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Abstract 
 
We report experimental evidence on the voluntary provision of public goods under threshold 
uncertainty. By explicitly comparing two prominent technologies, summation and weakest link, 
we show that uncertainty is particularly detrimental to threshold attainment under weakest link, 
where low contributions by one subject cannot be compensated by others. In contrast, threshold 
uncertainty does not affect contributions under summation. We demonstrate non-binding pledges 
as one mechanism to improve chances of threshold attainment under both technologies, yet in 
particular under weakest link. 
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1. Introduction 

Economists have long highlighted the serious challenge that free-riding poses 

for the voluntary provision of public goods. In many settings, the level of the 

public good depends on the sum of voluntary contributions, which means that 

individuals may hope to free ride on the efforts by others (e.g., Zelmer, 2003). 

Yet, many public goods do not fit this framework of a summation technology. 

A prominent example is the weakest-link technology, where the level of the 

public good depends on the lowest individual contribution. Such weakest links 

are present, e.g., when protecting against terrorist attacks such as airplane 

hijacking or when fighting contagious diseases (Barrett, 2016; Caparròs and 

Finus, 2020a). In these settings, the outcome critically depends on the minimum 

level of contribution. The recent COVID-19 pandemic contains such features, 

as efforts by an individual country or region may not be sufficient to eradicate 

the disease, given that the likelihood of mutations depends on some host 

countries not having achieved a sufficient vaccination rate.  

Yet, the link between effort (contributions) and the resulting provision level of 

the public good or the success of its provision is stochastic in many situations: 

the exact precautionary effort, e.g., the vaccination rate that prevents mutations 

or the security efforts that succeed in keeping terrorists out of high-security 

zones, might be unknown. That is, additional effort will only increase the 

chances of preventing an adverse event. Despite the importance of uncertain 

thresholds in weakest-link settings, no study has yet explored their behavioral 

consequences.  

This paper reports experimental evidence on voluntary contributions to public 

goods with a threshold for the generation of benefits (or avoidance of a bad 

event). Our study is designed to explicitly investigate how the aggregation 

technology affects the likelihood of reaching the threshold. For this, we compare 

certain and uncertain thresholds within both a summation and a weakest-link 

setting. With summation, total contributions of the group need to exceed a 

specific threshold, while the threshold under weakest link is a minimum level 

of contribution that all group members have to achieve.  
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Our paper contributes to diverse strands of the literature. Inspired by potential 

thresholds in the climate system (e.g., Steffen et al., 2018), a prominent 

discussion in the theoretical and experimental literature concerns how 

thresholds affect the provision of public goods under a summation technology 

(e.g., Barrett, 2013; Barrett and Dannenberg, 2012, 2014; Dannenberg et al., 

2015). Thresholds provide a coordination mechanism, and may increase 

contributions. Yet according to Barrett and Dannenberg (2012, 2014), 

uncertainty about the threshold level substantially reduces the chances of 

successful coordination under summation. Intuitively, uncertainty about the 

threshold means that each individual is only able to impact the probability of 

threshold attainment at the margin. This increases the incentive to free ride 

compared with a known discontinuous threshold, making coordination 

equilibria more difficult to sustain. With this paper, we ask whether threshold 

uncertainty shows similar effects under a weakest-link technology. 

Weakest-link structures add a coordination element to the voluntary provision 

of public goods: it is not worthwhile for an individual to contribute more than 

the smallest amount provided by another group member (Barrett, 2016). While 

this often gives rise to equilibria at contribution profiles other than the non-

cooperative outcome, the success of achieving successful coordination is far 

from guaranteed (Anderson et al., 2001; Caparròs and Finus, 2020a; Caparròs 

et al., 2020; Devetag and Ortmann, 2007), not least because a single individual 

making a mistake is strongly detrimental to the outcome and thus, subjects face 

substantial strategic uncertainty. The chances of successful coordination 

depend, among other things, on the communication that precedes contribution 

decisions, on the identity of contributors, and on heterogeneities among 

individuals (Barbieri and Malueg, 2019; Riechmann and Weimann, 2008; 

Chaudhuri et al., 2009; Engelmann and Normann, 2010; Brandts and Cooper, 

2007; Hamman et al., 2007; Riedl et al., 2016; Harrison and Hirshleifer, 1989; 

Knez and Camerer, 1994; Lei et al., 2007).1 Non-binding contribution pledges 

are a limited form of communication. The effect of pledges on contributions is 

not clear-cut. On the one hand, pledges as simple numerical cheap talk had no 

                                                           
1 Self-enforcing treaties is another approach to achieve successful coordination (Caparròs and 
Finus, 2020a,b). 
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net effect on contributions is Bochet et al. (2006). On the other hand, Barrett 

and Dannenberg (2016) found positive effects of a pledge-review design where 

other players rate the pledges.  

Our experimental design closely follows Barrett and Dannenberg (2012, 2014), 

who explored uncertain thresholds with a summation technology. As a baseline, 

we mimic their experimental treatments and then compare them with behavior 

in a corresponding weakest-link setting. Subjects interact in groups of 10. 

Contributions generate payoffs that are linear in the sum of donations, yet failure 

to reach a contribution threshold induces a discrete lump sum loss.2 Threshold 

attainment under the summation technology requires the sum of contributions 

to reach the threshold. Under weakest link, all subjects have to reach the 

(appropriately scaled) threshold in order to avoid the adverse event. 

Anticipating that weakest-link settings might be more vulnerable to strategic 

uncertainty, we additionally explore the effect of non-binding pledges on 

threshold attainment. 

Our experiment reveals the importance of the aggregation technology. First, we 

find under summation that uncertainty regarding the threshold does not affect 

contributions or the probability of threshold attainment. This is in stark contrast 

to Barrett and Dannenberg (2012, 2014), who identified a negative effect of 

threshold uncertainty. One explanation for the different results is that we find 

subjects largely adhering to their pledges, which was not the case in the earlier 

studies. Importantly, threshold uncertainty in the weakest-link setting shows 

quite different behavioral patterns. When the threshold level is certain, it 

provides a highly successful coordination device. In contrast, groups are almost 

guaranteed not to reach the threshold if the level is uncertain. Thus, we conclude 

that the role of strategic uncertainty is further enhanced when the threshold 

becomes uncertain, leading to considerably lower success rates. Compared with 

summation, this reflects the fact that threshold attainment hinges on all subjects 

                                                           
2 The presence of both a linear and a threshold benefit is consistent with many real-world public 
goods, including climate mitigation and COVID-19 vaccination. For the latter, national 
vaccination programs limit the spread of existing viral variants to other countries (the linear 
component) while also reducing the risk that new variants will emerge (the threshold 
component).  
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contributing a sufficient amount, such that high contributors are unable to 

compensate for low contributions by other group members. 

In our experiment, the chances for threshold attainment in all treatments heavily 

hinge on subjects being able to announce non-binding pledges. A lack of 

pledges prior to contribution decisions particularly handicaps threshold 

attainment under weakest link. Exploring the mechanisms through which the 

possibility of pledges affects contributions, we find that the non-binding nature 

of the pledge appears to induce individuals to make larger contribution 

announcements. These promises are more likely to actually be kept if other 

people have made similar pledges.. 

The paper is structured as follows: Section 2 discusses the experimental design, 

before we provide some theoretical predictions in Section 3. Section 4 discusses 

our results in terms of threshold attainment, individual contribution decisions, 

and the role of pledges. Section 5 concludes. 

 

2. Experimental design 

The games played in our experiment are variants of the voluntary public good 

paradigm. In this section, we first provide general definitions and then describe 

our treatments and experimental protocols. Theoretical predictions are 

discussed in Section 3.3 

The games are played in groups of 10 players 𝑖𝑖 ∈ {1, … ,10}. Each player is 

endowed with 20 experimental tokens. The contribution to the common pool is 

denoted 𝑞𝑞𝑖𝑖 ∈ {0,1, … ,20}. Each player's opportunity cost of contributing is 

piecewise linear and convex, and given by 

𝐶𝐶(𝑞𝑞𝑖𝑖) = � 𝑐𝑐𝐿𝐿𝑞𝑞𝑖𝑖, for 0 ≤ 𝑞𝑞𝑖𝑖 ≤ 10
10𝑐𝑐𝐿𝐿 + 𝑐𝑐𝐻𝐻(𝑞𝑞𝑖𝑖 − 10), for 11 ≤ 𝑞𝑞𝑖𝑖 ≤ 20 

where 𝑐𝑐𝐿𝐿 = €0.1 and 𝑐𝑐𝐻𝐻 = €0.5.4 

                                                           
3 The experimental design and analysis plan were formally registered with the American 
Economic Association’s registry for randomized controlled trials (AEARCTR-0005175), and 
formally approved on December 11, 2019. 
4 In the experiment, the piecewise linear cost scheme was implemented as follows: Of each 
participant’s 20 tokens, half were framed as belonging to a low-value “Account A” and the other 
half to a high-value “Account B.” We hardcoded contributions to draw from account B only 
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Contributions to the common pool have two effects: (i) they generate a public-

good return 𝑟𝑟 = €0.05 to each group member per token contributed by any 

player, and (ii) they (weakly) increase the probability that the group reaches a 

threshold contribution level 𝑄𝑄�, which is uniformly distributed on integers 

{𝑎𝑎,𝑎𝑎 + 1, … , 𝑏𝑏 − 1, 𝑏𝑏}, with 𝑏𝑏 ≥ 𝑎𝑎 > 0. Total returns from contributing (after 

resolving the uncertainty in 𝑄𝑄�) are 

𝑟𝑟 ��𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� − 𝑓𝑓(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛,𝑄𝑄�)𝑋𝑋 

where 𝑓𝑓 is a discontinuous function of the contributions and the threshold level, 

while 𝑋𝑋 = €15 is a fixed cost of failing to reach the threshold.  

