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Abstract 
 
We develop a regime switching vector autoregression where artificial neural networks drive time 
variation in the coefficients of the conditional mean of the endogenous variables and the variance 
covariance matrix of the disturbances. The model is equipped with a stability constraint to ensure 
non-explosive dynamics. As such, it is employable to account for nonlinearity in macroeconomic 
dynamics not only during typical business cycles but also in a wide range of extreme events, like 
deep recessions and strong expansions. The methodology is put to the test using aggregate data 
for the United States that include the abnormal realizations during the recent Covid-19 pandemic. 
The model delivers plausible and stable structural inference, and accurate out-of-sample forecasts. 
This performance compares favourably against a number of alternative methodologies recently 
proposed to deal with large outliers in macroeconomic data caused by the pandemic. 
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1 Introduction

Inference and dynamic analysis with the most popular model of time series macroeco-

nomics, the vector autoregression (VAR), have become incredibly challenging since March

2020. This is because macroeconomic and financial variables have begun to record values

that are several standard deviations away from their historical averages due to the effect

of the Covid-19 pandemic. Unrestricted VARs interpret these large observations as perma-

nent. Consequently the estimated transmission mechanism of the economy becomes highly

unstable, if not explosive, preventing VARs from accomplishing two of the tasks for which

they are most used, structural inference and forecasting.

The overarching view among economists dealing with this issue is that these extreme

realizations can only be the outcome of a temporary jump in volatility, without long lasting

structural effects on aggregate time series, see Schorfheide and Song (2020), Primiceri and

Tambalotti (2020), Lenza and Primiceri (2020), Carriero et al. (2021). As a result, two

main approaches have emerged to tackle this issue in unrestricted VARs. The first ignores

the extreme observations and estimates the VAR on data pertinent to the pre-pandemic, on

the ground that the recent observations are outliers generated by large shocks and should

therefore be excluded from the estimation. The second retains the extreme observations

within the estimation sample but employs an ad-hoc modification of the variance covariance

matrix of the disturbances with the effect of downweighting data from the pandemic period.

In this paper we describe a data-driven methodology that allows an unrestricted VAR

to deliver sensible (non-explosive) macroeconomic responses to shocks and forecasts in the

presence of large swings in the data, including those caused by the pandemic. This is

based on a regime switching VAR where artificial neural networks (ANNs) connect the

model coefficients to the dynamics of an observable variable that captures a broad range of

possible states of the economy, such as for example those observed over a typical business

cycle, or during extreme events that cause deep recessions or strong expansions. We term

this model vector artificial neural network autoregression (VANNAR).

ANNs have long been used to detect nonlinearity in time series models. The VANNAR

differs from existing ANN models in two important dimensions. First, it accounts for

nonlinearity in both the mean of the endogenous variables and the variance covariance
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matrix of the disturbances. Second, it ensures stability via a stationarity constraint on the

coefficients describing the linear dynamic of the endogenous variables. The first feature

allows the model to tackle both structural changes in the economy and heteroscedastic

disturbances, the second to retain stability - and therefore deliver meaningful structural

inference and forecasts - even in the presence of outliers in the data, including abnormal

realisations such as those caused by the pandemic.

The proposed VANNAR is in the spirit of the current literature dealing with the es-

timation of time series models at the time of Covid-19, in that it conditions variation in

the model coefficients to the dynamic evolution of the state of the economy and it ensures

stability even when an unrestricted VAR would deliver explosive dynamics. However, it

does so without relying on a specific view about the effects of extreme events on the first

and second moments of the relevant time series, or needing to commit to a particular mod-

ification of the variance covariance matrix of the VAR disturbances. For this reason, the

proposed VANNAR provides a very flexible framework, suitable for both ex-ante and ex-

post quantitative analysis. Further, by conditioning volatility on observed data dynamics,

the VANNAR implicitly adjusts for both permanent and temporary changes in the data,

as well as those caused by abnormal realizations.

The idea of ensuring stability in a VAR using a stationarity constraint is not new. It

is routinely used in the estimation of VAR models with time varying coefficients driven by

stochastic volatility, pioneered by Cogley and Sargent (2001) and Primiceri (2005). In these

models, the constraint is applied to select from the posterior draws of the VAR coefficients

only those that satisfy stability. There is however no guarantee that a set of stable draws

can be found, particularly if the VAR is confronted with extreme observations. The way

we implement the stability constraint in the VANNAR is different, as we explicitly include

it in the maximization of the log-likelihood function. Thus if the model is estimated with

frequentist methods, such as maximum likelihood, parameter estimates will always deliver

stable dynamics. If it is estimated with Bayesian methods, the posterior estimates will also

retain stability, being based on the constrained log-likelihood.

To test the proposed methodology we employ the macroeconomic data for the United

States used in a recent study on VAR estimation after March 2020 by Lenza and Primiceri
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(2020). This includes monthly observations of seven indicators covering the labour market,

the real and the nominal activity. The model is estimated with a Bayesian method over

three different samples. The first terminates in February 2020, thus excluding the large

outliers caused by the pandemic in the United States, which start from March 2020. The

other two samples terminate in June and September 2020, respectively. We find that the

VANNAR specification with only one ANN in the variance covariance matrix gives the

best statistical fit in each of these three samples. This data-driven result is of course

consistent with the predominant conjecture in the existing literature that the instability of

unrestricted VARs estimated on the latest data is due to a temporary jump in volatility

rather than a change in the structure of the economy.

