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Abstract 
 
Subjective evaluations are widely used, but call for different contracts from traditional moral-
hazard settings. Previous literature shows that contracts require payments to third parties, which 
real-world contracts rarely use. I show that the implicit assumption of deterministic contracts 
makes payments to third parties necessary. This paper studies stochastic contracts, like uncertain 
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1 Introduction

This paper studies moral hazard if the available performance measures are nonverifiable by

outsiders. The prime examples of such subjective measures of performance are subjective

evaluations by supervisors, co-workers, and others. Companies and organizations widely use

subjective evaluations, as verifiable or objective performance measures are often unavailable.

For example, Suvorov and van de Ven (2009, p. 665), report that “many firms extensively use

. . . subjective, non-contractible performance measures,” while Murphy (1993, p. 47) writes:

“Most often, however, performance measurement is based on subjective performance rat-

ings.” Porter et al. (2008, p. 148), Dessler (2017, p. 310), and MacLeod and Parent (1999)

confirm this extensive use of subjective performance measures. Some reasons for the use of

subjective performance measures are that they are more difficult for the agent to manipulate

and more accurate in measuring the principal’s objectives than objective measures due to,

for example, multi-task problems. Indeed, Gibbons (1998, p. 120) concludes that “objective

performance measures typically cannot be used to create ideal incentives.”

Performance measures’ subjectivity, however, requires careful contracting because pay-

ments depend on reported evaluations instead of actual performance. The contract must

provide incentives to the agent to work while ensuring that the principal has no incentives

to misreport the subjective evaluations. Previous literature analyzing subjective evaluations

shows that contracts without third-party payments cannot incentivize employees and work-

ers in such settings: “it is impossible to elicit subjective information under the hypothesis

that the contract is budget-balancing” (MacLeod, 2003, p. 221). Malcomson (1984) and

Carmichael (1989) already noticed that subjective evaluations require third-party payments

as budget breakers. See also Deb et al. (2016) and Bester and Münster (2016).1 MacLeod

(2003, Proposition 2), Fuchs (2007, Proposition 1), Chan and Zheng (2011, Proposition 1)2

and MacLeod and Tan (2016, Section 2.3) provide formal proofs for these claims.

Although there have been some critical voices—“it is unclear how important this practice

[i.e., third-party payments] is in reality” (Suvorov and van de Ven, 2009, p. 666)—the long list

of references above shows how deeply ingrained the beliefs that subjective evaluations require

third-party payments are in the literature. All these models, however, implicitly assume that

1“Surplus destruction is necessary in equilibrium.” (Deb et al., 2016, p. 5)
2“To ensure the principal reports truthfully, any amount that the principal deducts from the agent’s

compensation . . .must be either destroyed or diverted to a use that does not benefit the principal.” (Chan
and Zheng, 2011, p. 760)
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contracts must be deterministic. A contract is deterministic if payments depend only on the

principal’s evaluation and the agent’s self-assessment and not on random events. I show that

this implicit assumption of deterministic contracts is restrictive. For this purpose, I prove

that stochastic contracts incentivize employees and workers without any payments to third

parties. Stochastic contracts are even more profitable for the principal than deterministic

contracts in some settings, for example in the model of MacLeod (2003) with imperfect

correlation between the principal’s and the agent’s evaluation and bounds on third-party

payments. As payments to third parties are unappealing for many reasons, avoiding these

third-party payments is a relevant contribution.

Stochastic contracts are not exceptional but are frequently used. Indeed, they are used

so often that the literature is actively searching for additional explanations for their usage.

Hence, the theoretical insight in this paper is mirrored in many labor contracts that do not

involve payments to third parties but are inherently stochastic. Examples are payments in

stock options or shares, the valuation of which depends on external shocks to, for example, the

financial sector. Other examples are uncertain arbitration procedures and legal uncertainty

about which contractual clauses are valid. The contracting parties might be unsure how

a disagreement is to be interpreted and what wages are appropriate. Finally, stochastic

contracts could involve conflicts, like working to rule, strikes, or walkouts.

Compensation in stock options, restricted stock units, or shares is well documented,

while other forms of stochastic contracts have received less attention in the literature but

are equally important: “Stock option grants to non-executive employees have become an

important component of compensation policy in recent decades,” as Hochberg and Lindsey

(2010, p. 4148) summarize the empirical evidence on stock options as a form of stochastic

contracts.3 The emphasis here is on equity-based compensation for rank-and-file employees

because there might be additional reasons to use such a compensation for executives. Rank-

and-file employees individually have little, if any, effect on stock prices, so that equity-

based compensation offers no informational benefit. In addition, firms grant relatively small

amounts of options or stocks to rank-and-file employees compared with the total number

3Core and Guay (2001, p. 254) confirm these claims: “The corporate use of stock option plans for non-
executive employees is widespread.” See also Babenko and Sen (2016), who report that in their sample of
663 large US firms in the years 1996 to 2011, an average rank-and-file employee was granted about 780 stock
options each year with a Black-Scholes fair value of $6981. Call et al. (2016), Kim and Ouimet (2014), Kedia
and Rajgopal (2009), and Oyer and Schaefer (2005) perform additional empirical analyses of broad-based
compensation with stocks and stock options.
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of a firm’s stocks. Therefore, the employee gains only a very small share of any value

added. Hence, equity-based compensation does not seem optimal for incentivizing rank-

and-file employees. Nevertheless, the use of equity-based compensation for rank-and-file

employees is widespread and growing: “The use of equity-based compensation for employees

below the executive rank has been growing rapidly during the last decade.” (Bergman and

Jenter, 2007, p. 668) In frameworks with objective evaluations, this usage is hard to explain:

“the prevalence of broad based option plans remains a puzzle for standard economic theory.”

(Kedia and Rajgopal, 2009, p. 110)

Subjective evaluations, however, point to a convincing reason for such stochastic con-

tracts. Stochastic contracts can optimally incentivize the agent without reverting to pay-

ments to third parties. Thus, these contracts ensure ex-post budget balance. The intuition

is as follows: differences in risk preferences between the principal and the agent enable con-

tracts to implement different utilities for principal and agent without relying on third parties.

These differences in utilities are necessary to provide the agent with credible incentives to

exert effort because these utility differences can incentivize the principal to report subjec-

tive evaluations truthfully. This positive effect is obtained in addition to other benefits of

stochastic compensation, including, for example, better retention (Oyer, 2004), screening

(Oyer and Schaefer, 2005), mitigation of problems of gaming (Ederer et al., 2018), and eas-

ing of financing constraints (Core and Guay, 2001).4 My results—relying only on subjective

evaluations and the assumption that the agent is more risk averse than the principal—thus

help to explain why many labor contracts use stochastic compensation, even if the random

events are uninformative about agents’ efforts. Thus, I provide a solution to the puzzle about

stochastic contracts. To sum up, stochastic contracts allow firms and organizations to use

subjective evaluations without reverting to payments to third parties.

Turning to the optimal stochastic contracts derived in this paper, the following interpre-

tations seem plausible. I begin with the case in which the agent is unable or unwilling to

understand the principal’s objectives. The optimal contract triggers stochastic payments if

the principal reports the worst evaluation. The agent cannot influence the compensation

she receives. Stochastic payments occur in equilibrium. The stochastic component of such

contracts could correspond to uncertain arbitration procedures or legal uncertainty about

the validity of some contractual clauses. The contracting parties might be uncertain about

4See also the next section about the related literature.
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how a poor evaluation is interpreted and whether the principal might legitimately cancel

the bonus. Sometimes a bad absolute performance might be excused by reference to an

average relative performance compared with colleagues or competitors. Another real-world

implementation of such stochastic contracts is conflicts, which are prevalent is most organi-

zations and are particularly pronounced after poor evaluations. These stochastic elements

incentivize the principal to evaluate the agent’s work appropriately while maintaining the

agent’s incentives to work.

Second, I turn to the case in which the agent is able and willing to understand the prin-

cipal’s objectives. Then, the optimal contract triggers stochastic payments if the principal

reports an evaluation that disagrees with the agent’s self-assessment. Stochastic payments

occur only out of equilibrium. Again, conflict or legal uncertainty might implement these

stochastic payments in real-world contracts. In some environments, agents can directly in-

fluence the riskiness of the outcome and thus, given proportional wages, the riskiness of

their compensation. Example are agents who choose the projects that they are working on,

like consulting or product design, as well as financial industries in which clients delegate

the allocation of funds. Alternatively, employees can frequently choose between different

stock option plans or amounts of company stocks in their variable compensation. Given a

disagreement with the principal, they might opt for a larger amount of stocks or options and

a lower base salary as the stocks’ value is independent of the perceived unfair evaluation by

the principal. Again the stochastic payments incentivize the principal to evaluate the agent

appropriately while not interfering with the agent’s incentives to work.

Third and finally, I consider the case in which the principal can observe the agent’s

effort. Then, the optimal contract triggers stochastic payments if the agent chooses an effort

level that differs from the contractually promised one. Stochastic payments occur only out of

equilibrium. As in the first case, uncertain arbitration procedures or legal uncertainty seem to

be the most plausible implementation of these payoffs in real-world contracts. Conflicts offer

another possibility to have such stochastic payoffs. All these different aspects of real-world

contracts yield the stochastic payoffs necessary for the principal to evaluate appropriately.

Another advantage of stochastic contracts concerns renegotiations. Third-party payments

give the principal and the agent an obvious incentive to renegotiate the contract. Ex post,

after reporting their evaluations, both the principal and the agent want to avoid paying

money to an outsider—as Hart and Moore (1988) already discussed. If they can agree on
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any split of the third-party payment, both are better off ex post. If they anticipate these

renegotiations, however, the principal has incentives to misreport the evaluation and the

agent’s incentives to exert effort are reduced. Stochastic contracts are ex-post efficient and,

thus, renegotiation-proof. With stochastic contracts, either the principal or the agent is

unwilling to renegotiate ex post once the uncertainty is realized, at which point the party

who gains in the lottery has an incentive to avoid renegotiations because renegotiations are

a zero-sum game in this case. Therefore, the lottery ought to be realized as soon as the

principal and the agent report their evaluations—a timing that could be included in the

contract by choosing the appropriate timing of the options or stock grants. Maskin (2002)

and Maskin and Tirole (1999) discuss the use of lotteries to avoid renegotiations in hold-up

settings.5

There are many reasons to inform and educate agents about the principal’s objectives. In

particular, the literature on multi-tasking has contributed to our understanding of the need

for these instructions. My paper shows that the principal wants to inform agents even in

a single-task model with unidimensional effort. The reason again consists of the incentives

for the principal to perform the subjective evaluations appropriately. It is easier to provide

these incentives for informed agents whose self-assessment is correlated with the appropriate

evaluation by the principal. In some cases, optimal contracts can avoid all losses due to

the subjectivity of the principal’s evaluations and attain the classical second-best as if the

evaluations were an objective performance measure.

The remainder of the paper is organized as follows. Section 2 discusses the related liter-

ature. In Section 3, I introduce stochastic contracts into a model of subjective evaluations.

Section 4 characterizes optimal (stochastic) contracts in applied models from the literature

and provides an example in which stochastic contracts make the principal strictly better off.

In Section 5, I prove that in general stochastic contracts can incentivize employees with-

out payments to third parties. Section 6 contains the concluding remarks. The proofs are

relegated to the appendix.

5Stochastic contracts do not solve the problem that any moral-hazard contract (including those based
on objective performance measures) provides incentives to both sides to renegotiate the contract after the
agent’s effort choice to insure the agent from the risk included in the performance measure. Hence, implicitly
the literature assumes commitment to the contract until evaluations are reported.
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2 Related Literature

The literature on stochastic contracts ignored subjective evaluations so far. Instead, the

literature shows that randomization is sometimes optimal for screening risk-averse agents.

The seminal papers include Gauthier and Laroque (2014), Strausz (2006), and Arnott and

Stiglitz (1988). They characterize when randomization is optimal depending on the curva-

ture of utilities. This literature considers moral hazard, e.g., Bennardo and Chiappori (2003),

and adverse selection, e.g., Hellwig (2007) or Stiglitz (1982). Randomization creates losses

by increasing risk for risk-averse agents, but gains from mitigating incentive-compatibility

constraints. These models require heterogeneous risk aversion and, in particular, a correla-

tion between types and risk aversion to make randomization desirable. There are no gains

from randomization if the agent’s type and risk aversion are common knowledge as in my

setting.

Alternatively, Rasmusen (1987) studies team production with objective performance mea-

sures. He shows that budget-balancing contracts require randomization to incentivize agents

and mitigate free-riding problems. For a single agent, there are no free-riding problems and,

hence, no reasons to use stochastic contracts. Adopting a different approach, Oyer (2004)

argues that stochastic contracts increase employee retention by adjusting wages to varying

outside options. Finally, Maskin (2002) and Maskin and Tirole (1999) consider hold-up

settings with incomplete contracts. They show that stochastic contracts allow to avoid

incomplete contracts and to deal with renegotiations. My paper is the first to scrutinize

stochastic contracts for subjective evaluations.