Our treatments differ in the mapping of individual contributions into threshold 

attainment. Under a summation technology, the cost of €15 is paid by all players 

unless the group sum of contributions reaches at least 𝑄𝑄�. Formally, 𝑓𝑓 =

𝐼𝐼(∑ 𝑞𝑞𝑖𝑖𝑛𝑛
𝑖𝑖=1 < 𝑄𝑄�), where 𝐼𝐼 is a binary indicator function. Under a weakest-link 

technology, the cost of €15 is paid unless all group members contribute at least 

𝑄𝑄�. That is, the contribution by the player with the smallest contribution needs to 

reach the threshold 𝑓𝑓 = 𝐼𝐼�𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑄𝑄��, where 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = min𝑖𝑖(𝑞𝑞𝑖𝑖).  

Table 1 lists the six between-subject treatments included in the experiment. We 

use a 2-by-3 design that explores, first, the effect of technology, i.e., whether 

threshold attainment is based on summation or weakest-link aggregation. 

Second, we vary whether the location of the threshold is certain, or alternatively 

exhibits uncertainty in a broad (“uncertainty”) or narrow range (“small 

uncertainty”). To make symmetric equilibria and per-person contributions as 

comparable as possible across technologies, weakest-link threshold ranges are 

obtained by dividing the corresponding ranges for the summation by 𝑛𝑛 = 10.  

  

                                                           
once account A had been exhausted. In addition to the endowment of tokens (worth €6 if 
retained) and any net earnings from the game, subjects were also given a fixed show-up fee of 
€15. 
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Table 1. Experimental treatments 

Treatments Aggregation technology Threshold support 𝑁𝑁 

T1: Sum, certainty Summation: ∑ 𝑞𝑞𝑖𝑖 ≥ 𝑄𝑄�𝑛𝑛
𝑖𝑖=1  𝑄𝑄� = 150 100 

T2: Sum, uncertainty Summation: ∑ 𝑞𝑞𝑖𝑖 ≥ 𝑄𝑄�𝑛𝑛
𝑖𝑖=1  𝑄𝑄� ∈ {100, … ,200} 100 

T3: Sum, small uncert. Summation: ∑ 𝑞𝑞𝑖𝑖 ≥ 𝑄𝑄�𝑛𝑛
𝑖𝑖=1  𝑄𝑄� ∈ {140, … ,160} 100 

T4: WL, certainty Weakest link: 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑄𝑄� 𝑄𝑄� = 15 100 

T5: WL, uncertainty Weakest link: 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑄𝑄� 𝑄𝑄� ∈ {10, … ,20} 100 

T6: WL, small uncert. Weakest link: 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑄𝑄� 𝑄𝑄� ∈ {14, … ,16} 80 

 
The experiment was conducted at the laboratory of the Vienna Center for 

Experimental Economics, using the lab's associated subject pool of university 

students. A total of 29 experimental sessions were conducted, each with 20 

subjects (two groups) belonging to the same treatment.5 

The sessions progressed as follows. First, subjects were randomly assigned to 

one of the groups and acquainted with the game rules.6 Although there were no 

practice rounds, exhaustive examples and control questions were included to 

ensure that subjects understood the game.7 They were also informed that there 

were two rounds, one of which would be randomly chosen for payment at the 

end of the session. Subjects then played a first round of the game variant 

corresponding to their treatment. Importantly, this initial one-shot round was 

not followed by feedback of any kind. 

Next, group composition was re-shuffled, with subjects informed that a second 

round would now take place among the new groups. Our main analysis is based 

on this second round. Immediately prior to it, subjects were asked to make a pair 

of non-binding announcements to the other members of their group. Subjects 

submitted, first, a proposal for how many tokens the group as a whole should 

contribute to the joint project, and second, a pledge to personally contribute 

some number of tokens in the coming round. All proposals and pledges made in 

a group were then displayed on screen to all members immediately before the 

subjects made the second round contribution decision. 

                                                           
5 Our pre-registered initial plan included 120 subjects (12 groups) in each treatment. However, 
due to the onset of the COVID-19 pandemic, we were unable to conduct some of the planned 
sessions, leaving us with the sample sizes reported in Table 1. 
6 The experiment was programmed using the zTree software (Fischbacher, 2007). 
7 Instructions, examples, and control and survey questions are provided in Appendix A. 
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After the conclusion of the second round, subjects filled out an end-of-session 

survey with questions on risk, time, and social preferences based on Falk et al. 

(2018), as well as demographic variables.8 We also asked subjects to (i) explain 

their reasoning behind pledging a certain contribution, (ii) rate how much they 

trusted the pledges of other group members, and (iii) judge whether the pledges 

and proposals of others made them change their own contribution level. Finally, 

subjects were informed of the outcome of both game rounds, including their 

own associated potential and actual earnings in each round. 

 
3. Theoretical predictions 

In Appendix B, we derive best responses and characterize associated Nash 

equilibria within each treatment. Some simplifying assumptions are applied: 

first, the analysis limits attention to symmetric equilibria. Second, players are 

assumed to be risk neutral throughout. Finally, we do not include the proposals 

and pledges made prior to the second round. Table 2 summarizes results 

obtained under these conditions. 

 
Table 2. Theoretical predictions by treatment 

 Symmetric Nash equilibria (all 𝑖𝑖) 
 
Treatment 

Non-cooperative  Coordination/cooperation 

T1. Summation, certainty 𝑞𝑞𝑖𝑖 = 0 𝑞𝑞𝑖𝑖 = 15 
T2. Summation, uncertainty 𝑞𝑞𝑖𝑖 = 0 - 
T3. Summation, small uncertainty 𝑞𝑞𝑖𝑖 = 0 𝑞𝑞𝑖𝑖 = 16 
T4. Weakest link, certainty 𝑞𝑞𝑖𝑖 = 0 𝑞𝑞𝑖𝑖 = 15 
T5. Weakest link, uncertainty 𝑞𝑞𝑖𝑖 = 0 𝑞𝑞𝑖𝑖 = 𝑞𝑞 ∈ {10, … ,20} 
T6. Weakest link, small uncertainty 𝑞𝑞𝑖𝑖 = 0 𝑞𝑞𝑖𝑖 = 𝑞𝑞 ∈ {14, … ,16} 

 
 
The non-cooperative symmetric equilibrium where each player has 𝑞𝑞𝑖𝑖 = 0 is 

supported in all treatments. However, the options for coordinating at higher 

contribution levels vary substantially across treatments. In summation under 

certainty (T1), there is a single symmetric equilibrium at the threshold (Isaac et 

al, 1989). This Pareto-dominant equilibrium disappears under large uncertainty 

(T2), as stressed by Barrett and Dannenberg (2012) and Barrett (2013). The 

                                                           
8 We report the data on these survey questions in the Appendix Table C7. We also explored their 
impact on contribution decisions and pledges, finding that they do not have any explanatory 
power. Thus, we do not further discuss these preferences and variables in this paper. 
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reason is that, as uncertainty is added, each player becomes less pivotal to 

threshold attainment since they can now only influence the probability that 

∑ 𝑞𝑞𝑖𝑖 ≥ 𝑄𝑄�𝑛𝑛
𝑖𝑖=1  at the margin. Under small uncertainty, however, the threshold 

support is small enough, and each player correspondingly pivotal enough, that 

a non-zero equilibrium survives (Barrett & Dannenberg, 2014) at the upper 

bound of the support of 𝑄𝑄�. Kotani et al. (2014) obtain a similar result for a game 

with binary contributions.  

Under weakest link, there is again a coordination equilibrium at 𝑞𝑞𝑖𝑖 = 15 when 

the position of the threshold is known with certainty. However, unlike the 

summation case, introducing uncertainty creates a range of equilibria at every 

integer within the support of 𝑄𝑄�. This is because the weakest-link structure leaves 

each player relatively pivotal to threshold attainment even in the presence of 

uncertainty. Thus, if every other player 𝑗𝑗 has chosen to contribute some 𝑞𝑞𝑗𝑗 = 𝑞𝑞 

in the interior of that support, then for the parameters used in our experiment, 

the remaining player 𝑖𝑖 will always prefer 𝑞𝑞𝑖𝑖 = 𝑞𝑞 to 𝑞𝑞𝑖𝑖 < 𝑞𝑞 (and will certainly 

not contribute 𝑞𝑞𝑖𝑖 > 𝑞𝑞𝑗𝑗, since doing so would not change the outcome). 

The main conclusion from Table 2 is that contributions in T2, where no “upper” 

equilibrium exists, should be lower than in all other treatments. Importantly, the 

effect of introducing large uncertainty differs substantially between the two 

aggregation technologies: cooperation collapses under summation but not under 

weakest link. Because all treatments except T2 involve multiple equilibria, 

further predictions will inevitably need to invoke some rule for equilibrium 

selection. For example, in our experiment, Pareto dominance consistently 

implies selecting the equilibrium with the highest contribution levels. 