We undertake two types of empirical analyses. First, as in Lenza and Primiceri (2020),

we compute (i) the responses of the macroeconomy to an unanticipated increase in the rate

of unemployment identified from the Cholesky decomposition of the variance covariance

matrix and (ii) out-of-sample forecasts conditional on external projections (and actual

data depending on the estimation sample) of the rate of unemployment. The results from

this analysis are summarized as follows. The VANNAR consistently delivers plausible

structural inference, since both the real and nominal activity deteriorate in response to an

unanticipated increase in the rate of unemployment regardless of the estimation sample

(R1). Macroeconomic responses remain stable during the pandemic (R2). The magnitude

of the macroeconomic responses and their uncertainty display a temporary increase during

the pandemic periods (R3). Out-of-sample forecasts capture the disruption on the economy

caused by the pandemic, as well as the slow recovery from June 2020 onward (R4). The

forecast accuracy is higher once the model is tasked to predict the recovery phase of the

economy rather than the sharp disruption in the early months of the pandemic (R5).

We then compare the results from the estimated VANNAR against those obtained from

four alternative approaches recently proposed to tackle the abnormal realizations caused

by the pandemic when using an unrestricted VAR. All these employ a linear VAR, but

differ in the specification of the variance covariance matrix. The first uses constant volatil-

ity but estimates the VAR with data until February 2020, following Schorfheide and Song

(2020) and Primiceri and Tambalotti (2020). The second, proposed by Lenza and Prim-
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iceri (2020), uses information from observed data post-pandemic to modify the variance

covariance matrix such that volatility increases in the first three months of the pandemic

and gradually reduces from the fourth month onward. The third and fourth alternatives

follow the proposal of Carriero et al. (2021) of using stochastic volatility adjusted to include

either fat-tailed errors, as in Jacquier et al. (2004), or the outlier-augmented specification

of Stock and Watson (2016). The results from this comparative analysis are summarized as

follows. Structural inference undertaken with any alternative model is generally consistent

with that from the VANNAR, since the economy’s response to an unanticipated increase

in the rate of unemployment is similar across the four alternatives to that inferred from the

VANNAR, displaying a temporary increase in magnitude and uncertainty when estimated

on the latest data (R6). All alternative models yield out-of-sample forecasts qualitatively

similar to those from the VANNAR (R7). However, none of them can produce more accu-

rate forecasts relatively to the VANNAR, regardless of the estimation sample and for the

majority of forecast horizons considered (R8).

Related Literature. The paper contributes methodologically and empirically to the

rapidly growing literature on the estimation of unrestricted VARs in the presence of large

outliers caused by the Covid-19 pandemic, typified by the works of Schorfheide and Song

(2020), Primiceri and Tambalotti (2020), Lenza and Primiceri (2020), Carriero et al. (2021).

The methodological contribution consists of describing a flexible data-driven approach,

which does not rely on ad-hoc adjustment of either the data sample (to exclude the outliers)

or the variance covariance matrix (to downweight the outliers). As such, it is employable to

account for a wide range of nonlinear macroeconomic dynamics, such as those of a typical

business cycle, extreme events, or abnormal outliers. The empirical contribution consists

of providing a synthesis and comparison of structural inference and forecast analysis from

(the VANNAR and) the main approaches so far proposed in this literature.

The paper is related to the large recent literature dealing with the problem of forecasting

the aggregate macroeconomic effects of the Covid-19 shock. Broadly speaking, existing

approaches use either structural (epidemiological and) economic models applied to recent

data, see for Baqaee et al. (2020), Baqaee and Farhi (2020), Eichenbaum et al. (2021) and

Guerrieri et al. (2020), or time series models to infer the effects of the Covid-19 pandemic
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on the economy from past history, see Barro (2020), Ludvigson et al. (2020) and Jordà

et al. (2020). The paper provides a time series approach to infer the effects of the Covid-19

pandemic on the economy without discarding information from the latest data.

The VANNAR belongs to the family of regime switching VARs widely used to model

nonlinearity in macroeconomic data, namely the vector threshold, smooth transtion and

Markov-switching autoregression - VTAR, VSTAR and VMSAR - originally developed by

Granger and Terasvirta (1993) and Hamilton (1994). In these models, the economy is

assumed to either jump (VTAR and VMSAR) or move gradually (VSTAR) between a

finite number (often two) of predefined binding linear regimes. The switch is deterministic

in the VTAR and VSTAR, stochastic in the VMSAR. The VANNAR is similar to the

VTAR and VSTAR in that it conditions regime changes on observable variables. The

VANNAR however does not require the a-priory specification of binding regimes, since

these are implicitly set by the dynamics of the same variables that determine transition

across states. Thus, the proposed methodology has two main advantages compared to

existing regime switching VARs. It is more parsimonious and the determination of the

regimes is data driven.

ANNs have long been used to model nonlinearity in macroeconomic and financial time

series. Most of the studies in this literature focus only on nonlinearity in the mean as-

suming volatility constant, see for example Swanson and White (1995, 1997), Stock and

Watson (1996, 1998), Teräsvirta et al. (2005) and Bredahl Kock and Teräsvirta (2016).

