orded to
households, which in addition face di§erent types and sizes of shocks, and the dependence
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of household responses on the combination of initial health and wealth, imply that an
assessment of likely changes in health and wealth inequality in the medium run follow-
ing a pandemic requires quantitative analysis that incorporates all these features in an
empirically relevant application.
Our analysis quantifies the scale and form of increases in wealth inequality that result

from the COVID-19 pandemic in the UK and shows that it has severe implications.
First, it amplifies existing and high wealth inequality, and in particular, it leads to a
reduction in wealth for households that were already wealth poor prior to the pandemic.
Second, it is accompanied by increases in health inequality, implying a deterioration in
health for those with lower wealth and/or health, and strengthening the relationship
between wealth and health, thus sowing the seeds for pervasive socioeconomic and health
disparities. Third, recurrent outbreak risk following the main pandemic waves implies
that, with a non-trivial probability, there can be a substantial divergence between median
scenarios and substantially worse outcomes. Fourth, the reduction in wealth for the
wealth-poor makes them particularly vulnerable to future adverse income shocks, as they
lack the required means to self-insure. Fifth, the increase in vulnerability is socially
troubling in addition to being economically painful because it reflects the inability to
implement privately optimal self-insurance plans for those households exposed to post-
pandemic risk, resulting from wealth reduction during the first waves of the pandemic.
Sixth, the increase in inequality and vulnerability take place despite an extensive economic
intervention to support income losses during the main pandemic waves. Seventh, public
insurance interventions to mitigate post-pandemic vulnerability by supporting income
losses for those with low wealth tend to crowd out private insurance by reducing own
wealth accumulation, resulting in an intertemporal trade-o§ in the probability of low
consumption.
Our results underline the di¢cult issues that societies face in the decades that follow a

catastrophic event like a pandemic, an event that, as we find, casts a long shadow in terms
of its distributional e§ects and their implications. Increased vulnerability, in particular,
implies that there is strong potential for increased social pressure for intervention in the
decades that follow the pandemic. Given the shortcomings of over-reliance on ex post
intervention, policies to mitigate risk exposure should include a combination of measures
to both strengthen income resilience ex ante, and provide support ex post.
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Appendix A: Data

The UK Household Longitudinal Study - Understanding Society (UnSoc, ISER (2020)) is
a large longitudinal survey that follows approximately 40,000 households (at Wave 1) in
the UK. UnSoc covers a wide range of social, economic and behavioural factors, making
it relevant to a wide range of researchers and policymakers. Data collection for each
wave takes place over 24 months, and the first wave occurred between January 2009 and
January 2011. Note that the periods of waves overlap, but the individual respondents are
interviewed around the same time each year. Thus, no respondent is interviewed twice
within a wave or a calendar year (see, e.g. Knies (2018)).
The Wealth and Assets Survey (WAS, ONS (2018)) started in July 2006, with the

first wave of interviews carried out over two years to June 2008. The WAS interviewed
approximately 30,500 households, including 53,300 adult household members in Wave
1. The same households were approached again for a Wave 2 interview between July
2008 and June 2010. In this wave, 20,170 households responded (around 70 percent of the
initial sample), including 35,000 adult household members. Waves 3-5 covered the periods
between July and June for 2010-12, 2012-14 and 2014-16, respectively. After Wave 2, due
to sample attrition, the WAS started implementing boost samples in each wave to keep
the number of interviewed households around 20,000 and 35,000-40,000 adult household
members.
The WAS and UnSoc data sets employed in this paper refer to the free "End User

Licence" versions of the datasets. In particular, we use the following datasets, WAS,
SN-721,5 and UnSoc, SN-6614.

A.1 Demographics (UnSoc)

1. Head of the Household: The head of household is defined as the principal owner
or renter of the property (w_hrpno, where the prefix w denotes wave), which coin-
cides with the UnSoc definition of the head of the household and the ONS definition
of the Household Reference Person. In cases where there is more than one head, the
eldest takes precedence over the other heads.

2. Household Members: For each household, we retain the head of the household,
and their spouse/partner if applicable (identified by the variable sppid).

3. Socioeconomic Group: We construct socioeconomic groups by first condensing
the Eight Class NS-SEC (w_jbnssec8_dv), merging subclasses I-II, III-V and VI-
VIII together. Then we generate a new classification by combining these three new
classes with all those who do not have an applicable NS-SEC number (-8) into a 4
class classification. We label the resulting groups "Professionals", "Intermediate",
"Routine" and "Non-employed" respectively. Those without an applicable 8 class
NS-SEC are classed as non-employed. We also re-classify all those who describe
their economic activity (w_jbstat) as "Unemployed", "Retired", "Family Care or
Home Work", and "Long-term sick or disabled" as non-employed. We approximate
the socioeconomic group of the household with the highest of the socioeconomic
groups amongst either the household head or their spouse/partner if applicable.
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A.2 Definitions of income (UnSoc)

Post policy labour income: For post-policy labour income, we use monthly net labour
income in the current job (fimnlabnet_dv) and multiply by 12 to arrive at annual net
labour income. To this, we add miscellaneous income (w_fimnmisc_dv), private benefit
income (w_fimnprben_dv) and social benefit income (w_fimnsben_dv), all multiplied
by 12 to generate annual estimates. All values are deflated using the annual Consumer
Price Deflator for the UK (2015 = 100).

A.3 Definition of severe health events (UnSoc)

Respondents in the UnSoc survey are asked several health-related questions relating
to the existence of several medical conditions. When the household enters the sam-
ple, they are asked about any prior existing condition, and after the initial wave, they
are questioned on whether any new health condition has been diagnosed since the last
interview. We select Congestive Heart Failure (w_hcondn3), Coronary Heart Disease
(w_hcondn4), Heart attack or myocardial infarction (w_hcondn6), Stroke (w_hcondn7),
Emphysema (w_hcondn8), Chronic Bronchitis (w_hcondn11) and Cancer or Malignancy
(w_hcondn13) as examples of severe health events.1 We consider the household as expe-
riencing a severe health event if the household head or their spouse has experienced any
of the health conditions mentioned above since the last interview.
These severe health events can have significant e§ects on the health of households (see

Appendix D, Section 1). A potential worry regarding measuring these e§ects is that a
proportion of individuals who receive these shocks die and never show up in our sample.
UnSoc does include a follow-up question to indicate if a household member has died, but
the information is not detailed enough to establish whether one of the specific health events
was responsible for their passing. To the best of our knowledge cause of death cannot
be established in the basic version of the Understanding Society data without linking
further (confidential) medical data. Consequently, all our results regarding health shocks
and health outcomes should be understood as being conditional on survival. However,
quantitatively our calibration of the probability of severe health events should not be
a§ected significantly by this. To examine this, we use the latest available data from the
NHS Compendium of population health indicators (2016-2018) and collect the crude death
rates for deaths from i) stroke, ii) all circulatory diseases, iii) all cancers & iv) bronchitis,
emphysema and other COPD, amongst the age group of 15 to 64-year-olds, for England
and Wales.2 Across all four causes of death, the mortality rate per 100,000 people is 220,
or 0.22% overall. There are 2, 412 reported severe health events within our sample, or one
severe health event in 2.65% of all available observations. Applying the mortality rate of
0.22% would change the severe health event probability to 2.87%, an increase of less than
10%.

1Note that these variables are coded slightly di§erently in the initial wave since they capture the entire
history prior to the first interview.

2The mortality data is reported in age bins, that fall outwith our sample. Therefore, we are likely
overestimating mortality in this robustness check.
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A.4 Definition of health measure (UnSoc)

We proxy the level of health by the SF-12 Physical Component Summary (PCS) which
corresponds to the variable w_sf12pcs_dv in UnSoc. The PCS is a summary measure of
health constructed from answers to 12 survey questions that are part of the SF-12 Health
Survey. The result is a continuous score of physical fitness (for details, see Jenkinson and
Layte (1997) and Ware et al. (2001)). In the first survey, respondents are walked through
the components of the SF-12 Health Survey by the surveyor. In the following waves, the
SF-12 is part of the self-completion questionnaire. The PCS in the UnSoc has been used
to study, for example, the e§ect of job strain and late retirement on health (Carrino et
al. (2020)), or the e§ect of sleep patterns on health and wellbeing (Tang et al. (2017)).
We standardize the PCS on the interval [0.1, 1] and average across the household head
and their spouse/partner.