I also relate to the extensive literature on subjective performance measures. Usually

that literature assumes that evaluations are observable and occur in long-term relationships.

These assumptions imply implicit contracts, for example, in Li and Matouschek (2013), Gold-

luecke and Kranz (2013), Maestri (2012), Compte (1998), Kandori and Matsushima (1998),

Baker et al. (1994), MacLeod and Malcomson (1989), Bull (1987), and Shapiro and Stiglitz

(1984). In these dynamic settings, subjective performance measures gain some credibility

due to reputation effects created by the continuation values for both contracting parties.

Hence, firms can use subjective performance measures to incentivize their employees.6 Levin

(2003) drops the assumption that subjective performance measures are perfectly observable

6For multiple agents, tournaments also provide credible incentives. (Carmichael, 1983, Malcomson, 1986)
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by both contracting parties. Then, optimal contracts often have a termination form, that

is, contracts terminate after observing bad performance. See also Malcomson (2012) and

MacLeod (2007) for recent surveys.

MacLeod (2003) was the first to implement subjective performance measures in a static

setting. Section 4 builds on and discusses his model in detail. MacLeod and Tan (2016)

extend the model of MacLeod (2003) by considering malfeasance and more general informa-

tion structures between agent and principal, like better-informed agents. In addition, they

change the timing and study sequential messages with the agent or the principal sending

their message first. Deb et al. (2016) consider multiple agents working for the principal,

while Letina et al. (2020) add external reviewers. Lang (2019) studies optimal communi-

cation of subjective evaluations. Bester and Dahm (2018) apply subjective evaluations to

markets for credence goods. Fuchs (2007) considers subjective performance measures in a

finitely repeated principal-agent model. He shows that it is optimal for the principal to

announce a subjective evaluation only once at the end of the interaction and not in each

period similarly to ideas of Ohlendorf and Schmitz (2012). This reporting pattern ensures

that the agent does not learn whether a good performance has already occurred. Then, the

same final incentives can be used repeatedly.

3 Subjective Evaluations and Stochastic Contracts

My results about the superiority of stochastic contracts in Section 5 are valid in a general and

abstract moral-hazard setting with subjective performance evaluations. This general setting

captures many models in the literature as special cases, for example, MacLeod (2003), Bester

and Münster (2016), as well as for T = 1 Chan and Zheng (2011) and Fuchs (2007) and the

stage games in Li and Matouschek (2013), Maestri (2012), Levin (2003) and Baker et al.

(1994).7 To study these more applied settings and to characterize optimal contracts in the

next Section 4, I impose the additional Assumptions 1, 2, and 3 below.

Consider a risk-neutral principal (she) employing a risk-averse agent (he). The principal

proposes a contract to the agent in a take-it-or-leave-it offer. The contract specifies pay-

7I assume a risk-averse agent, however, while some references assume agents to be risk neutral, in partic-
ular, to simplify the exposition in dynamic settings.

8It does not matter whether principal and agent report simultaneously or whether sequentially the prin-
cipal reports before the agent.
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� In period 0, the principal proposes a contract to the agent.

� In period 1, the agent can accept the contract offer and choose his work effort.

� In period 2, the principal observes the subjective performance t of the agent.

� In period 3, the agent observes his self-assessment s.

� In period 4, the principal and the agent report their evaluations.8

� In period 5, the principal makes payments according to the contract.

Figure 1: Timing of the Model

ments depending on reports as described later. If the agent accepts the principal’s offer

and signs the proposed contract, the agent exerts effort e ∈ E ⊆ R. The agent’s effort is

unobservable by the principal. Then, the principal privately learns her subjective measure of

performance t ∈ T ⊆ R. The agent also receives a signal s ∈ S ⊆ R about his performance:

his self-assessment. The two signals follow a joint distribution F (t, s|e) depending on the

agent’s effort e. Notice that the agent’s self-assessment might well be uninformative. The

subjectivity of both performance measures implies that both signals are unverifiable. For

the applications in the next section, I assume the following in addition:

Assumption 1. The agent exerts effort e ∈ E = [0, 1). The principal’s measure of perfor-

mance is t ∈ T = {1, 2, . . . , n}. The agent’s self-assessment is s ∈ S = {0} ∪ T .

Assumption 2. The distribution F (t, s|e) is such that the principal observes performance t

with probability γt(e) depending on the agent’s effort e. The probabilities γt(e) are positive

and differentiable for all t ∈ T and e ∈ [0, 1). The derivative ∂γt(e)/∂e is denoted by γ′
t(e).

Assume that the fraction γ′
t(e)/γt(e) increases in t and that the distribution is weakly convex

in effort e.9 Following MacLeod (2003), the agent receives a signal s = t with probability

p ∈ [0, 1] and a signal s = 0 with probability 1− p.

I interpret and discuss these assumptions at the end of this section.

After learning these subjective performance measures, principal and agent both report

their evaluations: the principal evaluates the agent by reporting her evaluation t̄ ∈ T . The

agent evaluates himself by reporting his self-assessment s̄ ∈ S. Finally, the contract is per-

formed according to these two evaluations. The contract specifies payments as (integrable)

9The linear specification with γt(e) = eγH
t + (1 − e)γL

t and two probability measures γH
t and γL

t in
MacLeod (2003) is a special case of such a distribution.
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random variables wt̄s̄ depending on the reports t̄ and s̄. The principal pays a wage deter-

mined by the realization of wt̄s̄ to the agent. In addition, the principal might have to pay an

amount yt̄s̄ ≥ 0 to a third party. The principal has no commitment other than the contract.

Figure 1 summarizes the timing of the game.

Utilities are as follows: A function B captures the principal’s (unverifiable) profits as

B(e, t, s)−w if she pays a wage w and the agent exerts effort e. The agent’s preferences are

represented by U(w, e) if he earns a wage w and exerts effort e. The agent’s utilities U are

increasing and concave in the wage w. His utilities are decreasing and convex in effort e. The

function U is twice continuously differentiable. If the agent rejects the principal’s contract

offer, he receives a reservation utility ū and the principal earns zero profits.

Assumption 3. The agent’s preferences are U(w, e) = u(w) − d(e). Assume the limit

lime→1 d(e) = ∞ and that there is an a ≥ −∞ so that limw→a u(w) = −∞.

Notice that Assumption 3 covers the case of constant absolute risk aversion and logarith-

mic utilities. For later reference, L denotes the space of simple lotteries with finitely many

realizations. Next, I discuss the assumptions about the correlation structure and contract

space and compare them with those in the literature.

Interpretation and Discussion of the Setting Assumption 1 specifies the domains of

the agent’s effort and the evaluations. Assumption 2 ensures that the distribution γt(e) of the

agent’s performance t satisfies the monotone likelihood ratio property and that higher signals

t indicate greater effort by the agent. The probability p might capture the agent’s ability

or willingness to understand the principal’s objectives. This setting captures any degree of

correlation between the principal’s evaluation and the agent’s self-assessment with perfect

correlation for p = 1 and no correlation for p = 0. Chan and Zheng (2011), Maestri (2012),

and Bester and Münster (2016) consider a different correlation structure between binary

assessments. Claim 1 in the appendix shows that optimal contracts remain qualitatively

unchanged for this alternative specification.10

The stochastic compensation wt̄s̄ mirrors court proceedings or the use of stock options in

real world contracts. This formalization captures stochastic contracts in a general way. The

principal’s and the agent’s payments could be lotteries or the principal could discard certain

10Indeed, all the quantitative changes are due to their binary effort choice and binary evaluations.
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messages with some probability by ’turning a blind eye’. This is optimal, for example, in

Herweg et al. (2010). According to the revelation principle, it is without loss of generality to

restrict attention to contracts in which the payments depend on reports t̄ and s̄. Within the

class of these contracts, I often refer to the subset of deterministic contracts. A contract is

deterministic if wages are deterministic for any combination of reports, that is, the random

variables wt̄s̄ are constant or, with a slight abuse of notation, wt̄s̄ ∈ R for all reports t̄ ∈ T
and s̄ ∈ S.

Assumption 3 ensures that preferences have a tractable functional form and impose some

Inada conditions. As there are many degrees of freedom in setting up more applied environ-

ments, using existing models from the literature strengthens my findings and provides better

comparability. With the exception of Section 4.3, I build on the moral-hazard environment

with subjective performance measures introduced in the seminal work of MacLeod (2003)

and refer to other papers where the results carry over.

4 Stochastic Contracts: Applications

Before characterizing optimal contracts, I write down the optimization and calculate two

benchmarks: deterministic contracts without payments to third parties and optimal complete

contracts for objective performance measures. The revelation principle by Myerson (1982)

implies that focusing on truth-telling is without loss of generality. It is helpful to define

expected payments by the principal w̃ts = E(wts) and the agent’s certainty equivalent c̃ts

of these wages defined by u(c̃ts) = E(u(wts)). Grossman and Hart (1983) prove that the

model can be solved in two steps. First, for every level of effort e, an optimal contract and

its expected costs C(e) for the principal are computed. The second step determines the

optimal effort level e by solving maxe∈E E(B(e, t, s)|e) − C(e). Focusing on the first step

and imposing Assumptions 1 and 2, Program A summarizes the principal’s problem: the

principal minimizes expected wages. The participation constraint (PC) ensures that the

agent accepts the principal’s contract offer. The incentive compatibility (IC) guarantees

that the desired effort is optimal for the agent. In addition, feasible contracts must satisfy

three novel conditions. Constraints (TTP ) and (TTA) make truth-telling optimal for the

principal and the agent with respect to their subjective performance measures. Finally,

constraint (RA) captures the fact that the agent is more risk averse than the principal.

11



C(e) = min
{w̃ts,c̃ts}t,s∈T

∑
t∈T

(pw̃tt + (1− p)w̃t0)γt(e) (A)

subject to
∑
t∈T

(pU(c̃tt, e) + (1− p)U(c̃t0, e))γt(e) ≥ ū, (PC)

e ∈ argmax
ẽ

∑
t∈T

(pU(c̃tt, e) + (1− p)U(c̃t0, e))γt(ẽ) (IC)

pw̃tt + (1− p)w̃t0 ≤ pw̃t̄t + (1− p)w̃t̄0 ∀t, t̄ ∈ T , (TTP )∑
t∈T

U(c̃t0, e)γt(e) ≥
∑
t∈T

U(c̃ts̄, e)γt(e) and c̃tt ≥ c̃ts̄ ∀t ∈ T ,∀s̄ ∈ S, (TTA)

w̃ts ≥ c̃ts ∀t ∈ T ,∀s ∈ S. (RA)

I begin by confirming the observation in the literature that deterministic contracts require

payments to third parties to incentivize the agent to exert any meaningful effort.11

Lemma 1. Deterministic contracts without payments to third parties, that is, yt̄s̄ = 0 for all

t̄ ∈ T and s̄ ∈ S, cannot implement meaningful effort, e > minE.

Intuitively, contracts for subjective performance measures need three kinds of incentives.

First, the contract must incentivize the agent to exert effort. Second, the contract must

incentivize the principal to evaluate the agent appropriately. Third, the contract must in-

centivize the agent to monitor the principal’s evaluation if possible. Deterministic contracts

without payments to third parties cannot provide these incentives simultaneously and the

agent exerts no effort. In particular, the principal has an incentive to evaluate the agent

negatively to save wage payments. The only disciplining effect is the possibility that the

agent could flag this misreporting and impose a contractual penalty on the principal if the

contract allows for this. This penalty could incentivize the principal to evaluate the agent

appropriately. Without third parties, the agent receives these payments. Hence, these pay-

ments make it optimal for the agent to pretend that even appropriate evaluations by the

principal are biased. Therefore, it is impossible to incentivize the principal to evaluate the

agent appropriately whenever wages vary in the principal’s reports. Appropriate evaluations

are only possible for a fixed-wage contract wts = w ∈ R because evaluations have no con-

sequences in such a contract. Such a contract cannot incentivize the agent who chooses no

effort, e = minE.

11See the references in the introduction and, in particular, MacLeod (2003, Proposition 2), Fuchs (2007,
Proposition 1), Chan and Zheng (2011, Proposition 1) and MacLeod and Tan (2016, Section 2.3).
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Formally, consider the subgame once performance is realized. In this subgame, principal

and agent report their evaluations. This subgame is a constant-sum game. Therefore, it is

impossible for the agent’s wages to vary in the principal’s message. Consequently, Bester and

Münster (2016, p. 725) conclude that “money burning is required” to establish incentives for

subjective performance measures. Thus, the literature uses payments to third parties to

incentivize agents with subjective performance measures. As discussed in the introduction,

empirically there are few examples of third-party payments which are unappealing for many

reasons.