The VANNAR extends these models as it employs ANNs to account also for time variation

in the variance covariance matrix of the disturbances. ANN models with heteroscedastic

errors are however not new. Medeiros et al. (2008) develop a multivariate ANN model

with GARCH volatility, while McAleer et al. (2008) consider a time series model with time

variation in the variance covariance matrix driven by ANNs in the main diagonal. The

VANNAR differs from these two specifications because it allows time variation in the en-

tire variance covariance matrix of the disturbances to be driven by the ANN. Further, the

stability constraint included in the VANNAR ensures the model’s ability to deliver sensible

structural inference and forecasts when dealing with any type of nonlinearity in time series

analysis, including that in the latest macroeconomic data.
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The paper proceeds as follows. Section 2 describes the proposed VANNAR methodology,

covering issues surrounding the model specification, the definition and identification of

the log-likelihood, the estimation of the parameters, structural inference and forecasting.

Section 3 presents the empirical results from the estimated VANNAR. Section 4 compares

these with the alternative approaches. Section 5 concludes with a summary. Supplementary

material is provided in a separate Appendix.

2 Model

Specification. Let yt be a vector of endogenous variables and zt a vector of explanatory

variables, either exogenous or related to some of the variables in yt. The VANNAR is

specified as follows:

yt = Λxt + Γw(αy,βy; zt) + ut, (1)

ut ∼ i.i.d. (0,Σt) , (2)

Σt = Σ0 + Ωw(αΣ,βΣ; zt), (3)

E(zt) = 0, var(zt) = 1. (4)

The conditional mean of yt on the right side of equation (1) includes three terms: the

linear component Λxt, where Λ = [Λ1, . . . ,Λp,λ] is a matrix of coefficients and xt =

[y′t−1, . . . ,y
′
t−p,1

′]′; the nonlinear component Γw(αy,βy; zt), where Γ = [µ1, . . . ,µq] is a

matrix of ANN output weights and w(αy,βy; zt) = [g(α′y,1zt−1 − βy,1), . . . , g(α′y,qzt−q −

βy,q)]
′ a vector of ANNs driven by lagged values of zt; the stochastic term ut, a vec-

tor of independent and identically distributed reduced form disturbances with zero mean

and time varying variance covariance matrix Σt, as per (2). The variance covariance

matrix in equation (3) includes the constant term Σ0 and the time varying component

Ωw(αΣ,βΣ; zt), where Ω = [Σ1, . . . ,Σs] is a matrix of output weights and w(αΣ,βΣ; zt) =

[g(α′Σ,1zt−1−βΣ,1), . . . , g(α′Σ,szt−s−βΣ,s)]
′ is a vector of ANNs. zt is standardized to have

zero mean and unit variance, as per (4).

Each ANN g(α′i,kzt−k − βi,k) in the conditional mean, i = y and k = 1, . . . , q, and in

the variance covariance matrix, i = Σ and k = 1, . . . , s, takes the form of an activation

7



function that squashes into single coefficients hidden layers formed from lagged values of

the explanatory vector zt. In the empirical analysis we employ two popular activation

functions in modern neural networks, the logistic and the rectified linear unit (ReLU).

Following the ANN terminology, the polynomials α′i,kzt−k − βi,k are referred to as hidden

layers, the coefficients αi,k as input weights and βi,k as biases. Each hidden layer in the

conditional mean provides a linkage between yt and a specific lagged value of zt that is

nested/hidden within the ANNs g(α′y,kzt−k − βy,k), k = 1, . . . , q. Similarly, each hidden

layer in equation (3), provides a linkage between the current period variance covariance

matrix of the disturbances and a given lagged value of zt that is nested/hidden within

the ANNs g(α′Σ,kzt−k − βΣ,k), k = 1, . . . , s. The impact of these nonlinear terms on the

conditional mean of the endogenous variables and on the variance covariance matrix of the

disturbances is measured by the output weight matrices Γ and Ω, respectively.

The VANNAR in (1)-(4) describes a flexible framework that encompasses two popular

approaches in time series analysis. Setting either zt or all g(.) equal to zero yields the linear

VAR model with homoscedastic disturbances. Setting instead all g(α′Σ,kzt−k − βΣ,k) = 0

while retaining g(α′i,yzt−k−βy,k) 6= 0 yields the typical multivariate ANN model with non-

linear mean and constant variance used by Swanson and White (1995, 1997), Stock and

Watson (1996, 1998), Teräsvirta et al. (2005) and Bredahl Kock and Teräsvirta (2016).

There is however an important difference between the ANN models used in these studies

and the specified VANNAR. In these models, each ANN depends on the same vector of

explanatory variables. Consequently, gradient algorithms used to compute maximum like-

lihood estimates often breakdown as a result of multicollinearity causing the information

matrix to be singular.1 The proposed specification of the VANNAR mitigates this problem

because it conditions each ANN on a different lagged value of the explanatory variables.2

The VANNAR in (1)-(4) is specified in its simplest form as a single layer model. This can

be easily extended to include additional layers in both the conditional mean and variance

covariance matrix, for example by repeatedly replacing the vector of explanatory variables

zt−k in any given ANN with additional ANNs that also depend on zt−k. The proposed

1If the ANNs were to depend on the same vector of explanatory variables, issues of multicollinearity
would be compounded in the VANNAR, given the inclusion of ANNs in the variance covariance matrix.

2We evaluate the significance of this different conditioning of the ANNs in Section 3.
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specification has the main advantage of being parsimonious and avoiding the issues of

multicollinearity highlighted above.