A.5 Sample selection (UnSoc)

Our primary sample consists of the General Population Sample, including the Northern
Ireland sample and the Ethnic Minority boost samples. We drop those respondents who
completed proxy interviews and all those where relevant information is missing. We
restrict our sample to those households with heads aged 25 to 60, and further drop full-
time students, apprentices, those in government training schemes, or working unpaid in
family-owned businesses (w_jbstat). We also drop those that have a missing NS-SEC
classification, even though they are classified as working.

Table A1: Household sample selection UnSoc
selection step Total
1. Whole sample of households 229,510
2. Drop if household head cannot be identified 213,975
3. Drop if relevant information is missing 194,302
4. Drop proxy interviews 158,941
5. Drop full time students, apprenticeship, unpaid work in family 156,058
business or unclear
6. Keep household with heads’ aged between 25 and 60 90,916
Average number of household observations per wave 10,101.78

A.6 Sample coverage

The WAS does not cover Northern Ireland, while the UnSoc disproportionately sam-
ples from there. However, dropping Northern Ireland based households from the UnSoc
sample, does not a§ect the descriptive statistics presented in Table 1 in the main text
significantly. For comparison see below:
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Table A2: Income, health & health risk by income quintile
and Socioeconomic Group

Socioeconomic Gr. Relative Income Relative Health Gini Health Severe Health cond.
Professionals 1.57 1.06 0.05 1.8 %
Intermediate 1.07 1.03 0.07 2.0 %
Routine 0.75 0.99 0.08 2.4 %
Non-employed 0.44 0.84 0.17 6.1 %
All 1 1 0.09 2.7 %
Note that Net Income includes taxes and transfers, but not investment income

Source: Pooled Sample UnSoc Waves 1-9; excluding Northern Ireland

A.7 Demographics (WAS)

1. Head of the Household: We define the head of household as the principal owner
or renter of the property, and, when there is more than one head, the eldest takes
precedence. This follows the ONS definition for the Household reference person
(HRP) which is what the UnSoc follows as well. We use of the following variables:
(HhldrW), (HiHNumW), (DVAGEw) and/or (DVAge17w).

2. Socioeconomic Group: We use the eight Class NS-SEC (NSSEC8W) and we
follow the same steps as for Unsoc.

3. Employment Status: We use the variables for economic activity: (ecactw) for
Waves 1-3 and (DVecactw) for Waves 4-5.

A.8 Definition of wealth (WAS)

1. Net property wealth: is the sum of all property values minus the value of all
mortgages and amounts owed as a result of equity release. (HPROPWW).3

2. Net financial wealth: is the sum of the values of formal and informal financial
assets, plus the value of certain assets held in the names of children, plus the value
of endowments purchased to repay mortgages, less the value of non-mortgage debt.
The informal financial assets exclude very small amounts (less than £250) and the
financial liabilities are the sum of current account overdrafts plus amounts owed on
credit cards, store cards, mail order, hire purchase and loans plus amounts owed
in arrears. Finally, money held in Trusts, other than Child Trust Funds, is not
included. (HFINWNTW_sum).

3. Net Worth: is the sum of the net property wealth and net financial wealth.

3All values are deflated using the annual Consumer Price Deflator for the UK (2015 = 100).
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A.9 Sample selection (WAS)

We follow similar steps as in the sample selection for Understanding Society.

Table A3: Household sample selection WAS
selection step Total
1. Whole sample of households 110,963
2. Drop households with mis-reported age variable 110,937
3. Drop households with duplicate hh grid numbers 110,910
4. Drop if NS-SEC is missing, either head or partner 109,820
5. Keep if heads’ age between 25 and 60. 58,875
6. Drop if the head is student 58,218
Average net worth obs per wave 11,643.6

Appendix B: Theoretical results

B.1 Setup

The problem of the households is given by:

max
(at+1)

1
t=0,(ht+1)

1
t=0,(ct)

1
t=0,(xt)

1
t=0

E0

1X

t=0

βtu(ct, ht+1),

where

c (at, ht, at+1, ht+1) = (1 + r(zt))at + w(et, zt)− at+1 − x(ht,ht+1),
et = (nt, lt, st) , ht+1 = δ(et, zt)ht +m (xt) ,

xt ≡ x(ht,ht+1) = m−1 (ht+1 − δ(et, zt)ht) ,
at+1 2 A0, and ht+1 2 H 0, where A0 and H 0

are defined to satisfy the constraints

ct, xt ≥ 0, at+1 ≥ amin, hmin ≤ ht ≤ hmax,
δ(et, zt)ht ≤ ht+1 ≤ hmax

Assume that:
uct > 0, uctct < 0, (1)

uht+1 > 0, uht+1ht+1 < 0, (2)

and that:

mxt > 0,mxtxt < 0, (3)

lim
xt!0

mxt = +1, (4)

−uctctxht+1(ht,ht+1) + uctht+1 > 0. (5)
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Note that:

@uct (c (at, ht, at+1, ht+1) , ht+1)

@at+1
= uctctcat+1 (at, ht, at+1, ht+1) (6)

@uct+1 (c (at+1, ht+1, at+2, ht+2) , ht+2)

@at+1
= uct+1ct+1cat+1 (at+1, ht+1, at+2, ht+2) (7)

@uht+1 (c (at, ht, at+1, ht+1) , ht+1)

@at+1
= uht+1ctcat+1 (at, ht, at+1, ht+1) (8)

@uct (c (at, ht, at+1, ht+1) , ht+1)

@ht+1
= uctctcht+1 (at, ht, at+1, ht+1) + uctht+1 (9)

@uct+1 (c (at+1, ht+1, at+2, ht+2) , ht+2)

@ht+1
= uct+1ct+1cht+1 (at+1, ht+1, at+2, ht+2) (10)

@uht+1 (c (at, ht, at+1, ht+1) , ht+1)

@ht+1
= uht+1ctcht+1 (at, ht, at+1, ht+1) + uht+1h+1 , (11)

where:

xht(ht,ht+1) < 0, xhtht(ht,ht+1) > 0 (12)

xht+1(ht,ht+1) > 0, xht+1ht+1(ht,ht+1) > 0 (13)

cat (at, ht, at+1, ht+1) = 1 + r(zt) > 0 (14)

cxt (at, ht, at+1, ht+1) = −1 < 0 (15)

cat+1 (at, ht, at+1, ht+1) = −1 < 0 (16)

cht (at, ht, at+1, ht+1) = −xht(ht,ht+1) > 0 (17)

cht+1 (at, ht, at+1, ht+1) = −xht+1(ht,ht+1) < 0. (18)

To see (12) and (13), note that

x−1ht (ht,ht+1) =
(
m−1)0 (ht+1 − δ(et, zt)ht)

(Inv. Func. Theorem) =
1
dm
dx

d (ht+1 − δ(et, zt)ht)
dht

=
1

mxt
>0

(−δ(et, zt))
<0

< 0

x−1htht(ht,ht+1) =
(
(mxt)

−1)0 (−δ(et, zt))

=
((
m0(m−1(ht+1 − δ(et, zt)ht))

)−1)0
(−δ(et, zt))

(Inv. Func. Theorem) = (−1)
<0

mxtxt
<0

1

mxt
>0

(mxt)
−2

>0

(−δ(et, zt))2
>0

> 0
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x−1ht+1(ht,ht+1) =
(
m−1)0 (ht+1 − δ(et, zt)ht)

(Inv. Func. Theorem) =
1
dm
dx

d (ht+1 − δ(et, zt)ht)
dht+1

=
1

mxt
>0

1 < 0

x−1ht+1ht+1(ht,ht+1) =
(
(mxt)

−1)0

=
((
m0(m−1(ht+1 − δ(et, zt)ht))

)−1)0

(Inv. Func. Theorem) = (−1)
<0

mxtxt
<0

1

mxt
>0

(mxt)
−2

>0

> 0

The relationships in (14)-(18) are derived by using the budget constraint and (12)-(13).