As a benchmark, consider first a traditional moral-hazard setting, in which performance

measures are verifiable and contractible. Then, constraints (TTP ) and (TTA) are irrelevant.

Optimal contracts are deterministic, making constraint (RA) binding. Optimal contracts

minimize the principal’s expected payments subject to the agent’s participation constraint

(PC) and incentive compatibility (IC). The textbook solution to this problem is the optimal

complete contract.

Lemma 2. Given Assumptions 1–3 and implementable effort e > 0, the optimal complete

contract is wts = c∗t ∈ R for all t ∈ T and s ∈ S with the values c∗t determined by

1

u′(c∗t )
= µ0 + µ1

γ′
t(e)

γt(e)
∀t ∈ T (1)

with the Lagrange multiplier µ0 of the participation constraint (PC) and the Lagrange multi-

plier µ1 of the incentive compatibility (IC). Better performances yield higher wages, that is,

wages c∗t strictly increase in performance t.

The monotone likelihood ratio property implies monotone wages. If limw→∞ u(w) = ∞,

any effort e ∈ [0, 1) is implementable. For later reference, I denote the principal’s expected

costs of such a complete contract as Cc(e). I follow the convention that Cc(e) = ∞ for

non-implementable effort e.

This paper, however, focuses on subjective performance measures that are nonverifiable.

Therefore, the additional constraints (TTP ) and (TTA) do matter. To understand their

relevance, suppose that the principal and the agent were to agree to the optimal complete

contract determined by Eq. (1). Analyzing the problem backwards, the agent’s message does

not matter as wts = c∗t does not depend on his message s. The principal wants to minimize

her wage payments. Therefore, she always reports the worst evaluation t = 1 because c∗t
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increases in the evaluation t and, thus, c∗1 = mint c
∗
t . Hence, the agent anticipates a wage of c

∗
1

independently of her performance. Thus, she optimally chooses effort e = 0. Consequently,

in the optimum these additional constraints are binding.

Optimal contracts depend on whether the principal can observe the agent’s effort and

on whether the agent is able and willing to understand the principal’s objectives, that is,

whether the agent’s self-assessment is informative. After characterizing optimal contracts, I

discuss the comparative statics of optimal contracts in risk aversion and in correlation p.

4.1 Uninformative Self-Assessments

If the agent is unable or unwilling to understand the principal’s objectives, his self-assessments

are uninformative, p = 0. This setting corresponds to Chan and Zheng (2011, T = 1, Section

3/4),12 Fuchs (2007, T = 1),13 MacLeod (2003, Section II.B), and Levin (2003, stage game

in Section IV).14 Then, nobody, particularly not the agent, can cross-check the principal’s

subjective evaluation of the agent’s work. Hence, the principal’s expected payments must

be independent of her evaluation of the agent. Nonetheless, the principal can incentivize the

agent even in that case as I show next. To incentivize the agent to exert effort, however,

his expected utilities must depend on the evaluation by the principal. Therefore, stochastic

payments must be used on the equilibrium path to avoid payments to third parties.

Proposition 1. If the agent’s self-assessment is uninformative, that is, p = 0, and effort

e > 0 is implementable, the following bonus contract is optimal given Assumptions 1–3:

wts =

w + b if t > 1

w + b+∆ if t = 1

with a lottery ∆ ∈ L, a fixed wage w ∈ R, and a bonus b ∈ R determined by

u(w) = ū+ d(e) +
1− γ1(e)

γ′
1(e)

d′(e) and u(w + b) = ū+ d(e)− γ1(e)

γ′
1(e)

d′(e).

The lottery ∆ has a zero mean and a risk premium of b.

12They assume T = {1, 2}, binary effort and a correlated self-assessment for the agent which the contract
does not directly use. Optimal contracts do not change qualitatively, though. In their Section 5 they
study contracts that directly use the correlated self-assessment. Even then, optimal contracts do not change
qualitatively. See Claim 1 in the Appendix.

13He considers T = {1, 2} and binary effort. Optimal contracts do not change qualitatively, though.
Indeed all the quantitative changes are due to their binary effort choice and binary evaluations.

14He considers continuous evaluations t. However, optimal contracts do not change qualitatively.
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The optimal contract only considers whether the agent receives the worst possible eval-

uation by the principal. Otherwise, evaluations do not matter. In particular, the agent’s

reports about her self-assessment are irrelevant. If the agent receives any evaluation except

the worst one, the principal pays her a wage w and a bonus b. This bonus scheme reminds

of solutions in moral hazard settings with risk-neutral agents and limited liability. Notice

that the agent is risk averse here. Hence, it is the subjectivity of evaluations that drives this

result. If the agent receives the worst evaluation, the principal pays a stochastic wage like an

arbitration or court procedure. The certainty equivalent of this stochastic wage for the agent

equals the wage w. Thus, the agent values his contractual payments for the worst evaluation

t = 1 as if he receives a wage w. Nonetheless, the principal expects always to make the same

payments of w + b. Consequently, optimal contracts use lotteries in equilibrium to provide

the agent with incentives to exert effort and to ensure that truth-telling is optimal for the

principal and the agent. Notice that with uninformative self-assessments the subjectivity of

her evaluation hurts the principal because the wage costs in this contract are above Cc(e).

4.2 Informative Self-Assessments

If the agent is able and willing to understand the principal’s objectives, his self-assessments

are informative, p > 0. Then, the setting corresponds, for example, to MacLeod (2003, II.A,

and C) and the stage game of Baker et al. (1994, Section II.C)15.

Proposition 2. If the agent’s self-assessment is informative, that is, p > 0, and effort e > 0

is implementable, the following contract is optimal given Assumptions 1–3:

wts =


c∗t if s = 0 or t = s

c∗n
p

+∆t otherwise

with the optimal complete contract c∗t defined in Eq. (1) and lotteries ∆t ∈ L. The lotteries ∆t

have an expectation of zero and a risk premium of c∗n/p− c∗t .

Optimal contracts use the agent’s self-assessment to cross-check the principal’s evaluation

of his work. Therefore, the principal evaluates the agent correctly. In equilibrium, the agent

15They consider p = 1 and T = {1, 2}. Optimal contracts do not change qualitatively, though. Indeed all
the quantitative changes are due to their binary evaluations.
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reports either s̄ = 0 or s̄ = t̄. Hence, the equilibrium wages in the optimal contract resemble

the wages in the optimal complete contract discussed above. The agent’s informative self-

assessment ensures that there are no losses due to the subjectivity of the evaluations. This

self-assessment allows the contract to employ the agent to monitor the principal in evaluating

him appropriately. As the principal designs the contract, the principal monitors herself in

this way. This monitoring serves as a commitment device for the principal to evaluate the

agent appropriately and thus to make the incentives, that were promised in the contract,

credible. The contract in Proposition 2 makes truth-telling optimal for the agent by ensuring

that his expected utilities do not depend on his self-assessment. The lotteries guarantee that

the expected wages, however, depend on the agent’s self-assessment. In particular, conflicts

between the principal’s evaluation and the agent’s self-assessment increase the expected

wages paid by the principal. Therefore, it is optimal for the principal to report her subjective

evaluation of the agent truthfully.

Notice that optimal contracts include random compensation for all evaluations – no

matter whether the prinicpal’s evaluation is good or bad. Randomization occurs whenever

the principal’s evaluation conflicts with the agent’s self-assessment. These conflicts occur

only out of equilibrium and might explain why arbitration or court procedures exist but are

infrequently used following good evaluations. Finally, I consider observable effort.

4.3 Observable Effort

Some papers, for example, Letina et al. (2020, without observers) and the stage games in Li

and Matouschek (2013), MacLeod and Malcomson (1989), and Bull (1987), study observable

effort. To accommodate observable effort, I adjust Assumptions 1 and 2 so that the principal

observes the agent’s (non-verifiable) effort, that is, t = e.

Assumption 1a. The agent exerts effort e ∈ E = [0, 1). The principal’s measure of perfor-

mance is t ∈ T = E.

Assumption 2a. The distribution F (t, s|e) is such that the principal observes performance t =

e with probability 1.
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Proposition 3. If supw u(w) > ū+ d(e), the following contract attains effort e at first-best

costs given Assumptions 1a, 2a, and 3:

wts =

u−1(ū+ d(e)) if t = e

∆ otherwise.

with a lottery ∆ ∈ L that has a mean of u−1(ū+ d(e)) and satisfies Eu(∆) ≤ ū+ d(0).

It is well known that verifiable effort allows the principal to attain the first best. As effort

is naturally perfectly observable for the agent, his ”self-assessment” is fully informative about

the principal’s evaluation. Therefore, there are no losses due to the subjectivity of evaluations

as in Proposition 2. The agent can monitor the principal to evaluate him appropriately.

Even if the agent were to forget his effort choice and receive no or a fully uninformative

self-assessment, however, it would be possible to attain the first best here. The lotteries

allow the principal to be indifferent between her reports so that truthful reporting is optimal

for her. Notice that optimal contracts include random compensation only out of equilibrium

but potentially for any evaluation—regardless of whether the principal’s evaluation is good

or bad. Randomization occurs whenever the principal’s evaluation indicates a conflict, that

is, the principal reports the agent choosing a different effort level from that required by the

contract. These conflicts occur only out of equilibrium.

In summary, Propositions 1, 2, and 3 characterize optimal (stochastic) contracts for sub-

jective evaluations. These contracts provide agents with economically meaningful incentives

without payments to third parties. Thus, it is possible to avoid third-party payments by

using stochastic contracts. These contracts are sometimes even more profitable for the prin-

cipal while they always make the principal weakly better off as I will show below. The

optimality of stochastic contracts provides theoretical justification for the widespread use

of stochastic compensation in real-world contracts. Examples are legal proceedings, stock

options, shares, and uncertain arbitration procedures as discussed in the introduction.

4.4 Comparative Statics in Risk Aversion

Here, I consider comparative statics in the agent’s risk aversion. To study comparative statics

in risk aversion, I consider utilities where the disutility of effort is measured in monetary

terms. This alternative assumption regarding utilities is as follows:
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Assumption 3a. The agent’s preferences are U(w, e) = − exp(−k(w− d(e))) with a k > 0.

Assume that the limit lime→1 d(e) = ∞. The agent’s reservation utility is ū = − exp(−kw̄)

with some w̄ ∈ R. Finally, assume that the distribution γt(e) is log-convex.

Under Assumption 3, any change in risk preferences would imply a change in the disu-

tility of effort. Therefore, it is impossible to derive meaningful comparative statics in risk

aversion under Assumption 3. Assumption 3a solves this problem because it allows to change

the agent’s risk aversion without changing the agent’s disutility of effort. Appendix B con-

tains optimal contracts for Assumption 3a replacing Assumption 3. Here, I focus on the

comparative statics in the agent’s risk aversion.

I begin with the optimal complete contract for verifiable performance measures as a

benchmark. Optimal contracts are deterministic:

wts = c∗CARA
t = d(e) +

1

k
ln

(
exp(kw̄) + µ1k

(
γ′
t(e)

γt(e)
+ kd′(e)

))
∀t ∈ T , s ∈ S

with the Lagrange multiplier µ1 of the incentive compatibility.16 For vanishing risk aversion,

k → 0, any frictions disappear and the first best is attainable. For very high risk aversion,

k → ∞, only trivial effort e = 0 is implementable. Beyond that, comparative statics of

optimal contracts in risk aversion are ambiguous in this benchmark. Grossman and Hart

(1983, p. 39) summarized: “Very little can be said.”

Now I turn to subjective evaluations. I begin with uninformative self-assessments, p = 0.

Proposition 8 in Appendix B confirms that, similar to Proposition 1, the following bonus

contract is still optimal:

wts =

w + b if t > 1

w + b+∆ if t = 1.

The lottery ∆ ∈ L has a zero mean and a risk premium of b, which is equivalent to

E(exp(−k(b − ∆))) = 1. Thus, the optimal contract offers a deterministic bonus that is

paid whenever the principal does not report the worst evaluation. For the worst evaluation,

the wage includes a lottery ensuring that the principal does not gain by reporting this worst

evaluation while the agent’s certainty equivalent is equal to the base wage. In equilibrium,

the principal reports all evaluations t ∈ T truthfully.

