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Abstract 
 
We study a model of social learning in networks where the dynamics of beliefs are driven by 
conversations of dissonance-minimizing agents. Given their current beliefs, agents make 
statements, tune them to the statements of their associates, and then revise their beliefs. We 
characterize the long-run beliefs in a society, provide the necessary and sufficient conditions for 
a society to reach a consensus, and show that agents’ social influences (weights on the consensus 
belief) are decreasing in their dissonance sensitivities. Comparing the outcomes of two models, 
with and without conversation, we show that conversation leads to a redistribution of social 
influences in favor of agents with higher self-confidence. Finally, we provide analytical insights 
for the model where agents minimize dissonance by revising both beliefs and network, and show 
that an endogenous change of network may prevent a society from reaching a consensus. 
JEL-Codes: D830, D850, D910, Z130. 
Keywords: social networks, DeGroot learning, social influence, dissonance minimization, 
conversation. 
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1 Introduction

Opinions and beliefs affect many economic decisions, such as whether to buy a new

product or to invest in a financial asset, or even which political candidate to vote

for. A central role in the formation of opinions and beliefs is played by social net-

works; that is, by the sets of those individuals with whom people regularly interact

and communicate. We learn about the quality of a new product, the prospects of

financial assets, the political views of a candidate, and so on, while conversing with

relatives, friends, co-workers, and acquaintances. However, people often misrepre-

sent their opinions in conversation. Social psychologists suggest that one of the main

reasons for this is the cognitive dissonance that people experience when faced with

opposing opinions, as a result of which, in response, they tailor their own messages to

their audience (Higgins, 1999; Echterhoff et al., 2005). In this paper, we incorporate

conversation within the dissonance minimization framework, and study the role of

both conversation and cognitive dissonance parameters in belief formation.

A large and growing body of economic literature has investigated the process of

belief formation in social networks, focusing on such questions as whether and how

quickly individual beliefs converge, whether society reaches consensus, and whether

this consensus reflects the true state of the world. Surveys in Jackson (2008, chapter

8) and Golub and Sadler (2016) divide contributions in this field into two categories:

those based on Bayesian learning models (e.g., Bala and Goyal, 1998) and those that

adopt a repeated linear updating setting of DeGroot (1974). Recent examples of

the former approach include Acemoglu et al. (2011) and Eyster and Rabin (2014).

The Bayesian approach is attractive since it serves as a full rationality benchmark.

Bayesian agents, in particular, would adjust the information they receive from their

associates on a possible common source or on repetitions of information over subse-

quent communications. However, experimental and empirical evidence (Choi et al.,

2008; Corazzini et al., 2012; Chandrasekhar et al., 2020) suggests that, in many situ-

ations, the less sophisticated DeGroot learning describes individual behavior better.

In the DeGroot (1974) model, belief dynamics are given by an average-based

updating process. Agents are embedded in a network described by the interaction

matrix, and agents’ new beliefs are a weighted average of their current beliefs where

the weights (trust parameters) are given by the interaction matrix. DeMarzo et al.

(2003) modelled communication on a social network, using the DeGroot model, and

argued that implied “persuasion bias” (agents’ failure to discount repetitions of in-
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formation) can explain such phenomena as political propaganda, censorship, and uni-

dimensionality of political beliefs. Further important contributions in this stream of

literature were made by Golub and Jackson (2010, 2012) and Buechel et al. (2015).1

The DeGroot learning model is highly tractable due to its close connection to the

well-established Markov chain theory, which greatly helps in analyzing the long-run

properties of the model.

An important part of the story is that people often hear beliefs or views that

contradict their own.2 There is evidence that the amount of disagreement in society

over many important issues has increased over time. For instance, according to the

General Social Survey, in 1972 the percentage of the US population in favor of gun

permits was 71% among Democrats and 70% among Republicans, while by 2018

those figures had altered to 84% and 59% respectively. Similarly, between the 1970s

and 2018, the gap between the percentage of Democrats and Republicans in favor of

abortion or the death penalty for murder grew substantially.3 Moreover, it has been

reported that the average gap between the views of Democrats and Republicans on

10 different political values increased from 15 p.p. to 36 p.p. between 1994 and 2017.4

Following Festinger (1957), the literature of social psychology suggests that people

suffer from “cognitive dissonance” when confronted with opposing beliefs and that

they react by minimizing the dissonance. Social psychologists have found that many

decisions and attitudes are determined by people’s desire to reduce cognitive disso-

nance (e.g., McGrath, 2017; Harmon-Jones, 2019). In particular, it has been argued

that cognitive dissonance is essentially a social phenomenon, which stems from dis-

agreement with others in a social group (Matz and Wood, 2005; McKimmie, 2015).

Thus social networks are sources of both belief formation and dissonance arousal.

In this paper, we link these two phenomena. We model people’s conversations and

network formations as motivated by their dissonance minimization reaction to the

disagreement on the views expressed by associates in their network. We investigate

how these psychological factors affect convergence of beliefs, possibilities of reaching

consensus, and the social influences of different people.

A recent paper by Arifovic et al. (2015) developed a computational model of learn-

1See also closely related models on evolution of different social phenomena in Merlone and Radi
(2014); Buechel et al. (2014); Panebianco and Verdier (2017); Olcina et al. (2017); Della Lena
(2019); Ushchev and Zenou (2020).
2This may be caused by various preferences, sources of information, and embedded values. We
abstract away from the source of disagreement but focus on the psychological consequences of it.
3The General Social Survey key trends, https://gssdataexplorer.norc.org/trends.
4Pew Research Center, October, 2017, “The Partisan Divide on Political Values Grows Even Wider”.
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ing in a social network, where agents minimize the dissonance arising from disagree-

ment by not expressing their genuine opinions, instead tailoring their statements to

the statements of their associates.5 We build our paper in the framework proposed by

Arifovic et al. (2015) and go beyond numerical simulations. Our goal is to formalize

the role of conversation in belief evolution, to clarify assumptions, and to general-

ize the model in different directions. For these purposes, we provide an analytical

solution to the dissonance minimization model with conversation, fully characterize

the dynamics of beliefs, including the convergence of society to a consensus and the

social influences of different members of society, and study the influence of dissonance

sensitivities on these outcomes. Furthermore, we disentangle the effects of conver-

sation and dissonance minimization by comparing the outcomes of the model with

conversation with those of the model without conversation, the latter having been

known as “folk wisdom” in the literature on the DeGroot model (see Groeber et al.,

2014; Golub and Sadler, 2016).

We now summarize our main contributions. First, we show that repeated conver-

sations, motivated by minimization of the dissonance, lead to the DeGroot learning

model of opinion averaging. We relate the “trust” parameters in the DeGroot inter-

action matrix to behavioral parameters that reflect the sensitivity to cognitive disso-

nance. Intriguingly, we show that conversation leads to a much broader propagation

of beliefs than the network of dissonance-arousing associates implies. Specifically, the

belief of an agent is affected not only by the beliefs of their associates, but also by

the beliefs of the associates of their associates, and by their associates’ beliefs, and so

on. We also show that the block structure of the DeGroot interaction matrix, which

is studied in particular in DeMarzo et al. (2003) and Buechel et al. (2015), can be ob-

tained by partitioning a society into communication classes and remaining agents on

the basis of dissonances. In this sense, our model provides certain microfoundations

for the DeGroot model in both connected and non-connected societies.

Second, we prove that, in the model with conversation, beliefs always converge

to the long-run values (an outcome which is not guaranteed in the standard DeG-

root model). We fully characterize the dynamics of beliefs, providing necessary and

sufficient conditions for a society with diverse initial beliefs to reach a consensus,

when the driving forces behind the evolution of beliefs are dissonance minimization

and conversation. Within each communication class, agents have the same long-run

5This effect is known in the social psychology literature as “audience tuning”. Higgins (1999) and
Echterhoff et al. (2005) argue that the stated opinion also alters one’s own memory (the so-called
“saying is believing” effect).
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belief, and their weights on this belief are agents’ social influences. The long-run

belief of each remaining agent is determined by the beliefs of communication classes,

and the weights of communication classes on each such belief are the classes’ external

impacts. We relate both social influences and external impacts to the dissonance

sensitivities of agents. Moreover, we highlight the role of conversation by showing

that social influences in models with and without conversation are in general differ-

ent. Interestingly, conversation leads to a redistribution of social influences in favor of

agents with higher self-confidence. At the same time, external impacts are the same

in both models.

Third, we provide analytical insights for the model where the dynamics of both

beliefs and network are driven by dissonance minimization. We prove that when a

network is endogenous, an initially polarized society may remain polarized even in the

long run. We show that this outcome is non-monotonic in the dissonance sensitivity.

The paper is organized as follows. Section 2 studies the dissonance minimization

model with conversation and discusses its relation to the DeGroot model. Section 3

characterizes long-run beliefs in terms of social influences and external impacts. Sec-

tion 4 studies the effects of conversation and dissonance sensitivities on the outcome

of the model. Section 5 provides an example of dynamics for the model with endoge-

nous network. Section 6 concludes. Appendix A discusses the numerical results of

Arifovic et al. (2015). Appendix B contains the proofs of the main results. Appendix

C provides detailed description of and proofs for the model with endogenous network.

2 Dissonance minimization in conversation

A society consists of a set N = {1, . . . , N} of agents updating their opinions about

a certain issue in discrete time. In each period t, each agent i forms a belief bi(t)

about the issue.6 Let b(t) denote the (column) vector of agents’ beliefs. The vector

of initial beliefs b(0) is given.

Motivated by the literature of social psychology and the computational study of

Arifovic et al. (2015) (AEW henceforth), we consider the setting where agents discuss

the issue and experience dissonance from disagreement. Every agent i has a set of

associates ; that is, of agents who affect i’s dissonance. Within each period t ≥ 1,

6We use the term “belief” in a broad sense, spanning opinions, judgments, and estimations. For
instance, one can think of bi(t) as a probability of some event. We assume that beliefs are real
numbers, but the results can be extended to the case where they are elements of an arbitrary
normed space.
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the agents first participate in conversation and then form beliefs. Before presenting

the full model, it will be useful to consider the setting without conversation, which is

sometimes used to justify the DeGroot learning model (cf. Golub and Sadler, 2016).

Model without conversation. Suppose that in each period t, given b(t−1), agent

i faces the following problem

min
bi(t)

{
(bi(t)− bi(t− 1))2 +

∑N

j=1
dij(bi(t)− bj(t− 1))2

}
, (1)

where coefficients dij ≥ 0 are given. An interpretation of this problem is that agent

i experiences dissonance when the new belief differs from the previous beliefs in a

society. For tractability, the dissonance dis-utility in (1) is quadratic and additively

separable across agents. The first term is the private dissonance arising from the

agent’s inconsistecy, and the second term is the social dissonance arising from the

agent’s disagreement with their associates. We normalize the sensitivity to private

dissonance to 1 and set dii = 0 for every i. For two distinct agents i and j, parameter

dij measures the sensitivity of agent i to disagreement with agent j, with dij = 0

indicating that agent j is not among the associates of i. Therefore, matrix D =

{dij}Ni,j=1 characterizes both the sets of associates and the sensitivity to them. We

call D the dissonance matrix.