B.2 Results

Assuming interior solutions, optimality requires that the two Euler conditions are satisfied:

uct = βE
[
uct+1(1 + r(zt+1)

]
, (19)

and
uctxht+1(ht,ht+1)− uht+1 = βE

[
uct+1

(
−xht+1(ht+1,ht+2)

)]
. (20)

Lemma 1

Assume that (1) - (5) hold. Given a process (zt), for any (at, at+2) 2 A, (ht, ht+2) 2(
hmin, hmax

)
, and et 2 E:

a) If at+1 and ht+1 that satisfy (19) in period t exist, the locus of their combinations
is a downward slopping function. Similarly, the locus of combinations of at+1 and ht+1
that satisfy (20) in period t is a downward slopping function. Moreover, when ht+1 !
δ(et, zt)ht, higher values for at+1 are required to satisfy (20), compared with (19).
b) A combination of at+1 and ht+1 that is feasible and satisfies (19) and (20) simul-

taneously must be an intersection point of the downward slopping functions in a) that is

within an area defined by vertical lines at δ(et, zt)ht and min
n

ht+2
δ(et,zt)

, hmax
o
, a horizontal

line at amin, and the function amaxt+1 = b (ht+1) = (1 + r(zt))at + w(et, zt)− x(ht,ht+1).

Proof

Assuming interior solutions, the Euler equations are:

F ea ≡ uct − βE
[
uct+1(1 + r(zt+1)

]
= 0, (21)

and:
F eh ≡ uctxht+1(ht,ht+1)− uht+1 − βE

[
uct+1

(
−xht+1(ht+1,ht+2)

)]
= 0. (22)
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a) Define the function f ea, at+1 = f ea (ht+1), giving the combinations of (at+1, ht+1)
such that F ea = 0, i.e. the locus of solutions to (21)). Define the function f eh, at+1 =
f eh (ht+1), giving the combinations of (at+1, ht+1) such that F eh = 0, i.e. the locus of
solutions to (22)). Using (6)-(11) and (12)-(18), we have that:

F eaat+1 = −uctct − βE
[
uct+1ct+1(1 + r(zt+1)

2
]
> 0,

F eaht+1 = −uctctxht+1(ht,ht+1) + uctht+1 − βE
[
uct+1ct+1

(
−xht+1(ht+1,ht+2)

)
(1 + r(zt+1)

]
> 0,

F ehat+1 = −uctctxht+1(ht,ht+1) + uctht+1 − βE
[
uct+1ct+1

(
−xht+1(ht+1,ht+2)

)
(1 + r(zt+1)

]
> 0,

F ehht+1 =

8
>>>><

>>>>:

−uctct
(
xht+1(ht,ht+1)

)2
+ uctxht+1ht+1(ht,ht+1)

+uht+1ctxht+1(ht,ht+1)− uht+1h+1
−βE

h
uct+1ct+1

(
−x−1ht+1(ht+1,ht+2)

)(
−x−1ht+1(ht+1,ht+2)

)i

−βE
h
uct+1

(
−x−1ht+1ht+1(ht+1,ht+2)

)i

9
>>>>=

>>>>;

> 0

Given monotonicity of (21) and (22), for any ht+1, if there is at+1 that satisfies (21), it
will be unique, and if there is at+1 that satisfies (22), it will be unique. Therefore, for the
relevant domains where the mappings f ea and f eh are well defined, they are functions.
Given any combination (at+1, ht+1) such that F ea = 0 (i.e. any point in f ea), a change

in (at+1, ht+1) such that the new combination remains on the f ea function, requires that:

dF ea = 0, or

F eaat+1dat+1 + F
ea
ht+1

dht+1 = 0,

which implies that
dat+1
dht+1

= −
F eaht+1
F eaat+1

.

Since F eaht+1 , F
ea
at+1

> 0, dat+1
dht+1

< 0. Therefore, the locus of combinations of (at+1, ht+1) that
define f ea is downward slopping.
Given any combination (at+1, ht+1) such that F eh = 0 (i.e. any point in f eh), changes

in (at+1, ht+1) that remain on the f eh function, requires that:

dF eh = 0, or

F ehat+1dat+1 + F
eh
ht+1

dht+1 = 0,

which implies that:
dat+1
dht+1

= −
F ehht+1
F ehat+1

.

Since F ehht+1 , F
eh
at+1

> 0, dat+1
dht+1

< 0. Therefore, the locus of combinations of (at+1, ht+1) that
define f eh is downward slopping.
Next, denote x(ht,ht+1) = m−1 (ht+1 − δ(et, zt)ht) as x(lt) = m−1

(
lt
)
, where lt ≡
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ht+1 − δ(et, zt)ht. Note that ht+1 ! δ(et, zt)ht implies that lt ! 0. Since xht+1(ht,ht+1) =
m−1
lt

(
lt
)
= 1

mxt
, and limxt!0mxt = +1, limlt!0m

−1
lt

(
lt
)
= 0.

Consider the behaviour of
(
F ea, F eh

)
when ht+1 ! δ(et, zt)ht. Since

lim
ht+1!δ(et,zt)ht

xht+1(ht,ht+1) = lim
lt!0

m−1
lt

(
lt
)
= 0,

(22) cannot be satisfied for any finite value of at+1. Therefore, a necessary condition for
(22) to hold is that at+1 ! +1. Hence, when ht+1 ! δ(et, zt)ht, F eh must imply higher
values for at+1 than F ea.
b) The constraints for the household problem require that:

ct, xt ≥ 0, at+1 ≥ amin, hmin ≤ ht ≤ hmax.

In turn, these imply that: (i) xt = ht+1−δ(et, zt)ht+1 ≥ 0; (ii) xt+1 = ht+2−δ(et+1, zt+1)ht ≥
0, and (iii) hmin ≤ ht+1 ≤ hmax, so that δ(et, zt)hmin ≤ δ(et, zt)ht ≤ ht+1 ≤ {min ht+2

δ(et,zt)
,

hmax}. Moreover, ct ≥ 0 implies that, to be feasible, combinations of (at+1, ht+1) must
be below the function at+1 = (1 + r(zt))at + w(et, zt) − x(ht,ht+1), which in turn defines
amaxt+1 as a function of ht+1. Therefore, combinations of at+1 and ht+1 that are feasible
and satisfies (19) and (20) simultaneously must be an intersection point of the down-
ward slopping functions f ea and f eh and be within an area defined by vertical lines
at δ(et, zt)ht and hmax, a horizontal line at amin, and the function amaxt+1 = b (ht+1) =
(1 + r(zt))at + w(et, zt)− x(ht,ht+1). This is shown in Figure 1 in the main text. !

Lemma 2

Given a process (zst ), assume that a household in period t chooses (a
s
t+1, h

s
t+1) 2((

amin,+1
)
,
(
hmin, hmax

))
that satisfy (19) and (20). Consider an aggregate-level sto-

chastic process (zpt ) which implies that in period t the rhs of (19) and (20) are higher
(lower) relative to the lhs compared with (zst ), conditional on (at, at+2) 2 A, and (ht, ht+2) 2(
hmin, hmax

)
. Then:

a) The downward slopping f ea and f eh shift outwards (inwards), and at least one of
at+1 and ht+1 increase (decrease) relative to (ast+1, h

s
t+1).

b) The change in at+1 relative to ast+1 is a negative function of the change ht+1 relative
to relative to hst+1, and vice versa.

Proof

a) Using (6)-(11) and (12)-(18), the rhs of (21) and (22) are increasing functions of
both at+1 or ht+1, while the lhs are decreasing functions of both at+1 or ht+1, for any
(at, at+2) 2 A, (ht, ht+2) 2

(
hmin, hmax

)
, and et 2 E.

Consider the case where, under the change from (zst ) to (z
p
t ), the rhs of (21) and (22)

increase relative to the lhs. Assume that both at+1 and ht+1 decrease. Then, the rhs of
(21) and (22) increase more, while the lhs decrease more, hence such a change cannot be
optimal. Therefore, at least one of at+1 or ht+1 must increase.
Consider the case where, under the change from (zst ) to (z

p
t ), the rhs of (21) and (22)

decrease relative to the lhs. Assume that both at+1 and ht+1 increase. Then the rhs of
(21) and (22) decrease more, while the lhs increase more, hence such a change cannot be
optimal. Therefore, at least one of at+1 or ht+1 must decrease.
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An increase (decrease) in the rhs of (21) relative to the lhs implies that, for any value
of ht+1, an increase in at+1 is required; and, for any value of at+1, an increase in ht+1 is
required. Therefore, f ea shifts outwards (inwards). Similar arguments apply regarding
changes to f eh. The new equilibrium is found at the intersection of the two new functions,
and thus must imply that at least one of at+1 and ht+1 is higher. This is shown in Figure
B1.