However, off-equilibrium behavior seems likely to prove highly important in 

the weakest-link treatments, where deviations from equilibrium play can 

strongly affect the outcome faced by all group members. Such deviations may 

be due to, e.g., mistakes (see Caparrós et al., 2020) or subjects attempting to 

coordinate on different equilibria. This strategic uncertainty may lead players to 

lower their contributions as the marginal effect of increased contributions on the 

probability of threshold attainment is reduced. Thus, Table 2 serves only as a 

benchmark but does not provide clear-cut predictions.  
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4. Results 

We first discuss threshold attainment and contribution decisions in the second 

round of the experiment in Sections 4.1 and 4.2, respectively. That is, we focus 

first on contributions following non-binding contribution pledges and proposals 

on how many tokens the group should contribute. Here, our results under the 

summation technology are directly comparable to Barrett and Dannenberg 

(2012, 2014). In Section 4.3, we explore the mechanisms through which pledges 

affect contribution decisions. We investigate how individual pledges compare 

to decisions in the initial game round, and also whether subjects follow through 

with their pledges or renege on them. 

 

4.1 Threshold attainment 

We begin by examining threshold attainment across treatments. Rather than 

reporting observed success rates among the subject groups, we calculate each 

group’s probability of reaching the threshold according to the cumulative 

distribution of 𝑄𝑄� .  Figure 1 reports the distribution of the resulting probabilities 

for each of the six treatments. For each treatment, we also report the average 

probability (𝑃𝑃�) among subject groups. In the certainty treatments, this average 

equals the observed success rates. The probabilities underlying Figure 1 are also 

given in Table C1 of Appendix C. 
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Figure 1. Probability of reaching threshold, by treatment 

 

Starting with the summation treatments, only 60 percent of groups reach the 

threshold under certainty. Under uncertainty, no group achieves threshold 

attainment for sure, though this is not surprising given that it would require all 

10 group members to contribute all their tokens. What is more noteworthy is 

that all groups reach the threshold with some positive probability. In fact, the 

average probability of reaching the threshold under uncertainty is 50 percent. 

Using a ranksum test against the certainty case and treating each group as an 

independent observation, we cannot reject the hypothesis of equal distributions 

(𝑝𝑝 = 0.442, 𝑛𝑛 = 20).  

This result diverges from the experimental findings of for example Barrett and 

Dannenberg (2012), where contributions and the probability of reaching the 

threshold are substantially negatively impacted by threshold uncertainty. There 

is a similar departure from earlier results for the smaller range of uncertainty 

(140–160), for which Barrett and Dannenberg (2014) also identified a 

significant drop in the probability of reaching the threshold relative to the 

certainty case. In our experiment, the average probability is 0.74, i.e., even 

higher than under certainty, although the distributions are not significantly 

different (ranksum test: 𝑝𝑝 = 0.802, 𝑛𝑛 = 20). Thus, we cannot replicate the 

findings by Barrett and Dannenberg (2014). Interestingly, the difference appears 

to be driven by different adherence to pledges, as will be explored in Section 

4.3. Overall, we conclude that under the summation technology, the rate of 

threshold attainment is not significantly affected by uncertainty.  

We identify a starkly different pattern under the weakest-link technology. Here, 

𝑃𝑃� is as high as 90 percent under certainty, while it is only 15 percent under 

uncertainty (ranksum: 𝑝𝑝 < 0.001, 𝑛𝑛 = 20). Under uncertainty, 40 percent of the 

groups are certain to fail to reach the threshold as at least one player contributes 

less than the lower bound of the threshold distribution. This pattern is present in 

the small uncertainty treatment too, where there also is a considerable and 

statistically significant drop in the average probability of reaching the threshold 

(46%) compared with certainty (ranksum; 𝑝𝑝 = 0.033, 𝑛𝑛 = 20). 
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In summary, we conclude that threshold uncertainty negatively impacts the 

probability of threshold attainment under a weakest-link technology, but not 

under summation. These results are inconsistent with the predictions made in 

Table 2, as well as with similar previous studies (Barrett and Dannenberg, 2012, 

2014).  

 

4.2 Individual contributions 

In order to better understand the above patterns of threshold attainment, we now 

consider individual contributions. Table C2 reports descriptive statistics on 

contributions across the six treatments. For both summation and weakest link, 

average contributions are very similar across the certainty and uncertainty 

treatments. Table C3 reports results from Tobit models with a left-censoring at 

0 and a right-censoring at 20. We include dummy variables for the two 

treatments with uncertainty, and thus the certainty treatment is the reference 

case. The two dummy variables for the treatments with uncertainty are 

statistically insignificant in both the summation and the weakest-link game. 

Thus, for both aggregation technologies, average contributions do not differ 

between certainty and uncertainty or small uncertainty. 

Yet, it is crucial to gain more detailed insights into the distribution of 

contributions since a single player who contributes little can be devastating for 

the chances of reaching the threshold. The full distribution of contributions 

under the different treatments is given in Figure 2. For summation, the modal 

contribution is 20 under uncertainty and 15 under certainty; under a small level 

of uncertainty, the modal contribution is 16. Thus, the modal contribution 

consistently coincides with the upper bound of the support of 𝑄𝑄�, divided by the 

number of players. For weakest link, the differences in average contributions 

are similarly very small. Here, the modal contribution is 15 in both the certainty 

and the uncertainty treatment, and 16 under small uncertainty.  

Also, with summation under certainty, 3% of subjects contribute zero to the 

public good and 14% contribute fewer than 15 tokens. While other players are 

able to partly compensate for low contributions, successful threshold attainment 

requires that other group members contribute an average of 16.7 tokens to the 
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public good if one player contributes zero; it becomes impossible to reach the 

threshold if more than two out of 10 people contribute zero. In contrast, the 

lowest observed contribution in weakest link under certainty is 10, and 99 

percent of subjects contribute 15 tokens or more. Under a weakest-link 

technology, the threshold thus works very well as a coordinating device. 

Uncertainty changes the contribution patterns: under summation, 25% of 

subjects contribute the full amount of 20 tokens (vs. 10% under certainty), yet 

there are also more subjects contributing fewer than 15 tokens (32% vs. 14%). 

Overall, as already noted, average contributions do not change. For weakest 

link, 5% contribute zero under uncertainty (4% under small uncertainty) and 

17% (8%) contribute fewer than 15 tokens. Unlike for summation, low-

contributing subjects are truly detrimental for the possibilities of reaching the 

threshold, since under weakest link the other players cannot compensate for 

their behavior. The drastic drop in weakest-link threshold attainment under 

uncertainty is thus largely due to the small minority of zero contributors. 
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Figure 2. Individual contributions
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4.3 The role of pledges  

While we have focused on contribution decisions so far, it is crucial to 

understand whether and how suggested contributions of other group members 

and individual non-binding contribution pledges affect the contributions in the 

respective treatments. We begin by investigating whether pledges play a role 

and then discuss potential mechanisms. 

Figure 3 displays the distribution of observed probabilities of reaching the 

threshold in round 1, i.e., without pledges.9 In Table C4 in Appendix C, we 

report corresponding observed probabilities along with a set of simulated 

probabilities, each based on 1,000 randomly selected groups with 10 individuals 

drawn from a given treatment. Unlike Figure 3 (and Figure 1 in Section 4.1), 

the simulated probabilities do not depend on the group composition actually 

observed, thus limiting the influence of chance due to the relatively small 

number of groups that we observe.10 However, simulated and observed 

probabilities are generally quite similar. 

                                                           
9 Note that the group composition in round 1 does not affect any individual behavior in round 2 
as no feedback is given between rounds. In order to eliminate the potential impact of 
randomization of subjects into groups, we thus calculate success probabilities in round 1 based 
on the group composition in round 2.  
10 We add simulated probabilities here but not in our analysis of decisions in round 2 because 
individual contributions are completely independent of other group members only in the first 
round, where there are no pledges. 
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Figure 3. Probability of reaching threshold in treatments without pledges 

 

For all treatments, the probability of reaching the threshold is lower without 

pledges (round 1) than with pledges (round 2). Threshold attainment for 

summation under certainty is only 30 percent without pledges, while it is 60 

percent with pledges (see Section 4.1). For weakest link under certainty, it is 30 

percent rather than the 90 percent obtained following pledges. In fact, in neither 

of these certainty treatments does any group move from threshold attainment 

without pledges to non-attainment under pledges. Similarly, we (weakly) reject 

the hypothesis of equal distributions of probabilities between the rounds with 

and without pledges using conservative Wilcoxon signed-rank tests for the 

uncertainty treatments (74% vs. 40% in summation p=0.049; 15% vs. 2% in 

weakest link p=0.094). Across all treatments, there is no doubt that pledges 

improve threshold attainment (p<0.001 for both summation and weakest link).   
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The lower probability of reaching the threshold in absence of the possibility to 

pledge is of course driven by lower contribution levels.11 Table C2 in Appendix 

C gives a full description of contributions. Most importantly, although 

contributions without pledges are smaller on average and are distributed 

differently, all comparisons between treatments yield similar results as with 

pledges. Thus, we again find a lower probability of reaching the threshold for 

weakest link under uncertainty compared with certainty, while there is no 

significant drop for the summation game.  