The first-order condition of problem (1) implies that the new belief of agent i is a

weighted average of i’s previous belief and the previous beliefs of i’s associates:

bi(t) = tiibi(t− 1) +
∑N

j=1
tijbj(t− 1) ,

where the self-weight, tii, and the weights to the associates, tij, are given by

tii =
1

1 +
∑

k dik
and tij =

dij
1 +

∑
k dik

, for i 6= j . (2)

Thus, when agents minimize their dissonances caused by belief differences, the dy-

namics of beliefs follow the DeGroot learning process in the form b(t) = Tb(t − 1),

6



where the row-stochastic matrix T is defined as7

T =
(
IN + diag {D1N}

)−1
(IN + D) . (3)

The dissonance matrix D, capturing all dissonance sensitivities, defines this so-called

T-model. In the corresponding T-network, the links are directed from the agents to

themselves and are weighted by coefficients given in (2). Note that in the T-model

the self-weights that measure agents’ self-importance are all positive, tii > 0.

The dissonance minimization procedure leading to the T-model assumes that, in

each period, the beliefs of agents are known to their associates, as if there has been

a conversation where the agents stated their beliefs truthfully. We now consider the

model in which the distinction between beliefs and statements is made explicit.

2.1 Model with conversation

Suppose that in period t, each agent i first makes a statement, si(t), and then forms

a belief, bi(t), about the issue. The statement and the belief are affected by the

previous belief of i and the contemporaneous statements of i’s associates. We model

the conversation stage as a game where all N agents simultaneously choose their

statements. Agent i chooses the statement si(t) by solving

min
si(t)

{
(si(t)− bi(t− 1))2 +

∑N

j=1
dij(si(t)− sj(t))2

}
. (4)

This game has a unique Nash equilibrium, the vector of statements s(t), as we show

below. Dissonance dis-utility in (4) has both private dissonance arising from the

agent being dishonest, and social dissonance arising from them disagreeing with their

associates in conversation. The dissonance matrix D is a primitive of the model.8

It contains sensitivity parameters and defines the set of associates of any agent i as

those agents for whom dij > 0.

After the statements are made, agent i forms a new belief by solving

min
bi(t)

{
(bi(t)− bi(t− 1))2 +

∑N

j=1
dij(bi(t)− sj(t))2

}
. (5)

7Throughout the paper, we use the following notation: IN is the identity matrix of size N , 1N is
the N -vector of ones, diag {D1N} is the diagonal matrix whose entries are the row sums of D. A
row-stochastic matrix is the non-negative matrix with the sum of elements in each row equal to 1.
8That is, the model is defined by any non-negative square matrix D with zeros on the diagonal.

7



Note that this optimization problem coincides with problem (1) in the T-model only

if the agents state their beliefs truthfully. This is generally not the case, however. To

see this, consider the outcome of the conversation stage.

Due to strict convexity of the objective function in si(t), problem (4) implies

si(t) =
1

1 +
∑

k dik
bi(t− 1) +

∑N

j=1

dij
1 +

∑
k dik

sj(t) , for any i . (6)

The linear system of these N equations can be written in the matrix form as

b(t− 1) = (IN + diag {D1N} −D) s(t). (7)

Let us now define matrix P, which plays the key role in the belief dynamics of the

model with conversation,

P = (IN + diag {D1N} −D)−1 . (8)

As we show further, this matrix P is well defined. Then it follows from (7) that there

is a unique Nash equilibrium at the conversation stage, s(t) = Pb(t− 1).

Proposition 1 (P-model). Let D be a non-negative square matrix of size N with

zeros on the main diagonal. Beliefs in the model with conversation induced by D

evolve as b(t) = Pb(t− 1), where matrix P defined in (8) is row-stochastic.

Proof. In Appendix B.1, we show that the matrix P is well defined by (8) and row-

stochastic. Since problems (5) for the belief and (4) for the statement are identical for

any agent, we have b(t) = s(t). The belief dynamics are then obtained from (7). �

Proposition 1 establishes that dissonance minimization in conversation gives rise to

linear updating of the beliefs in a society; that is, to the DeGroot learning process. We

call this model the P-model and the associated network the P-network, as the beliefs

are updated by matrix P defined in (8). Dissonance minimization, thus, microfounds

DeGroot learning, connecting belief dynamics to the sensitivity parameters given

exogenously. Our goal will be to express the properties of the belief dynamics in

terms of the elements of the dissonance matrix D.

It will also be informative to compare the P-model with the T-model. Indeed,

both models lead to the DeGroot belief updating, but it is the P-model with con-

versation that highlights the role of dissonance that people experience in discussions.
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Eq. (6) shows that when agents make statements, they attach positive weights to

the statements of their associates. In other words, agents “tune to an audience”,

tailoring their statements to make them closer to the statements of their associates.9

Due to audience tuning, s(t) and b(t − 1) are in general different, and this distin-

guishes the model with conversation from the T-model.10 As the following example

demonstrates, conversation affects the structure of the interaction matrix P much

more strongly than a simple normalization of the dissonance matrix in the T-model,

given by (2).

Example 1. Consider the “chain” society of N ≥ 2 agents, ordered from 1 to N in

such a way that any agent experiences social dissonance to the previous agent only,

except for the first agent, who has no social dissonance. All sensitivities are set to 1.

In matrix D, thus, the non-zero elements are only di+1,i = 1 for any i < N .

Matrices T and P are computed using (3) and (8), respectively. In both models,

the first agent experiences no social dissonance, attaching self-weight 1. In the T-

model, the remaining agents weight themselves and the previous agent with equal

weights 1/2. But in the P-model, agents weight all previous agents. The self-weight

is 1/2, the weight of the previous agent is 1/4, the weight of the agent before the

previous agent is 1/8, and so on, with agents 1 and 2 always being given the same

weight, 1/2N−1. See illustrations in Figs. 1 and 2 for N = 3 and N = 4.

In matrices T and P, the first two rows are identical, but all other rows are very

different. In the model with conversation, agent 3 places weight 1/4 to the belief

of agent 1, who is not their associate and may not even be known to them. This

becomes even more striking when N becomes large: note that for any size of society,

the last agent N places positive weight to agent 1, even if they are separated by N−2

agents!

Role of audience tuning. Mutual audience tuning plays a crucial role in the P-

model. In Example 1, the dissonance minimization problem of agent 3 includes the

9Thus dissonance minimization leads to conformity but not to counter-conformity. Buechel et al.
(2015) study both. In contrast to that paper, agents in our model can have different sensitivities to
disagreement with different associates.
10However, the belief update stage implies that b(t) = s(t), the so-called “saying is believing” effect
according to AEW. We follow their setting, where the statements of associates affect both the agent’s
statement and their newly formed belief via problems (4) and (5), respectively. Anufriev et al. (2021)
consider a general case where associates causing an agent’s dissonance in conversation differ from the
people to whom the agent listens when forming their beliefs. In this case, the “saying is believing”
effect disappears.

9



1 2

3

1 2

3

1/2

1/2

1

1/2

1/2

1/4

1/2

1/4

1

1/2

1/2

Figure 1: T-network (left) and P-network (right) in Example 1 with N = 3.
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Figure 2: T-network (left) and P-network (right) in Example 1 with N = 4.

statement of agent 2, whose dissonance is affected by the statement of agent 1. This

makes the belief of agent 3 dependent on the previous belief of agent 1.

Another assumption of the model is that all statements are determined simulta-

neously. This assumption is not crucial, in the sense that the statements can alter-

natively be obtained as a limit of a näıve adjustment process. Suppose that within

period t there is a fast timescale τ ≥ 0. At each date τ , agent i chooses statement

sτi (t) to minimize the dissonance with their own belief bi(t− 1) (which is fixed in this

fast timescale) and the previous statements of their associates sτ−1
j (t):

min
sτi (t)

{
(sτi (t)− bi(t− 1))2 +

∑N

j=1
dij(s

τ
i (t)− sτ−1

j (t))2
}
.
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The first-order conditions imply that during period t the statements evolve as

sτ (t) =
(
IN + diag {D1N}

)−1
(b(t− 1) + Dsτ−1(t)) .

It turns out that these dynamics converge to s(t) defined in the model with conver-

sation via (7). This justifies our use of the Nash equilibrium in the model.

Proposition 2 (Nash equilibrium justification). For any initial s0(t), we have

sτ (t) −−−→
τ→∞

s(t), where s(t) = Pb(t− 1).

Proof. See Appendix B.2. �

2.2 P-network topology

The dissonance matrix D is a primitive in our model and can, in principle, be ob-

served. The results in this section characterize the dependence of P on the sensitivity

parameters that are collected in matrix D.

The following notion will be useful.11 We say that “a path leads from i to j in D”

if agent i is linked with agent j via a chain of successive associates; that is, there is a

sequence of agents i1 = i, . . . , iJ = j such that dinin+1 > 0 for each n = 1, . . . , J − 1.

Proposition 3 (P-network topology). Consider a society with the dissonance

matrix D. Let P be defined by (8). Then pij > 0 iff there is a path from i to j in D.

Proof. See Appendix B.3. �

This is a key result for characterizing the structure of the P-network. The audience

tuning phenomenon cuts the distance between agents unknown to each other, as

we saw in Example 1. The distinguishing property of the model with conversation

is that agents may directly impact the beliefs of non-associates. Indeed, agent i

takes into account the belief of j (and so pij > 0) not only when i experiences

dissonance from disagreement with j (that is, dij > 0), but also when there is a chain

of intermediate agents leading from i to j, in which every agent experiences dissonance

from disagreement with the next agent in the chain. Note that this property does not

hold in the T-network, where only the beliefs of associates matter: tij > 0 iff dij > 0.

11Matrix D induces a directed network. We do not use this network in the paper, as the belief
dynamics are governed by the other matrices, either T or P, depending on the model. However, the
notion of a directed path in network D is useful and we introduce it here.
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Corollary 1. The P-model with conversation has the following properties:

(i) If dij = 0 for all j, then pij = 0 for j 6= i, and pii = 1.

(ii) If dhi = 0 for all h, then phi = 0 for h 6= i, and pii = 1/(1 +
∑

k dik).

(iii) pii > phi ≥ 0 for all h 6= i.

(iv) For any i, pii ≥ tii.

Proof. See Appendix B.3. �

The first two statements immediately follow from Proposition 3. An agent with no

associates (a zero row in D) has no outgoing paths of any length. Such agents do not

experience social dissonance and therefore do not update their beliefs. These agents

are called stubborn agents. An agent who is not among anyone’s associates (a zero

column in D) does not cause dissonance in others and hence does not impact the

beliefs of other agents.

The third statement notes that self-weights pii (measuring self-importance) are

positive in the P-model. Moreover, and in contrast to the T-model, agent i weights

their own belief more than others weight i’s belief. The intuitive reason for this is the

following. The belief of i affects the beliefs of all agents who have paths leading to i.

The belief of i propagates backward along any such path; however, audience tuning

dampens the impact of i’s belief. This belief, as a result, matters most for agent i,

who is closest to i in any such path.