Figure B1: An example of curve shifting when the rhs increases relative to the lhs

b) Consider the case where, under the change from (zst ) to (z
p
t ), the rhs of (21) and

(22) increases relative to the lhs. Consider any two possible choices for ht+1, h1t+1 and h
2
t+1,

with ht < h1t+1 < h
2
t+1. The increase in ht+1 tends to increase and decrease, respectively,

the lhs and rhs of (21) and (22). The changes are larger for h2t+1 compared with h
1
t+1.

Therefore, if an increase in at+1 is required, it will be smaller for h2t+1 compared with h
1
t+1.

Note that this is true for both (21) and (22). If a decrease is required it will be larger
for h2t+1 compared with h

1
t+1. Similarly, if h

1
t+1 < h2t+1 < ht, then an increase in at+1 is

required, and it will be smaller for h2t+1 compared with h
1
t+1. Finally, if h

1
t+1 < ht < h

2
t+1,

then at+1 will need increase less for h2t+1 compared with h
1
t+1. Conversely, considering

any two possible choices for at+1, a1t+1 and a
2
t+1, with a

1
t+1 < a

2
t+1, and working as above,

we conclude that an increase in ht+1 will be smaller for a2t+1 compared with a
1
t+1, and a

decrease larger for a2t+1 compared with a
1
t+1.

Consider the case where, under the change from (zst ) to (zt), the rhs of (21) and (22)
decreases relative to the lhs. Consider any two possible choices for ht+1, h1t+1 and h

2
t+1,

with h1t+1 < h
2
t+1 < ht. The decrease in ht+1 tends to decrease and increase, respectively,

the lhs and rhs of (21) and (22). The changes are larger for h1t+1 compared with h
2
t+1.

10



Therefore, if a decrease in at+1 is required, it will be larger for h2t+1 compared with h
1
t+1.

Note that this is true for both (21) and (22). If an increase is required it will be smaller
for h2t+1 compared with h

1
t+1. Similarly, if ht < h1t+1 < h2t+1, then a decrease in at+1 is

required, and it will be larger for h2t+1 compared with h
1
t+1. Finally, if h

1
t+1 < ht < h

2
t+1,

then at+1 will need decrease more for h2t+1 compared with h
1
t+1. Conversely, considering

any two possible choices for at+1, a1t+1 and a
2
t+1, with a

1
t+1 < a

2
t+1, and working as above,

we conclude that a decrease in ht+1 will be larger for a2t+1 compared with a
1
t+1, and an

increase smaller for a2t+1 compared with a
1
t+1.!

Lemma 3

Assume that a household in period t chooses (ast+1, h
s
t+1) 2

((
amin,+1

)
,
(
hmin, hmax

))

that satisfy (19) and (20) for given (ast , a
s
t+2) 2 A,

(
hst , h

s
t+2

)
2
(
hmin, hmax

)
, and est 2 E.

Consider a change in (ast , h
s
t) and/or in

(
ast+2, h

s
t+2

)
which increases (decreases) the rhs of

(19) and (20) relative to the lhs in period t. Then, the downward slopping f ea and f eh

shift outwards (inwards), and at least one of at+1 and ht+1 increase (decrease) relative to
(ast+1, h

s
t+1).

Proof

The proof follows similar arguments to those in Lemma 2 a), for an increase (decrease)
in the rhs of (19) and (20) relative to the lhs in period t. This change is also captured in
Figure B1. !

Proposition 1

Given a process (zst ), assume that a household in period t chooses (a
s
t+1, h

s
t+1) 2((

amin,+1
)
,
(
hmin, hmax

))
that satisfy (19) and (20). Conditional on (at, at+2) 2 A,

and (ht, ht+2) 2
(
hmin, hmax

)
, a change in the aggregate-level stochastic process in period

t from (zst ) to (z
p
t ) implies that ceteris paribus:

a) A surprise drop in earnings or asset income in period t leads to a fall in at least one
of at+1 and ht+1 (i.e. a

p
t+1 ≤ ast+1 and/or h

p
t+1 ≤ hst+1).

b) A surprise upper limit on consumption cl in period t leads to an increase in at least
one of at+1 and ht+1 (i.e. a

p
t+1 ≥ ast+1 and/or h

p
t+1 ≥ hst+1) for the subset of households for

which (apt+1, h
p
t+1) implies c

p
t > c

l.
c) An increase in the probability of future drops in earnings or asset income leads to

an increase in at least one of at+1 and ht+1 (i.e. a
p
t+1 ≥ ast+1 and/or h

p
t+1 ≥ hst+1).

d) A positive probability for a future upper limit on consumption leads to a fall in at
least one of at+1 and ht+1(i.e. a

p
t+1 ≤ ast+1 and/or h

p
t+1 ≤ hst+1).

Proof

a) A decrease in w(zpt ; e
p
t ) or in r(z

p
t ) implies a decrease in c

p
t and thus, given concavity

of the utility function, an increase in uct. Assuming no e§ects on neither w(z
p
t+1; e

p
t+1) nor

r(zpt+1), these changes do not a§ect the rhs of (19) and (20), and thus tend to decrease
the rhs in (19) and (20) relative to the lhs. Given Lemma 2, at least one of at+1 and ht+1
must decrease.
b) The introduction of the consumption limit implies that uct drops to zero from

a positive number for the subset of households for which (apt+1, h
p
t+1) implies c

p
t > cl,
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implying a reduction in the lhs of (19) and (20) for these households. Given Lemma 2, at
least one of at+1 and ht+1 must increase.
c) A decrease in w(zpt+1; e

p
t+1) in any state of z

p
t+1 implies a decrease in c

p
t+1 in that

state of zpt+1 and thus, given concavity of the utility function, an increase in uct+1 in the
state zpt+1. Because the expectation operator preserves monotonicity, this implies that
the rhs of (19) and (20) increase. Assuming no e§ects on w(zpt ; e

p
t ), these changes do not

a§ect the lhs of (19) and (20), and thus tend to increase the rhs in (19) and (20) relative
to the lhs. Given Lemma 2, at least one of at+1 and ht+1 must increase.
d) A limit on consumption cl in future periods that binds for specific states of zpt+1

and when cpt+1 > cl introduces a discontinuity in uct+1, which, for the exogenous states
including the limit, becomes zero for apt+1 and h

p
t+1 for which c

p
t+1 > c

l. In other words, the
introduction of the consumption limit implies that the state space includes states where
uct+1 drops to zero from a positive number, implying a reduction in the rhs of (19) and
(20) relative to the lhs. Given Lemma 2, at least one of at+1 and ht+1 must decrease. !

Appendix C: Computation

This appendix provides explanations about the computational and mathematical tech-
niques used to obtain the computational results in the main text.

C.1 Computation of the benchmark model

The solution of the benchmark model requires two main steps: i) the solution of the
household problem to obtain the policy functions for the next period assets and next
period health; and ii) the calculation of the cross-sectional distribution.