16Lemma 3 in Appendix B provides the formal result.
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Proposition 4. Suppose kd′(e) < |γ′
1(e)/γ1(e)|, Assumptions 1, 2, and 3a, and that the

agent’s self-assessment is uninformative, that is, p = 0. The fixed wage

w = w̄ + d(e)− 1

k
ln

(
1− 1− γ1(e)

γ′
1(e)

kd′(e)

)
−−→
k→0

w̄ + d(e) +
1− γ1(e)

γ′
1(e)

d′(e)

increases in the agent’s risk aversion k. Similarly, the bonus wage

w + b = w̄ + d(e)− 1

k
ln

(
1 +

γ1(e)

γ′
1(e)

kd′(e)

)
−−→
k→0

w̄ + d(e)− γ1(e)

γ′
1(e)

d′(e)

increases in risk aversion k. For vanishing risk aversion, k → 0, the bonus converges to

b → −d′(e)/γ′
1(e). There is a γ̄ ∈ (0, 1/2) so that higher risk aversion k decreases the bonus

b for γ1(e) < γ̄ and increases the bonus b for γ1(e) > γ̄. This threshold γ̄ depends on the risk

aversion k and decreases in k. The comparative statics in risk aversion are the same for the

risk premium of the lottery ∆ and for the bonus b.

The optimal contract does not pin down a unique lottery ∆, but there are infinitely

many lotteries that satisfy the requirements on the mean and the risk premium. Therefore,

general comparative statics of the lottery ∆ are impossible. For vanishing risk aversion,

k → 0, however, the riskiness of the lottery must diverge to infinity to generate a positive

risk premium for an (almost) risk-neutral agent. In addition, I study two common and simple

classes of lotteries below: the normal and the binary distribution. I begin with normally

distributed lotteries. Then
∆1 ∼ N

(
0,

2b

k

)
uniquely captures the stochastic payments in the contract. The variance 2b/k of this lottery

usually decreases in risk aversion, in particular, for low risk aversion:

lim
k→0

∂Var(∆1)

∂k
< 0.

It is easy, however, to construct examples in which the variance of this lottery ∆1 increases

in risk aversion because the bonus b also depends on the agent’s risk aversion.17 Next, I turn

to binary lotteries. Consider ∆2 as a lottery that pays z and −z with a probability of half

each. Then,

z =
1

k
ln
(
exp(kb) +

√
exp(2kb)− 1

)
17Consider, for example, d′(e) = k = 1, γ1(e) = 1/2, and γ′

1(e) = −0.55.
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or, equivalently, cosh(kz) = exp(kb) yields the required certainty equivalent for the agent.

Both examples show that the comparative statics of the variance in the agent’s risk aversion

are ambiguous.

Next, I study informative self-assessments, p > 0. Proposition 9 in Appendix B confirms

that similarly to Proposition 2 the following contract is still optimal:

wts =


c∗CARA
t if s = 0 or t = s

c∗CARA
n

p
+∆t otherwise

with the optimal complete contract c∗CARA
t defined above. The lotteries ∆t have a zero mean

and a risk premium of c∗CARA
n /p− c∗CARA

t . Thus, the optimal contract guarantees determin-

istic equilibrium wages because the agent truthfully reports her self-assessment s ∈ {t, 0}
in equilibrium. These equilibrium wages coincide with the benchmark wages. Therefore,

subjective evaluations do not imply any losses for the principal in the case of informative

self-assessments, p > 0. Out of equilibrium, the principal or the agent could misreport. Such

reports imply stochastic out-of-equilibrium wages. These lotteries ensure that the principal

does not gain by misreporting the subjective evaluation while the agent’s certainty equivalent

remains unchanged.

Proposition 5. Suppose kd′(e) < |γ′
1(e)/γ1(e)|, Assumptions 1, 2, and 3a, and that the

agent’s self-assessment is (partially) informative, i.e., p > 0. Equilibrium wages depend on

risk aversion in the following way:

∂wts

∂k
=

∂µ1

∂k
k(

γ′
t(e)

γt(e)
+ kd′(e)) + µ1(

γ′
t(e)

γt(e)
+ 2kd′(e)) + w̄ exp(kw̄)

k
(
exp(kw̄) + µ1k

(
γ′
t(e)

γt(e)
+ kd′(e)

)) − 1

k2
ln

(
exp(kw̄) + µ1k

(
γ′
t(e)

γt(e)
+ kd′(e)

))

for s ∈ {0, t} and all t ∈ T . For vanishing risk aversion, k → 0, equilibrium wages converge

to

wts −−→
k→0

w̄ + d(e) +
γ′
t(e)

γt(e)

d′(e)∑n
t̂=1

(γ′
t̂
(e))2

γt̂(e)

for s ∈ {0, t} and all t ∈ T , while expected out-of-equilibrium wages converge to

E(wts) −−→
k→0

1

p
(w̄ + d(e)) +

γ′
n(e)

γn(e)

d′(e)

p
∑n

t̂=1

(γ′
t̂
(e))2

γt̂(e)

for all s ̸= 0, t and all t ∈ T .
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To study the comparative statics of the stochastic out-of-equilibrium wages again I turn

to the two classes of lotteries introduced above. For normally distributed lotteries,

∆1
t ∼ N (0, 2

c∗CARA
n /p− c∗CARA

t

k
)

uniquely captures the stochastic out-of-equilibrium wages. The variance of this lottery de-

creases in risk aversion for sufficiently small risk aversion:

lim
k→0

∂Var(∆1
t )

∂k
< 0

for all t. Returning to binary lotteries, a value z determined by

cosh(kzt) = exp(k(c∗CARA
n /p− c∗CARA

t ))

yields the required certainty equivalent for the agent. This value z decreases in the agent’s

risk aversion k for sufficiently small risk aversion.

Finally, I scrutinize observable effort. Proposition 10 in Appendix B confirms that simi-

larly to Proposition 3 the following contract is still optimal:

wts =

w̄ + d(e) if t = e

∆ otherwise.

The lottery ∆ has a mean w̄ + d(e) and a risk premium of at least d(e) − d(0) which is

equivalent to E exp(−k∆) ≥ exp(−k(w̄ + d(0)). Thus, the optimal contract offers a deter-

ministic wage that is paid whenever the principal reports the contractually promised effort.

In equilibrium, the agent always chooses this effort and the principal reports truthfully so

that equilibrium wages are deterministic. Out of equilibrium, the principal could report

other effort levels. Such reports imply stochastic wages. The lottery ensures that the prin-

cipal does not gain by misreporting while the agent’s certainty equivalent is worse than his

outside option.

Proposition 6. Suppose Assumptions 1a, 2a, and 3a are met. Equilibrium wages wes do

not depend on the agent’s risk aversion. The off-equilibrium payments ∆ depend on the

agent’s risk aversion. In particular, the riskiness of the lottery decreases in the agent’s risk

aversion k as the risk premium is constant.
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To study the comparative statics of the stochastic out-of-equilibrium wages again turn to

the two classes of lotteries introduced above. For normally distributed lotteries, the lotteries

∆1 ∼ N (w̄ + d(e), σ2)

with σ2 ≥ 2(d(e) − d(0))/k capture the stochastic payments in the contract. The lower

bound on the variance of this lottery is decreasing and convex in the agent’s risk aversion,

in particular, for small risk aversion:

∂Var(∆1)

∂k
< 0 and lim

k→0

∂Var(∆1)

∂k
= −∞.

Returning to binary lotteries, a lower bound on the value z determined by

cosh(kz) = exp(k(d(e)− d(0)))

yields the required certainty equivalent for the agent and that bound decreases in k. That

bound has a limit of limk→0 ∂z/∂k = −∞ for small risk aversion.

4.5 Comparative Statics in Correlation

Before turning to a more general setting in the next section, I study comparative statics

of optimal contracts in correlation between the principal’s and the agent’s evaluation. For

observable effort and in the benchmark for verifiable performance, the agent’s self-assessment

does not matter. Therefore, optimal contracts in these two cases do not depend on the

amount of correlation between the principal’s and the agent’s evaluation. Thus, I focus on

subjective evaluations with unobservable effort here. I scrutinize what happens if the agent’s

self-assessment becomes more informative.

Proposition 7. Given Assumptions 1-3, the more informative the agent’s self-assessment

is,

� the lower the principal’s expected costs of the contract are.

� the more wage levels optimal contracts distinguish.

� the lower expected out-of-equilibrium wages are

� the lower the risk premium of out-of-equilibrium wages is.
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Beginning with uninformative self-assessments, the optimal contract is a simple bonus

contract which is less efficient than the objective benchmark according to Proposition 1. For

higher correlation, optimal contracts are as efficient as the second-best benchmark accord-

ing to Proposition 2. Therefore, the principal’s expected costs of the contract decrease in

correlation. Positive correlation between the principal’s and the agent’s evaluation allows

the agent to cross-check the principal’s reported evaluation and whether there was a misre-

port. Therefore, optimal contracts can avoid any frictions arising from the subjectivity of

the evaluations. Thus, incentivizing the agent to exert effort becomes easier and cheaper

for the principal. Remember that one interpretation of the correlation p is how much the

agent is able and willing to understand the principal’s objectives. It seems plausible that

the principal can sometimes increase the informativeness of the agent’s self-assessment by

informing and educating agents about her objectives. Thus, we can interpret this result as

an incentive for the principal to inform and educate agents about her objectives.

Next, going from a bonus contract (p = 0) with two different wages to a contract (p > 0)

that has a different wage for each evaluations means that optimal contracts distinguish more

wage levels the higher the correlation. With uninformative self-assessments, the agent cannot

cross-check the principal’s reported evaluation and, thus, the expected wage payments for the

principal have to be constant for all evaluations. Then, optimal contracts pay a lower wage

in terms of the agent’s certainty equivalent only for the worst reported evaluation. With

informative self-assessments, expected equilibrium wages are the same for the principal and

the agent. Therefore, the basic trade-off of moral hazard between insurance and incentives

ensures that optimally each evaluation has its own wage level. Thus, the number of different

wage levels increases from two to n.

Moreover, focusing on informative self-assessments, Proposition 2 immediately shows

that expected out-of-equilibrium wages and the riskiness of out-of-equilibrium wages are

decreasing in the correlation between the principal’s and the agent’s evaluation. The higher

the correlation, the more likely it is that the agent observed the principal’s evaluation and,

hence, the more likely that any misreporting by the principals triggers an out-of-equilibrium

wage. Thus, it is possible to reduce expected out-of-equilibrium wages without affecting

the incentives of the principal to report the evaluation correctly. Finally, equilibrium wages

do not depend on the correlation for informative self-assessments. Thus, the change from

no correlation to some correlation can be identified in observational data but not a further
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increase in correlation.

A natural follow-up question concerns the generality of my results about the superiority

of stochastic contracts. Therefore, the next section studies the general and abstract set-

ting without the additional assumptions and shows that stochastic contracts in general can

provide the appropriate incentives.

5 Stochastic Contracts without Third-Party Payments

I consider the general and abstract moral-hazard setting with subjective performance evalua-

tions without Assumptions 1-3. As shown above in Lemma 1, deterministic contracts require

payments to third parties to incentivize the agent to exert any meaningful effort. In contrast,

stochastic contracts do not need payments to third parties. Such contracts can incentivize

agents at least as well as deterministic contracts with third-party payments.

Theorem 1. Suppose that a deterministic contract W ′ (allowing for payments to third par-

ties) incentivizes the agent to exert effort e. Then, there is a (stochastic) contract W that

incentivizes the agent to exert effort e without any payments to third parties, that is, yt̄s̄ = 0

for all t̄ ∈ T and s̄ ∈ S.

Intuitively, Theorem 1 constructs a contract W that uses lotteries as compensation. The

principal’s utilities of such a lottery are E(wt̄s̄) while the agent’s utilities are Eu(wt̄s̄). The

principal’s and the agent’s utilities of a given lottery wt̄s̄ differ because the agent is more risk

averse than the principal.18 This difference in risk preferences guarantees that the principal’s

certainty equivalent of these wages is higher than the agent’s certainty equivalent. Therefore,

it is possible to impose a penalty on the principal and reduce her utilities while not increasing

the agent’s utilities. This possibility allows the contract to provide all three incentives that

I discuss following Lemma 1 without payments to third parties: the agent to exert effort;

the principal to evaluate the agent appropriately; and the agent to monitor the principal’s

evaluation.

Formally, the subgame (beginning in period 4) once performance is realized, in which the

principal and the agent report their evaluations, is no longer a constant-sum game and the

agent’s utilities can vary with the principal’s reported evaluation. Hence, it is possible to

provide all three incentives simultaneously.

18I refer to utilities here, but strictly speaking it is the certainty equivalences that I am comparing.
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Consequently, stochastic contracts can provide agents with economically meaningful in-

centives without payments to third parties. The next corollary establishes that stochastic

contracts outperform deterministic contracts with third-party payments because they are

more profitable for the principal.

Corollary 1. Optimal stochastic contracts are (at least weakly) more profitable for the prin-

cipal than deterministic contracts.