The fourth statement says that self-importance in the P-network is no lower than

it is in the T-network for any agent. Cases (i) and (ii) are the cases in which the

self-importance of i coincides in the two models.12 In the general case, as soon as an

agent both causes and experiences social dissonance, conversation tends to increase

the weight that this agent attaches to their own belief.

How do the sensitivity parameters in D affect the weights of the interaction ma-

trix? In the benchmark T-model without conversation, if the sensitivity of agent i to

j increases, the weights of the learning dynamics adjust in a simple way. Agent i will

place a greater weight to the belief of j, simultaneously decreasing the weights placed

to their own belief and to the beliefs of all their other associates.13 However, in the

12As tii ≤ pii ≤ 1 for any i, these cases provide the boundaries for self-importance.
13Formally, if dij increases, from (2) we have that tij increases and positive tik (for k 6= j) decreases.
The other weights in T are unaffected.
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model with conversation, according to Proposition 3, the beliefs of j, an associate of

i, affect not only i’s belief, but also the beliefs of all agents with a path leading to i

in D.

Denote by Hi the set consisting of i and all agents having a path to i in D. We

can describe all consequences of a change in one of the sensitivity parameters.

Proposition 4 (P-model comparative statics). Let j be an associate of i, and

suppose that dij increases and all other sensitivities remain the same. Then:

(i) phi decreases and phj increases for any agent h ∈ Hi.

(ii) phk changes iff agent h ∈ Hi and agent k is such that pik 6= pjk. In this case,

phk increases if pik < pjk, and phk decreases if pik > pjk.

Proof. See Appendix B.4. �

The direct effect of a higher sensitivity to the dissonance that i experiences from

disagreement with j is an increase of weight of i to j’s belief. This is intuitive and,

as in the model without conversation, can be interpreted as an increase in conformity

of i to j. The self-importance of i also decreases. However, the similarity with the

T-model ends here. Above all, in the P-model, there are spillovers to all other agents

in the set Hi; that is, to all those who are affected by j’s belief via i. All such agents

also increase their weight to j and decrease their weight to i.

Furthermore, all affected agents (i and other agents from Hi) adjust the weights

they place to all agents, and they all do so in the same direction for any agent k. The

direction depends on the relative weights that agents i and j place to k. As j’s belief

is growing more important than the belief of i, agents from Hi increase their weights

to those agents, whom j weighted stronger than i, and vice versa.

Proposition 4 will be important for Section 4, where the role of dissonance in the

long-run beliefs is discussed. We illustrate Propositions 3 and 4 with two examples.

Example 2. Consider the chain society with N = 3 agents, and where d21 = d > 0

and d32 = 1. Direct computations show that

D =

0 0 0

d 0 0

0 1 0

 ⇒ T =

 1 0 0
d

1+d
1

1+d
0

0 1/2 1/2

 , P =

 1 0 0
d

1+d
1

1+d
0

d
2+2d

1
2+2d

1/2

 .

The difference between the T- and P-models is that in the former the changes in d21

affect only the weights of agent 2, whereas in the latter they also affect the weights

13
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Figure 3: T-network (left) and the structure of the P-network (right) in Example 3.

that agent 3 (from H2) attaches to all agents. The weights that agent 3 attaches to

agents 1 and 2 move in the same direction as for agent 2. Moreover, since agents 1

and 2 attach equal (zero) weight to 3, the self-weight of 3 does not change.

Example 3. We modify Example 2 to make the “ring” society with N = 3 agents,

where d21 = d > 0 and d32 = d13 = 1. Direct computations show that

D =

0 0 1

d 0 0

0 1 0

 ⇒ T =

1/2 0 1/2
d

1+d
1

1+d
0

0 1/2 1/2

 , P =
1

4 + 3d

2 + 2d 1 1 + d

2d 4 d

d 2 2 + 2d

 .

Agent 1 is no longer stubborn and experiences dissonance to agent 3. With this

modification, there is a path in D from any agent to any other agent. Hence, all

the agents are linked in the P-model, see Fig. 3 and compare the structure of the

P-network with that of the chain society in Fig. 1. Moreover, all the weights depend

on d21 = d. When d = 1, all agents are homogeneous, their self-importance is 4/7,

the weight to the associate is 2/7, and the weight to the remaining agent is 1/7.

When d21 > 1 and agent 2 further increases the dissonance sensitivity wrt agent 1,

the weight of every agent to agent 2 decreases and to agent 1 increases. The effect of

weights on agent 3 depends, according to Proposition 4, on the relative weights that

agents 1 and 2 place on agent 3. Since p23 > p13, the weight of every agent to agent

3 should increase, which is indeed the case.
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3 Long-run beliefs

We are interested in the long-run properties of the model with conversation, defined

by the dissonance matrix D. Proposition 1 established that the belief dynamics

are governed by the DeGroot averaging process. As is standard in the literature,

the dynamics can then be studied with the theories of networks and Markov chains

applied to the interaction matrix P.14

There are two particularly useful properties of our model that follow from Propo-

sition 3. First, every agent has a positive self-importance, and therefore the belief

dynamics converge to a steady state starting from any vector of initial beliefs.15 Sec-

ond, a path from agent i to another agent j in D implies a link from i to j in the

P-network, and vice versa. The structure of the P-network in terms of the so-called

communication classes16 plays a key role in characterizing the steady states, and this

property allows us to relate this structure to the dissonance matrix.

Let us partition a society into different sets, based on matrix D. Specifically,

consider a set S of all stubborn agents, a number of communication classes Dm each

with several agents and indexed by m = 1, . . . ,M , and a set R of all remaining

agents. The numbers of agents in these sets are S, Dm, and R, respectively.17 Then

dissonance matrix D has the following block structure:

D =



0S 0 . . . 0 0

0 D1 . . . 0 0
...

...
. . .

...
...

0 0 . . . DM 0

DRS DR1 . . . DRM DRR


, (9)

where 0S is the square matrix of zeros of size S; D1, . . . ,DM are the strongly con-

14The papers using similar approaches are DeMarzo et al. (2003), Golub and Jackson (2010), and
Buechel et al. (2015). See Jackson (2008, chapter 8) for an overview.
15As pii > 0 for all i, matrix P has a cycle of length one and thus is aperiodic, when restricted to
every group of agents. Convergence then follows from the standard results, as stated in Theorem 2
in Golub and Jackson (2010). Note that, for the same reason, dynamics converge in the T-model.
16In a given network, a set of nodes is strongly connected if there is a directed path from any node
to any other node in the set. If this holds for the whole network, then this network (and its
corresponding matrix) is strongly connected. A set is closed if there is no link from a node in the
set to a node outside the set. A communication class is the strongly connected and closed set. Any
network can be partitioned into one or more disjoint communication classes and the set of all nodes
that do not belong to any communication class.
17Thus N = S +

∑
m Dm +R. Any set can be empty, but the society cannot coincide with R. Thus,

if M = 0 (no communication classes in D), then there is at least one stubborn agent.
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nected matrices of sensitivity parameters of agents from Dm wrt themselves; DRS,

DRm, and DRR are matrices of sensitivity parameters of agents from R wrt agents

from S, Dm, and R, respectively; and symbol 0 stands for matrices of various sizes

with zero entries.

Using the relation between paths in D and links in P, we obtain that there are

two types of communication class in the P-network: singleton sets formed by agents

in S, and sets Dm, in each of which any two agents have links in both directions. All

agents not belonging to any communication class are in the set R. Thus, interaction

matrix P has essentially the same block structure as matrix D:

P =



IS 0 . . . 0 0

0 P1 . . . 0 0
...

...
. . .

...
...

0 0 . . . PM 0

PRS PR1 . . . PRM PRR


,

where Pm = (IDm + diag {Dm1Dm} −Dm)−1 is a positive matrix.18

Once matrix P is partitioned, the standard result (e.g., Theorem 3 in Golub and

Jackson, 2010) can be applied to derive the vector of the long-run beliefs b∗. We

formulate this in Proposition 5 below. However, before this, let us consider a special

but informative case of a society forming a single communication class.

Consensus for strongly connected dissonance matrix. A whole society forms

a single communication class iff D is strongly connected. It is well known that a

converging society then reaches consensus, with all agents having the same belief

in the long run. This consensus belief, b∗, is the weighted average of agents’ initial

beliefs,

b∗ = π1b1(0) + . . .+ πNbN(0) . (10)

The row-vector of weights, π = (π1, . . . , πN) with
∑

i πi = 1, is a unique left eigen-

vector of P corresponding to eigenvalue 1 whose entries sum to 1. The components

18A matrix is positive if all of its elements are positive. The last result follows from Proposition 3
and from (8). Proposition 3 also leads to other properties of the blocks in P. If agent r ∈ R does
not have a path to an agent s ∈ S, then in PRS, prs = 0; if r ∈ R does not have a path to agents in
Dm, then row r in PRm is zero. If r ∈ R has at least one associate in Dm, then row r in PRm is
positive. If two agents in R have paths to each other, then their rows in PRm have zero and positive
elements in the same positions.
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of π are called the social influences of agents.19

Example 3 (continued). Consider the “ring” society with N agents, where the

only non-zero elements of D are di+1,i for i = 1, . . . , N − 1 and d1,N . For any N ,

the dissonance matrix D is strongly connected. In the special case where N = 3 and

d21 = d > 0, d32 = d13 = 1, the row eigenvector of P corresponding to eigenvalue 1 is

π = 1
1+2d

(d, 1, d); its entries are the social influences. Hence, for given initial beliefs

b(0) = (b1(0), b2(0), b3(0))′, agents converge to the common long-run belief:

b∗ = π1b1(0) + π2b2(0) + π3b3(0) =
d

1 + 2d
b1(0) +

1

1 + 2d
b2(0) +

d

1 + 2d
b3(0) .

Note that when d = 1, all agents’ initial beliefs are equally weighted in b∗.

General case. Applying the above result for any communication class, we have

Proposition 5 (P-model long-run beliefs). Consider the society with the disso-

nance matrix D having block structure given by (9). Let b(0) be an arbitrary vector

of the initial beliefs with b(0)|S and b(0)|Dm denoting its restrictions to the sets S and

Dm, respectively. There exists b∗ = limt→∞ b(t); vector b∗ of the long-run beliefs is

given by

b∗ =


b(0)|S

b∗1
...

b∗M
b∗R

 , (11)

where the block structure corresponds to the block structure of D. In Eq. (11), vector

b∗m with m = 1, . . . ,M has identical entries b∗m defined as

b∗m = πmb(0)|Dm = πm1 b
m
1 (0) + . . .+ πmDmb

m
Dm(0) , (12)

where πm is the left eigenvector of matrix Pm corresponding to eigenvalue 1 whose

19See Chapter 8 of Berman and Plemmons (1979) or Proposition 1 in Golub and Jackson (2010). As
beliefs converge, there is a limiting matrix, P∞ = limt→∞Pt. Row i of Pt is composed of impacts
of agents’ initial beliefs on agent i’s belief at time t. Because of consensus, all the rows of P∞ are
identical and consist of the impacts of all agents on the long-run belief. But then the row π satisfies
π = πP, and thus it is a left eigenvector of P corresponding to eigenvalue 1. There is a unique such
positive eigenvector whose entries sum to 1, according to the Perron–Frobenius theorem.
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entries sum to 1. The components of the vector b∗R are given by

b∗r =
∑

s∈S
γ̄rsbs(0) +

∑M

m=1
γrmb

∗m , r ∈ R , (13)

where coefficients form the R× (S+M) matrix Γ =
(
{γ̄rs}R,Sr,s=1 {γrm}

R,M
r,m=1

)
given by

Γ = (IR −PRR)−1 (PRS PR11D1 · · · PRM1DM
)
. (14)

Proposition 5 states, first, that every stubborn agent sticks to their own initial belief.