C.1.1 Solving the household’s problem

We compute the policy functions at+1 = ga (at, ht, yt), ht+1 = gh (at, ht, yt), ct = gc (at, ht, yt)
and xt = gx (at, ht, yt), that solve the recursive problem:

V (at, ht, yt) = max
ct,at+1,xt,ht+1

{u(ct, ht+1) + βE[V (at+1, ht+1, yt+1)|yt]} , (23)

subject to

ct + at+1 + xt = (1 + r(zt) + π(1at<0))at + w(yt),

ht+1 = δ(yt)ht +m (xt) ,

δ(yt)ht ≤ ht+1 ≤ hmax, 0 ≤ ct ≤ cl(zt), (24)

xt ≥ 0, at+1 ≥ amin, and hmin ≤ ht ≤ hmax,

where V (at, ht, yt) denotes the optimal value of the objective function starting from state
(at, ht, yt), and yt ≡ (nt, lt, st, zt) and 1at<0 is an indicator function taking the value one
when the household has negative wealth. Note that the representation in (23) - (24)
includes a potential consumption limit, cl(zt), as a function of the aggregate state and a
penalty paid on borrowing, π, which, as explained in Section 4, reflect relevant empirical
properties. As a function of the household-level state variables, the policy functions are
time varying, depending on the aggregate state in zt: at+1 = ga (at, ht, et; zt), ht+1 =
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gh (at, ht, et; zt), ct = gc (at, ht, et; zt), and xt = gx (at, ht, et; zt). For ease of notation, we
drop the explicit dependence of et on zt, i.e. et(zt).
We solve the household’s problem using Value Function Iteration with interpolation

on the recursive problem presented in section 3. The solution method requires the dis-
cretization of the state space. For the assets we let amin = −0.0059 and amax = 20 and
following Maliar et al. (2010) we discretise the space of household assets

[
amin, amax

]
by

allowing for ea = 100 points with the following formula:

aj = a
min + (amax − amin)(

j − 1
100− 1

)2, 8j = 1, ..., 100

For health, we let hmin = 0.1 and hmax = 1 and we discretise the space of household assets[
hmin, hmax

]
by allowing for eh = 25 points with the following formula:

hq = h
min + (hmax − hmin)(

q − 1
25− 1

), 8q = 1, ..., 25.

The solution method requires interpolation of the value function because we allow the
choice variables, a0 and h0, to be o§ the grid when we maximise the Bellman equation.
In this respect, we use a 7th order polynomial approximation of the value function over
the endogenous state variables interacted with all exogenous states (see e.g. Maliar and
Maliar (2014)).4 Let y 2 Y = N z × Λz × Sz × Z and let the values on this grid to be
Y ≡ {y&}

ey
&=1

where each y& is a vector containing a unique combination of n, l, s and z.

Then, let V̂ (a, h, y) be the approximated value function for given values of a, h and y :

V̂ (a, h, y) =
α0,& + α1,&a+ α2,&h+ α3,&ah+ ...
+α34,&a

7 + α35,&h
7 + α36,&a

7h7

To obtain the set of coe¢cients α =
[
[ακ,& ]

36
κ=1

]ey
&=1

for each y& we run linear regressions of
the type

V ech [V (A,H, y = y&)] =

α0,& + α1,&V ech [A⊗ JNh ]
+α2,&V ech [JNa ⊗H] + α3,&V ech [A×H] + ...
+α34,&V ech [A⊗ JNh ]7 + α735,&V ech [JNa ⊗H]
+α736,&V ech [A⊗ JNh ]7 ◦ V ech [JNa ⊗H]7

where V ech denotes the vectorisation operator, ⊗ denotes the Kronecker product and ◦
element-wise multiplication. We measure the convergence over the Value Function and
we set the convergence criterion to 10−8.

Algorithm 1: solving the household problem

1. Set up the grid for the state variables and choose a stopping criterion " > 0.

2. Given a guess Vi obtain the initial set of coe¢cients αi via linear regression.

4The approximation provides a balance between accuracy of the solution and speed. Chebychev
polynomials proved to be numerically unstable, while piecewise polynomial approximations are infeasible
given the dimensionality of the problem.

13



3. For each point on the grid, (a, h, y), numerically solve the maximisation problem

Vi+1(a, h, y) = max
c,x,a0

(
u(c, h0) + β

X

y2Y

π(y0|y)V̂i(a0(a, h, y), h0(a, h, y), y0)

)

s.t

c+ a0 + x = (1 + r(z) + π(1a<0))a+ w(y)

h0 = δ(y)h+m(x)

hmax ≥ h0 ≥ hmin, cl(z) ≥ c ≥ 0,
x ≥ 0, amax ≥ a0 ≥ amin

Obtain a0 = ga(a, h, y), c = gc(a, h, y), x = gx(a, h, y) and h0 = gh(a, h, y) from the
solution.

4. Use Vi+1(a, h, y) to calculate the set of coe¢cients αi+1 via a linear regression.

5. If kVi+1 − Vik1 < " stop, otherwise set Vi = Vi+1 and go back to step 3.

C.1.2 Simulating the distribution

We follow Young (2010) and Heer and Maussner (2009) in computing the stationary
distribution. In particular, we simulate the evolution of the stationary distribution of all
exogenous and endogenous variables using a nonstochastic simulation method. The basic
strategy of this method is as follows. We need first to form the histogram of the joint
distribution assigning a probability mass λ(x, u) ≥ 0 (where x denotes the endogenous
state variables and u the exogenous state variables) to every point (x, u) 2 [X × U ],
so that the resulting histogram λ has a total probability mass of 1. Then we use the
policy functions and the conditional probabilities of the exogenous process to compute
the distribution over the state space X ×U that will hold at the end of the period. Since
the policy functions do not have to lie on the grid, we need to redistribute the current
mass on a point using linear interpolation to generate approximate decision rules.
The algorithm above has been used extensively in the literature of heterogeneous

agents incomplete markets models but usually for one endogenous state variable. Here,
we extend this approach to two endogenous state variables, i.e. the state space here is
(a, h, e) 2 [A×H × E]. Below we explain the computational algorithm analytically.

Algorithm 2: computing the cross sectional distribution

1. Draw a random series of aggregate states, {zt}
T
t=1, starting from a pandemic i.e.

z1 = C.

2. For each z, compute weights for each j = 1, ...,ea and (a, h, e) 2 A × H × E such
that:

• For all j = 2, ...,ea− 1

%aj (a, h, e; z) =

8
><

>:

1− ga(a,h,e;z)−aj

aj+1−aj if aj−1 ≤ ga(a, h, e; z) ≤ aj
ga(a,h,e;z)−aj
aj+1−aj if aj ≤ ga(a, h, e; z) ≤ aj+1

0 otherwise
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• For j = 1

%a1(a, h, e; z) =

8
<

:

1− ga(a,h,e;z)−aj
aj+1−aj if a1 ≤ ga(a, h, e; z) ≤ a2

1 if ga(a, h, e; z) < a1

0 otherwise

• For j = ea

%aea(a, h, e; z) =

8
<

:

1 if ga(a, h, e; z) > aea
ga(a,h,e;z)−aj
aj+1−aj if aea−1 ≤ ga(a, h, e; z) ≤ aea

0 otherwise

3. Compute weights for each q = 1, ...,eh and (a, h, e) 2 A×H × E such that:

• For all q = 2, ...,eh− 1

%hq (a, h, e; z) =

8
><

>:

1− gh(a,h,e;z)−hj
hj+1−hj if hj−1 ≤ gh(a, h, e; zt) ≤ hj

gh(a,h,e;z)−hj
hj+1−hj if hj ≤ gh(a, h, e; z) ≤ hj+1

0 otherwise

• For q = 1

%h1(a, h, e; z) =

8
<

:

1− gh(a,h,e;z)−hj
hj+1−hj if h1 ≤ gh(a, h, e; z) ≤ h2

1 if gh(a, h, e; z) < h1

0 otherwise

• For q = eh

%heh(a, h, e; z) =

8
><

>:

1 if gh(a, h, e; z) > heh
gh(a,h,e;z)−hj
hj+1−hj if heh−1 ≤ gh(a, h, e; z) ≤ heh

0 otherwise

4. Set the initial cross-sectional distribution to be the stationary cross-sectional distri-
bution i.e. λ0 = λ∗(a, h, e). Then we can calculate the cross-sectional distribution
at time t = 1, by using the distribution function

λ1(a
j, hq, e0; z0 = C) =

X

e

πC(e0|e)
X

a2A

X

h2H

%aj (a, h, e)%
h
q (a, h, e)λ

∗(a, h, e).

where %aj (a, h, e) and %
h
q (a, h, e) are constructed working as in Step 3, but by using

the policy functions of the stationary model.

5. For t > 1, given the distribution function λt(a, h, e; z), update the distribution using
the realisation of zt = z and the transition function for all j = 1, ...,ea and q = 1, ...,eh,

λt+1(a
j, hq, e0; z0) =

X

e

πz
0
(e0|e)

X

a2A

X

h2H

%aj (a, h, e; z)%
h
q (a, h, e; z)λt(a, h, e; z).
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6. Stop when t > T .