Finally, I provide an example from the literature in which stochastic contracts are strictly

more profitable for the principal than deterministic contracts with third-party payments. For

this purpose, consider the setting of MacLeod (2003, Proposition 8): Third-party payments

are bounded from above due to credibility and renegotiation issues. In addition, the agent’s

self-assessment is informative, that is, p > 0. Third-party payments might allow the con-

tracting parties to renegotiate to avoid paying money to an outsider—as already discussed by

Hart and Moore (1988). Stochastic contracts are renegotiation-proof if the timing is correct.

Once the lottery is realized, the party who gains in the lottery has an incentive to avoid

renegotiations. I discuss the renegotiation-proofness of stochastic contracts in more detail

in the introduction. In the setting of MacLeod (2003, Proposition 8), stochastic contracts

strictly increase the principal’s profits compared with deterministic contracts.

Corollary 2. Given Assumptions 1–3, stochastic contracts strictly increase the principal’s

profits compared with deterministic contracts with third-party payments if p > 0 is sufficiently

small and effort e implementable.

Notice that this result is valid for any (finite) bound on third-party payments.

6 Conclusion

This paper studies contracts based on subjective evaluations. Many firms use subjective

evaluations; see, for example, Dessler (2017, p. 310), Suvorov and van de Ven (2009), Porter

et al. (2008, p. 148), MacLeod and Parent (1999), Gibbons (1998), and Murphy (1993). Usu-

ally, subjective evaluations are more difficult for the agent to manipulate and more accurate

in measuring the principal’s objectives than objective performance measures. Traditional

contracts fail to incentivize employees based on subjective evaluations because they neglect

25



credibility issues. In addition to incentivizing employees to exert effort, contracts must guar-

antee that supervisors report their evaluations truthfully. Therefore, subjective evaluations

require novel contracts.

The literature on these novel contracts has implicitly assumed deterministic contracts;

see, for instance, Deb et al. (2016), Bester and Münster (2016), MacLeod and Tan (2016),

Chan and Zheng (2011), Fuchs (2007), and MacLeod (2003). This restriction to determin-

istic contracts requires payments to third parties. Otherwise, it is impossible to provide

incentives to the agent. I show that stochastic contracts can optimally incentivize employees

without the need for third-party payments. Hence, contracts are budget balanced. Stochas-

tic payments, like stock options or shares, ensure that contracts provide incentives both for

truthful reporting of evaluations and—at the same time—for the agent to exert effort. These

stochastic payments are costly for the risk-neutral principal to make but provide less utility

for the risk-averse agent. Stochastic contracts can even increase the principal’s profits by

making deviations from truth-telling unprofitable and, thus, ensuring the credibility of the

agent’s incentives. In these cases, the principal strictly prefers to use stochastic contracts.

To follow the literature (see the references above), I assume a risk-neutral principal in

the paper. Nonetheless, my optimal contracts do not require this assumption. All that is

required is that the principal is less risk averse than the agent. This assumption is very

common. In addition, there is a strong economic intuition for the principal being less risk

averse because she can usually diversify her risks. This is not the case for the agent in most

labor contracts because employees find it difficult to diversify or insure their labor income.

Thus, the assumption of risk-neutral agents is mainly made in dynamic settings to abstract

from the implications for consumption smoothing on optimal contracts.

Making optimal contracts budget balanced requires stochastic payments. Companies are

very flexible in designing stock option plans by using, for example, different exercise prices,

vesting periods, and conditions. Therefore, companies can construct lotteries from stock

options without any additional lotteries. By using exchange-traded options, common finan-

cial products are available for this purpose, and no specialized intermediaries are necessary.

Alternatively, restricted stock units (RSUs) allow replicating most option payoffs and are

issued by firms themselves. This might be a reason why restricted stock units as a form of

compensation have recently become popular in the US. Thus, I also address the puzzle of

the widespread use of stochastic compensation, which seemingly contradicts basic intuitions
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derived from moral-hazard models. An additional major benefit of stochastic contracts is

that they are ex-post efficient and, thus, renegotiation proof.

A Appendix: Proofs

Section 4 assumes a particular structure of correlation between the principal’s evaluation

and the agent’s self-assessment which is common in the literature. Some papers consider a

more general correlation but for binary signals, for example Chan and Zheng (2011, T = 1,

Section 5), Bester and Münster (2016) and the stage game in Maestri (2012).19 The next

claim shows that even in this setting optimal contracts remain qualitatively unchanged from

Proposition 1.

Claim 1. Given Assumptions 1–3, in the setting of Chan and Zheng (2011, T = 1, Propo-

sition 5), optimal contracts remain qualitatively unchanged compared with my Proposition 1.

Proof: In the setting of Chan and Zheng (2011, T = 1, Section 5), evaluations and self-

assessments are T = S = {1, 2}. They consider a joint distribution allowing for correlation

between both assessments. Effort is binary, e ∈ {0, 1}, so that Chan and Zheng (2011) focus

on incentivizing effort e = 1. They assume c(0) = 0, c(1) = c > 0, as well as γ2(1) > γ2(0)

and Prob(t = 2|e = 1, s = 2) > max
{
Prob(t = 2|e = 1, s = 1), Prob(t = 2|e = 0, s = 2),

Prob(t =2|e = 0, s = 1)
}
. As I consider a static setting, without loss of generality assume a

discount factor of one. Finally, their Proposition 5 assumes Prob(t = 2|e =1, s =1) ≥ γ2(0).

Chan and Zheng (2011, T = 1, Proposition 5) show that an optimal contract implies

utilities of

u(c̃22) = u(c̃21) = ū+ c+
γ1(1)

γ1(0)− γ1(1)
c and u(c̃12) = u(c̃11) = ū+ c− 1− γ1(1)

γ1(0)− γ1(1)
c.

As γ2(1) > γ2(0) implies γ1(0) > γ1(1), it is easy to see that c̃22 > c̃11. Adjusting the values

w and b in the contract in Proposition 1 accordingly yields the optimal stochastic contract:

wts =

c̃22 if t > 1

c̃22 −∆ if t = 1

The lottery ∆ has zero mean and satisfies Eu(c̃22 −∆) = u(c̃11). Therefore, the alternative

correlation does not change optimal contracts qualitatively.

19Bester and Münster (2016) and Maestri (2012) consider continuous effort, however.
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Proof of Lemma 1: The setting of MacLeod (2003) is a special case of my general

setting. Nevertheless, the proof of MacLeod (2003, Proposition 2) carries over and remains

valid. Suppose third-party payments are impossible and yts = 0 for all t ∈ T and all

s ∈ S. “After making their subjective evaluations, the principal and agent play a constant-

sum game when making their reports. From the min-max theorem such a game has a unique

value and hence the agent’s compensation cannot depend upon [the principal’s evaluation] t.”

(MacLeod, 2003, p. 221)

Proof of Lemma 2: Regarding the agent’s incentive compatibility (IC), the first-order

approach is valid here because the distribution induced by γt(e) is convex. According to

Grossman and Hart (1983), Rogerson (1985), and Kirkegaard (2017), the convexity of the

distribution function condition (CDFC) together with the convexity of d(·) and the monotone

likelihood ratio property (MLRP) guarantees that the first-order approach is valid. Hence,

I can rewrite the agent’s incentive compatibility (IC) as

∑
t∈T

γ′
t(e) (pu(c̃tt) + (1− p)u(c̃t0)) = d′(e).

Consider Program A without the constraints (TTP ) and (TTA) for truth-telling. It

is straightforward that the solution to this relaxed problem is w̃ts = c̃ts = c̃t0 = c∗t with a

certainty equivalent c∗t for all t, s ∈ T if a solution exists. Neglecting also the agent’s incentive

compatibility (IC), the solution to this relaxed problem is c∗t = u−1(ū + d(e)) for all t ∈ T
if effort e is implementable. Therefore, the agent’s incentive compatibility (IC) is binding

because the solution to the relaxed problem violates the agent’s incentive compatibility

(IC). Consequently, the Lagrange multiplier µ1 of the agent’s incentive compatibility (IC) is

positive in Eq. (1).

Optimization with respect to c∗t with the Lagrange multipliers of the participation con-

straint µ0 and the incentive compatibility µ1 determines the optimal complete contract as

γt(e)− µ0u
′(c∗t )γt(e)− µ1u

′(c∗t )γ
′
t(e) = 0,

1

u′(c∗t )
= µ0 + µ1

γ′
t(e)

γt(e)
(2)

Again, we see that the Lagrange multiplier µ1 is positive: If µ1 = 0, then Eq. (2) implies that

wages c∗t are constant in t, violating the incentive compatibility (IC). Hence, µ1 > 0. The
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right-hand side of Eq. (2) increases in t ∈ T due to the monotone likelihood ratio property.

Therefore, the strict concavity of u(·) implies that the solution c∗t is unique and that c∗t

increases in t ∈ T . Given that effort e is implementable, this concludes the proof.

I conclude the proof by some remarks on implementability. To implement no effort, e = 0,

set c∗t = u−1(ū + d(0)) for all t ∈ T . This wage c∗t is well defined if and only if effort e = 0

is implementable. The limit limw→∞ u(w) = ∞ or ū sufficiently low ensures that the wage

c∗t is well defined and, hence, that effort e = 0 is implementable. Positive effort e > 0 is

implementable for limw→∞ u(w) = ∞ if the constraint set is nonempty (Page, 1987). To

implement positive effort, e > 0, consider the contract

ct =

c1 if t ∈ Tg

c2 otherwise

with the set Tg = {t ∈ T |γ′
t(e) ≥ 0} and c1 as well as c2 determined below. The contract

satisfies the agent’s incentive compatibility (IC) if

d′(e) =
∑
t∈Tg

u(c1)γ
′
t(e) +

∑
t∈(T \Tg)

u(c2)γ
′
t(e) = (u(c1)− u(c2))

∑
t∈Tg

γ′
t(e) (3)

because
∑

t∈T γt(e) = 1 ⇒
∑

t∈T γ′
t(e) = 0 and, hence,∑

t∈Tg

γ′
t(e) = −

∑
t∈(T \Tg)

γ′
t(e).

The assumption limw→a u(w) = −∞ implies it is always possible to satisfy the incentive

compatibility by setting c2 sufficiently close to a. According to the definition of the set Tg

and the monotone likelihood ratio property, the sum
∑

t∈T γ′
t(e) in Equation (3) is positive.

Therefore, Equation (3) uniquely determines u(c1)−u(c2). Moreover, d′ > 0 implies c1 > c2.

The contract satisfies the participation constraint (PC) if

d(e) + ū = u(c1)
∑
t∈Tg

γt(e) + u(c2)
∑

t∈(T \Tg)

γt(e) = u(c2) + (u(c1)− u(c2))
∑
t∈Tg

γt(e)

because
∑

t∈T γt(e) = 1 and, hence,∑
t∈Tg

γt(e) = 1−
∑

t∈(T \Tg)

γt(e).
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Plugging in above solution for u(c1)− u(c2) uniquely determines u(c2). The values for u(c1)

and u(c2) are feasible if limw→∞ u(w) = ∞. Therefore, the constraint set is nonempty. Above

contract also proves that the costs of an optimal contract are lower than max{c1, c2} < ∞
for implementable effort e.

Proof of Proposition 1: With uninformative self-assessments, the principal’s truth-

telling constraint (TTP ) implies w̃t0 = w̃t̄0 for all t, t̄ ∈ T . Expected wages must be constant

in the principal’s message because the contract cannot detect any deviations from truth-

telling by the principal. Thus, define ω = w̃t0 for a t ∈ T . In addition, the agent’s truth-

telling constraint (TTA) implies

∑
t∈T

u(c̃t0)γt(e) ≥
∑
t∈T

u(c̃ts̄)γt(e)

for all s̄ ∈ T . As the values c̃ts for all t, s ∈ T matter only off the equilibrium path, without

loss of generality, we can set c̃ts = c̃t0 for all t, s ∈ T to satisfy the agent’s truth-telling

constraint (TTA). Adjusting Program A accordingly yields Program B:

min
ω,c̃t0

ω (B)

subject to
∑
t∈T

u(c̃t0)γt(e)− d(e) ≥ ū, (PC)

∑
t∈T

γ′
t(e)u(c̃t0) = d′(e) (IC)

ω ≥ c̃t0 ∀t ∈ T . (4)

The next steps calculate the optimal ω and c̃t0. Define ν0, ν1 and βt to be the La-

grange multipliers of the participation constraint (PC), incentive compatibility (IC) and

constraint (4) in Program B, respectively. If c̃t0 = ω for all t ∈ T , the contract violates the

agent’s incentive compatibility (IC). Therefore there is an evaluation t∗ ∈ T with stochas-

tic payments, i.e., ω > c̃t∗0. Then the complementary slackness condition yields βt∗ = 0.

Optimization of the Lagrangian with respect to c̃t∗0 results in

−ν0u
′(c̃t∗0)γt∗(e)− ν1u

′(c̃t∗0)γ
′
t∗(e) = 0.