Second, within each communication class Dm, there is a consensus.20 This is a gen-

eralization of the case with strongly connected D, where the whole society reaches

a consensus. The common long-run belief in Dm is given in (12) as an average of

the initial beliefs of agents from Dm, weighted by the components of the vector that

satisfies πm = πmPm and is properly normalized. The entries of πm are the agents’

social influences within the class Dm.

Third, the initial beliefs of agents in R do not matter. Instead, as stated in (13),

the long-run beliefs of these agents are determined by the beliefs of the stubborn

agents and the long-run beliefs of the communication classes.21 The long-run belief of

agent r ∈ R is the average of those others’ beliefs with weights γ̄rs and γrm. We call

these weights the external impacts of the stubborn agent s and of the communication

class Dm, respectively, on agent r.

In Section 4, we use these results to discuss how agents’ dissonance sensitivities

affect the social influences and external impacts in our model. Let us now illustrate

Proposition 5 with several examples. In Example 1, there is a chain of N agents,

where agent 1 is stubborn. Since there are no communication classes in D, all other

agents are in the set R. Hence, agent 1 keeps their own initial belief and all other

agents converge to this belief; that is, b∗r = b1(0) for any r = 2, . . . , N . In the chain

society, the structure of the D-network is such that the exact values of the sensitivity

parameters do not affect the long-run belief. For instance, in Example 2, we have

b∗1 = b∗2 = b∗3 = b1(0) regardless of parameter d.

In all previous examples, a consensus was reached. We now consider a society

with no consensus.

20The long-run beliefs of different stubborn agents and in different communication classes Dm are
different, for generic initial beliefs. Thus, there is no consensus in the society, as soon as S +M > 1.
21Cf. Theorem 10 in DeMarzo et al., 2003, or Proposition A.1 in Buechel et al., 2015. Matrix IR−PRR

in (14) is invertible because the remaining agents are linked to stubborn agents or communication
classes, and hence the spectral radius of PRR is less than one.

18



1 2

3
d

2+d
1

2+d

1 1

1
2+d

Figure 4: T- and P-networks in Example 4.

Example 4. Suppose that agents 1 and 2 have no associates, whereas agent 3 has

sensitivities d31 = d > 0 wrt agent 1 and d32 = 1 wrt agent 2. In this case, the T- and

P-networks (and matrices) are identical; see Fig. 4 for an illustration. Therefore, the

long-run outcome is the same in both models. The stubborn agents 1 and 2 keep their

initial beliefs, whereas agent 3 from the set R converges to their weighted average:

b∗3 =
d

1 + d
b∗1 +

1

1 + d
b∗2 =

d

1 + d
b1(0) +

1

1 + d
b2(0) .

The external impacts are γ31 = d/(1 + d) and γ32 = 1/(1 + d). Thus, the more agent

3 conforms to agent 1, the higher the external impact of agent 1 is on agent 3, and

the lower the external impact of agent 2 is on agent 3.

Long-run beliefs in the model without conversation. The long-run properties

of the T-model are now briefly discussed. For a given dissonance matrix D, the

structure of communication classes in the T-model is the same as in the P-model:22

T =



IS 0 . . . 0 0

0 T1 . . . 0 0
...

...
. . .

...
...

0 0 . . . TM 0

TRS TR1 . . . TRM TRR


,

22It follows from (3) that, apart from the stubborn agents that are added as separate communication
classes, the structure of T is identical to the structure of D. This leads to the same block structure
for T as for P. The only difference is that whereas matrices Pm for communication classes Dm are
positive, this is not the case for the corresponding matrices Tm. However, since any agent has a
positive self-importance in the T-model and any Tm is strongly connected, the convergence results
within each communication class are the same.
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where Tm = (IDm + diag {Dm1Dm})
−1 (IDm + Dm) is matrix T restricted to the class

Dm. We then can state the following (cf. Proposition 5). First, the stubborn agents

are unaffected by conversations and keep their initial beliefs. Second, for each com-

munication class Dm with m = 1, . . . ,M , there is a consensus belief

b∗m = θmb(0)|Dm = θm1 b
m
1 (0) + . . .+ θmDmb

m
Dm(0) ,

where θm = (θm1 , . . . , θ
m
Dm

) is the left eigenvector of Tm corresponding to eigenvalue

1 whose entries sum to 1. Its elements are the social influences of agents from Dm in

the T-network. Third, the long-run belief of any other agent r ∈ R is given by

b∗r =
∑

s∈S
δ̄rsbs(0) +

∑M

m=1
δrmθ

mb(0)|Dm ,

where δ̄ and δ’s are the external impacts of the stubborn agents and communication

classes, respectively, on agents in R. Matrix ∆ =
(
{δ̄rs}R,Sr,s=1 {δrm}R,Mr,m=1

)
of the

external impacts is defined as in (14) but based on the matrix T, so that

∆ = (IR −TRR)−1 (TRS TR11D1 · · · TRM1DM
)
. (15)

4 Main results

In the previous section, we characterized long-run beliefs in the P-model; see Proposi-

tion 5. These beliefs depend on the exact positions the agents occupy in the network,

their sensitivity parameters, and their initial beliefs. Within each communication

class of D, agents’ social influences weight their initial beliefs to determine their long-

run belief.23 The long-run beliefs of the remaining agents are the weighted averages

of the long-run beliefs of the stubborn agents and the communication classes, with

weights given by the corresponding external impacts.

Now we discuss the roles that social influences and external impacts play in the

model with conversation, and how they are affected by the sensitivity parameters of

the dissonance matrix D. As before, we also highlight the role of conversation by

comparing the P-model with the T-model for the same matrix D.

23Recall that stubborn agents are the singleton communication classes in P (but not in D). They
can be considered as the special case of this result, having social influence 1 within their class.
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Consensus. The first question of interest is whether society reaches a consensus.

For a given dissonance matrix, matrices P and T have the same structure in terms

of their partitioning into the communication classes and the remaining agents. A

consensus is reached for any initial beliefs iff the number of communication classes in

the interaction matrix is 1. Reformulating this condition in terms of D, we have

Proposition 6 (Consensus). In a society with the dissonance matrix D, a consensus

in the P-model is reached iff a consensus in the T-model is reached. Consensus is

reached iff D has either one stubborn agent or one communication class, but not both.

This consensus equivalence does not mean that the consensus beliefs are identical in

the two models, as they depend on two different social influence vectors, π and θ.

4.1 Social influences

According to Proposition 5, agents affect the consensus belief in strongly connected so-

cieties via their social influences; see Eq. (10). Similarly, in the general case their social

influences affect the consensus belief within each communication class; see Eq. (12).

For the purpose of finding the long-run beliefs, we can, therefore, treat each class as

a separate strongly connected society. For this reason, in the discussion below we

do not introduce the index of the communication class. The results can be applied

verbatim to the strongly connected society of size N , but they also apply (up to the

notation) to any communication class m.

Consider the vector π of social influences in the P-model. As it is the left eigen-

vector of P, we have π = πP, which is equivalent to πD = π diag {D1N}, because

of (8). We rewrite it as

πi =
1∑
k dik

∑N

h=1
dhi πh . (16)

Thus, social influences are interrelated in the way that makes an agent influential, if

the agent is an associate of other influential agents who experience strong dissonance

from disagreement with this agent.24 Interestingly, even if matrix P is positive in the

model with conversation, so that each agent is immediately affected by the previous

beliefs of every other agent, these connections are only implicit in this characterization

of the social influences in (16), where we return to matrix D.

24It follows that the agents’ social influences are their eigenvector centralities in a network determined
by the sensitivity parameters and described by some properly defined adjacency matrix.
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Consider the vector θ of social influences in the T-model. As θ = θT, we have

from (3) that

θi =
1 +

∑
k dik∑

k dik

∑N

h=1

dhi
1 +

∑
k dhk

θh . (17)

In the T-model, we have the same intuitive result as in the P-model, that the influence

of agent i depends positively on how influential i’s associates are. However, now

the relative sensitivities of these associates to i matter. This means that the social

influences in the models with and without conversation are generally different. Hence,

even if consensus is reached in both models, the long-run beliefs are different.

By comparing (16) and (17), we come to the following

Theorem 1 (Social influences in two models). Social influences in the P- and

T-models are related as

πi/θi
πj/θj

=
1 +

∑
k djk

1 +
∑

k dik
=

tii
tjj

, for any pair of agents i and j . (18)

Theorem 1 shows, first, that the consensus beliefs are identical in the P- and T-

models iff all agents have the same self-importance in the T-model (which is inversely

proportional to the sum of dissonance sensitivities wrt other agents). In particular,

this would be the case in a homogeneous society, defined as a society where all agents

have the same number of associates and identical sensitivity parameters. Thus, agent

heterogeneity is crucial for the effects of conversation to appear.

Second, Theorem 1 implies that conversation leads to a redistribution of social

influences in favor of agents whose self-importance is high. It follows that conversation

helps to propagate the belief of the most self-confident agent: the social influence of

the agent with the highest self-importance in the T-model becomes even higher in the

P-model. By contrast, the social influence of the agent with the lowest self-importance

in the T-model becomes lower in the P-model.

The next question is how the social influences (of a society restricted to the com-

munication class) are affected by changes in the sensitivity parameters.

Proposition 7 (Comparative statics for social influences). Let j be an associate

of i, and suppose that dij increases and all other sensitivities remain the same. Then:

(i) In the P-model, πi strictly decreases and πj strictly increases.

(ii) In the T-model, θi strictly decreases and θj strictly increases.
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In both models, the relative change in social influence of any other agent is not greater

than that of agent j, and is not lesser than that of agent i.

Proof. See Appendix B.5. �

Thus, a change in one sensitivity parameter in general affects all agents. The social

influence of i is negatively associated with this change because an increase in sensi-

tivity to dissonance wrt j leads to a higher conformity of i to j. At the same time,

due to relation (16), agent j becomes more influential. The social influences of all

other agents can change in any direction, but within the limits.

Moreover, in the P-model in the special case where each agent has the same

sensitivities to their associates, when one agent increases their dissonance sensitivity

to others, the social influences of all other agents become greater.

Proposition 8 (Social influences for identical sensitivities). If for all i, j either

dij = 0 or dij = di, then πi is decreasing in di and increasing in dj for any j 6= i.