For a closer look at contributions with and without pledges, Figure 4 plots each 

individual’s contribution across the two experiments. Many subjects do not 

change their contribution behavior, and this holds particularly true for subjects 

making what are arguably focal contributions, such as 15 and 20. Still, there is 

a shift toward higher levels of contributions with pledges. Under summation and 

certainty (uncertainty), 49 (31) percent of subjects make the same contribution 

                                                           
11 The standard deviation of contributions is consistently and considerably lower with pledges 
as well. 
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in both rounds, while 35 (50) percent increase their contribution with pledges. 

For weakest link and certainty (uncertainty), 72 (44) percent contribute the same 

amount in the two rounds, while 22 (46) percent increase their contribution with 

pledges. Thus, pledges appear especially useful in the uncertainty treatments. 

Beyond potentially increasing average contributions, pledges may boost 

threshold attainment by facilitating better coordination of individual 

contributions, which is particularly important in weakest-link settings where the 

Figure 4. Contributions in experiments with and without pledges 
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threshold attainment, and thus welfare, is driven by the smallest contribution 

level within a group. It is thus crucial to understand the mechanisms through 

which pledges affect contributions.12 For this, we consider two steps: First, how 

do chosen pledges in round 2 compare against individual contributions in round 

1? Second, how do own pledges impact own contribution choices in round 2?  

We first examine the connection between round 1 contributions and pledges. 

Figure 5 plots this relationship. Observations on the 45 degree line pledged the 

same as they contributed in round 1, while observations to the right of this line 

pledged more than round 1. Clearly, pledges are generally higher than 

contributions in the round without pledges: For summation under certainty 

(uncertainty), 30% (51%) pledged more than they contributed in round 1. For 

weakest link under certainty (uncertainty), the corresponding figure is 24% 

(37%). The pattern is confirmed in Wilcoxon signed-rank tests at the individual 

level (see Table C6 in Appendix C; summation certainty, 𝑝𝑝 = 0.064; 

summation uncertainty, 𝑝𝑝 < 0.001; weakest link certainty, 𝑝𝑝 < 0.001; weakest 

link uncertainty, 𝑝𝑝 = 0.015). Thus, subjects make relatively large pledges, 

possibly to induce higher contributions in round 2. 

                                                           
12 Table C2 in Appendix C reports descriptive statistics: contributions in both rounds, pledges, 
and suggested group contribution (per person). Our analysis focuses on pledges. 
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Focusing on the weakest-link treatments, two additional observations are 

particularly noteworthy because they suggest that subjects are indeed using 

pledges purposefully as a coordination device. First, under certainty, all subjects 

who contributed fewer than 15 tokens in round 1 pledge higher in round 2. 

Under uncertainty, there is a similar but slightly weaker pattern that centers on 

10 tokens (the lower bound of 𝑄𝑄�) rather than 15: all subjects who contributed 

less than 10 in round 1 pledge at least as high in round 2. Second, under 

Figure 5. Pledge in round 2 vs. contributions in round 1 
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uncertainty, the modal pledge is 20. While 23% contributed this amount in 

round 1, 35% of subjects pledge to do so in round 2, thereby attempting to fully 

eliminate threshold risk. The corresponding numbers for the summation 

treatment are almost identical (23% and 36%, respectively), and a pledge of 20 

is modal here as well. 

We now move to the second question: to what extent do subjects actually follow 

through with their pledges? Clearly, subjects seem to have used the pledges as 

a way to increase or coordinate the contributions by other group members. 

However, pledges are non-binding. Whether coordination based on pledges is 

successful or not might differ between summation and weakest-link settings, 

given that summation allows for (some) free riding, thus potentially providing 

incentives to renege on the pledge.  

To check whether this was the case, Figure 6 scatter plots individual pledges 

and own contributions in round 2. We see that sizeable fractions of subjects do 

contribute what they pledged, and they do so in all treatments. For summation 

under certainty, 52 percent contribute exactly what they pledged, while the 

corresponding figure for weakest link is 77 percent; under uncertainty, the 

corresponding numbers are 44 and 51 percent. Indeed, average contributions do 

not significantly differ from pledges, and this holds under both summation and 

weakest-link technology, as well as for both the certainty and the uncertainty 

treatment (Wilcoxon signed-rank test, see Table C5 in Appendix C). 

Furthermore, the within-group variance of contributions does not differ from 

the within-group variance of pledges, and the group-minimum pledges do not 

differ significantly from group-minimum contributions (see Table C5 in 
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Appendix C). We thus conclude that pledges are generally trustworthy. This 

latter finding is in stark contrast to Barrett and Dannenberg (2014). We have 

already seen that the contributions under threshold uncertainty are substantially 

lower in their experiment than in ours. Yet, the pledges in Barrett and 

Dannenberg (2014) almost coincide with the levels we observe in our 

experiment, while the final contributions on average are only about 50% of the 

pledged amounts. Thus, given our results, threshold uncertainty under 

Figure 6. Pledges and own contributions in round 2 
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summation does not necessarily lead to smaller contributions. Rather, its impact 

depends on the extent to which subjects adhere to their previously made pledges.  

 

5. Conclusions 

In this paper, we compared the voluntary provision of public goods under 

different technologies when their provision hinges on thresholds. We explicitly 

compared two prominent technologies through which individual contributions 

affect the public good provision: summation and weakest link. While the extant 

(experimental) literature has so far concentrated on summation, we argued that 

many important examples of public goods (e.g., terrorism or pandemic diseases) 

have weakest-link characteristics.  

Our experiment investigated the effects of threshold uncertainty on individual 

contributions and threshold attainment under both technologies. While 

implementing the exact design of Barrett and Dannenberg (2012, 2014) for the 

summation technology, we were unable to replicate their finding that (large) 

uncertainty in the level of a threshold is detrimental to its functioning as a 

coordination device. This difference was particularly driven by pledges being 

trustworthy in our subject pool.  

In contrast, the effects of uncertainty were much more severe in the weakest-

link setting. While a certain threshold proved to be a highly successful 

coordination device, threshold uncertainty reduced the chances of threshold 

attainment to almost zero. This was despite the fact that each individual subject 

is more pivotal to the outcome under weakest link, thus potentially making 

cooperation more likely. What happened instead was that an opposing structural 

element of weakest link dominated the outcome, namely that low contributions 

by some subjects cannot be compensated by others. Our experiment thus 

revealed an important interaction between threshold effects and the technology 



24 
 

through which individual contributions aggregate into the provision of a public 

good.  

We additionally showed that the success rates for threshold attainment in all 

treatments heavily hinge on subjects being able to announce non-binding 

pledges. The benefits of such communication accrue particularly under weakest 

link. Pledges appeared to create a degree of trust, allowing individuals to make 

larger (non-binding) pledges than what they would otherwise have contributed. 

Observing similarly large pledges from other group members, subjects mostly 

followed through with their pledges.  

Our results do underline the difficulty of cooperating to produce a threshold 

weakest-link public good in the presence of uncertainty. Importantly, we limited 

our investigation to settings with homogenous players. For summation, 

heterogeneity regarding endowment or benefits from the public good is known 

to provide another obstacle to successful cooperation. For weakest link, such 

heterogeneities might necessitate the implementation of some transfer 

mechanism even in the absence of uncertainty (e.g., Vicary and Sandler, 2002). 

While we note the importance of player heterogeneity in real-world threshold 

weakest-link settings, we leave the investigation of behavior in such situations 

to future research.  
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Appendix A. Experimental Instructions 

Throughout this appendix, comments and clarifications are made in brackets. In 

Section B.1.1, note that basic game rules differed across treatment only with 

respect to the third bullet point on payoffs. In Sections B.1.2 and B.1.3, for 

brevity we present examples and control questions only for summation under 

certainty (T1) and weakest link under uncertainty (T5). The corresponding 

materials used in other treatments are highly similar. 

 
A.1 Introduction and game rules 
 
Welcome to our experiment! 
 
General information 
In our experiment you can earn money. How much you earn depends on the 
decisions you and your fellow participants make. For a successful run of this 
experiment, it is essential that you do not talk to other participants. Now, read 
the following rules of the game carefully. If you have any questions, please raise 
your hand. Once everyone has read the instructions, we will give a brief oral 
presentation before continuing.  
 
The experiment will consist of two parts. One of the two parts will be randomly 
picked and your final payouts will be based on the decisions you and other 
participants make in this part. It is therefore important that you pay close 
attention to the instructions. After the two parts, we have some background and 
attitude questions to ask you as well. 
 
You will receive an initial endowment of €15 for your participation. Any loss 
during the experiment will be deducted from that amount, and gains will be 
added.  
 
Rules for part 1 
You are in a group of ten participants, meaning you and nine other persons. Each 
group member faces the same decision problem. All decisions in the experiment 
are anonymous. For the purpose of anonymity, you will be identified by a letter 
(between A and J), which you will see in the lower left corner of the screen. 
 
At the beginning of the game, you will receive 20 tokens, which are credited to 
two personal accounts, Account A and Account B. You will have 10 tokens in 
each account. In the experiment, you can use the tokens to contribute to a joint 
project or you can leave them in the two accounts.  
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Tokens from Account A are worth €0.10 each. Tokens from Account B are 
worth €0.50 each. You can contribute any integer amount of tokens between 0 
and 20 to the joint project – at most 10 tokens from Account A and at most 10 
tokens from Account B. 
 
The payment at the end of the game will consist of the following parts: 
 

• The amount of tokens you have left in Accounts A and B will be paid to you in 
cash: €0.10 for each token left in Account A and €0.50 for each token left in 
Account B.  