Hence,
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ν0 + ν1
γ′
t∗(e)

γt∗(e)
= 0. (5)

The monotone likelihood ratio property ensures that
γ′
t(e)

γt(e)
strictly increases in t ∈ T . In

addition, ν1 must be positive because the solution to Program B without the agent’s incentive

compatibility (IC) is ω = c̃t0 = u−1(ū+d(e)) for all t ∈ T and this solution violates constraint

(IC). Therefore, equation (5) can hold for at most one t∗ ∈ T . Hence, c̃t0 = ω and βt ≥ 0

for all t ∈ T \ {t∗}.
Assume to the contrary t∗ ̸= 1. This assumption implies t∗ > 1. Optimization of the

Lagrangian with respect to c̃10 results in −ν0u
′(c̃10)γ1(e)− ν1u

′(c̃10)γ
′
1(e) + β1 = 0. Hence,

ν0 + ν1
γ′
1(e)

γ1(e)
=

1

u′(c̃10)

β1

γ1(e)
.

Equation (5), ν1 > 0, t∗ > 1 and the monotone likelihood ratio property imply that the

left-hand side of the last equation is negative. The right-hand side is non-negative because

constraint (4) is binding for t = 1 and β1 ≥ 0. This contradiction proves that t∗ = 1.

Plugging these results into the participation constraint (PC) and the incentive compati-

bility (IC) yields:

u(ω∗)(1− γ1(e)) + u(c̃∗10)γ1(e)− d(e) = ū,

(u(c̃∗10)− u(ω∗))γ′
1(e) = d′(e),

because 1 =
∑

t∈T γt(e) ⇒ 0 =
∑

t∈T γ′
t(e) = γ′

1(e)+
∑

t∈T \{1} γ
′
t(e). Solving the first equation

for u(c̃∗10) gives u(c̃∗10) = [ū+ d(e)− u(ω∗)(1− γ1(e))]/γ1(e). Inserting this value for u(c̃∗10)

into the second equation yields (ū+ d(e)− u(ω∗)) γ′
1(e) = γ1(e)d

′(e) and finally results in

u(ω∗) = ū+ d(e)− γ1(e)

γ′
1(e)

d′(e) and u(c̃∗10) = ū+ d(e) +
1− γ1(e)

γ′
1(e)

d′(e).

These values of ω∗ and c̃∗10 allow to characterize the optimal contract. For this purpose,

define w = c̃∗10, b = ω∗ − c̃∗10 and consider a lottery ∆ ∈ L with Eu(w + b−∆) = u(w) and

E(∆) = 0. Now consider the contract stated in Proposition 1. The contract implements

c̃ts = w̃ts = w+ b for all t > 1, and all s ∈ S and c̃1s = w̃1s − b = w for all s ∈ S. Hence, the
contract in Proposition 1 implies ω = w + b = ω∗ and
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u(c̃t0) =

u(w + b) = u(ω∗) if t > 1

u(w) = u(c̃∗10) if t = 1.

The definition of c̃∗t0 ensures that the contract satisfies the agent’s participation constraint

(PC) and his incentive compatibility (IC). The agent’s truth-telling constraint (TTA) is

satisfied because his utilities are independent of his message. The principal’s truth-telling

constraint (TTP ) is also satisfied because expected wages are independent of her message.

The contract also satisfies constraint (RA). Consequently, the contract in Proposition 1 is

feasible. The contract is also optimal because ω∗ and c̄∗1 are optimal in Program B.

Proof of Proposition 2: The proof proceeds in two steps. The first step constructs

lotteries that satisfy the conditions in the proposition. The second step proves optimality of

the contract stated in the proposition.

First, I show how to construct the lotteries ∆t. Consider, for example, a lottery ∆t ∈ L
that pays zt and −zt with equal probabilities. This lottery yields an expectation of zero.

Choosing zt ∈ R appropriately ensures Eu(c∗n/p+∆t) = u(c∗t ) because c
∗
n/p ≥ c∗n ≥ c∗t for all

t ∈ T . Strict concavity of u and the assumption limw→a u(w) = −∞ guarantee that there

is a unique and bounded zt for all t ∈ T . This construction establishes existence of the

lotteries ∆t.

Second, consider optimality. On the equilibrium path, the contract in Proposition 2

makes the principal pay a wage of c∗t to the agent. Lemma 2 shows that the optimal complete

contract c∗t satisfies the agent’s participation constraint (PC) and incentive compatibility

(IC). Hence, the agent accepts the contract in Proposition 2 and exerts effort e. Indepen-

dently of the agent’s message s, his utility is u(c∗t ) = Eu(c∗n/p+∆t). Therefore, truth-telling

is optimal for the agent and his truth-telling constraint (TTA) is satisfied. Suppose the agent

reports his self-assessment s truthfully. If the principal evaluates the agent correctly, she

pays c∗t . If the principal deviates to an evaluation t̄ ̸= t, she expects to pay

pw̃t̄t + (1− p)w̃t̄0 = pc∗n/p+ (1− p)c∗t̄ = c∗n + (1− p)c∗t̄ > c∗n = max
r∈T

c∗r.

Therefore, truth-telling is optimal for the principal and her truth-telling constraint (TTP )

is satisfied. Constraint (RA) is trivially satisfied.

In summary, the contract implements equilibrium payments of c∗t . Remember that the

optimal complete contract c∗t is a solution to a relaxed problem without the truth-telling
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constraints (TTP ) and (TTA). Consequently, the contract in Proposition 2 optimally incen-

tivizes the agent based on subjective evaluations.

Proof of Proposition 3: First, construct a lottery ∆ ∈ L with the desired properties.

The lottery pays u−1(ū+d(e))+z and u−1(ū+d(e))−z with equal probabilities. This lottery

yields an expectation of u−1(ū + d(e)). Choosing z ∈ R appropriately ensures Eu(∆) =

ū+ d(0). Strict concavity of u and the assumption limw→a u(w) = −∞ guarantee that there

is a unique and bounded z. This construction establishes existence of the lottery ∆.

Second, consider incentives. In period 4, the principal’s expected payoffs do not depend

on her report. Therefore, reporting t = e is optimal for the principal. If the agent’s chooses

effort e, her utilities in the contract are ū+ d(e)− d(e) = ū. Hence, she accepts the contract

and her participation constraint (PC) is satisfied. If the agent chooses any other report or

effort, her expected utilities are at most ū+ d(0)− d(0) ≤ ū. Therefore, the agent optimally

chooses effort e and reports s = e.

The contract implements any effort e ∈ [0, 1) at first-best costs.

Proof of Proposition 4: The condition kd′(e) < |γ′
1(e)/γ1(e)| ensures that effort e is

implementable according to Proposition 8 in Appendix B. Begin with the base wage w as

calculated in Proposition 8. Higher risk aversion k increases the fixed wage w:

∂w

∂k
=

1

k2
ln

(
1− 1− γ1(e)

γ′
1(e)

kd′(e)

)
− 1

k

1

1− 1−γ1(e)
γ′
1(e)

kd′(e)

1− γ1(e)

γ′
1(e)

d′(e)

=
1

k2
ln

(
1− 1− γ1(e)

γ′
1(e)

kd′(e)

)
− 1

k

1
γ′
1(e)

1−γ1(e)
− kd′(e)

d′(e) > 0

because the MLRP ensures γ′
1(e) < 0 so that

γ′
1(e)

1−γ1(e)
< 0 and 1−γ1(e)

γ′
1(e)

< 0 and the logarithm

is positive. In addition, the last fraction being negative guarantees that the second term is

also positive.

Turn to the bonus wage w + b calculated in Proposition 8 in Appendix B. Higher risk

aversion k increases the bonus wage w + b:

∂w + b

∂k
=

1

k2
ln

(
1 +

γ1(e)

γ′
1(e)

kd′(e)

)
− 1

k

1

1 + γ1(e)
γ′
1(e)

kd′(e)

γ1(e)

γ′
1(e)

d′(e) > 0

because the negative γ′
1(e) ensures that the logarithm ln(1 + γ1(e)

γ′
1(e)

kd′(e)) is decreasing and
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concave in k and equals zero for k = 0. Thus, Taylor’s theorem yields ln
(
1 + γ1(e)

γ′
1(e)

kd′(e)
)
>

k
∂ ln

(
1+

γ1(e)

γ′1(e)
kd′(e)

)
∂k

. Therefore, the derivative is positive.

Next, consider the bonus b calculated in Proposition 8 in Appendix B. There is a γ̄ ∈
(0, 1/2) so that higher risk aversion k decreases the bonus b for γ1(e) < γ̄ and increases

the bonus b for γ1(e) > γ̄. The threshold γ̄ for γ1(e) is determined by (2γ̄ − 1)γ′
1(e) =

2γ̄kd′(e)(1− γ̄) and depends on the risk aversion k. The reason is the following:

∂b

∂k
= − 1

k2
ln

(
1− kd′(e)

γ′
1(e) + γ1(e)kd′(e)

)
+

1

1− kd′(e)
γ′
1(e)+γ1(e)kd′(e)

−γ′
1(e)d

′(e)

k(γ′
1(e) + γ1(e)kd′(e))2

= − 1

k2
ln

(
1− kd′(e)

γ′
1(e) + γ1(e)kd′(e)

)
+

1

k

1

γ′
1(e)− (1− γ1(e))kd′(e)

−γ′
1(e)d

′(e)

γ′
1(e) + γ1(e)kd′(e)

because Taylor’s theorem yields

− ln

(
1− kd′(e)

γ′
1(e) + γ1(e)kd′(e)

)
+ k

∂ ln
(
1− kd′(e)

γ′
1(e)+γ1(e)kd′(e)

)
∂k

< 0 for γ1(e) < γ̄,

> 0 for γ1(e) > γ̄

as the logarithm ln(1− kd′(e)
γ′
1(e)+γ1(e)kd′(e)

) equals zero for k = 0, kd′(e) < |γ′
1(e)/γ1(e)| and

∂ ln
(
1− kd′(e)

γ′
1(e)+γ1(e)kd′(e)

)
∂k

=
−1

γ′
1(e)− (1− γ1(e))kd′(e)

γ′
1(e)d

′(e)

γ′
1(e) + γ1(e)kd′(e)

> 0,

∂2 ln
(
1− kd′(e)

γ′
1(e)+γ1(e)kd′(e)

)
∂k2

=
(2γ1(e)− 1)γ′

1(e) + 2γ1(e)kd
′(e)(γ1(e)− 1)

(γ′
1(e)− (1− γ1(e))kd′(e))2

d′(e)2γ′
1(e)

(γ′
1(e) + γ1(e)kd′(e))2

,

so that the logarithm is increasing and concave in k for γ1(e) < γ̄ and the logarithm is

increasing and convex in k for γ1(e) > γ̄.

Finally, consider the limit to risk neutrality, k → 0. L’Hospital’s rule yields w → w̄ +

d(e) +
1− γ1(e)

γ′
1(e)

d′(e), b → −d′(e)/γ′
1(e), and w + b → w̄ + d(e)− γ1(e)

γ′
1(e)

d′(e).

For CARA utilities and a normal distribution, the risk premium equals the variance

times k/2. Rearranging yields the necessary variance of the lottery. The CARA utilities of

a binary lottery with probabilities half each are equal to cosh(·). Plugging in the definition

of the cosh yields the term for the value z.

Proof of Proposition 5: The condition kd′(e) < |γ′
1(e)/γ1(e)| ensures that effort e is
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implementable according to Proposition 8 in Appendix B for uninformative self-assessments.

With informative self-assessments, the principal has more flexibility and can implement

more effort levels. Therefore, the condition kd′(e) < |γ′
1(e)/γ1(e)| ensures that effort e is

implementable also for informative self-assessments.

Proposition 9 in Appendix B shows that the equilibrium wages equal the optimal complete

contract c∗CARA
t as calculated in Lemma 3 in Appendix B:

c∗CARA
t = d(e) +

1

k
ln

(
exp(kw̄) + µ1k

(
γ′
t(e)

γt(e)
+ kd′(e)

))
.

Taking the derivative with respect to the agent’s risk aversion k yields

∂µ1

∂k
k(

γ′
t(e)

γt(e)
+ kd′(e)) + µ1(

γ′
t(e)

γt(e)
+ 2kd′(e)) + w̄ exp(kw̄)

k
(
exp(kw̄) + µ1k

(
γ′
t(e)

γt(e)
+ kd′(e)

)) − 1

k2
ln

(
exp(kw̄) + µ1k

(
γ′
t(e)

γt(e)
+ kd′(e)

))
.