Proof. See Appendix B.6. �

Example 3 (continued). We have seen that in the “ring” society with N = 3

agents, with d21 = d > 0 and d32 = d12 = 1, the social influences in the P-model are

π2 = 1/(1 + 2d) and π1 = π3 = d/(1 + 2d). In the T-model, the social influences are

θ2 = (1 + d)/(1 + 5d) and θ1 = θ3 = 2d/(1 + 5d), resulting in a different long-run

consensus belief than in the P-model.

In both models, when agents have the same sensitivity parameters (d = 1), their

social influences are the same and equal to 1/3. Additionally, in both models, the

higher d21 is, the lower the social influence of agent 2 is, and the higher the social

influences of the two other agents are, illustrating Proposition 7. When d > 1 we

have t22 = 1/(1 + d) < 1/2 = t11 = t33, and hence the social influence of agent 2 in

the P-model is lower than it is in the T-model (π2 < θ2), while the opposite is true

for agents 1 and 3. This illustrates the general result of Theorem 1.

4.2 On the speed of convergence in a homogeneous society

It follows from Theorem 1 that in a (strongly connected) homogeneous society the

social influences are not affected by conversation, and the P- and T-models lead to

the same long-run consensus belief. In this case, the important question is whether
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conversation speeds up the convergence to consensus. We now address the question

of the speed of convergence in such a society.

Recall from Jackson (2008, chapter 8) that the speed of convergence is inversely

related to the absolute value of the second-largest eigenvalue λ2 of the interaction ma-

trix. When all agents have the same number of associates A and the same sensitivity

parameters d, it can be seen (see Appendix B.7) that the second-largest eigenvalues

of P and T are related to the second-largest eigenvalue of D as follows:

λ2(P) =
1

1 + Ad− λ2(D)
, and λ2(T) =

1 + λ2(D)

1 + Ad
. (19)

It is natural to conjecture that conversation tends to accelerate the convergence to

a consensus belief, and that the speed of convergence is higher in the P-model; that

is, we always have |λ2(P)| < |λ2(T)|. However, this is not the general case for any

homogeneous society, as the following result shows.

Consider the case of a complete network where each agent is linked to every other

agent in the society; that is, each agent has N − 1 associates. Then in matrix D for

all i 6= j, dij = d, and it is easily seen that λ2(D) = −d. Using (19), we can compare

the speed of convergence in the P- and T-models in the complete network.

Proposition 9 (Speed of convergence in complete network). Suppose that each

agent has N − 1 associates and all agents have identical sensitivity parameters d. Let

d∗ = 1− 1
N

+
√

1 + 1
N2 . Then:

(i) For d < d∗, |λ2(T)| < |λ2(P)|, and T-model converges faster than P-model.

(ii) For d > d∗, |λ2(P)| < |λ2(T)|, and P-model converges faster than T-model.

Proof. See Appendix B.7. �

In a society where everyone knows everyone, and where sensitivity to disagreement

is sufficiently high, conversation helps the society to converge to consensus faster.

However, the effect is opposite when the dissonance sensitivity is very low. The

threshold value of the sensitivity d∗ depends on the number of agents in the society,

and monotonically increases with N from d∗ = 1.618 for N = 2 to d∗ = 2 for N →∞.

4.3 External impacts

We will now discuss the long-run beliefs of the agent from set R: those that are

neither stubborn nor belong to any communication class.
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It follows from (8) that Eq. (14) can be rewritten as

γim =
1∑
k dik

(∑
r∈R

dirγrm +
∑
n∈Dm

din

)
, γ̄is =

1∑
k dik

(∑
r∈R

dirγ̄rs + dis

)
.

Thus, an external impact of the class Dm on agent i ∈ R is a weighted average of

the external impacts of Dm on all other agents from R (with weights proportional to

the sensitivity parameters that agent i has wrt agents from R), and a value 1 which

can be interpreted as an external impact of Dm on Dm (with the weight proportional

to the sum of sensitivity parameters that agent i has wrt all agents from Dm). The

same interpretation holds for an external impact of the stubborn agent s on agent

i ∈ R.

Moreover, it immediately follows from (15) that

δim =
1∑
k dik

(∑
r∈R

dirδrm +
∑
n∈Dm

din

)
, δ̄is =

1∑
k dik

(∑
r∈R

dirδ̄rs + dis

)
,

which are the same equations as above. Therefore, we have

Theorem 2 (Comparison of external impacts). The matrices of external impacts

are the same in the P- and T-models: Γ = ∆.

Thus, while social influences are in general affected by conversation, as was shown in

Theorem 1, external impacts do not depend on conversation and are always the same

in the two models.

Again, we are interested in how external impacts are affected by changes in the

sensitivity parameters. For i ∈ R, consider the set Hi consisting of i and all agents

from R having a path to i in DRR. The comparative statics results for external

impacts depend on whether an agent from R wants to conform to a stubborn agent,

to an agent from some communication class, or to an agent who is also from R.

Proposition 10 (Comparative statics for external impacts). Let j be an as-

sociate of i ∈ R, and suppose that dij increases and all other sensitivities remain the

same. Then:

(i) If j ∈ Dm∗, then for any agent h ∈ Hi, γhm∗ increases, while γhm decreases for

m 6= m∗, and γ̄hs decreases for all s.
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(ii) If j ∈ S, then for any agent h ∈ Hi, γ̄hj increases, while γ̄hs decreases for s 6= j,

and γhm decreases for all m.

(iii) If j ∈ R, then γhm changes iff h ∈ Hi and m is such that γim 6= γjm. In this

case, γhm increases if γim < γjm, and γhm decreases if γim > γjm. Similarly,

γ̄hs changes iff h ∈ Hi and s is such that γ̄is 6= γ̄js. In this case, γ̄hs increases

if γ̄is < γ̄js, and γ̄hs decreases if γ̄is > γjs.

Proof. See Appendix B.8. �

Proposition 10, similarly to Proposition 4, implies that an increase in conformity

of agent i to agent j affects not only i, but all agents who are affected by j’s belief via

i. If j belongs to the communication class Dm∗ , then the external impact of this class

m∗ on each affected agent increases, while the external impacts of all other classes (as

well as stubborn agents) on these agents decrease. The same is true if j is a stubborn

agent: the less agent i wants to disagree with j, the higher the relative weight is of

the stubborn agent j on the long-run beliefs of i and other agents from Hi.

If both i and j belong to R, then the change in external impact of some class m on

agents from Hi depends on how the external impacts of m on i and j are related. As

the sensitivity to dissonance that i experiences from disagreement with j increases,

the external impacts of those classes which had higher impacts on j increase, while the

external impacts of those classes which had higher impacts on i decrease. Analogous

results also hold for the external impacts of all stubborn agents.

We end this section with an example that illustrates Proposition 10.

Example 5. Consider the society with N = 4 agents, where agents 1 and 2 are

stubborn, and agents 3 and 4 are associates of each other with d34 = d43 = 1. Suppose

that agent 3 experiences dissonance to agent 2 with sensitivity d32 = a, and agent

4 experiences dissonance to agent 1 with sensitivity d41 = d. The resulting T- and

P-networks are illustrated in Fig. 5. The stubborn agents 1 and 2 always keep their

initial beliefs b1(0) and b2(0). The long-run beliefs of agents 3 and 4 can be easily

computed using (14) or (15):

b∗3 =
d

ad+ a+ d
b1(0) +

ad+ a

ad+ a+ d
b2(0), b∗4 =

d(1 + a)

ad+ a+ d
b1(0) +

a

ad+ a+ d
b2(0).

External impacts of stubborn agent 1 on both agents 3 and 4, γ31 = d/(ad + a + d)

and γ41 = (ad+d)/(ad+a+d), are increasing in d and decreasing in a. In accordance
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Figure 5: T-network (left) and P-network (right) in Example 5.

with Proposition 10, an increase in conformity of agent 4 wrt agent 1 leads to a higher

weight of agent 1’s belief in the long-run beliefs of both agent 4 and their associate

agent 3. Note also that γ41 > γ31, which is also natural, since agent 4 is closer to

agent 1 in the network and directly affected by agent 1’s belief.

An interesting application of this result concerns the ability of a stubborn agent to

manipulate beliefs in the society. Suppose that agent 1 wants to convince remaining

agents 3 and 4 of something. To do this, agent 1 can use one of two alternative

approaches: either change their own belief or invest in increasing the sensitivity of

agent 4 to disagreement with them. Clearly, if agent 1 chooses to change b1(0), the

resulting change in b∗3 and b∗4 is proportional to the external impacts γ31 and γ41

respectively:

∆b∗3 =
d

ad+ a+ d
∆b1(0), ∆b∗4 =

d(1 + a)

ad+ a+ d
∆b1(0).

However, if agent 1 is somehow able to increase d, then the change in b∗3 and b∗4 is

proportional to the difference between b1(0) and the rival belief b2(0):

∆b∗3 =
a

(ad+ a+ d)2
(b1(0)− b2(0)) ∆d, ∆b∗4 =

a(1 + a)

(ad+ a+ d)2
(b1(0)− b2(0)) ∆d.

The reason for this is that the change in b1(0) does not affect the impact of b2(0) on

the remaining agents’ beliefs. At the same time, an increase in d leads to not only

an increase in the external impacts of agent 1 on both remaining agents, but also a

decrease in the external impacts of agent 2.
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Therefore, it might be the case that, for a more efficient manipulation, the stub-

born agent should, instead of changing their belief, increase the sensitivity to dis-

agreement of the remaining agents. As the above example shows, this conclusion is

especially relevant when the difference between the two rival beliefs is large.

5 On endogenous network

Finally, we turn to the model with an endogenous change of network motivated by

dissonance minimization, which is the crucial feature of AEW.25 We describe the

model, characterize stationary states and provide a simple example of dynamics.

Suppose that, in each period, agents minimize their dissonance firstly by changing

their beliefs and secondly by changing their networks; namely, by replacing those of

their associates whose beliefs are far from their own. Let the network in period t be

given by beliefs b(t−1) and the dissonance matrix D(t−1) = {dij(t−1)}Ni,j=1, which

can be non-stationary. First, agents choose their statements and beliefs as described in

Section 2, solving problems (4) and (5) where the dissonance sensitivities are given by

D(t−1). In each period, statements coincide with beliefs, and the new beliefs of agents

satisfy the following equation: b(t− 1) = (IN + diag {D(t− 1)1N} −D(t− 1)) b(t).

Second, given their new beliefs b(t), agents revise their sets of associates. Agent

i is given the opportunity to replace one of their associates with another agent, who

can be either a current associate (in which case agent i swaps the corresponding

sensitivities) or a new associate (in which case agent i drops the link with their

previous associate and forms a new link with a new agent with the same sensitivity).

Formally, after the beliefs are chosen, the instant dissonance of agent i is given by

(bi(t)− bi(t− 1))2 +
∑N

j=1
dij(t− 1)(bi(t)− bj(t))2 . (20)

All bj(t) in (20) are already known, so the only decision variables are elements in row

i of D(t−1). Agent i minimizes the instant dissonance by swapping any two elements

in row i of D(t − 1). The swap will take place if, in the new network, dissonance is

reduced by at least the switching cost ε ≥ 0. After all agents have made their choices,

the new dissonance matrix D(t) emerges.26 The network in period t+ 1 is then given

25See also Bolletta and Pin (2020) for the DeGroot model with endogenous network formation.
26Clearly, D(t) does not depend on the order in which agents replace their associates, and may differ
from D(t− 1) by no more than 2 elements in each of the N rows.
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by beliefs b(t) and dissonance matrix D(t), and the described procedure repeats.