The Constrained Log-Likelihood. When zt is observable, the likelihood function of

the VANNAR model in (1)-(4) can be formulated analytically and its parameters estimated

with either frequentist or Bayesian methods. There are, however, three main issues with the

evaluation of the likelihood function. The first two are typical of the econometric analysis of

ANN models, concerning the unidentifiability of the log-likelihood and the indeterminacy of

the ANN structure required to model a time series. The third issue, related to the presence

of large outliers in the data, concerns the stability of the VANNAR dynamics returned by

the likelihood-based estimation. Before outlining the estimation algorithm, we state the

log-likelihood function and tackle each of these three issues separately.

The log-likelihood. Given a sample of t = 1, . . . , T observations and the assumption on

the disturbances in (2), the conditional log-likelihood function of the VANNAR in (1)-(4)

can be formed as:

lnLT (Θ) =
1

T − p∗
T∑

t=p∗+1

(−n
2

ln 2π − 1

2
ln |Σt| −

1

2
u′tΣ

−1
t ut), (5)

where Θ is a vector collecting all VANNAR coefficients, p∗ = max(p, q, s) and n denotes

the dimension of yt. To ensure the positive definiteness on the variance covariance matrix

(3) and its determinant, each matrix of coefficients Σk is decomposed as

Σk = TkT
′
k, (6)

where Tk is a lower triangular matrix, k = 0, . . . , s.

For the subsequent analysis, it is convenient to employ the partition Θ = [Θ1,Θ2],

where Θ1 = Λ includes the linear coefficients of the conditional mean in (1) whereas Θ2 =

[Γ,T0, . . . ,Ts,αy,1, . . . ,αy,q, βy,1, . . . , βy,q,αΣ,1, . . . ,αΣ,s, βΣ,1, . . . , βΣ,s] includes the coef-

ficients pertinent to the constant part of the variance covariance matrix and to the ANNs.

Unidentifiability. Unidentifiability of the log-likelihood is a well known issue in most

ANN models, see Medeiros et al. (2006) for homoscedastic ANN models, McAleer et al.
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(2008) and Medeiros et al. (2008) for heteroscedastic ANN models. We extend here this dis-

cussion to the VANNAR. Three features of the model cause lack of identifiability. The first

refers to the possibility of including irrelevant ANNs. This is because in the mean equation

(1) the input weights αy,k and bias coefficient βy,k are unidentified if the corresponding

output weights µk = 0, for any k = 1, . . . , q. At the same time, µk and βy,k are uniden-

tified if αy,k = 0. Similarly, in equation (3) the input weights αΣ,k and bias coefficient

βΣ,k are unidentified if the output weight matrix Σk = 0, for any k = 1, . . . , s. Further,

Σk and βΣ,k are unidentified if αΣ,k = 0. The second refers to the interchangeability of

the ANNs. This means that it is possible to permute the ANNs and the output weights in

both equations (1) and (3) and obtain the same log-likelihood. The third feature causing

unidentifiability refers to the re-scaling of the ANNs modelled through logistic functions,

since g(x) = 1− g(−x).

To deal with unidentifiability, Stock and Watson (1998) proceed by conditioning the

estimation of the log-likelihood function (5) on multiple sets of initial parameter values.

Medeiros et al. (2006), Medeiros et al. (2008) and McAleer et al. (2008) proceed using

restrictions on the ANNs that ensure identification of a unique value for the log-likelihood

function. Following their approach, a possible set of sufficient restrictions for exact identi-

fication of the parameters in equations (1)-(4) is:

αy,k > 0, k = 1, . . . , q, and αΣ,k > 0, k = 1, . . . , s, (7)

βy,1 ≤ · · · ≤ βy,q and βΣ,1 ≤ · · · ≤ βΣ,s, (8)

µy,k 6= 0, k = 1, . . . , q, and σk,r,c 6= 0, r, c = 1, ..., q, k = 1, . . . , s, (9)

where σk,r,c denotes the element in row r and column c of Σk, k = 1, . . . , s. The restrictions

in (7) ensure that no irrelevant ANN is included in either the mean equation or the variance

covariance matrix of the VANNAR. Restrictions (8) ensure that the value of the VANNAR

log-likelihood is not invariant to the ordering of the ANNs in the mean and variance co-

variance matrix equations. Restrictions (9) imply that input weights and bias coefficients

in both the mean and variance covariance matrix equations are always identified.

Indeterminacy. ANN modelling is often motivated by advocating the so-called universal

approximator property. This states that under mild regularity conditions, a nonlinear pro-
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cess can be approximated arbitrarily accurately by a linear combination of a large enough

number of ANNs, see for example Hornik et al. (1989). However, this offers no guidance

on the number/type of explanatory variables, ANNs and layers required to achieve a de-

sired degree of accuracy. Avoiding over parametrization is therefore paramount when using

ANNs. One possibility is to adapt the simple-to-general approach used by Swanson and

White (1995, 1997) and Medeiros et al. (2006) to the VANNAR in (1)-(4). This starts by

selecting the optimal lag length for the homoscedastic VAR representation of yt on the ba-

sis of one or more information criteria. This is then extended including ANNs in the mean

and variance covariance matrix starting with the smallest possible VANNAR structure (one

ANN in either the mean or the variance covariance matrix), and then gradually adding fur-

ther ANNs. The optimal VANNAR specification is deemed to be reached once no reduction

in the information criteria is found by adding further ANNs to a given specification.3

Stability. Necessary and sufficient conditions to ensure the stability of ANN models

do not exist in the literature, since nonlinearity prevents the analytical formulation of

these conditions.4 To ensure stability of the VANNAR dynamics we proceed as follows.