We simulate the economy for a long time series of {zt}
10100
t=1 , discarding the first 100 pe-

riods, and find that the model aggregates, mean assets and mean health, exhibit bounded
fluctuatins indicating long-run stationarity.

C.2 Stationary model

To obtain the dynamic programming formulation of the household’s problem in the sta-
tionary environment where zt ≡ z∗, 8t, we use the joint distribution et = (nt, lt, st) (with
the appropriate Markov chain associated with transition matrix Q∗; see Appendix D for
details), and let vst (at, ht, et) denote the optimal value of the objective function starting
from state (at, ht, et). The Bellman equation is:

vst(at, ht, et) = max
ct,at+1,xt

{
u(ct, ht+1) + βE[v

st(at+1, ht+1, et+1)|et]
}

(25)

s.t.

ct + at+1 + xt = (1 + r(z
∗) + π(1a<0))at + w(et)

ht+1 = δ(et)ht +m (xt)

hmax ≥ h0 ≥ hmin, ct ≥ 0, xt ≥ 0, at+1 ≥ amin (26)

and the policy functions that solve (25) are at+1 = qa (at, ht, et), ct = qc (at, ht, et), ht+1 =
qh (at, ht, et) and xt = qx (at, ht, et). We use at+1 = qa (at, ht, et), ht+1 = qh (at, ht, et) and
the Markov chain et to calculate the invariant cross-sectional distribution λ∗ (A×H × E).
A Stationary Recursive Equilibrium is a set of policy functions qa, qh, qc and qx, and

a stationary distribution λ∗ of (at, ht, et) on A×H×E, such that: for each household the
policy functions qa, qh, qc, qx and the value functions vst (at, ht, et) solve the households’
optimum problems in (25).

C.2.1 Computation of the stationary model

The computation is almost identical to the benchmark model with the only di§erences
being that the exogenous process is e 2 E = N×L×S instead of y 2 Y = N×L×S×Z and
λ0 is an arbitrary initial distribution. To find the stationary cross-sectional distribution
we iterate the distribution until it converges, using a convergence criterion of 10−8.

C.3 Generating the figures

We apply the methods outlined above to generate the results summarised in di§erent
figures as follows.

Figures 2 & 3 To generate the results from the benchmark model in figures 2 and 3
follow the algorithm below:

Algorithm 3: computing the transition dynamics and theirs bands

1. Solve the problem of the household for the stationary world and calculate the sta-
tionary distribution λ∗ as described in C.2.1.
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2. Solve the problem of the household for the world with pandemic risk using Algorithm
1.

3. Draw 5000 random sequences of aggregate states,
{
zbt
}T
t=1
, starting always from a

pandemic i.e. z1 = C.

4. For each sequence
{
zbt
}T
t=1
, simulate the distribution forward for t = 1, ..., T to

calculate a series of cross-sectional distributions
{
λbt
}T
t=1

as described in Algorithm
2.

5. For each sequence
{
zbt
}T
t=1
, calculate the aggregate variables and statistics of interest

(e.g. Gini) by using
{
λbt
}T
t=1
, the policy functions {ga(at, ht, et; zt)}

T
t=1,

{
gh(at, ht, et; zt)

}T
t=1
,

{gc(at, ht, et; zt)}
T
t=1 and {g

x(at, ht, et; zt)}
T
t=1 and the value functions {v(at, ht, et; zt)}

T
t=1.

6. For each period t, we calculate various percentiles of the aggregate variables and
other statistics over interest to create confidence-interval like bands.

To obtain the path of the one-o§ pandemic counterfactual, solve the model using the
modified aggregate transition matrix, described in Appendix D. Follow the steps above,
but note that since there is no aggregate uncertainty in this counterfactual it is su¢cient
to simulate a single economy.

Figures 4 & 5 To create figures 4 and 5 follow the algorithm below:

Algorithm 4: computing the transition dynamics of households starting from
different initial conditions

1. Calculate the desired percentile of at (a
pct
t ) using the stationary distribution λ

∗(a, h, e)
and the policy function qa (a, h, e).

2. Generate the initial distribution λ+, by setting all mass located at points other than
apctt to 0 and renormalising λ+ to have total mass 1.5

3. Follow the steps 2-5 of Algorithm 3 above to obtain the dynamics under uncertainty
of households starting with wealth apctt . For each sequence

{
zbt
}T
t=1

and for each
period calculate the average health and wealth.

4. Average across all simulations to obtain the unconditional expectation of the evo-
lution of wealth and health for the selected subset of households.

5. Repeat step 3, but instead of using the policy functions and aggregate transition
matrix under aggregate uncertainty, impose that the economy remains in zt ≡ z∗ for
ever and the household use the stationary equilibrium policy functions qa (at, ht, et)
to make decisions. As there is no aggregate uncertainty in this case, only one
simulation is needed (for the sequence {z∗}Tt=1).

6. Calculate the percentage deviation between the values in step 4 from those in step
5.

5To obtain the distribution by socioeconomic group simply replace apctt with the desired exogenous
state.
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Figure 6 To create figure 6 follow the algorithm below:

Algorithm 5: computing the transition dynamics of households starting from
different initial conditions with surprise income shock

1. Solve the problem of the household with pandemic risk using Algorithm 1.

2. Using the value function obtained in step 1, solve a one period optimization problem,
where the desired income drop is imposed and the continuation value is the same
as in step 1. Save the decision rules from this problem.

3. Choose a time ts for when the surprise shock is going to hit the economy.

4. Simulate the distribution as explained in Algorithm 2 substituting the policy func-
tions at time ts with those obtained in step 2. Average across all simulations to
obtain the unconditional expectation of the evolution of wealth and health for the
selected subset of households.

5. Follow the steps 2-5 of Algorithm 3 above to obtain the dynamics under uncertainty
of households starting with wealth apctt . For each sequence

{
zbt
}T
t=1

and for each
period calculate the average health and wealth. Average across all simulations to
obtain the unconditional expectation of the evolution of wealth and health for the
selected subset of households.

6. Calculate the percentage deviation between the values in step 4 from those in step
5.

Appendix D: Calibration

D.1 Health

D.1.1 E§ects of severe health events

Using the SF-12 PCS measure6 of self-reported health, we find that individuals report
much lower physical functioning scores after experiencing a severe health event, reflecting
the impairment su§ered from the shock. Figure D1 below plots the evolution of the PCS
measure7 for households who experience a severe health shock at time t. There is a stark
drop of almost 10% in reported health at the household level when at least one household
member experiences a severe health shock. In the periods following the shock, household
health recovers moderately, to around 95% of its original level, but the e§ects of these
large shocks seem to be very persistent, and households do not appear to fully recover, as
long as we can observe them in our sample. Even five years after the shock, self-reported
health is around 5% lower than before the shock.

6See Appendix A for details.
7For convenience, we standardize the measure to have mean 1 in the period before the health shock

is experienced. The shaded areas denote 95% confidence intervals.
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Figure D1: Relative change in the SF-12 PCS measure following a severe
health shock.
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Source: Pooled Sample UnSoc Waves 1-9

We use this observation to motivate our modelling decision of the three health states
s1, s2 and s3, since there is a clear distinction between the time before and after the shock
and between the year in which the shock is experienced and subsequent years. Specifically,
we interpret s3 as the period, where the initial short-run e§ects of the shock have already
been absorbed, but the household is still su§ering from long-run after e§ects.

D.1.2 Robustness

Individuals that experience severe health events are likely very di§erent from those that do
not. They are likely to be older and also more likely to su§er from pre-existing conditions.
To assess the robustness of our findings in Figure D1, we run a Mincer type regression
of the SF-12 PCS measure on several observable characteristics and information on the
households’ medical history available from UnSoc.

hi,t = β0 + β1Di,t + β2Mi,t + "i,t (27)

where Di,t contains demographic information about the household:

1. An indicator for the sex of the respondent household member (w_sex_dv).

2. A third order polynomial of mean household age, calculated over all household
members (calculated from w_age_dv).

3. A dummy for each of the 12 UK government o¢ce regions (w_gor_dv).
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4. A dummy for the year of the interview (w_intdaty_dv).