• You and all other participants in the group will get €0.05 for every token 
contributed to the joint project, irrespective of who contributed the token and 
whether it was a token from Account A or B. 

• [Summation, certainty:] If the group as a whole contributes fewer than 150 
tokens to the joint project, every member of the group will lose €15. If the group 
contributes 150 or more tokens to the joint project, no participant will lose any 
money. 

• [Summation, uncertainty:] If the group as a whole contributes less than a certain 
minimum amount of tokens to the joint project, every player will lose €15. If 
the group contributes the minimum amount or more to the joint project, no 
player will lose any money. The minimum amount of tokens is not known 
beforehand. What you know is that it is between 100 and 200 [T3: between 140 
and 160], that each integer value from 100 to 200 has the same probability of 
being selected, and that the minimum amount will be randomly drawn after the 
decisions have been made. 

• [Weakest link, certainty:] If any group member contributes fewer than 15 tokens 
to the joint project, every player will lose €15. If each member of the group 
contributes 15 or more tokens to the joint project, no player will lose any money. 

• [Weakest link, uncertainty:] If any group member contributes less than a certain 
minimum amount of tokens to the joint project, every player will lose €15. If 
each member of the group contributes the minimum amount or more to the joint 
project, no player will lose any money. The minimum amount of tokens is not 
known beforehand. What you know is that it is between 10 and 20 [T6: 14 and 
16], that each integer value from 10 to 20 has the same probability of being 
selected, and that the minimum amount will be randomly drawn after the 
decisions have been made.  
 
Note that you can contribute any number of tokens between 0 and 20. These 
contributions will automatically first be deducted from your Account A (up to 
ten tokens), before tokens are taken out of Account B (up to another ten tokens). 
 
This game will be played only once. You should think carefully about how to 
decide in the game. Before playing, we will go through two examples. The 
examples are presented on the next two pages, but will also be shown on the 
screen. Therefore, please click on the screen to move to the examples on the 
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screen. Please note that these examples are for illustration only, so you will not 
be able to choose contribution levels. 
 
[Examples and control questions, followed by play in part 1. Immediately before 
part 2, the following instructions were given.] 
 
A change in the rules 
We will now ask you to make decisions in a similar setting as before. However, 
there is a change in how the game proceeds and again it is important for you to 
pay close attention to the instructions.  
 
In addition, we will reshuffle the groups so you will play with a different group 
of people than in Part 1 of the experiment.  
 
[Summation treatments:] The difference is that before you and the other 
participants decide how many tokens to contribute, everyone will be given an 
opportunity to make two non-binding announcements. First, each participant 
will make a proposal (between zero and 200) about how many tokens the group 
as a whole should contribute to the joint project. Second, each participant will 
make a pledge (between zero and 20) for how many tokens he or she intends to 
contribute to the joint project. All proposals and pledges made by the players 
will be displayed before you and the other participants decide how much to 
contribute.  
 
[Weakest link treatments:] The difference is that before you and the other 
participants decide how many tokens to contribute, everyone will be given an 
opportunity to make two non-binding announcements. First, each participant 
will make a proposal (between zero and 20) about how many tokens each group 
member should contribute to the joint project. Second, each participant will 
make a pledge (between zero and 20) for how many tokens he or she intends to 
contribute to the joint project. All proposals and pledges made by the players 
will be displayed before you and the other participants decide how much to 
contribute.  
 
In all other respects, the game is the same as before, but we will still repeat these 
other rules here. […] 
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A.2 Examples 
 
Example 1 [Summation, certainty] 
Here, you can see a hypothetical example of the decisions made by ten 
participants. 
 

Participant Contribution Payoff in Part 1 
A 0 -4.4 
B 0 -4.4 
C 10 -5.4 
D 0 -4.4 
E 12 -6.4 
F 10 -5.4 
G 8 -5.2 
H 15 -7.9 
I 17 -8.9 
J 20 -10.4 

Total 92  
 
 
The contribution column displays each participant’s actual contribution to the 
joint project. The final column shows the total payoff for each group member. 
The payoff depends on the number of tokens left in Accounts A and B, payoff 
from total contributions to the joint project, and whether there is a loss. 
 
The total contribution of 92 tokens to the joint project means that each member 
receives €0.05 times 92 = €4.60 from the joint project. In addition, since total 
contributions are less than 150, every player will incur a loss of €15.  
 
Let us look at two participants to see how total payoff is determined. 
 
Participant A did not contribute anything so he/she will receive 10 times €0.10 
from Account A and 10 times €0.50 from Account B, totaling €6. If we add 
everything together, we have that player A will get 6 + 4.6 – 15 = -€4.4. This 
loss will be deducted from the endowment of €15. 
 
Participant H contributed 15 tokens (10 from Account A and 5 from Account 
B), so he/she will receive 5 times €0.50 from Account B, which is equal to 
€2.50. If we add everything together, we get that player C will get 2.5 + 4.6 – 
15 = -€7.9. 
  
Example 2 [Summation, certainty] 
Here is another hypothetical example of the decisions made by the ten group 
members. 
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Participant Contribution Payoff in Part 1 
A 15 10.3 
B 15 10.3 
C 15 10.3 
D 15 10.3 
E 15 10.3 
F 15 10.3 
G 16 9.8 
H 20 7.8 
I 15 10.3 
J 15 10.3 

Total 156  
 
The total contribution of 156 tokens to the joint project means that each 
participant receives €0.05 times 156 = €7.80 from the joint project. In 
addition, since total contributions are higher than 150, there will be no loss of 
€15.  
 
Let us look at two participants to see how total payoff is determined. 
 
Participant A contributed 15 tokens (10 from Account A and 5 from Account 
B), so he/she will receive 5 times €0.50 from Account B, which equals €2.50. 
If we add everything together, participant A will get 2.5 + 7.8 = €10.3. This 
gain will be added to the endowment of €15. 
 
Participant H contributed 20 tokens (10 from Account A and 10 from Account 
B). This means that the player will only get a payment from the joint project: 
€7.80. 
 
Example 1 [Weakest link, uncertainty] 
Here, you can see a hypothetical example of the decisions made by ten 
participants. 
 

Participant Contribution Payoff in Part 1 
A 0 -4.4 
B 0 -4.4 
C 10 -5.4 
D 0 -4.4 
E 12 -6.4 
F 10 -5.4 
G 8 -5.2 
H 15 -7.9 
I 17 -8.9 
J 20 -10.4 
Total 92  
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The contribution column displays each participant’s actual contribution to the 
joint project. The final column shows the total payoff for each group member. 
The payoff depends on the number of tokens left in Accounts A and B, payoff 
from total contributions to the joint project, and whether there is a loss or not. 
 
The total contribution of 92 tokens to the joint project means that each member 
receives €0.05 times 92 = €4.60 from the joint project. The required minimum 
amount of tokens for no loss is between 10 and 20, and since at least one member 
contributed less than 10 tokens, every player will incur a loss of €15. 
 
Let us look at two participants to see how total payoff is determined. 
 
Participant A did not contribute anything so he/she will receive 10 times €0.10 
from Account A and 10 times €0.50 from Account B, totaling €6. If we add 
everything together, player A will get 6 + 4.6 – 15 = -€4.4. This loss will be 
deducted from the endowment of €15. 
 
Participant H contributed 15 tokens (10 from Account A and 5 from Account 
B), so he/she will receive 5 times €0.50 from Account B, which equals €2.50. If 
we add everything together, player C will get 2.5 + 4.6 – 15 = -€7.9. 
  
Example 2 [Weakest link, uncertainty] 
Here is another hypothetical example of the decisions made by the ten group 
members. 
 

Participant Contribution Payoff with no 
loss in Part 1 

Payoff with 
loss in Part 1 

A 15 10.3 -4.7 
B 15 10.3 -4.7 
C 15 10.3 -4.7 
D 15 10.3 -4.7 
E 15 10.3 -4.7 
F 15 10.3 -4.7 
G 16 9.8 -5.2 
H 20 7.8 -7.2 
I 15 10.3 -4.7 
J 15 10.3 -4.7 
Total 156   

 
 
The total contribution of 156 tokens to the joint project means that each 
participant receives €0.05 times 156 = €7.80 from the joint project. Since all 
players contributed between 10 and 20, we do not know for sure whether there 
will be a loss of €15. The lowest contribution is 15 (players A, C, E, F). If the 
random draw of the required minimum amount of tokens is 15 or lower, then 



36 
 

there is no loss. If the random draw of the required minimum amount of tokens 
is larger than 15, then there is a loss. We therefore have two columns with 
payoffs in the table. 
 
Let us look at two participants to see how total payoff is determined. 
 
Participant A contributed 15 tokens (10 from Account A and 5 from Account 
B), so he/she will receive 5 times €0.50 from Account B, which equals €2.50. If 
we add everything together, participant A will get 2.5 + 7.8 = €10.3 if there is 
no loss. If there is a loss, the payoff will be 2.5 + 7.8 -15 = -€4.7. 
 
Participant H contributed 20 tokens (10 from Account A and 10 from Account 
B). This means that if there is no loss the player will only get a payment from 
the joint project: €7.80. If there is a loss, the payoff will be 7.8 – 15 = -€7.2. 
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A.3 Control questions 
 

(a) Take a look at the hypothetical example below (same as the first example 
we looked at before). Are the contributions [Summation treatments: “collective 
contributions”] within the group sufficient to avoid the loss? 