Suppose the coefficients in Θ2 are known. Then the VANNAR is linear in the remaining

parameters and the conditional mean (1) can be equivalently written in the companion

form Yt = AYt−1 + Ut, where Yt = [y′t, . . . ,y
′
t−p+1,y

′
t−p]

′, Ut = [v′t, . . . ,0
′,0′]′, vt =

λ + Γw(αy,βy; zt) + ut and A is a matrix in which the remaining coefficients in Λ are

re-arranged in a form compatible with Yt. The companion system can be employed as a

tool to monitor stability. According to this, the VANNAR in (1)-(4) is stable if:

det(I−Aζ) 6= 0,∀ζ ∈ C, |ζ| ≤ 1, (10)

which states that, conditional on Θ2, the VANNAR is stable if the eigenvalues of A have

modulus less than one. Whether (10) can effectively ensure the stability of the VANNAR

3Of course it would be possible to determine the optimal VANNAR structure using instead a general-
to-specific approach. This is often found to be less accurate but computationally more efficient than
simple-to-general method, see for example MacKay (1992). For the empirical analysis, we adopt the
simple-to-general search approach also because existing applications in macroeconomics often find models
with only a few ANNs to yield the best statistical fit.

4In principle, stability could be evaluated numerically by simulating trajectories of yt for all possible
sample histories and checking that these are stationary. In practice, aside from being computationally
demanding, this offers no guarantee that stable paths can be found.
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in (1)-(4) depends on zt. If this includes only exogenous variables, then (10) provides

a necessary and sufficient condition for the stability of the VANNAR. If zt includes at

least one of the variables in the endogenous vector yt, then (10) is neither a necessary nor a

sufficient condition for stability. However, in this case it would at least ensure the stability of

a first-order approximation of the VANNAR, thus still providing a useful device to monitor

stability in practice. We find this is actually the case in the empirical analysis in the next

section, where the stability constraint (10) ensures that the estimation procedure delivers

stable dynamics even in the presence of the extreme observations caused by pandemic.

Estimation. There are two popular algorithms for the estimation of ANN models. In

the absence of the stability constraint (10), the first is a gradient-based method tackling the

estimation of all parameters at once. The second, often referred to as the neural method, is

more appealing as it exploits the possibility of writing the model in a linear form conditional

on a subset of the parameters, thereby estimating the remaining parameters analytically.5

We describe here how to adapt both algorithms to the specified VANNAR. We find that,

once accounting for the stability constraint (10), the option of solving for some of the

parameters analytically is no longer feasible and the two algorithms become equivalent.

Gradient Method. The full information maximum likelihood estimator of the parameters

in the VANNAR can be calculated by maximizing the log-likelihood function in (5) subject

to the restrictions in (6)-(9) and the stability constraint in (10). Thus, the estimation

is formulated as a constrained nonlinear optimization problem. This can be solved with

sequential quadratic programming (SQP), which represents the state of the art in nonlinear

programming methods. The basic idea is to formulate a programming sub-problem based

on a quadratic approximation of the Lagrangian of the original problem. This can then be

solved with standard iterative algorithms, such as Newton’s method.6

Neural Method. This involves repeating until convergence two sequential steps. The

first consists of determining a draw of Θ2. As this includes all the parameters in the

variance covariance matrix and in the ANNs, restrictions (6)-(9) can be enforced at this

5For a textbook description, see Chapter 19 of Martin et al. (2013).
6In the special case of maximizing the unconstrained log-likelihood (5), then the SQP method reduces

to the Newton’s method. If the log-likelihood maximization is subject only to equality constraints, then
the SQP method is equivalent to applying Newton’s method to the first-order optimality conditions. An
overview of SQP is found in Nocedal and Wright (2006).
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stage. Conditional on Θ2, the VANNAR is linear in the remaining parameters. Thus, in

the second step vt = yt−Γw(αy,βy; zt) is computed and the estimation problem reduces

to finding the vector Θ1 that maximizes
∑T

t=p∗+1
1
2
(vt −Θ1xt)

′Σ−1t (vt −Θ1xt) subject to

(10). Once Θ1 is obtained, the VANNAR log-likelihood can be evaluated from (5).

If stability is not a concern, the neural method is preferable because Θ1 can be de-

termined analytically via generalized least squares.7 This simplifies the estimation of the

model parameters by side-stepping many of the numerical issues associated with the con-

vergence of the gradient algorithm. However, the analytical solution is no longer an option

for the neural method once estimation is constrained by (10), as also estimation of Θ1

requires the solution of a highly nonlinear constrained optimization problem. Thus, when

accounting for (10) the neural method is effectively equivalent to the gradient method.