5. The natural logarithm of household size (calculated from w_hhsize).

And Mi,t contains information about the households medical history:

1. An indicator, if anyone in the household ever su§ered from any of the following con-
ditions: Asthma (derived from w_hcondn1), Arthritis (derived from w_hcondn2),
Angina (derived from w_hcondn5), Hyperthyroidism (derived from w_hcondn9),
Hypothyroidism (derived fromw_hcondn10), Diabetes (derived fromw_hcondn14),
a liver condition (derived from w_hcondn12), Epilepsy (derived from w_hcondn15),
or high blood pressure (derived from w_hcondn16).

2. An indicator, of whether any of the household members father or mother died before
the household member was aged 14 (w_paju & w_maju).

We then obtain the residuals "i,t and standardize them around the unconditional mean
of our original health measure. Figure E2 again plots the evolution of health of a household
before and after a severe health shock, where health now is measured by the recentred
residuals from the regression (27). Again, values have been standardized to be mean 1 in
the period before the shock for convenience.
After purging several potential confounding factors from our health measure, we still

find a qualitatively similar pattern. The health measure drops by around 6% in the period
directly following the health shock and then recovers moderately in the following periods.
Again the household does not recover fully but remains around 3% below its pre-shock
level.

Figure D2: Relative change in the mincerian residuals of the SF-12 PCS measure
following a severe health shock.
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D.2 Income and Earnings

D.2.1 Mincerian Regression

This subsection details the mincerian regression in section 4.1. First, we drop all those
households who report zero post policy labour income;8 then we trim the top and bottom
0.5% of values in every wave. In order to partial out the observable components, we run
a regression of the natural logarithm of household post policy labour income ln(wi,t) on
a number of variables:

ln(wi,t) = β0 + β1Di,t + ϵi,t, (28)

where Di,t contains demographic information about the household:

1. An indicator for the sex of the respondent household member (w_sex_dv).

2. A third order polynomial of mean household age (calculated from w_age_dv).

3. A dummy for each of the 12 UK government o¢ce regions (w_gor_dv).

4. A dummy for the year of the interview (w_intdaty_dv).

5. The natural logarithm of household size (calculated from w_hhsize).

6. An indicator term that captures the households socioeconomic group as discussed
in Appendix A.

We collect the residuals ϵi,t and re-centre them around the group specific conditional
mean.

D.3 Concentration indices

Concentration indices have become an established way of measuring socioeconomic in-
equalities in health (see, for example, Wagsta§ and van Doorslaer (2000)). Given two
variables, one measuring a quantity of interest and the other establishing a ranking of the
observations relating to the former, one can establish a concentration curve which can
be used to map the cumulative distribution function of the variable of interest across the
population ranking defined by the ranking variable. Thus, the concentration curve illus-
trates inequality for the variable of interest across the dimension specified by the ranking
variable. A concentration index is then a specific transformation of a concentration curve
into a single number. An example is the Gini index, a concentration index of the Lorenz
curve as the associated concentration curve, in the special case, where the variable of
interest and the ranking variable are the same.

8As the definition of net income here includes transfers, we consider zeros to be examples of erroneous
reporting.
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D.4 State spaces and transitions - stationary environment

The following details the transition matrix Q∗, estimated from UnSoc. To preserve space,
we present the socioeconomic groups transitions separately from the health status transi-
tions. Tables D1 describes the probability of a household member experiencing a severe
health shock in a given year, conditional on having not experienced a severe health event
before, by socioeconomic group.

Table D1: Health Shock Probabilities
Socioeconomic group Pr(st+1 = s2|st = s1)
Professionals 0.0102
Intermediate 0.0092
Routine 0.0116
Non-employed 0.0248

Source: Pooled Sample UnSoc (Wave 1-9)

We denote Pr(st+1 = s2|st = s1) as Ps (4×1 vector) and Pr(st+1 = s3|st = s2)= 0.0895
as pr (scalar).

Q∗ =

2

6666664

[
( I
4×1
− Ps

4×1
)⊗ I

3×12

]
◦ Q∗pre
12×12

[
Ps
4×1
⊗ I
3×12

]
◦Q∗post
12×12

0
12×12

0
12×12

0
12×12

I
12×12

◦Q∗post
12×12[

I
12×12

pr
]
◦ Q∗pre
12×12

0
12×12

[
I

12×12
(1− pr)

]
◦Q∗post
12×12

3

7777775

Q∗pre, Q
∗
post denote the transition matrices from nt, lt to nt+1, lt+1, pre and post a health

shock occurs. We employ the UnSoc data to calculate these using the socioeconomic group
information nt and the residuals ϵi,t from equation (28) as explained in the main text.
Table D2 describes the calibrated net labour income states wt(nt, lt) for the pre-

COVID-19 stationary world. To obtain the productivity states for other realisations
of the aggregate state zt, we follow the adjustments described in Section 4.

Table D2: Productivity States
Socioeconomic group l = 1 l = 2 l = 3
Professionals 2.17 1.40 0.87
Intermediate 1.57 0.96 0.57
Routine 1.05 0.68 0.43
Non-employed 0.73 0.45 0.24

Source: Understanding Society (Wave 1-9)

D.5 Calibration of remaining parameters

We set the remaining parameters θ = (amin, q, γ,φ, δ(s2), δ(s3)) to match a number of
targets, which are motivated by empirical evidence, using a minimum distance procedure:
i) the mean health of households across all three health states (0.688, 0.577, 0.603); ii) the
overall variance of health (0.014); iii) the share of households with (less than) zero wealth

22



(19%) from WAS iv) the share of private expenditure relating to health in household
consumption (8.9%).
To obtain a target for private health expenditure, we work as follows. As a lower

bound, we consider the share of private health spending in household consumption. Em-
pirical evidence in, e.g. Stoye (2017), suggests that private health spending accounts for
roughly 21% of total health spending, which in turn accounts for 9.8% of GDP. Noting that
household consumption is around two thirds of GDP, we arrive at 0.21∗0.098/(2

3
) = 3.09%.

However, direct expenditure on private healthcare is only part of the expenditure that
improves health. For example, expenditure on healthier food, exercise, and even housing
arguably contains a component of health investment. We do not have data to decom-
pose such expenditure into a part providing consumption utility benefits, and another
which improves utility via improving health. We take total health spending, i.e. private
plus public health spending, to be a proxy of an upper bound of what individuals might
be willing to spend to improve their health. As a share of GDP, this expenditure is
0.098/(2

3
) = 14.7%. Based on these estimates, we select the midpoint between these two

values (8.9%).
We define m̃ as the vector of the data targets described above, and m̂(θ) as the

corresponding vector of targets when the model is solved and evaluated at the parameters
θ. We choose θ to minimize the squared percentage deviation:

θ̂ = argmin
θ

X(
m̂(θ)− m̃

m̃

)2
(29)

We use a global, non derivative based solver to find θ̂.

Table D3: Calibration fit
Target Target Value Outcome Value Percentage Deviation
h̄t+1(s1) 0.688 0.689 0.176%
h̄t+1(s2) 0.577 0.578 0.162%
h̄t+1(s3) 0.603 0.602 -0.100%
var(ht+1) 0.014 0.014 -0.244%P

xtP
ct

0.089 0.089 0.042%P
ai<=0

i 0.190 0.196 0.302%

SSM = 2.1947e− 05

D.6 State spaces and transitions - dynamic environment

D.6.1 Markov regime-switching model

This subsection contains the details of the Markov-Regime-Switching model, underlying
the analysis in Sections 4 in the main text regarding the calibration of the aggregate state
transition matrix QZ . Our aim is to to estimate the probability of a pandemic period
starting (i.e. a pandemic happening) and the probability of exiting the period of post-
pandemic period of increased risk of disease outbreaks. We assume that annual mortality
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rates dt follow a log-normal distribution9

log(dt) ∼ N(µr,σ2r) (30)

where the mean and variance of the underlying distribution is allowed to vary between
the two distinct regimes of periods of low and high disease outbreak risk, r = {1, 2}.
Markov-Regime-Switching models have been used to analyse business cycle behaviour
(Hamilton (1989), Doornik (2013)) and also in the detection of infectious disease outbreaks
(Martínez-Beneito et al. (2008), Unkel et al. (2012)).
We estimate the model using data for the UK from Schroeder et al. (2021). We test

the assumption of two regimes versus a single regime, by performing a quasi-likelihood
test for regime-switching models based on Bostwick and Steigerwald (2014) and reject at
the 1% level the null hypothesis that the variation in the data is explained by only one
regime. Table D4 below shows the results from estimating the Markov-Switching model
with two regimes and Table D5 shows the implied properties of each mortality regime in
each case.