○ Yes ○ No 
[Summation, uncertainty treatments: ○ It depends on the random draw] 

  
Participant Contribution 
A 0 
B 0 
C 10 
D 0 
E 12 
F 10 
G 8 
H 15 
I 17 
J 20 
Total 92 

 
(b) Assume that the group as a whole (including you) has contributed 0 tokens 
to the joint account so that there is a loss of €15. What would be your total 
payoff from the game (excluding the initial endowment of €15)? 
 

○ -15  ○ -9  ○ 0  ○ 6  ○ 15
  
(c) Assume that the group as a whole (including you) has contributed 150 tokens 
to the joint project. How much would each participant receive in payment from 
the joint project only? 
 

○ 0  ○ 5 ○ 7.5  ○ 10  ○ 15
  
[Summation, certainty] (d) What is the lowest number of tokens the group 
must reach to avoid the loss?  
 

○ 0  ○ 50  ○100  ○ 150  ○ 200 
 
[Summation, uncertainty (T2, T3)] (d) What is the lowest number of tokens the 
group must reach to have some possibility to avoid the loss? 
 

○ 100  ○ 140  ○150  ○ 160  ○ 200 
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[Summation, uncertainty (T2, T3)] (e) How many tokens must the group reach 
to be sure to avoid the loss? 
 

○ 100  ○ 140  ○150  ○ 160  ○ 200 
 

[Weakest link, certainty] (d) What is the lowest number of tokens each 
participant must contribute to the joint account in order to avoid the loss? 
 

○ 0  ○ 5  ○10  ○ 15  ○ 20 
 

[Weakest link, uncertainty (T5, T6)] (d) What is the lowest number of tokens 
each participant must contribute to the joint account to have some possibility to 
avoid the loss? 
 

○ 10  ○ 14  ○15  ○ 16  ○ 20 
 
[Weakest link, uncertainty (T5, T6)] (e) How many tokens must each participant 
contribute to the joint account to be sure to avoid the loss? 
 

○ 10  ○ 14  ○15  ○ 16  ○ 20 
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A.4 Survey questions 
 
1. Did you trust the other players to make the contributions they pledged? 

□ Very much 
□ Somewhat   
□ Not much 
□ Not at all 

 
2. Can you can describe the main reasons you did or did not trust the pledges 
made by the other participants. 

……………………………………………………. 
 
3. What was the most important reason for your pledge?  

□ To signal my intended contribution 
□ To get others to contribute 
□ Other reason: ……… 

 
4. Did other group members’ pledges affect your own contribution? 

□ No 
□ Yes, it made me increase my contribution relative to what I initially 
intended to contribute. 
□ Yes, it made me decrease my contribution relative to what I initially 
intended to contribute. 

 
5. Did other group members’ proposals for the group contribution affect your 
own contribution? 

□ No 
□ Yes, it made me increase my contribution relative to what I initially 
intended to contribute. 
□ Yes, it made me decrease my contribution relative to what I initially 
intended to contribute. 

 
6. Please tell me, in general, how willing or unwilling you are to take risks. 
Please use a scale from 0 to 10, where 0 means you are” completely unwilling 
to take risks” and a 10 means you are “very willing to take risks.”  
 
7. We now ask for your willingness to act in a certain way in four different areas. 
Please again indicate your answer on a scale from 0 to 10, where 0 means you 
are ”completely unwilling to do so” and a 10 means you are ”very willing to do 
so”.  
 

a. How willing are you to give up something that is beneficial for you 
today, in order to benefit more from it in the future? 

b. How willing are you to punish someone who treats you unfairly, even if 
there may be costs for you? 
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c. How willing are you to punish someone who treats others unfairly, even 
if there may be costs for you? 

d. How willing are you to give to good causes without expecting anything 
in return? 

8. How well do the following statements describe you as a person? Please 
indicate your answer on a scale from 0 to 10. A 0 means “does not describe me 
at all” and a 10 means “describes me perfectly.”  
 

a. When someone does me a favor, I’m willing to return it 
b. If I am treated very unjustly, I will take revenge at the first occasion, 

even if there is a cost to do so. 
c. I assume that people have only the best intentions. 

 
9. Please imagine the following situation: You can choose between a sure 
payment of a particular amount of money, or a draw, where you would have an 
equal chance of getting 300 euro and getting nothing. We will present to you 
five different situations. [Followed by five lottery choices, where later lotteries 
condition on earlier choices] 
 
10. Please think about what you would do in the following situation. You are in 
an area you are unfamiliar with and realize that you are lost. You ask a stranger 
for directions. The stranger offers to take you to your destination. Helping you 
costs the stranger about 20 euro in total. However, the stranger says he or she 
does not want any money from you. You have six presents with you. The 
cheapest present costs 5 euro, the most expensive one costs 30 euro. Do you 
give one of the presents to the stranger as a “thank you” gift? If so, which present 
do you give to the stranger? 

□ no present 
□ the present worth 5 euro 
□ the present worth 10 euro 
□ the present worth 15 euro 
□ the present worth 20 euro 
□ the present worth 25 euro 
□ the present worth 30 euro 

 
11. Imagine the following situation: Today you unexpectedly received 1,000 
euro. How much of this amount would you donate to a good cause? (Values 
between 0 and 1,000 are allowed) 
 

……………………….. euro 
 
 
12. What is your gender? 

□ Male 
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□ Female 
 
13. What is your year of birth? 

……. 
 
14. In what academic domain does your major belong? 

□ Natural sciences 
□ Social sciences 
□ Humanities 
□ Business 
□ Economics 
□ Law 
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Appendix B. Theoretical guidance 

Here we derive best responses and characterize associated Nash equilibria for 

each treatment in the experiment. We limit the attention to symmetric equilibria. 

Since endowments have no impact on best responses, we disregard them 

throughout the analysis. We also do not consider proposals and pledges of the 

kind offered in the second round of the game. Players are assumed to be risk 

neutral throughout. 

Recall that each player 𝑖𝑖 ∈ {1, … ,10} chooses how many tokens 𝑞𝑞𝑖𝑖 ∈

{0,1, … ,20} to contribute. For fixed player 𝑖𝑖, define 𝑞𝑞−𝑖𝑖 = ∑ 𝑞𝑞𝑗𝑗𝑗𝑗≠𝑖𝑖  as the sum of 

other group members’ contributions and 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = min𝑖𝑖(𝑞𝑞𝑖𝑖) as the smallest 

contribution by any player. The threshold 𝑄𝑄� is uniformly distributed on integers 

{𝑎𝑎,𝑎𝑎 + 1, … , 𝑏𝑏 − 1, 𝑏𝑏}, with 𝑏𝑏 ≥ 𝑎𝑎 > 0. 

Each player's opportunity cost of contributing is piecewise linear and convex, 

𝐶𝐶(𝑞𝑞𝑖𝑖) = � 0.1𝑞𝑞𝑖𝑖, for 0 ≤ 𝑞𝑞𝑖𝑖 ≤ 10
1 + 0.5(𝑞𝑞𝑖𝑖 − 10), for 11 ≤ 𝑞𝑞𝑖𝑖 ≤ 20 

while total returns from contributing (after resolving the uncertainty in 𝑄𝑄�) are 

0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 15𝑓𝑓(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛,𝑄𝑄�) 

where 𝑓𝑓 is a discontinuous function of the contributions and the threshold level. 

Under a summation technology, 𝑓𝑓 = 𝐼𝐼(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖 < 𝑄𝑄�), where 𝐼𝐼 is the binary 

indicator function. Under a weakest-link technology, 𝑓𝑓 = 𝐼𝐼�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑄𝑄��. 

 

B.1 Summation technology 

B.1.1 Certain threshold (T1) 

When the threshold level is certain, 𝑄𝑄� = 150, payoffs to agent 𝑖𝑖 are 

𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖) = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝐼𝐼(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖 < 150). 
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We will now analyze 𝑖𝑖’s best response 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖), being a function of 𝑞𝑞−𝑖𝑖, the 

summed contributions of other players. There are three cases, and we will check 

whether best responses in each case support some symmetric equilibrium where 

𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 𝑞𝑞−𝑖𝑖/9. 

First, if 𝑞𝑞−𝑖𝑖 < 130, the last term in the utility function equals 15 regardless of 

𝑞𝑞𝑖𝑖, so utility is everywhere decreasing in own contributions since marginal costs 

of contributing are always at least 0.1. Thus, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0 is optimal in this 

range, supporting a non-cooperative Nash equilibrium where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. 

Second, if 130 ≤ 𝑞𝑞−𝑖𝑖 < 150, player 𝑖𝑖 is pivotal in reaching the threshold. 

Clearly, contributing either zero or 150 − 𝑞𝑞−𝑖𝑖 will be optimal; the latter is the 

case when 

0.05 × 150 − 𝐶𝐶(150 − 𝑞𝑞−𝑖𝑖) > 0.05𝑞𝑞−𝑖𝑖 − 15 

which is always true given our parameter values. Thus, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 150 − 𝑞𝑞−𝑖𝑖 in 

this range. This supports a symmetric coordination/cooperation equilibrium at 

𝑞𝑞𝑖𝑖 = 15 for all 𝑖𝑖, where all players have 𝑞𝑞−𝑖𝑖 = 135. 