Both the gradient-based and the neural methods described above account for the sta-

bility constraint (10) in the formulation of the Lagrangian function. As noted above, this

is different from maximizing (5) subject to the restrictions in (6)-(9) and verifying (10) ex-

post, which would not guarantee stability. It is this formulation of the maximum likelihood

optimization problem that helps finding stable dynamics from the VANNAR even when

there are abnormal observations in the data. We use a Bayesian method to estimate the

VANNAR parameters. A detailed description of the estimation algorithm is provided in

Appendix A. In essence, we proceed as follows. First, we draw a large number of possible

sets of parameter values Θ from a random distribution and identify out of these the twelve

that yield the highest unrestricted log-likelihood in (5). We then use each of these plus

the OLS estimates from the VAR as separate initial values for the maximization of the

unrestricted log-likelihood in (5). The resulting thirteen sets of optimal values are then

used for a subsequent round of maximization of the log-likelihood function in (5) this time

including the restrictions in (6)-(9) and the stability constraint in (10). We then select out

of these the parameters vector that yields the highest log-likelihood as starting value for

the final round of estimation, which is based on the Markov chain Monte Carlo algorithm

of Chernozhukov and Hong (2003). This is supported by a Minesota prior to cope with

the high dimensionality of the parameter space and a Student-t prior on Θ2 to ensure the

7Using vec(Θ′1) = (
∑T

t=p∗+1 Σ−1t ⊗ x′txt)
−1vec(

∑T
t=p∗+1(x′tvtΣ

−1
t ).
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restrictions in (6)-(9) and regularize the ANN parameter values. Only posterior draws that

satisfy (10) are retained at this final stage.

Impulse Response Function and Forecasts. The transmission mechanism of shocks

in the VANNAR depends on the state of the economy, the size and sign of shocks. The

algorithm we use to compute responses to shocks adapts to the VANNAR the methodology

of generalized impulse response functions (IRFs) of Koop et al. (1996) extended to account

for sign restrictions. In essence, conditional on a given period t we identify structural

shocks through the Cholesky factorization of the variance covariance matrix and generate

trajectories of the endogenous variables by iterating forward the VANNAR, accounting for

uncertainty in the parameter estimates and in the shocks realization. We then measure from

these trajectories the median IRF and confidence bands. When zt includes one or more

variables in yt, the IRF accounts for the interaction between the evolution of the endogenous

variables and the VANNAR parameters through the ANNs included in the conditional mean

equation in (1) and the variance covariance matrix in (3). No direct feedback enters the

IRF if zt is exogenous, though the responses to shocks still vary according to the state of

the economy, the size and sign of shocks.

Forecasts of the endogenous variables in the VANNAR can be computed using a similar

algorithm to that of the IRF, by simulating trajectories of the variables in yt based on

different draws from the posterior of the parameters and sequences of the reduced form

disturbances over the chosen forecast horizon. The simulated trajectories can then be used

to obtain numerical approximations of the forecast density and the desired moments. As for

the IRF, the simulated trajectories include the uncertainty in the parameter estimates, the

uncertainty in the shocks realization and the feedback from zt on the VANNAR coefficients.

An important special case occurs when zt is exogenous and its trajectory is known over the

forecast horizon. As such, the dynamic evolution of the ANNs can be computed in advance

and the VANNAR can be cast in an equivalent state space form with time dependent

coefficients. The Kalman smoother can then be employed to generate forecasts of the

variables in the endogenous vector. When zt includes one or more endogenous variables of

the VANNAR but their path is pre-specfied, the Kalman smoother algorithm can still be

used to forecast remaining endogenous variables.
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The algorithms for computing IRFs and forecasts from the VANNAR are described in

detail in Appendix B. As outlined above, all these methods for dynamic analysis rely on

trajectories simulated from the model. Dijk et al. (2002) observe that the main issue of

this approach is that the simulated densities can be distorted if some of the draws from the

posterior of the parameters lead to unstable trajectories and thus to ‘wild’ IRFs or forecasts.

Of course, the constraint (10) ensures stability of all the draws from the posterior of the

parameters, thereby preventing such a distortion in simulated densities from the VANNAR.

3 Empirical Results: The VANNAR

Data. The data are those employed by Lenza and Primiceri (2020) in their study on

VAR estimation after March 2020. The vector yt includes monthly observations of the

seven variables: the rate of unemployment ; total employment in the nonfarm sector; total

real personal consumption, PCE ; real personal consumption of services, PCE services ; the

price index of the two consumption aggregates, PCE (price) and PCE services (price),

respectively; and the price index of core inflation, core PCE (price).8 Lenza and Primiceri

(2020) use observations from December 1988 to September 2020 to avoid the larger data

variability during the pre-1990 period and focus on the instability caused by the pandemic

from March 2020 onward. Of course, since the VANNAR allows time varying parameters in

the mean and variance covariance matrix, we could use a longer sample and extend beyond

September 2020. We retain the same sample period for the sake of comparison.

To appraise the significance of instability in these data, we have evaluated when the

stability constraint (10) binds while recursively estimating a linear VAR with homoscedastic

disturbances starting with a sample including observations up to January 2000 until the

most recent available data at the time of writing, April 2021.9 We have carried out this

exercise using a VAR with two lags, since this is the optimal lag length according to the

Schwarz Information Criterion (SIC) in the majority of the estimation samples, and with

8All data are taken from the online database of the Federal Reserve Bank of St. Louis accessed on June
2021. See Lenza and Primiceri (2020) for a more detailed description.

9The recursive estimation is carried out as follows. We first estimate the VAR using all observations
until January 2000 and evaluate the stability constraint. Next we add the observations of February 2000,
re-estimate the VAR and re-evaluate the stability constraint. We proceed in this way until April 2021.
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Figure 1: Maximum absolute value of the eigenvalue from each VAR recursively estimated
between January 2000 and April 2021. Instances in red indicate unstable VAR. NBER
recessions in grey.

twelve lags, as is often used in VAR with monthly data.