We call a network stable if no agent has incentives to change either their beliefs

or their associates: b(t) = b(t− 1) ≡ b∗ and D(t) = D(t− 1) ≡ D∗. In other words,

stable networks are stationary states of the described dynamics. Beliefs in a stable net-

work are given by a right eigenvector of the matrix P∗ = (IN + diag {D∗1N} −D∗)−1,

and hence a stable network is fully defined by a dissonance matrix D∗.

The stability of a network generically depends on the value of the switching cost

— in particular, for a sufficiently high ε, any dissonance matrix D∗ defines a stable

network.27 However, it follows from (20) that, for a stubborn agent or any agent from

a communication class, instant dissonance is equal to zero in the long run. Therefore,

we come to the following

Proposition 11 (Stable networks). If D∗ consists of S stubborn agents and M

communication classes with different beliefs, then the network is stable for any ε ≥ 0.

In particular, if D∗ is strongly connected, then the network is always stable.

In order to provide further insights into the model with endogenous network, let us

describe a simple example where we analytically derive the joint dynamics of beliefs

and network, and study the convergence to a stable network. For the details, see

Appendix C.1. We assume that there are two groups of agents with different initial

beliefs, that all agents have the same dissonance sensitivities wrt any associate, and

that agents from the same group initially have identically composed sets of associates.

Suppose that society initially consists of two groups of agents, H = {i ∈ N |
bi(0) = bh(0)} and L = {i ∈ N | bi(0) = bl(0)}, with high bh(0) and low bl(0) initial

beliefs, respectively. The difference in beliefs between the two groups in period 0 is

positive, ∆(0) = bh(0)− bl(0) > 0.

Each agent i has A associates; that is, agents j for whom dij > 0, and dij = d

for all i. We assume that initially the network is strongly connected, and that the

composition of the sets of associates is identical for each agent in the same group.

Formally, in period 0, each agent from H has Āh(0) associates from the opposite group

L, and each agent from L has Āl(0) associates from H.28 Thus the initial conditions

of the model are essentially given by initial beliefs within groups, {bh(0), bl(0)}, and

the numbers of associates from the opposite group in the network, {Āh(0), Āl(0)}.
27In our model, unlike in typical models of network formation (Jackson and Wolinsky, 1996; Bala
and Goyal, 2000), agents do not benefit from forming a link, so switching cost plays a decisive role.
28The number of associates from the own group is N − Āh(0) for agents from H, and N − Āl(0) for
agents from L. Hence the values {Āh(0), Āl(0)} fully determine the network in period 0.
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Consider period t when the agents’ beliefs are {bh(t), bl(t)}, and sets of associates

are {Āh(t), Āl(t)}. First, given {Āh(t), Āl(t)}, agents make statements and revise

their beliefs. Since agents from the same group are homogeneous, in period t + 1,

agents from the same group have identical beliefs given by

bh(t+ 1) = bh(t)−
∆(t)Āh(t)d

1 + [Āh(t) + Āl(t)]d
, bl(t+ 1) = bl(t) +

∆(t)Āl(t)d

1 + [Āh(t) + Āl(t)]d
,

where ∆(t) = bh(t)− bl(t). Therefore, in each period is it sufficient to keep track only

of the group’s beliefs.

The difference in beliefs of groups H and L is positive and decreases over time, at

the (decreasing) rate which depends on the composition of the sets of associates and

on the dissonance sensitivity d:

∆(t+ 1) =
1

1 + [Āh(t) + Āl(t)]d
∆(t).

Note that the more that agents conform to each other (the higher is d), the faster the

beliefs of the two groups converge (the lower is ∆(t+ 1)/∆(t)).

Second, given {bh(t+ 1), bl(t+ 1)}, agents revise their sets of associates. An agent

replaces a current associate with a new associate if, in the new network, the instant

dissonance is reduced by at least ε. Clearly, to decrease the dissonance, an agent has

to replace their associate from the opposite group with a new associate from their

own group. Therefore, agents from the same group again make identical decisions,

and hence it is sufficient to keep track only of the group variables.

Let T ′ = min{Āh(0), Āl(0)}, T ′′ = max{Āh(0), Āl(0)}, and define the value

ε∗ =
T ′∏
t=0

(∆(0))2d

(1 + [Āh(0) + Āl(0)− 2t]d)2
·

T ′′∏
t=T ′+1

1

(1 + [Āh(0) + Āl(0)− (T ′ + t)]d)2
. (21)

We show that, depending on the parameters, the model with endogenous network

may exhibit different long-run outcomes.

Proposition 12 (Endogenous network). Consider the model with endogenous net-

work described above, and let ε∗ be given by (21).

(i) If ε > ε∗, then the society reaches a consensus. The resulting stable network

is strongly connected, and agents from different groups converge to the same

long-run belief.
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(ii) If ε ≤ ε∗, then the society is polarized in the long run. The resulting stable net-

work has two communication classes, and agents from different groups converge

to different long-run beliefs.

Proof. See Appendix C.2. �

Thus, depending on whether the switching cost is higher or lower than the threshold

ε∗, the society may either reach a consensus or split into two non-interacting classes.

We can characterize the properties of the threshold in terms of the model parameters.

Proposition 13 (Switching cost threshold). Let ε∗ be given by (21).

(i) ε∗ is increasing in ∆(0), and decreasing in both Āh(0) and Āl(0).

(ii) There is d∗ > 0 such that ε∗ is increasing in d for d ≤ d∗, and ε∗ is decreasing

in d for d > d∗.

Proof. See Appendix C.3. �

Thus, the higher the initial polarization of the society (initial difference in beliefs

between the groups), the more likely the society is to split into two non-interacting

classes. Moreover, when agents initially have more associates from the opposite group,

the society is more likely to reach a consensus, which is quite natural.

More interesting and ambiguous is the dependence of the threshold value on the

sensitivity d, as there are two counteracting effects. First, the higher the sensitivity,

the more agents want to replace their associates, which reinforces the tendency to-

wards polarization. Second, the higher the sensitivity, the more agents conform to

each other and the lower the difference between the beliefs of the two groups, which

reduces polarization.

Proposition 13 shows that the first effect dominates for small values of d, while the

second effect takes over for large d. The general form of the threshold ε∗ as a function

of sensitivity d is illustrated in Fig. 6. When the sensitivity is small (in societies

with a low level of conformity), then the higher the sensitivity, the more likely it

is that society splits into non-interacting classes. However, when the sensitivity is

sufficiently large, then the more that agents conform to each other, the more likely it

is that society reaches a consensus.

It follows that when agents revise both their beliefs and their networks, the dis-

sonance minimization may not fully reduce the polarization. In our example of the

model with endogenous network, a strongly connected society with two different initial
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Figure 6: General form of ε∗ as a function of d.

beliefs does not necessarily reach a consensus. When the switching cost is sufficiently

low, a society splits into two communication classes with different long-run beliefs.

The higher the initial difference in beliefs, and the fewer associates from the opposite

group that agents initially have, the more likely it is that society is polarized in the

long run.29

6 Conclusion

Any model studying belief dynamics in social networks explicitly or implicitly assumes

that belief is a state of mind, and hence it becomes known only through a conversation

between individuals. However, most models do not take into account the fact that

people in conversation may not express sincere views in conversation, when confronted

with beliefs that contradict their own.

In this paper we argue that social networks are sources of both belief formation and

dissonance arousal, and we study a model of social interaction in the spirit of Arifovic

et al. (2015), where the belief dynamics are driven by both dissonance minimization

and conversation. We derive an analytical solution to the model, and show that it

provides microfoundations for the DeGroot learning model. We fully characterize

the long-run beliefs in the model, providing necessary and sufficient conditions for a

society to reach a consensus. Moreover, we disentangle the effects of conversation and

dissonance minimization by comparing the outcomes of the models with and without

29This example can be easily generalized: in each period, each agent can replace W > 1 potential
associates; or there can be more initial groups in the society; or sensitivities of agents from different
groups can differ. In all these cases our results remain qualitatively the same: for a sufficiently low
switching cost, an initially strongly connected society splits into several non-interacting classes.
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conversation. We show that conversation redistributes agents’ social influences within

communication classes in favor of agents with higher self-confidence, and leaves the

external impacts of those classes on the remaining agents unaffected.

We also provide some insights for a model with endogenous network where agents

minimize dissonance by revising both their beliefs and associates. While in the model

with a fixed network a strongly connected society eventually reaches a consensus, this

is not necessarily true for the model with a changing network, where even a strongly

connected society may remain polarized in the long run. This result suggests that the

phenomenon of homophily generally prevents a society from reaching a consensus.
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Appendix

A The AEW computational model

Arifovic et al. (2015) consider a numerical model of social learning where N agents

are embedded in a directed network and in each period choose their beliefs and

associates by minimizing dissonance. They assume that agents are homogeneous

in their dissonance sensitivities d, and have the same number of associates A in each

period; i.e., the network is always regular. AEW study the case of d ∈ [0, 1]. In

each period t, the dissonance matrix in AEW has in every row exactly A non-zero

elements, all equal to d. The positions of these non-zero elements are either always

the same (for a fixed network) or may change over time (for an endogenous network).

AEW generate initial beliefs by averaging a number of initial private clues about

an issue for every agent. Those clues are taken as independent draws from a beta

distribution, encompassing both uni- and bimodal distributions. At the beginning of

each period t, agents engage in conversation, as described in Section 2, and revise

their beliefs motivated by a desire to minimize private and social dissonance.

Further, agents revise their sets of associates motivated by a desire to minimize the

dissonance between conversations. Each agent is given a random set of A associates

where A � N . At the end of each period t, after the beliefs of all agents have

been revised, each agent meets in sequence W ≤ A randomly chosen agents who

are not their associates. During each such encounter, the agent considers an option

to swap the associate whose belief is furthermost from their own belief with a new
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acquaintance. The agent will do so iff this swap reduces the dissonance by at least

the switching cost, ε > 0.

AEW simulate the model, keeping the total size of the population constant, N =

200. They define the simulated path as “converged” when two conditions are met:

(a) during the last 20 periods the network did not change, and (b) the sum of belief

adjustments over all N agents and over the last 20 periods did not exceed a small

number 0.001. AEW find that, for a fixed network (W = 0), beliefs converge to the

consensus, but convergence may fail when the network is endogenous (W = 1 with

the same values of other parameters). When this happens, the population becomes

visibly divided into two groups with no connections (communication classes), with

each group converging to the consensus. This polarization results in an upward bias

of average beliefs, indicating a failure of aggregation of social information.30

AEW present their results by showing how, after the simulations converge, several

statistics depend on the key parameters of the model: the size of sets of associates

A (which takes values 4 and 8); the dissonance sensitivity d (which has 10 different

values between 0.01 and 1); and the number of possibilities for changing associates

per period W (for an endogenous network, it takes values 1, 2, and 4).