Finally, if 𝑞𝑞−𝑖𝑖 ≥ 150, the threshold is certain to be reached regardless of 𝑞𝑞𝑖𝑖, and 

it follows that 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0, similarly to the first case. Thus, no symmetric 

equilibrium is supported. 

In summary, there are two symmetric Nash equilibria: a noncooperative one at 

𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖 and a coordination/cooperation equilibrium at 𝑞𝑞𝑖𝑖 = 15.  

 

B.1.2 Uncertain threshold (T2, T3) 

When the location of threshold 𝑄𝑄� is uncertain, expected payoffs for risk-neutral 

players are given by 

𝐸𝐸[𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖)] = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝑃𝑃(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖 < 𝑄𝑄�) 
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where 𝑃𝑃(⋅) is the probability of failing to reach the uniformly distributed 

threshold. Again, the best response of player 𝑖𝑖 is a function of 𝑞𝑞−𝑖𝑖, and 

symmetric equilibria have 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 𝑞𝑞−𝑖𝑖/9. The main difference is that there 

are now five cases, which we will discuss in turn. Note that 𝑏𝑏 − 𝑎𝑎 = 100 under 

large uncertainty (T2) and 𝑏𝑏 − 𝑎𝑎 = 20 under small uncertainty (T3). 

First, if 𝑞𝑞−𝑖𝑖 < 𝑎𝑎 − 20, then 𝑃𝑃 = 1 regardless of 𝑞𝑞𝑖𝑖, so then 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0, again 

because marginal payoffs from contributing are everywhere negative. These 

best responses clearly support a Nash equilibrium where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. 

Second, if 𝑎𝑎 − 20 ≤ 𝑞𝑞−𝑖𝑖 < 𝑎𝑎 − 1, then player 𝑖𝑖 is able to marginally impact the 

probability of threshold attainment, but only after having contributed the first 

(𝑎𝑎 − 1) − 𝑞𝑞−𝑖𝑖 units. This implies that expected payoffs become 

𝐸𝐸[𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖)] = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15 × min�1,
𝑏𝑏 − (𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖)
𝑏𝑏 − 𝑎𝑎 + 1

� 

where the final term reflects the discrete uniform distribution of 𝑄𝑄�; recall that 𝑄𝑄� 

may take 𝑏𝑏 − 𝑎𝑎 + 1 values. Thus, the marginal utility of the initial unit(s) 

contributed by 𝑖𝑖 is negative, but if 𝑞𝑞𝑖𝑖 enters the range where 𝑃𝑃 < 1 while 𝑞𝑞𝑖𝑖 ≤

10, then the marginal utility becomes −0.05 + 15/(𝑏𝑏 − 𝑎𝑎 + 1), which is 

positive under both large and small uncertainty. Furthermore, 𝑖𝑖’s marginal 

utility of contributing more than 10 units while impacting 𝑃𝑃 is −0.45 +

15/(1 + 𝑏𝑏 − 𝑎𝑎), which is negative under large uncertainty but positive under 

small uncertainty. It follows that, under large uncertainty, either 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0 or 

𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 10. Under small uncertainty, either 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0 or 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 20. 

For our particular parameter values, we find the following. Under large 

uncertainty, where 𝑎𝑎 = 100, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 10 for 93 ≤ 𝑞𝑞−𝑖𝑖 ≤ 98, and is zero 

otherwise. Under small uncertainty, where 𝑎𝑎 = 140, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 20 for 126 ≤

𝑞𝑞−𝑖𝑖 ≤ 138, and is zero otherwise. No Nash equilibria are supported by these 

best responses. 
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Third, when 𝑎𝑎 − 1 ≤ 𝑞𝑞−𝑖𝑖 ≤ 𝑏𝑏 − 20, the choice of player 𝑖𝑖 always affects 𝑃𝑃, so 

expected payoffs are 

𝐸𝐸[𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖)] = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15 ×
𝑏𝑏 − (𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖)
𝑏𝑏 − 𝑎𝑎 + 1

 

which, by similar reasoning as above, implies 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 10 under large 

uncertainty, and 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 20 under small uncertainty. Again, no Nash 

equilibria are supported in this range. 

Fourth, when 𝑏𝑏 − 20 < 𝑞𝑞−𝑖𝑖 < 𝑏𝑏, player 𝑖𝑖 starts out being pivotal; but the 

threshold is met with certainty for high enough 𝑞𝑞𝑖𝑖, and 𝑃𝑃 = 0 for any 

contribution beyond that point. It follows that payoffs are 

𝐸𝐸[𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖)] = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15 × max�0,
𝑏𝑏 − (𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖)
𝑏𝑏 − 𝑎𝑎 + 1

� 

implying that under large uncertainty, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = min(10, 𝑏𝑏 − 𝑞𝑞−𝑖𝑖), while under 

small uncertainty, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 𝑏𝑏 − 𝑞𝑞−𝑖𝑖. For large uncertainty, no Nash 

equilibrium is supported by these patterns; but for small uncertainty, a 

coordination/cooperation equilibrium is supported at 𝑞𝑞𝑖𝑖 = 16 for all 𝑖𝑖, where all 

players have 𝑞𝑞−𝑖𝑖 = 𝑏𝑏 − 16 = 144. 

Finally, if 𝑞𝑞−𝑖𝑖 ≥ 𝑏𝑏, 𝑃𝑃 = 1 regardless of 𝑞𝑞𝑖𝑖, so then 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0. Thus, no Nash 

equilibrium is supported in this range. 

In summary, for large uncertainty, the only symmetric equilibrium is the non-

cooperative one where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. For small uncertainty, there is 

additionally an equilibrium at 𝑞𝑞𝑖𝑖 = 16 for all 𝑖𝑖. 

 

B.2 Weakest-link technology 

B.2.1 Certain threshold (T4) 
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When the weakest-link threshold is certain and equal to 𝑄𝑄� = 15, payoffs to 

player 𝑖𝑖 are 

𝑈𝑈�𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖, 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝐼𝐼�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 15�. 

.In this game, the best response of player 𝑖𝑖 may be analyzed as a function of 

𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = min𝑗𝑗≠𝑖𝑖�𝑞𝑞𝑗𝑗�, the lowest contribution of any player other than 𝑖𝑖. There 

are only two cases, each of which will support a symmetric Nash equilibrium 

whenever 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. 

First, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 15, then regardless of 𝑞𝑞𝑖𝑖, the threshold will not be met; 

therefore, since the marginal utility of contributing is negative, 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0, 

supporting a noncooperative equilibrium where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. 

Second, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 15, then payoffs for player 𝑖𝑖 are given by 

𝑈𝑈�𝑞𝑞𝑖𝑖 , 𝑞𝑞−𝑖𝑖, 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝐼𝐼(𝑞𝑞𝑖𝑖 < 15) 

and 𝑖𝑖’s best response is either zero or 15. In fact, since 0.05 × 15 − 1 − 0.5 ×

5 = −2.75 > −15, it is 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 15. This supports an equilibrium where 

𝑞𝑞𝑖𝑖 = 15 for all 𝑖𝑖. 

In summary, there are two symmetric Nash equilibria: a non-cooperative one at 

𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖, and a coordination/cooperation equilibrium at 𝑞𝑞𝑖𝑖 = 15.  

 

B.2.2 Uncertain threshold (T5, T6) 

When the location of the threshold is uncertain, expected payoffs for risk neutral 

agents are 

𝐸𝐸�𝑈𝑈�𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖, 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�� = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 𝑃𝑃�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑄𝑄�� 
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Again, the best response of player 𝑖𝑖 is a function of 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, and symmetric 

equilibria have 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. There are again two cases. Note that 𝑏𝑏 − 𝑎𝑎 =

10 under large uncertainty (T5) and 𝑏𝑏 − 𝑎𝑎 = 2 under small uncertainty (T6). 

First, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑎𝑎, then 𝑃𝑃 = 1, so 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0 in this case, supporting a non-

cooperative equilibrium where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. 

Second, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑎𝑎, player 𝑖𝑖 is pivotal for threshold attainment up to the point 

where 𝑞𝑞𝑖𝑖 = 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 or, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑏𝑏, the point where 𝑞𝑞𝑖𝑖 = 𝑏𝑏 and thus 𝑃𝑃 = 0. As a 

result, payoffs to player 𝑖𝑖 are 

𝐸𝐸�𝑈𝑈�𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖, 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚��

= 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15

× min�1, max�
𝑏𝑏 − 𝑞𝑞𝑖𝑖

𝑏𝑏 − 𝑎𝑎 + 1
, max�0,

𝑏𝑏 − 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 − 𝑎𝑎 + 1
���. 

Because of the weakest-link structure of the game, it will never be optimal for 

player 𝑖𝑖 to contribute more than min(𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏) tokens. Furthermore, the first nine 

units contributed by player 𝑖𝑖 can never affect the probability of threshold 

attainment. Under large uncertainty, the tenth unit contributed will marginally 

impact 𝑃𝑃: this unit yields marginal payoff −0.05 + 15/11 > 0. Under small 

uncertainty, player 𝑖𝑖 is able to affect 𝑃𝑃 only by contributing more than 10 units. 

This implies facing higher marginal contribution costs; nevertheless, marginal 

payoffs of contributing more than 10 units while affecting 𝑃𝑃 is −0.45 +

15/(𝑏𝑏 − 𝑎𝑎 + 1), which is positive under both large and small uncertainty. It 

follows that, under both large and small uncertainty, either 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0 or 

𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = min�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝑏𝑏�. 