Figure 1 plots the maximum (absolute value of the) eigenvalue from each VAR recur-

sively estimated during January 2000 and April 2021 in the top panels, zooming on January

2020 onward in the bottom panels. Instances in which the stability constraint (10) binds

(maximum eigenvalue greater than one) are highlighted in red, meaning that the VAR es-

timated up to that period is unstable. Three main results are clearly visible. Firstly, the

issue of VAR instability is not peculiar to the pandemic period, but occurs many times be-

fore: the stability constraint binds in about 29 and 35 percent of the estimated VARs when

using two and twelve lags, respectively. Secondly, the extent of instability since March 2020

is unprecedented, as shown by the largest eigenvalue being above two at the start of the

pandemic period. Third, the issues of VAR instability and its abnormal increase during

the pandemic hold under any conventional specification of the VAR lag length.

The above results are due neither to the specific data frequency nor to the particular

sample choice. To check this, we have considered an earlier starting date, January 1959,

and converted the monthly observations of the seven indicators into quarterly averages. We

have then re-estimated the VAR recursively over the 169 samples ending from 1979Q1 to
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2021Q1. The stability constraint binds in about 43 and 49 percent of these samples when

using a VAR with two and four lags, respectively. The VAR with two lags is unstable in

the last three quarters of 2020, whereas the VAR with four lags is unstable in the the last

three quarters of 2020 and in the first quarter of 2021.10

The Estimated Model. To appraise the effect of the abnormal variation in the data

caused by the pandemic, the VANNAR is estimated using observations first prior to the

pandemic, i.e. up to February 2020, and then including the first four and seven months of

the pandemic, i.e. samples ending in June and September 2020, respectively.

The estimation of the VANNAR requires prior specification of the activation functions,

of the explanatory variables, and of the number of lags and ANNs. Regarding the activa-

tion functions, the VANNAR is estimated using for all ANN terms in equations (1) and (3)

either logistic, g(.) = 1/[1 + exp(α′i,kzt−k − βi,k)], or ReLU, g(.) = max{0,α′i,kzt−k − βi,k},

functions, the two most popular choices in modern neural networks. The choice of the ex-

planatory variables is not trivial since there is no clear-cut theoretical prescription for what

these should be. We use zt = ut−1, where ut−1 is the rate of unemployment standardized

according to (4). This is justified for three main reasons. Firstly, the rate of unemployment

is often used as an indicator of the state of the economy in the macroeconomic literature

using regime switching models, on the ground that it provides a proxy for the amount

of slack in the economy, see for example Rothman (1998), Dijk et al. (2002), Skalin and

Teräsvirta (2002), Ramey and Zubairy (2018).11 Secondly, because the rate of unemploy-

ment is also an endogenous variable, IRFs and forecasts can account for direct feedback

from the state of the economy to the conditional mean of the endogenous variables and the

variance covariance matrix of the disturbances. Thirdly, the speed of change in the state of

the economy, as measured by the month-to-month variation in the rate of unemployment,

determines the speed of variation in the VANNAR coefficients. This is important because

it ensures that the model can capture both gradual and more sudden changes in the coeffi-

10Further, as shown by Schorfheide and Song (2020) and Carriero et al. (2021), VAR models estimated
using data of the United States from March 2020 onward are unstable when including several different
types of macroeconomic indicators, and not just the specific ones used in this empirical analysis.

11Ramey and Zubairy (2018) subtract the natural rate from the actual unemployment rate and it is
the differential between these two that they employ as proxy for economic slack. In the VANNAR, this
differential is implicitly accounted for by the estimated bias coefficient β.
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Table 1: Simple-to-general search for VANNAR specification (logistic activation functions).

February 2020 June 2020 September 2020
q s LL AIC HIQ SIC LL AIC HIQ SIC LL AIC HIQ SIC
0 0 4.61 -8.52 -7.97 -7.14 1.75 -2.79 -2.25 -1.43 1.68 -2.67 -2.13 -1.31
1 0 -18.40 37.55 38.14 39.03 -10.76 22.26 22.85 23.73 -47.20 95.15 95.72 96.60
0 1 4.84 -8.81 -8.14 -7.11 2.09 -3.32 -2.66 -1.64 1.83 -2.81 -2.14 -1.14
1 1 4.54 -8.18 -7.46 -6.38 1.91 -2.91 -2.21 -1.14 1.61 -2.32 -1.62 -0.55
2 1 4.45 -7.93 -7.19 -6.05 1.74 -2.54 -1.80 -0.67 1.80 -2.66 -1.92 -0.80
1 2 4.53 -7.99 -7.15 -5.88 1.69 -2.32 -1.49 -0.23 1.72 -2.39 -1.57 -0.31
2 2 4.51 -7.90 -7.03 -5.70 0.88 -0.65 0.22 1.54 1.80 -2.49 -1.63 -0.32

Note: Results for q = s = 0 in the June and September 2020 samples are disregarded for
VANNAR specification since the model is unstable in these two samples.

cients, including those due to the pandemic, as illustrated below. The choice of the number

of lags and ANNs in the VANNAR is entirely data driven and determined according to the

simple-to-general search procedure described in Section 2.