Table D4: Two disease outbreak regimes

UK 1895 - 1950
Coe¢cient Std. Error 95% Confidence Interval

µ1 4.91 0.099 [4.713, 5.102]
µ2 5.85 0.229 [5.404, 6.302]
σ1 0.55 0.066 [0.435, 0.695]
σ2 0.79 0.137 [0.566, 1.112]
p11 0.973 0.029 [0.803, 0.996]
p21 0.079 0.067 [0.013, 0.345]
Log Likelihood -58.07, 1% critica l value: 7 .85, value of test statistic : 14 .24

Table D5: Characteristics of mortality regimes

UK 1895 - 1950
E(dt) Std(dt) exp. duration

Regime I 157.79 94 37.04
Regime II 474.40 442 12.66

Expectation and standard deviation of

mortality rates based on point estim ates in Table D1.

D.6.2 Transition matrix Q

The following section describes how to obtain the transition matrix Q for the model
version with aggregate uncertainty. The construction is similar to the case of the transition
matrix Q∗ of the stationary environment as described above but includes an extra step
that incorporates the transitions of the aggregate state. For convenience, we present the
construction of Q backwards, beginning first with the construction of Q out of the state-
specific idiosyncratic transition matrices, then moving on to show how to construct the
idiosyncratic transition matrices for each realization of the aggregate state. Again, we
denote Pr(st+1 = s2|st = s1) as Ps (4× 1 vector) and Pr(st+1 = s3|st = s2)= 0.0895 as pr

9The log-normal has a long right tail which makes it suitable to approximate the distribution of
mortality from infectious diseases.
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(scalar). Further, $C = 1.5 and $R = 1.25. QZ is the transition matrix of the aggregate
state described in section 5.

Q = probability of transition from state (nt, `t, st, zt) to (nt+1, `t+1, st+1, z, )

=

2

664

QZ(1, 1) ◦QC QZ(1, 2) ◦QR QZ(1, 3) ◦QU QZ(1, 4) ◦QO

QZ(2, 1) ◦QC QZ(2, 2) ◦QR QZ(2, 3) ◦QU QZ(2, 4) ◦QO

QZ(3, 1) ◦QC QZ(3, 2) ◦QR QZ(3, 3) ◦QU QZ(3, 4) ◦QO

QZ(4, 1) ◦QC QZ(4, 2) ◦QR QZ(4, 3) ◦QU QZ(4, 4) ◦QO

3

775

QC =

2

6666664

[
( I
4×1
−$C Ps

4×1
)⊗ I

3×12

]
◦ QCpre
12×12

[
$C Ps

4×1
⊗ I

3×12

]
◦QCpost
12×12

0
12×12

0
12×12

0
12×12

I
12×12

◦QCpost
12×12[

I
12×12

pr
]
◦ QCpre
12×12

0
12×12

[
I

12×12
(1− pr)

]
◦QCpost
12×12

3

7777775

QR =

2

6666664

[
( I
4×1
−$RPs

4×1
)⊗ I

3×12

]
◦ QRpre
12×12

[
$RPs

4×1
⊗ I

3×12

]
◦QRpost
12×12

0
12×12

0
12×12

0
12×12

I
12×12

◦QRpost
12×12[

I
12×12

pr
]
◦ QRpre
12×12

0
12×12

[
I

12×12
(1− pr)

]
◦QRpost
12×12

3

7777775

QU =

2

6666664

[
( I
4×1
− Ps

4×1
)⊗ I

3×12

]
◦ QUpre
12×12

[
$Ps
4×1
⊗ I

3×12

]
◦QUpost
12×12

0
12×12

0
12×12

0
12×12

I
12×12

◦QUpost
12×12[

I
12×12

pr
]
◦ QUpre
12×12

0
12×12

[
I

12×12
(1− pr)

]
◦QUpost
12×12

3

7777775

QO =

2

6666664

[
( I
4×1
− Ps

4×1
)⊗ I

3×12

]
◦ QOpre
12×12

[
Ps
4×1
⊗ I
3×12

]
◦QOpost
12×12

0
12×12

0
12×12

0
12×12

I
12×12

◦QOpost
12×12[

I
12×12

pr
]
◦ QOpre
12×12

0
12×12

[
I

12×12
(1− pr)

]
◦QOpost
12×12

3

7777775

The QCpre, Q
C
post, Q

R
pre, Q

R
post, Q

U
pre, Q

U
post, Q

O
pre, Q

O
post denote the transition matrices

from (nt, lt) to (nt+1, lt+1) per state zt, pre and post a health shock occurs. We employ
the UnSoc data to calculate these using the socioeconomic group information nt and the
residuals ϵi,t from equation (28) as explained in the main text.
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D.6.3 Additional figures

Figure D3: Calibrated changes in post policy labour income and total resources
by pre-Covid-19 income deciles.
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Figure D4: Changes in consumption and savings by pre-Covid-19 income quintiles.
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D.7 Transitions of the aggregate state

D.7.1 Transition matrix for the one-o§ pandemic counterfactual

Below we present the aggregate state transition matrix for the "one-o§ pandemic" coun-
terfactual. Note that in this case the transitions are not stochastic, but instead z follows
a deterministic sequence : {Ct=1, Ct=2, Ut=3, Ot=4, Ot=5, ....Ot=T} T

t=1. Since Qone−off is
known to the households, when solving their optimisation problem, the decision rules
reflect the households’ knowledge of the transition path of the aggregate state.

Qone−off :

zt\zt+1 C C U O
C 0 1 0 0
C 0 0 1 0
U 0 0 0 1
O 0 0 0 1

.
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Appendix E: Additional results

E.1 Results without consumption cap

Figure E1 reproduces Figure 4 in the main text, without imposing the consumption limit.

Figure E1: Post-pandemic inequality by initial conditions without consumption limit
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Note: Expected percentage deviations of simulated paths under disease outbreak uncertainty versus

simulated paths without Covid-19 and disease outbreak uncertainty. Lines in the top panels refer to

households starting at the respective percentiles of the wealth distribution in 2019. Lines in the

bottom panels refer to households of the respective socioeconomic groups in 2019.

Figure E2 reproduces Figure 4 in the main text, using initial conditions of the health
and wealth distribution.

28



Figure E2: Post-pandemic inequality by initial conditions (wealth and health)
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E.2 Additional policy results
Figure E3: Comparison of policy e§ectiveness across di§erent coverage groups
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Note: Expected percentage change in measures of inequality with and without policy. Basic coverage applies

the policy to all households that have less than zero wealth. Extended coverage includes all households with

wealth less than the 33rd percentile of the pre-COVID-19 distribution (∼ $9, 200 in £2015).

30



Figure E4: Comparison of policy e¢ciency across di§erent coverage groups
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Note: Cost adjusted expected percentage change in measures of inequality with and without policy.

Basic coverage applies the policy to all households that have less than zero wealth. Extended coverage

includes all households with wealth less than the 33rd percentile of the pre-COVID-19 distribution

(∼ $9, 200 in £2015). E§ects of policies are standardised by expected average costs of policy
over the first 20 years.
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Figure E5: Comparison of policy e§ectiveness across di§erent replacement rates
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Note: Expected percentage change in measures of inequality with and without policy.

Coverage includes all households with wealth less than the 33rd percentile of the pre-COVID-19

distribution (∼ $9, 200 in £2015).

32



Figure E6: Comparison of policy e¢ciency across di§erent replacement rates
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Note: Cost adjusted expected percentage change in measures of inequality with and without policy.

Coverage includes all households with wealth less than the 33rd percentile of the pre-COVID-19

distribution (∼ $9, 200 in £2015). E§ects of policies are standardised by expected average costs of
policy over the first 20 years.
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