In fact, for our parameter values, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = min�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝑏𝑏� in both treatments 

and any 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑎𝑎. For instance, under large uncertainty and 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 10, 

contributing 10 tokens is preferable to contributing nothing since −0.05 × 10 +
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15/11 > 0. These best-response patterns thus support symmetric Nash 

equilibria at all 𝑏𝑏 − 𝑎𝑎 + 1 integers 𝑞𝑞𝑖𝑖 ∈ {𝑎𝑎,𝑎𝑎 + 1, … , 𝑏𝑏 − 1, 𝑏𝑏}. 

In summary, under large uncertainty, there exists a symmetric non-cooperative 

equilibrium at 𝑞𝑞𝑖𝑖 = 0 and 11 symmetric coordination/cooperation equilibria at 

𝑞𝑞𝑖𝑖 ∈ {10, … ,20}. Under small uncertainty, there is again a symmetric 

equilibrium at 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖, and also three coordination/cooperation 

equilibria at 𝑞𝑞𝑖𝑖 ∈ {14,15,16}.  
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Appendix C. Additional tables 

Table C1. Probability of reaching threshold 

 Summation Weakest link 
 Certainty Uncertainty Small 

uncert. 
Certainty Uncertainty Small 

uncert.  
𝑃𝑃 = 1 (certain 
avoidance) 

60% 0% 50% 90% 0% 37.5% 

0.5 ≤ 𝑃𝑃 < 1 0% 70% 30% 0% 10% 0% 
0 < 𝑃𝑃 < 0.5 0% 30% 10% 0% 50% 25% 
𝑃𝑃 = 0 (certain loss) 40% 0% 10% 10% 40% 37.5% 
Mean  0.6 0.5 0.74 0.9 0.15 0.46 
       

 

Table C2. Descriptive statistics: contributions in both rounds, pledges, and 
suggested group contribution (per person) 

  Contribution 
Round 1 

Contribution 
Round 2 

Pledge 
Round 2 

Suggested group 
behavior 

(per person) 

 

  Mean 
(s.d.) 
Mode 

Mean 
(s.d.) 
Mode 

Mean 
(s.d.) 
Mode 

Mean 
(s.d.) 
Mode 

 

Summation: Certainty 13.74 
(4.7) 
15 

14.8 
(4.0) 
15 

14.5 
(4.1) 
15 

14.1 
(4.69) 

15 

 

 Uncertainty 13.68 
(5.56) 

20 

14.9 
(5.0) 
20 

15.7 
(4.8) 
20 

14.85 
(6.08) 

20 

 

 Small 
uncertainty 

14.32 
(4.55) 

16 

15.5 
(3.9) 
16 

14.9 
(4.4) 
16 

14.68 
(4.79) 

16 

 

Weakest 
link: 

Certainty 14.51 
(3.82) 

15 

15.7 
(1.7) 
15 

15.8 
(1.8) 
15 

15.8 
(2.06) 

15 

 

 Uncertainty 15.02 
(4.81) 

15 

15.5 
(4.5) 
15 

16.06 
(4.2) 
20 

16.0 
(4.2) 
20 

 

 Small 
uncertainty 

14.62 
(2.9) 
16 

15.6 
(3.3) 
16 

16.1 
(2.2) 
16 

16.1 
(2.0) 
16 
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Table C3. Tobit regression model, individual contributions to the public good. 
Marginal effects evaluated at sample mean, standard errors clustered at group 
level 

 Summation Weakest link 
Uncertainty 0.538 

(0.982) 
0.013 
(0.819) 

Small uncertainty 0.891 
(0.669) 

-0.298 
(0584) 

Constant 15.08** 
(0.313) 

15.91*** 

N 300 280 
 

Table C4. Probability of reaching threshold, observed and simulated, 
experiment without pledges 

 Summation Weakest link 
 Certainty Uncertainty Small 

uncert 
Certainty Uncertainty Small 

uncert. 
 Observed 
𝑃𝑃 = 1 (certain avoidance) 30% 0% 0% 30% 0% 12.5% 
0.5 ≤ 𝑃𝑃 < 1 0% 10% 40% 0% 0% 12.50% 
0 < 𝑃𝑃 < 0.5 0% 90% 30% 0% 20% 0% 
𝑃𝑃 = 0 (certain loss) 70% 0% 20% 70% 80% 75% 
Mean  0.30 0.37 0.40 0.30 0.02 0.21 
 Simulated 
𝑃𝑃 = 1 (certain avoidance) 20% 0% 10% 32% 0% 6% 
0.5 ≤ 𝑃𝑃 < 1 0% 25% 23% 0% 6% 20% 
0 < 𝑃𝑃 < 0.5 0% 73% 28% 0% 29% 9% 
𝑃𝑃 = 0 (certain loss) 80% 2% 39% 68% 65% 66% 
Mean  0.20 0.37 0.34 0.32 0.10 0.22 
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Table C5. Relation between pledges and contributions in round 2. Mean, 
minimum, and standard deviation at group level (p-values based on Wilcoxon 
sign rank) 

   Pledge Contribution p-value 
Summation Certainty Mean 14.50 14.84 0.838 
  Min 8.70 6.8 0.304 
  Std 3.52 3.60 0.879 
 Uncertainty  Mean 15.70 14.95 0.201 
  Min 6 4.5 0.474 
  Std 4.80 4.62 0.575 
 Small Uncertainty Mean 14.93 15.52 0.333 
  Min 6.1 7.9 0.719 
  Std 4.14 3.43 0.241 
Weakest link Certainty Mean 15.8 15.73 0.385 
  Min 14.5 14.5 1.000 
  Std 1.66 1.55 0.414 
 Uncertainty Mean 16.06 15.48 0.575 
  Min 7.8 7 0.678 
  Std 4.01 3.89 0.721 
 Small Uncertainty Mean 16.11 15.55 0.360 
  Min 13.25 10.75 0.722 
  Std 1.80 2.38 0.674 

 

Table C6. Relation between contributions in round 1 and pledges in round 2, 
comparison at the individual level (p-values based on Wilcoxon sign rank) 

  Contribution 
round 1 

Pledge 
round 2 

p-value 

Summation Certainty 13.74 
(4.7) 

14.5 
(4.1) 

0.064 

 Uncertainty 13.68 
(5.56) 

15.7 
(4.8) 

0.000 

 Small 
uncertainty 

14.32 
(4.55) 

14.9 
(4.4) 

0.028 

Weakest link Certainty 14.51 
(3.82) 

15.8 
(1.8) 

0.001 

 Uncertainty 15.02 
(4.81) 

16.06 
(4.2) 

0.015 

 Small 
uncertainty 

14.62 
(2.9) 

16.1 
(2.2) 

0.0001 
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Table C7. Individual characteristics across treatments, standard deviations in parentheses 

 Summation, 
certainty 

Summation, 
uncertaint 

Summation, small 
uncertainty 

Weakest link, 
certainty 

Weakest link, 
uncertainty 

Weakest link, 
small uncert 

Risk measure 5.55 5.80 5.36 5.52 5.51 5.90 
 (2.12) (2.13) (2.08) (2.05) (2.28) (1.81) 
Time preference 7.36 7.54 7.45 7.35 7.30 7.20 
 (2.00) (2.12) (2.01) (1.90) (2.34) (2.14) 
Generosity 7.44 7.46 7.27 7.45 6.82 7.13 
 (2.04) (2.11) (1.98) (2.14) (2.40) (2.18) 
Punish you 5.37 5.35 4.96 4.95 5.32 5.46 
 (2.70) (2.55) (2.56) (2.56) (2.77) (2.70) 
Punish others 5.57 5.71 5.57 5.85 5.65 5.55 
 (2.38) (2.52) (2.39) (2.37) (2.42) (2.27) 
Trust 1.74 1.57 1.76 2.19 1.78 1.98 
 (0.77) (0.81) (0.64) (0.68) (0.84) (0.80) 
Female 0.55 0.64 0.60 0.58 0.55 0.56 
 (0.50) (0.48) (0.49) (0.50) (0.50) (0.50) 
Age 28.51 27.85 27.50 27.79 27.11 26.80 
 (9.07) (5.57) (4.91) (6.65) (5.23) (4.73) 
Econ 0.28 0.22 0.27 0.20 0.26 0.33 
 (0.45) (0.42) (0.45) (0.40) (0.44) (0.47) 
Observations 100 100 100 100 100 80 

Note: Risk measures: Response to the question “Please tell me, in general, how willing or unwilling you are to take risks. Please 
use a scale from 0 to 10, where 0 means you are completely unwilling to take risks and 10 means you are very willing to take risks. 
Time preference: Response to question “How willing are you to give up something that is beneficial for you today, in order to 
benefit more from it in the future?” Generosity: Response to question “How willing are you to give to good causes without expecting 
anything in return?” Punish you: Response to question “How willing are you to punish someone who treats you unfairly, even if 
there may be costs for you? Punish others: Response to question “How willing are you to punish someone who treats others unfairly, 
even if there may be costs for you?” For these four questions, 0 means completely unwilling to do so and 10 means very willing to 
do so. Trust: Response to the question “Did you trust the other players to make the contributions they pledged?”, where 0 means 
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very much and 3 means not at all. Female: Dummy variable equal to one if female subject. Age in years. Econ: Dummy variable 
equal to one if majoring in economics or business. 
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