The simulations suggest the following results. First, different outcomes are possi-

ble. Society may converge to the same opinion with no bias in beliefs. However, under

a different parameterization, society may be divided into as many as 6 different classes

and may exhibit an opinion divergence (measured by the standard deviation of beliefs

after the simulation converges). It may also have a substantial bias after convergence

(measured by the difference between the mean belief and the “true” belief).31

Second, for every considered combination of parameters, the “enlightenment” in-

dex (based on the sum of absolute deviations of beliefs from the truth) gets closer to

the “true” average value, whereas the bias of beliefs, if it exists, is always positive.

Third, comparative statics reveals a strong impact of the sensitivity d on the long-

run outcome.32 When people hold stronger dissonance considerations, the result is a

society with a smaller number of classes, a smaller standard deviation of beliefs, and

30The initialisation is somewhat special, with 60% of the population having the belief close to 1 and
40% of the population having the belief close to 0. For a fixed network, the average belief does not
change much over time and is about 0.6 after 60 periods. For an endogenous network, the average
belief is about 0.7 after 60 periods, when convergence is declared. See Figs. 4 and 5 in AEW.
31Since the population is finite, true belief is defined as the mean of the initial beliefs. If the population
were to grow indefinitely, this would converge to the mean of the beta distribution.
32The impact of an increase in d is the same as for an increase in the local network size (A), and for
a decrease in the number of possibilities to revise information (W ) for all statistics, except the bias.
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a higher enlightenment. In other words, information is better aggregated and society

is less divided when people are more sensitive to cognitive dissonance and thus tune

their messages more strongly to the messages of the others.

B Proofs of the main results

B.1 Proof of Proposition 1

Let H = (IN + diag {D1N})−1. Consider the matrix

HD =


0 d12

1+
∑
k d1k

. . . d1N
1+

∑
k d1k

d21
1+

∑
k d2k

0 . . . d2N
1+

∑
k d2k

...
...

. . .
...

dN1
1+

∑
k dNk

dN2
1+

∑
k dNk

. . . 0

 . (B.1)

Since each row sum of HD is less than 1, its spectral radius is less than 1. Hence

limt→∞(HD)t = 0, and IN − HD is invertible: (IN −HD)−1 =
∑∞

t=0(HD)t.

Matrix P can be written as P = (IN + diag {D1N} −D)−1 = (H−1 −D)
−1

=

(H−1 (IN −HD))
−1

= (IN −HD)−1 H, and therefore P is non-negative, because

P =
(
IN +

∑∞

t=1
(HD)t

)
H . (B.2)

Since (HD + H) 1N = 1N , we have H1N = (IN −HD) 1N , and it immediately

follows that P1N = (IN −HD)−1 H1N = 1N , i.e., P is row-stochastic.

B.2 Proof of Proposition 2

The dynamics of statements in the fast timescale can be written as

sτ (t) = Hb(t− 1) + HDsτ−1(t), (B.3)

where H = (IN + diag {D1N})−1 and HD is given by (B.1). Iterating (B.3), we get

sτ (t) = (HD)τ s0(t) + (IN + HD + . . .+ (HD)τ ) Hb(t− 1).
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Since limτ→∞ (HD)τ = 0, the dynamic system (B.3) is stable, and statements in the

fast timescale converge to some s∗(t) given by

s∗(t) = lim
τ→∞

sτ (t) =
(
IN +

∑∞

τ=1
(HD)τ

)
Hb(t− 1) = Pb(t− 1),

where the last equality follows from (B.2). Comparing it with (7), we get s∗(t) = s(t).

B.3 Proof of Proposition 3 and Corollary 1

Let H = (IN + diag {D1N})−1, and HD be given by (B.1). It is easily seen from

(B.1) that the (i, j)-entry in (HD)t is determined by all paths in D from i to j of

length t. Therefore, it follows from (B.2) that for i 6= j,

pij =
1

1 +
∑

k djk

dij
1 +

∑
k dik

+
∞∑
t=2

N∑
n1,n2,...,nt−1=1

1

1 +
∑

k djk
·

· din1

1 +
∑

k dik

dn1n2

1 +
∑

k dn1k

· · ·
dnt−2nt−1

1 +
∑

k dnt−2k

dnt−1j

1 +
∑

k dnt−1k

.

Each term in pij contains the product of the form din1 · dn1n2 · · · dnt−1j. Therefore,

pij = 0 iff there is no path in D from i to j.

It follows from (B.2) that P = (HD) P + H, and hence for all i,

pii =
1

1 +
∑

k dik
+
∑

j 6=i

dij
1 +

∑
k dik

pji ≥
1

1 +
∑

k dik
= tii > 0.

Moreover, the matrix P−1 = (IN + diag {D1N} −D) is diagonally dominant of its

rows; i.e., its diagonal elements are greater than the sum of the moduli of the corre-

sponding off-diagonal elements by row (for all i, we have 1 +
∑

k 6=i dik >
∑

k 6=i dik).

Therefore (see, e.g., Theorem 1.3 in Johnson and Smith, 2011), P is diagonally dom-

inant of its column entries; i.e., pii > phi for all h 6= i.

If dhi = 0 for all h, then there is no path in D ending in i. Hence phi = 0 for h 6= i,

and pii = 1/(1 +
∑

k dik). If dij = 0 for all j, then there is no path in D starting from

i. Hence pij = 0 for j 6= i, and pii = 1 because P is row-stochastic.

B.4 Proof of Proposition 4

Let D̃ be a perturbation of D such that d̃ij > dij, while all other elements in the

two matrices are the same. Let also H̃ = (IN + diag{D̃1N})−1. Consider the matrix
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P̃ = (IN − H̃D̃)−1H̃, and note that we have P̃ = (H̃D̃)P̃ + H̃.

Denote for brevity Ã ≡ H̃D̃ and C̃ ≡ H̃, and let similarly A ≡ HD and C ≡ H.

Since d̃ij > dij, Ã and C̃ differ from A and C respectively only in rows i. In particular,

ãij > aij while ãik ≤ aik for all k 6= j, and c̃ik ≤ cik for all k.

Let {P̃(t)}∞t=0 be recursively defined by P̃(t) = ÃP̃(t − 1) + C̃, for P̃(0) = P.

Consider P̃(1) = ÃP + C̃. Since Ã and C̃ are perturbed only in row i, p̃h`(1) = ph`

for all h 6= i and for all `. At the same time, for all `,

p̃i`(1) =
∑

k 6=j
ãikpk` + ãijpj` + c̃i` = ãijpj` + (1− ãi`)

∑
k 6=j ãikpk` + c̃i`∑
k 6=j ãik +

∑
k c̃ik

.

Similarly,

pi` = aijpj` + (1− aij)
∑

k 6=j aikpk` + ci`∑
k 6=j aik +

∑
k cik

= aijpj` + (1− aij)
∑

k 6=j ãikpk` + c̃i`∑
k 6=j ãik +

∑
k c̃ik

,

where the last equality uses the fact that ãik/aik = c̃ir/cir for all k 6= j and all r.

Suppose that ` is such that pj` > pi`. Then

pj` > pi` >

∑
k 6=j ãikpk` + c̃i`∑
k 6=j ãik +

∑
k c̃ik

,

and since ãij > aij, we have p̃i`(1) > pi`.

Let us show that in this case, for all t ≥ 2, p̃h`(t) ≥ ph` for all h; and, furthermore,

for sufficiently large t, the inequality is strict for h ∈ Hi. We will use mathematical

induction. Consider t = 2. For all h 6= i, we have

p̃h`(2) =
∑

k
ãhkp̃k`(1) + c̃h` ≥

∑
k
ahkpk` + ch` = ph`,

and the inequality is strict if ahi > 0 (which is true iff dhi > 0). For h = i, we have

p̃i`(2) =
∑

k
ãikp̃k`(1) + c̃i` ≥

∑
k
ãikpk` + c̃i` = p̃i`(1) > pi`.

Suppose that we have proved our inequalities for t = T . Let us prove them for

t = T + 1. For all h 6= i, we have

p̃h`(T + 1) =
∑

k
ãhkp̃k`(T ) + c̃h` ≥

∑
k
ahkpk` + ch` = ph`,
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and the inequality is strict if ahk > 0 for k, for whom strict inequality was shown at

some previous step (i.e., there is a path in D from h to i). For h = i, we have

p̃i`(T + 1) =
∑

k
ãikp̃k`(T ) + c̃i` ≥

∑
k
ãikpk` + c̃i` = p̃i`(1) > pi`.

It is easily seen that the sequence {P̃(t)}∞t=0 converges to P̃. In the limit, for all

` such that pj` > pi`, we get p̃h` ≥ ph` for all h. Furthermore, the inequality is strict

for h ∈ Hi. The case where pj` < pi` can be considered analogously.

B.5 Proof of Proposition 7

Since social influences satisfy the system of equations (16), π is the positive unit left

eigenvector of the non-negative and strongly connected matrix

Q =


0 d12∑

k d2k
. . . d1N∑

k dNk
d21∑
k d1k

0 . . . d2N∑
k dNk

...
...

. . .
...

dN1∑
k d1k

dN2∑
k d2k

. . . 0

 .

Let Q̃ be a perturbation of Q such that d̃ij > dij, while all other elements in

the two matrices are the same. Clearly, in Q̃ column j has increased and column i

has decreased, while all other columns remain intact. Let π̃ be the positive unit left

eigenvector of Q̃. It follows from Lemma 1 in Dietzenbacher (1990) that for all `,

π̃j/πj ≥ π̃`/π` ≥ π̃i/πi, and therefore

π`
πj
≥ π̃`

π̃j
, and

π`
πi
≤ π̃`

π̃i
. (B.4)

Since Q and Q̃ do not commute, π is not proportional to π̃. Therefore, for

some `, the first inequality in (B.4) is strict. Summing up the first inequalities in

(B.4) over ` and taking into account that both π and π̃ are normalized to one, we

get 1/πj =
∑

` π`/πj >
∑

` π̃`/π̃j = 1/π̃j, and hence π̃j > πj. Applying the same

argument to the second inequality in (B.4), we also get that π̃i < πi.

Using (16) and (17), we get θ̃`/θ` = π̃`/π` · (1 +
∑

k d`k)/(1 +
∑

k d̃`k) for all `.

Hence θ̃j/θj ≥ θ̃`/θ` ≥ θ̃i/θi, and by the same argument as above, θ̃j > θj and θ̃i < θi.
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B.6 Proof of Proposition 8

Let G = {gij}Ni,j=1 be such that gij = 1 when dij > 0 and gij = 0 when dij = 0. Then

Eq. (16) takes the form πidi
∑

k gik =
∑

h:ghi=1 πhdh. It is directly checked that the

solution to this system is given by πi = λi
∏

j 6=i dj, where {λi}Ni=1 satisfies the system

of equations λi
∑

k gik =
∑

h:ghi=1 λh, which depends only on the adjacency matrix

(i.e., the network structure) and does not depend on the sensitivities (i.e., the values

di). Since the sum of social influences is normalized to one, we finally have

πi =
λi
∏

j 6=i dj∑
k λk

∏
`6=k d`

, for any i .