For the limit to risk neutrality, k → 0, apply L’Hospital’s rule. Hence,

wts −−→
k→0

d(e) + ∂ ln

(
exp(kw̄) + µ1k

(
γ′
t(e)

γt(e)
+ kd′(e)

))
/∂k

∣∣∣∣
k=0

for s ∈ {0, t} and all t ∈ T . For bounded µ1, this derivative equals w̄+µ1
γ′
t(e)

γt(e)
. Calculating the

agent’s expected utility, it is straightforward to see that the agent’s participation constraint

is satisfied for any µ1 in the limit as
∑

t γ
′
t(e) = 0. Turn to the agent’s incentive compatibility

in the limit. Plugging in the limit wages yields:

∑
t

γ′
t(e)(w̄ + µ1

γ′
t(e)

γt(e)
) = d′(e).

Solving for the limit µ1, we get µ1 → d′(e)/(
∑

t
(γ′

t(e))
2

γt(e)
)) confirming the assumption of

bounded µ1. Therefore,

wts −−→
k→0

w̄ + d(e) +
γ′
t(e)

γt(e)

d′(e)

p
∑n

t̂=1

(γ′
t̂
(e))2

γt̂(e)

for s ∈ {0, t} and all t ∈ T . Similarly, out-of-equilibrium expected wages converge to

E(wts) −−→
k→0

1

p
(w̄ + d(e)) +

γ′
n(e)

γn(e)

d′(e)

p
∑n

t̂=1

(γ′
t̂
(e))2

γt̂(e)

for all s ̸= 0, t and all t ∈ T because E(∆t) = 0 for all t.
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For CARA utilities and a normal distribution, the risk premium equals the variance times

k/2. Rearranging yields the necessary variance of the lottery. As limk→0 c
∗CARA
n /p−c∗CARA

t >

0, the risk premium is positive in the limit and the variance of the lottery has to decrease in

the risk aversion for all evaluations t for sufficiently small risk aversion.

The CARA utilities of a binary lottery with probabilities half each are equal to cosh(·).
Again the value z decreases in the risk aversion for all evaluations t for sufficiently small risk

aversion.

Proof of Proposition 6: Begin with the equilibrium wages w̄ + d(e) calculated in

Proposition 10 in Appendix B. These equilibrium wages do not depend on the agent’s risk

aversion and are deterministic. The mean and the risk premium of the off-equilibrium

payments ∆ is constant in the agent’s risk aversion. A constant risk premium translates in

a riskiness that decreases in the agent’s risk aversion.

For CARA utilities and a normal distribution, the risk premium equals the variance times

k/2. Rearranging yields a variance of at least 2(d(e)− d(0))/k. That variance is decreasing

and convex in the agent’s risk aversion with the limit limk→0 ∂Var(∆
1)/∂k = −∞.

The CARA utilities of a binary lottery with probabilities half each are equal to cosh(·).
Again the value z decreases in the risk aversion with the limit limk→0 ∂z/∂k = −∞.

Proof of Proposition 7: For uninformative self-assessments, the optimal contract is less

efficient than the objective benchmark according to Proposition 1. For higher correlation,

optimal contracts are as efficient as the second-best benchmark according to Proposition 2.

Therefore, the principal’s expected costs of the contract decrease in correlation.

For uninformative self-assessments, the optimal contract has two wage levels according

to Proposition 1. For higher correlation, optimal contracts have |n| wage levels according to

Proposition 2.

According to Proposition 2, expected out-of-equilibrium wages equal c∗n/p and, thus,

decrease in the correlation p. In addition, the risk premium of out-of-equilibrium wages

equal c∗n/p− c∗t for an evaluation t. This risk premium decreases in the correlation p.

Proof of Theorem 1: Stochastic contracts allow to replicate the outcomes of any

deterministic contract with payments to third parties. The revelation principle ensures that

it is without loss of generality to focus on direct mechanisms. In the space of deterministic

contracts, hence, it is without loss of generality to consider contracts with w′
ts paid by the
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principal to the agent and y′ts paid by the principal to third parties. We can replicate any

such contract using a stochastic contract W without payments to third parties by setting

yts = 0 and wts =

w′
ts if y′ts = 0

w′
ts + y′ts +∆ts if y′ts > 0

with zero-mean lotteries ∆ts ∈ L for all t ∈ T and all s ∈ S. The lotteries have a risk

premium y′ts for the agent. Thus, EU(wts, e) = U(w′
ts, e). Consider, for example, a lottery

∆ts ∈ L that pays zts and −zts with equal probabilities. This lottery yields an expectation

of zero. Choosing zts ∈ R+
0 appropriately ensures

EU(wts, e) = EU(w′
ts + y′ts +∆ts, e) = U(w′

ts, e)

for all t ∈ T and all s ∈ S. Strict concavity of U in w guarantees that there is a unique and

bounded zts for all t ∈ T and all s ∈ S: for fixed t and s, I define the function

Z(z) = U(w′
ts + y′ts + z, e)/2 + U(w′

ts + y′ts − z, e)/2− U(w′
ts, e).

Obviously, Z(0) = U(w′
ts + y′ts, e) − U(w′

ts, e) > 0 as U increases in w. Next, I construct

z̄ > 0 such that Z(z̄) < 0. I denote Uw = ∂U/∂w. Notice that for z > y′ts we have Z(z) =

1

2
U(w′

ts + y′ts + z, e) +
1

2
U(w′

ts + y′ts − z, e)− U(w′
ts, e)

concavity of U in w
< U(w′

ts + y′ts, e) +
1

2
zUw(w

′
ts + y′ts, e)

+
1

2
(U(w′

ts, e)− U(w′
ts + y′ts, e) + U(w′

ts + y′ts − z, e)− U(w′
ts, e))− U(w′

ts, e)

concavity of U in w
< U(w′

ts + y′ts, e) +
1

2
zUw(w

′
ts + y′ts, e)

− 1

2
y′tsUw(w

′
ts + y′ts, e) +

1

2
(y′ts − z)Uw(w

′
ts, e)− U(w′

ts, e)

= U(w′
ts + y′ts, e)− U(w′

ts, e)−
1

2
(y′ts − z)(Uw(w

′
ts + y′ts, e)− Uw(w

′
ts, e))

= U(w′
ts + y′ts, e)− U(w′

ts, e) +
1

2
(y′ts − z)(Uw(w

′
ts, e)− Uw(w

′
ts + y′ts, e)).

The last line equals zero for

z = z̄ = y′ts + 2
U(w′

ts + y′ts, e)− U(w′
ts, e)

Uw(w′
ts, e)− Uw(w′

ts + y′ts, e)
.
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The value z̄ > y′ts > 0 is positive because U(w′
ts + y′ts, e) > U(w′

ts, e) as well as Uw(w
′
ts, e) >

Uw(w
′
ts + y′ts, e). Therefore, Z(z̄) < 0. Together, Z(0) > 0, Z(z̄) < 0, and the intermediate

value theorem guarantee that there is a z̃ ∈ (0, z̄) such that Z(z̃) = 0. Hence, an appropriate

zts ∈ R+
0 exists for all t ∈ T and all s ∈ S. This construction establishes existence of

lotteries ∆ts. Unsurprisingly, the lotteries ∆ts are not uniquely determined. There are many

lotteries ∆ts ∈ L with E(∆ts) = 0 and a risk premium of y′ts.

To sum up, the new contractW provides the same expected utilities for every combination

of reports for the agent as the deterministic contract W ′ that uses payments to third parties

and similarly for the principal. The principal’s expected costs in the new contract are

E(wts) = E(w′
ts + y′ts +∆ts) = w′

ts + y′ts

which are the same as in the old contract for all t ∈ T and all s ∈ S. Therefore, the

reporting strategies of contract W ′ also form an equilibrium in the reporting subgame in

contract W . Hence, the agent is willing to participate and receives the same incentives as

in the deterministic contract W ′. Importantly, there are no payments to third-parties in

the new contract W . Consequently, the contract W incentivizes the agent to exert effort e

without payments to third parties.

Proof of Corollary 1: Following the construction in Theorem 1, for every contract W ′

with payments to third parties there is a (stochastic) contract W without such payments

that yields the same utilities for the principal and the agent for every combination of reports.

Then, it is an equilibrium for the principal to follow her reporting strategy in the previous

contract W ′ also in the new contract W and for the agent to follow the same reporting

strategy and to choose the same level of effort as in the previous contract W ′. The expected

costs and benefits for the principal are the same in contract W as in the previous contract

W ′. In addition, there could be more profitable stochastic contracts as Corollary 2 shows.

Consequently, optimal stochastic contracts without third-party payments are at least as

profitable for the principal as deterministic contracts with third-party payments.

Proof of Corollary 2: Proposition 2 shows that stochastic contracts can achieve ex-

pected wage costs of Cc(e) for any degree of correlation and p > 0. Now, suppose that

contracts are deterministic. To describe optimal contracts in this case, I denote the bound

on the third-party payments as S. If S < b, with the value b as defined in Proposition 1,
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deterministic contracts cannot implement effort e. If b/p > S ≥ b, the optimal deterministic

contract is

w̃ts = w + b and c̃ts =

w if t = 1

w + b otherwise
(6)

with the values w and b defined in Proposition 1. To show optimality, I re-interpret the

value w̃ts as the deterministic wage payment by the principal. Then, the agent earns a wage

c̃ts, while the amount w̃ts − c̃ts is paid to third parties. Thus, Proposition 1 implies that

contract (6) is optimal.

If S ≥ b/p, the optimal contract is

w̃ts =

c̃tt if s = 0 or t = s

S otherwise.

In addition, there is a t̄ ∈ T such that

c̃ts

= c̃ns′ if t > t̄

< c̃(t−1)s′ otherwise

for all t ∈ T and all s, s′ ∈ S according to MacLeod (2003, Proposition 8). Moreover, t̄ < n−1

if S < (c∗n − c∗1)/p. If S ≥ (c∗n − c∗1)/p, the optimal deterministic contract has t̄ = n − 1

and in equilibrium implements wage payments c∗t for the agent at the same costs Cc(e) as

the optimal complete contract. Therefore, all deterministic contracts are more expensive

than Cc(e) if S < (c∗n − c∗1)/p. If the correlation p is sufficiently small, S < (c∗n − c∗1)/p for

any finite bound S. Consequently, stochastic contracts are strictly more profitable for the

principal if the alignment p between the agent’s self-assessment and the principal’s evaluation

is sufficiently small.

B Appendix: Monetary Costs of Effort

Lemma 3. Given Assumptions 1, 2, and 3a and implementable effort e > 0, the optimal

complete contract is

wts = c∗CARA
t = d(e) +

1

k
ln

(
exp(kw̄) + µ1k

(
γ′
t(e)

γt(e)
+ kd′(e)

))
∀t ∈ T , s ∈ S (7)
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with the Lagrange multiplier µ1 of the incentive compatibility. Better performances yield

higher wages, i.e., wages c∗CARA
t strictly increase in performance t.

Proof of Lemma 3: Regarding the agent’s incentive compatibility (IC), the first-order

approach is valid here because the distribution induced by γt(e) is log-convex. Fagart and

Fluet (2013) show that for CARA preferences the first-order approach is valid if the distri-

bution is log-convex, disutilities d(·) are convex and the monotone likelihood ratio property

(MLRP) is satisfied. Hence, I can rewrite the agent’s incentive compatibility (IC) as

∑
t∈T

γ′
t(e) (pU(c̃tt, e) + (1− p)U(c̃t0, e)) +

∑
t∈T

kγt(e) (pU(c̃tt, e) + (1− p)U(c̃t0, e)) d
′(e) = 0

because ∂U(c, e)/∂e = −kd′(e) exp(−k(c− d(e)) = kU(c, e)d′(e).

Consider Program A without the constraints (TTP ) and (TTA) for truth-telling. It

is straightforward that the solution to this problem is w̃ts = c̃ts = c̃t0 = c∗CARA
t with a

certainty equivalent c∗CARA
t for all t, s ∈ T if a solution exists. Neglecting also the agent’s

incentive compatibility (IC), the solution to this relaxed problem is c∗CARA
t = w̄ + d(e) for

all t ∈ T . Therefore, the agent’s incentive compatibility (IC) is binding because the solution

to the relaxed problem violates the agent’s incentive compatibility (IC). Consequently, the

Lagrange multiplier µ1 of the agent’s incentive compatibility (IC) is positive in Eq. (7).

Optimization with respect to c∗CARA
t with the Lagrange multipliers of the participation

constraint µ0 and the incentive compatibility µ1 determines the optimal complete contract:

γt(e)− µ0
∂U(c∗CARA

t , e)

∂c∗CARA
t

γt(e)− µ1
∂U(c∗CARA

t , e)

∂c∗CARA
t

γ′
t(e)− µ1kγt(e)

∂U(c∗CARA
t , e)

∂c∗CARA
t

d′(e) = 0,

1
∂U(c∗CARA

t ,e)

∂c∗CARA
t

=
1

k
exp(k(w − d(e)) = µ0 + µ1

γ′
t(e)

γt(e)
+ µ1kd

′(e) (8)

Again, we see that the Lagrange multiplier µ1 is positive: If µ1 = 0, then Eq. (8) implies that

wages c∗CARA
t are constant in t, violating the incentive compatibility (IC). Hence, µ1 > 0.

The right-hand side of Eq. (8) increases in t ∈ T due to the monotone likelihood ratio

property. Therefore, positive monotonicity of the exponential function implies that c∗CARA
t

increases in t ∈ T . Summing up the first line of above equations over t yields:

1 + µ0k
∑
t∈T

U(c∗CARA
t , e)γt(e) + µ1k

(∑
t∈T

U(c∗CARA
t , e)γ′

t(e) +
∑
t∈T

kγt(e)U(c∗CARA
t , e)d′(e)

)
= 0
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because ∂U(c, e)/∂c = k exp(−k(c − d(e)) = −kU(c, e). The complementary slackness con-

dition ensures that the term in brackets equals zero as it is equal to the agent’s incentive

compatibility (IC). By Grossman and Hart (1983, Proposition 2) and Chade and De Serio

(2002, Claim 3), we know that the agent’s participation constraint is binding. Thus, the

agent’s expected utilities equal ū. Therefore, µ0 = −1/kū = exp(kw̄)/k. Plugging this

value into Eq. (8) and rearranging, yields Eq. (7). Finally, notice that effort e = 0 is always

implementable by a wage c∗CARA
t = w̄ + d(0) for all t ∈ T .

Proposition 8. If kd′(e) < |γ′
1(e)/γ1(e)| and the agent’s self-assessment is uninformative,

the following bonus contract is optimal for implementing effort e > 0 given Assumptions 1, 2,

and 3a:

wts =

w + b if t > 1

w + b+∆ if t = 1

with a lottery ∆ ∈ L, a fixed wage w = w̄ + d(e)− 1

k
ln

(
1− 1− γ1(e)

γ′
1(e)

kd′(e)

)
and a bonus

b =
1

k
ln

(
1− kd′(e)

γ′
1(e) + γ1(e)kd′(e)

)
> 0. The lottery ∆ has zero mean and a risk premium

of b.

Proof of Proposition 8: With uninformative self-assessments, the principal’s truth-

telling constraint (TTP ) implies w̃t0 = w̃t̄0 for all t, t̄ ∈ T . Expected wages must be constant

in the principal’s message because the contract cannot detect any deviations from truth-

telling by the principal. Thus, define ω = w̃t0 for a t ∈ T . In addition, the agent’s truth-

telling constraint (TTA) implies

∑
t∈T

U(c̃t0, e)γt(e) ≥
∑
t∈T

U(c̃ts̄, e)γt(e)

for all s̄ ∈ T . As the values c̃ts for all t, s ∈ T matter only out of equilibrium, without

loss of generality, we can set c̃ts = c̃t0 for all t, s ∈ T to satisfy the agent’s truth-telling

constraint (TTA). Adjusting Program A accordingly yields Program B’:

min
ω,c̃t0

ω (B’)

subject to
∑
t∈T

U(c̃t0, e)γt(e) ≥ ū, (PC)
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∑
t∈T

γ′
t(e)U(c̃t0, e) + kγt(e)U(c̃t0, e)d

′(e) = 0 (IC)

ω ≥ c̃t0 ∀t ∈ T . (9)

The next steps calculate the optimal ω and c̃t0. Define ν0, ν1 and βt to be the La-

grange multipliers of the participation constraint (PC), incentive compatibility (IC) and

constraint (9) in Program B’, respectively. If c̃t0 = ω for all t ∈ T , the contract violates the

agent’s incentive compatibility (IC). Therefore there is an evaluation t∗ ∈ T with stochas-

tic payments, i.e., ω > c̃t∗0. Then the complementary slackness condition yields βt∗ = 0.

Optimization of the Lagrangian with respect to c̃t∗0 results in

−ν0
∂U(c̃t∗0, e)

∂c̃t∗0
γt∗(e)− ν1

∂U(c̃t∗0, e)

∂c̃t∗0
γ′
t∗(e)− ν1kγt∗(e)

∂U(c̃t∗0, e)

∂c̃t∗0
d′(e) = 0.

Hence,

ν0 + ν1
γ′
t∗(e)

γt∗(e)
+ ν1kd

′(e) = 0. (10)

The monotone likelihood ratio property ensures that
γ′
t(e)

γt(e)
strictly increases in t ∈ T . In ad-

dition, ν1 must be positive because the solution to Program B’ without the agent’s incentive

compatibility (IC) is ω = c̃t0 = w̄ + d(e) for all t ∈ T and this solution violates constraint

(IC). Therefore, equation (10) can hold for at most one t∗ ∈ T . Hence, c̃t0 = ω and βt ≥ 0

for all t ∈ T \ {t∗}.
Assume to the contrary t∗ ̸= 1. This assumption implies t∗ > 1. Optimization of the

Lagrangian with respect to c̃10 results in

−ν0
∂U(c̃10, e)

∂c10
γ1(e)− ν1

∂U(c̃10, e)

∂c̃10
γ′
1(e)− ν1kγ1(e)

∂U(c̃10, e)

∂c̃10
d′(e) + β1 = 0.

Hence,

ν0 + ν1
γ′
1(e)

γ1(e)
+ ν1kd

′(e) =
1

∂U(c̃10,e)
∂c̃10

β1

γ1(e)
.

Equation (10), ν1 > 0, t∗ > 1 and the monotone likelihood ratio property imply that the

left-hand side of the last equation is negative. The right-hand side is non-negative because
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constraint (9) is binding for t = 1 and β1 ≥ 0. This contradiction proves that t∗ = 1.

Plugging these results into the participation constraint (PC) and the incentive compati-

bility (IC) yields:

U(ω∗CARA, e)(1− γ1(e)) + U(c̃∗CARA
10 , e)γ1(e) = ū,

(U(c̃∗CARA
10 , e)− U(ω∗CARA, e))γ′

1(e) + kd′(e)ū = 0,

because 1 =
∑

t∈T γt(e) ⇒ 0 =
∑

t∈T γ′
t(e) = γ′

1(e) +
∑

t∈T \{1} γ
′
t(e). Solving the first

equation for U(c̃∗CARA
10 , e) gives U(c̃∗CARA

10 , e) = [ū− U(ω∗CARA, e)(1− γ1(e))]/γ1(e). Insert-

ing this value for U(c̃∗CARA
10 , e) into the second equation yields

(
ū− U(ω∗CARA, e)

)
γ′
1(e) =

−γ1(e)kd
′(e)ū and finally results in U(c̃∗CARA

10 , e) = ū(1− 1−γ1(e)
γ′
1(e)

kd′(e)),

ω∗CARA = w̄ + d(e)− 1

k
ln(1 +

γ1(e)

γ′
1(e)

kd′(e)) and c̃∗CARA
10 = w̄ + d(e)− 1

k
ln(1− 1− γ1(e)

γ′
1(e)

kd′(e)).

These values of ω∗CARA and c̃∗CARA
10 are well-defined for kd′(e) < −γ′

1(e)/γ1(e) and allow to

characterize the optimal contract. Therefore, the condition kd′(e) < |γ′
1(e)/γ1(e)| ensures

that effort e is implementable. For this purpose, define w = c̃∗CARA
10 , b = ω∗CARA − c̃∗CARA

10

and consider a lottery ∆ ∈ L with E exp(−k(b−∆)) = 1 and E(∆) = 0. Now consider the

contract stated in Proposition 8. The contract implements c̃ts = w̃ts = w + b for all t > 1,

and all s ∈ S and c̃1s = w̃1s − b = w for all s ∈ S. Hence, the contract in Proposition 8

implies ω = w + b = ω∗CARA and

u(c̃t0) =

u(w + b) = u(ω∗CARA) if t > 1

u(w) = u(c̃∗CARA
10 ) if t = 1.

The definition of c̃∗CARA
t0 ensures that the contract satisfies the agent’s participation con-

straint (PC) and his incentive compatibility (IC). The agent’s truth-telling constraint (TTA)

is satisfied because his utilities are independent of his message. The principal’s truth-telling

constraint (TTP ) is also satisfied because expected wages are independent of her message.

The contract also satisfies constraint (RA). Consequently, the contract in Proposition 8 is

feasible. The contract is also optimal because ω∗CARA and c̄∗CARA
1 are optimal in Program B’.

For kd′(e) ≥ −γ′
1(e)/γ1(e), i.e., large risk aversion or high disutility of effort, effort e is not

implementable.
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Proposition 9. If the agent’s self-assessment is informative, i.e., p > 0, and effort e > 0

is implementable, the following contract is optimal given Assumptions 1, 2, and 3a:

wts =


c∗CARA
t if s = 0 or t = s

c∗CARA
n

p
+∆t otherwise

with the optimal complete contract c∗CARA
t defined in Lemma 3 in Appendix B and lotteries

∆t ∈ L. The lotteries ∆t have a risk premium of c∗CARA
n /p− c∗CARA

t and zero expectation.

Proof of Proposition 9: The proof proceeds in two steps. The first step constructs

lotteries that satisfy the conditions in the proposition. The second step proves optimality of

the contract stated in the proposition.

First, I show how to construct the lotteries ∆t. Consider, for example, a lottery ∆t ∈ L
that pays zt and −zt with equal probabilities. This lottery yields an expectation of zero.

Choosing zt ∈ R appropriately ensures E exp(−k(c∗CARA
n /p+∆t)) = exp(−kc∗CARA

t ) because

c∗CARA
n /p ≥ c∗CARA

n ≥ c∗CARA
t for all t ∈ T . Strict concavity of − exp(−w) and the fact

limw→−∞− exp(−kw) = −∞ guarantee that there is a unique and bounded zt for all t ∈ T .

This construction establishes existence of the lotteries ∆t.

Second, consider optimality. On the equilibrium path, the contract in Proposition 9

makes the principal pay a wage of c∗CARA
t to the agent. Lemma 3 shows that the optimal

complete contract c∗CARA
t satisfies the agent’s participation constraint (PC) and incentive

compatibility (IC). Hence, the agent accepts the contract in Proposition 9 and exerts effort e.

Independently of the agent’s message s, his utility is U(c∗CARA
t , e) = EU(c∗CARA

n /p +∆t, e).

Therefore, truth-telling is optimal for the agent and his truth-telling constraint (TTA) is

satisfied. Suppose the agent reports his self-assessment s truthfully. If the principal evaluates

the agent correctly, she pays c∗CARA
t . If the principal deviates to an evaluation t̄ ̸= t, she

expects to pay

pw̃t̄t+(1−p)w̃t̄0 = pc∗CARA
n /p+(1−p)c∗CARA

t̄ = c∗CARA
n +(1−p)c∗CARA

t̄ > c∗CARA
n = max

r∈T
c∗CARA
r .

Therefore, truth-telling is optimal for the principal and her truth-telling constraint (TTP )

is satisfied. Constraint (RA) is trivially satisfied.

In summary, the contract implements equilibrium payments of c∗CARA
t . Remember that
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the optimal complete contract c∗CARA
t is a solution to a relaxed problem without the truth-

telling constraints (TTP ) and (TTA). Consequently, the contract in Proposition 9 optimally

incentivizes the agent based on subjective evaluations.

Proposition 10. The following contract attains effort e at first-best costs given Assumptions

1a, 2a, and 3a:

wts =

w̄ + d(e) if t = e

∆ otherwise.

with a lottery ∆ ∈ L that has a mean of w̄ + d(e) and satisfies E exp(−k∆) ≥ exp(−k(w̄ +

d(0)).

Proof of Proposition 10: First, construct a lottery ∆ ∈ L with the desired properties.

The lottery pays w̄+d(e)+z and w̄+d(e)−z with equal probabilities. This lottery yields an

expectation of w̄+d(e). Choosing z ∈ R appropriately ensures E exp(−k∆) = 2 exp(−k(w̄+

d(0)) > exp(−k(w̄+d(0)) because 2 exp(−k(w̄+d(0)) > exp(−k(w̄+d(e)) = exp(−kE(∆)).

Strict concavity of − exp(−kw) and the fact limw→−∞ exp(−kw) = ∞ guarantee that there

is a unique and bounded z. This construction establishes existence of the lottery ∆.

Second, consider incentives. In period 4, the principal’s expected payoffs do not depend

on her report. Therefore, reporting t = e is optimal for the principal. If the agent’s chooses

effort e, her utilities in the contract are − exp(−k(w̄+ d(e)− d(e))) = ū. Hence, she accepts

the contract and her participation constraint (PC) is satisfied. If the agent chooses any other

effort, her utilities are at most E(− exp(−k(∆ − d(0)))) = exp(kd(0))E(− exp(−k∆)) ≤
− exp(−kw̄) = ū. Therefore, the agent optimally chooses effort e.

The contract implements any effort e ∈ [0, 1) at first-best costs.
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