Thus, for each i, πi is decreasing in di and increasing in every dj for j 6= i.

B.7 Proof of Proposition 9

When all agents have the same number of associates A and identical sensitivity pa-

rameters d, we have H = (IN + diag {D1N})−1 = 1
1+Ad

IN , and it is clear that H com-

mutes with HD. It is well known (see Theorem 2.4.8.1 in Horn and Johnson, 2013)

that when two matrices commute, the eigenvalues of the sum (resp., the product) of

two matrices are the sum (resp., product) of their eigenvalues. Since T = H + HD,

its eigenvalues satisfy λi(T) = λi(H) + λj(HD) =
1+λj(D)

1+Ad
. Since P is given by (B.2),

its eigenvalues satisfy λi(P) = (1 +
∑∞

t=1(λj(D))t) 1
1+Ad

= 1
1+Ad−λj(D)

. It is easily

seen that |λi(T)| and |λi(P)| are increasing in the real part of λj(D), and hence the

second-largest eigenvalues of T and P correspond to the same λ2(D).

For the complete network, A = N − 1 and λ2(D) = −d. Then

|λ2(T)| S |λ2(P)| ⇔ |1− d| S 1− d

1 +Nd
.

Clearly, when 0 < d ≤ 1, |λ2(T)| < |λ2(P)|. When d > 1, the above condition means

|λ2(T)| S |λ2(P)| ⇔ Nd2 − (2N − 2)d− 2 S 0.

The positive solution to the equation Nd2 − (2N − 2)d − 2 = 0 is given by d∗ =

1− 1
N

+
√

1 + 1
N2 . Thus |λ2(T)| < |λ2(P)| for d < d∗, and vice versa.
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B.8 Proof of Proposition 10

In the proof of this proposition, any stubborn agent may be considered a separate

communication class consisting of a single agent. Therefore, without loss of generality,

we put S = 0. It then follows from (15) that the matrix of external impacts Γ satisfies

Γ = AΓ + C, where we have denoted A = TRR and C = (TR11D1 , . . . ,TRM1DM ).

Note that since A1R + C1M = 1R, we have C1M = (IR −A) 1R, and hence Γ1M =

(IR −A)−1 C1M = 1R, so Γ is row-stochastic.

Suppose that agent i ∈ R increases their dissonance sensitivity wrt some agent

j ∈ Dm∗ . Let D̃ be a perturbation of D such that d̃ij > dij, while all other elements

in the two matrices are the same. Let also Ã = (IR+diag{D̃RR1R})−1(IR+D̃RR), and

C̃ = {c̃rm} be such that c̃rm = 1
1+

∑
`∈N d̃r`

∑
`∈Dm d̃r`. Then the perturbed matrix of

external impacts satisfies Γ̃ = ÃΓ̃ + C̃.

Note that Ã and C̃ differ from A and C respectively only in rows i. In particular,

ãi` ≤ ai` for all `, and ãii < aii, while c̃im∗ > cim∗ , and c̃im ≤ cim for all m 6= m∗.

Let {Γ̃(t)}∞t=0 be recursively defined by Γ̃(t) = ÃΓ̃(t − 1) + C̃, for Γ̃(0) = Γ.

Consider Γ̃(1) = ÃΓ + C̃. Since Ã and C̃ are perturbed only in row i, γ̃rm(1) = γrm

for all r 6= i, and for all m = 1, . . . ,M . At the same time, for all m 6= m∗,

γ̃im(1) =
∑
`∈R

ãi`γ`m + c̃im <
∑
`∈R

ai`γ`m + cim = γim∗ .

Using the same argument as in the proof of Proposition 4 (see Appendix B.4),

it can be easily seen that for all r ∈ R and m 6= m∗, γ̃rm(t) ≤ γrm for all t ≥ 2.

Furthermore, for sufficiently large t, this inequality is strict for r = i and r such that

there is a path in DRR from r to i. Since {Γ̃(t)}∞t=0 converges to Γ̃, in the limit we

have γ̃rm ≤ γrm. Furthermore, the inequality is strict for r = i and r such that there

is a path in DRR from r to i. Since Γ̃ is row-stochastic, the opposite inequalities hold

for m = m∗, which proves parts (i) and (ii).

Suppose now that agent i ∈ R increases sensitivity dij wrt agent j ∈ R. Let

D̃ be a perturbation of D such that d̃ij > dij, while all other elements in the two

matrices are the same. Let Ã and C̃ be the corresponding perturbations of A and

C respectively, as defined above. Again, Ã and C̃ differ from A and C respectively

only in rows i. In this case ãij > aij while ãi` ≤ ai` for all ` 6= j, and c̃im ≤ cim for

all m. To prove part (iii), it remains only to repeat the argument from the proof of

Proposition 4 (see Appendix B.4) for the matrix Γ̃ defined by Γ̃ = ÃΓ̃ + C̃.
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C Model with endogenous network

C.1 Description of the model

Let us characterize the dynamics of the example of the endogenous network model.

Suppose that, in period t, agents’ beliefs {bh(t), bl(t)} and networks {Āh(t), Āl(t)}
are given. First, given networks {Āh(t), Āl(t)}, agents make statements and revise

their beliefs. Since agents from the same group are homogeneous, new statements

in period t + 1 within each group are the same (equilibrium is symmetric). Beliefs

always coincide with statements, and hence in period t + 1 agents from the same

group have identical beliefs. Thus in each period we need to keep track only of the

group beliefs: bh(t + 1) for agents from H and bl(t + 1) for agents from L. By the

first order condition (6) and the fact that b(t) = s(t), we get

bh(t+ 1) =
1

1 + Ad
bh(t) +

d

1 + Ad
(A− Āh(t))bh(t+ 1) +

d

1 + Ad
Āh(t)bl(t+ 1),

bl(t+ 1) =
1

1 + Ad
bl(t) +

d

1 + Ad
Āl(t)bh(t+ 1) +

d

1 + Ad
(A− Āl(t))bl(t+ 1),

and hence, denoting ∆(t) = bh(t)− bl(t), we have

bh(t+ 1) = bh(t)−
∆(t)Āh(t)d

1 + [Āh(t) + Āl(t)]d
, bl(t+ 1) = bl(t) +

∆(t)Āl(t)d

1 + [Āh(t) + Āl(t)]d
.

Second, given the new beliefs {bh(t + 1), bl(t + 1)}, agents revise their sets of

associates. An agent replaces a current associate whose belief is furthermost from

their own with a new associate if, in the new network, the dissonance is reduced by

at least the switching cost ε > 0. After the beliefs are formed, the instant dissonance

of the agent from H is given by (bh(t + 1) − bh(t))
2 + Āh(t)d (∆(t+ 1))2. In this

expression, bh(t + 1) and ∆(t + 1) are already chosen, so the only decision variable

is Āh(t). To decrease the dissonance, an agent has to decrease Āh(t); i.e., to replace

an associate from the opposite group L with a new associate from their group H.

Similarly, any agent from L has to decrease the number of their associates from the

opposite group H. It again follows that agents from the same group make identical

decisions, and it is sufficient to keep track only of the group variables.

If an agent from any group replaces their current associate from the opposite group

with a new associate from the own group, the dissonance reduces by d (∆(t+ 1))2.

Therefore, in each period there are two cases. First, d (∆(t+ 1))2 < ε. Then no
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agent replaces an associate, the network does not change, and the sets of associates

of all agents remain the same: Āh(t + 1) = Āh(t) and Āl(t + 1) = Āl(t). Second,

d (∆(t+ 1))2 ≥ ε. Here any agent from H replaces an associate from L (with a new

associate from H), and vice versa. However, this is possible only as long as there are

associates in the opposite group. Hence, before the next period, we have

Āi(t+ 1) = max{Āi(t)− 1, 0} = max{Āi(0)− (t+ 1), 0}, i = h, l.

If agents continue to replace their associates, there are two periods in which

the dynamics of beliefs and the rate of decrease of ∆(t) change. In period T ′ =

min{Āh(0), Āl(0)}, either agents from H do not have any associates from L, or agents

from L do not have any associates from H. Then for t ≥ T ′ + 1, in the former case

we have Āh(t) = 0 and bh(t) = bh(T
′ + 1), while in the latter case Āl(t) = 0 and

bl(t) = bl(T
′ + 1). In period T ′′ = max{Āh(0), Āl(0)}, agents from the less influential

group will also remove all their associates from the opposite group: for t ≥ T ′′ + 1,

Āh(t) = Āl(t) = 0, and bh(t) = bh(T
′′ + 1), bl(t) = bl(T

′′ + 1).

C.2 Proof of Proposition 12

When ε > ε∗, it is costly for agents to fully replace their associates from the opposite

group. There is period T (0 ≤ T ≤ T ′′) in which agents from both groups do

not replace their associates. Starting from T , the sets of associates do not change,

and agents from at least one group have at least one associate from the opposite

group (either Āh(T ) > 0, or Āl(T ) > 0, or both). Hence, the network remains

strongly connected, and agents from both groups converge to the same long-run belief:

limt→∞ bh(t) = b∗h = b∗l = limt→∞ bl(t).

Since for all t ≥ T , Āh(t) = Āh(T ) and Āl(t) = Āl(T ), it is easily seen that

b∗h = b∗l = Āl(T )

Āh(T )+Āl(T )
bh(T ) + Āh(T )

Āh(T )+Āl(T )
bl(T ). The consensus belief in the society is a

weighted average of the beliefs in both groups in the period when the network becomes

fixed, and the weight of each group is proportional to the number of associates from

that group that are eventually linked to agents from the opposite group.

When ε ≤ ε∗, after period T ′′ the initially strongly connected society splits into

two classes with different beliefs. Agents from H (L) are linked only to agents from

H (L). Therefore, for t ≥ T ′′ + 1, agents do not change their beliefs or associates:

Āh(t) = Āl(t) = 0, and bh(t) = bh(T
′′ + 1) = b∗h, while bl(t) = bl(T

′′ + 1) = b∗l . Since

b∗h − b∗l = ∆(T ′′ + 1) > 0, the consensus is never reached.
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C.3 Proof of Proposition 13

Clearly, ε∗ is increasing in ∆(0). The higher Āh(0) (resp., Āl(0)) is, the lower the terms

of the form 1/(1+[Āh(0)+Āl(0)−2t]d)2 are, and the higher T ′ is, so ε∗ has more terms

of this form (which are less than 1), and thus ε∗ is decreasing in Āh(0) and Āl(0). The

dependence of ε∗ on d can be written as F (d) = d
Cndn+Cn−1dn−1+...+C2d2+C1d+1

, where

n = 2T ′′ and Ci > 0 for all i. Therefore,

F ′(d) =
1− (n− 1)Cnd

n − (n− 2)Cn−1d
n−1 − . . .− C2d

2

(Cndn + Cn−1dn−1 + . . .+ C2d2 + C1d+ 1)2
.

Since F ′(0) = 1 and its numerator is decreasing in d, there exists d∗ > 0 such that

F ′(d) ≥ 0 for d ≤ d∗, while F ′(d) < 0 for d > d∗.
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