Table 1 reports the log-likelihood and information criteria obtained from the simple-

to-general search of the VANNAR specification in the three samples when the activation

function is chosen to be logistic. According to the SIC, the best VAR lag length is equal to

two in each sample. This is equivalent to the VANNAR with q = s = 0 reported in the first

row of the table. As we do not impose the stability constraint on the VAR, the estimates

for the June and September 2020 samples are unstable and for this reason the specification

q = s = 0 is disregarded for the purpose of model selection in these two samples. According

to most of the diagnostics in Table 1, the VANNAR with only one ANN in the variance

covariance matrix gives the best statistical fit in all three samples.12 None of the VANNAR

estimated using ReLU activation functions improves on the outcomes in Table 1.13 Thus

the estimated VANNAR that we use for the subsequent empirical analysis employs logistic

functions and is based on q = 0 and s = 1.14 While being entirely data driven, this result is

12As a robustness check we re-estimated all models in Table 1 using zt−1 in the additional ANNs for
q, s > 1 rather than zt−k. We still find that the VANNAR with q = 0 and s = 1 yields the best fit. We
did not test for specifications based on q, s > 2 or additional layers.

13These results are not included here for reason of space, but are reported in Appendix C.
14A clear pattern visible from Table 1 is that the log-likelihood estimated for each model is almost halved

as the sample changes from February to either June or September 2020. This reduction is the necessary
price to pay to fit each VANNAR on the recent observations that include much larger variability compared
to historical standards.
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(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 2: Time-varying volatility in the VANNAR residuals as measured by the diagonal
elements of Σt. NBER recessions in grey.

evidently consistent with the view underpinning the current literature on VAR estimation

since March 2020, namely that the extreme realizations caused by the pandemic are due

to temporary jumps in volatility, rather than structural changes in macroeconomic data.

Figure 2 displays the the time-varying volatility in the VANNAR residuals, measured

by the diagonal elements of Σt, across the three samples. Since volatility is affected by the

ANN terms, the figure provides information on the type of nonlinearity captured by the

VANNAR in each estimation sample. From here on, we present the results for employment,

aggregate consumption, PCE, and the general price level, core PCE(price), since these are

representative of the main compartments of the aggregate economy covered in the dataset,

i.e. the labour market, the real and nominal sector.15 The vertical axes are not harmonized

across the estimation samples to facilitate visualization. The following three results are

worth observing. Firstly, volatility displays patterns similar to those estimated from a

regime switching VAR where the transition variable is the rate of unemployment, in that it

increases during periods of high unemployment around recessions, see for example Ramey

15The results for the other macroeconomic indicators are reported in Appendix C. The overall picture
does not changes significantly once considering the nonlinear effects stemming from the ANNs on the
covariances in (3). We omit reporting these for reason of space.
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(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 3: Median, 68 and 95 percent confidence bands of responses to unanticipated increase
in the rate of unemployment from the VANNAR. All variables are in logs × 100.

and Zubairy (2018).16 Secondly, the VANNAR accounts for the extreme observations as

estimation goes beyond February 2020 through a sudden upswing in volatility. Thirdly, the

latest increase in volatility is larger but relatively short-lived compared to those observed

during previous recessions, as visible from the fact that by September 2020 volatility has

already reduced to levels close to those reached in the aftermath of the Great Recession.17

Impulse Responses. Figure 3 shows the responses of employment, consumption and

the aggregate price level to an unanticipated increase in the rate of unemployment over

60 months, with their 68 and 95 percent confidence bands. As in Lenza and Primiceri

(2020), the shock is identified from the Cholesky decomposition of the variance covariance

matrix and sign restrictions ensure that the rate of unemployment is positive for the en-

tire simulation horizon. The responses are measured from the VANNARs estimated over

the three samples, and the shock occurs at the end of each of sample. Two results are

16Similar patterns are obtained from regime switching VARs that condition volatility on cyclical variables
such as the growth rate of GDP or indicators of financial risk.

17In Appendix D, we show that many of these features are also observable from the estimates of macroe-
conomic volatility obtained under several of the alternative methodologies recently proposed to deal with
large outliers caused by pandemic.
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(a) Jun. - Feb. 2020 (b) Sep. - Feb. 2020 (c) Sep. - Jun. 2020

Figure 4: Median, 68 and 95 percent confidence bands of response differentials to unantic-
ipated increase in the rate of unemployment from the VANNAR. All variables are in logs
× 100.

(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 5: Median, 68 and 95 percent confidence bands of out-of-sample forecasts from the
VANNAR conditional on the unemployment prediction from the Blue Chip Forecast and
actual data (Feb. and Jun. 2020). All variables are in logs × 100.
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immediately visible. First, the estimated VANNAR yields plausible inference about the

structure of the economy in all three samples (R1). The unemployment shock causes a fall

in employment, aggregate consumption and prices over the five years of the simulation hori-

zon. This is consistent with the typical response of the economy to a persistent aggregate

demand shock and with the macroeconomic responses estimated by Lenza and Primiceri

(2020). It is also consistent with the evidence from survey data suggesting that households

in the United States expect high unemployment and low inflation in the aftermath of the

Covid-19 shock, see Coibion et al. (2020).18 Second, structural inference remains stable

once the VANNAR is estimated in the two samples that include the abnormal observa-

tions caused by the pandemic, June and September 2020 (R2). Third, the magnitude of

the macroeconomic responses and the uncertainty surrounding them over the simulation

horizon increases during the pandemic periods (R3). This is particularly visible from the

responses of employment and consumption, on impact and over the first twenty months of

the simulation horizon.

To formally evaluate how the macroeconomic responses change due to the pandemic

we constructed a test based on the empirical distribution of the differentials (for each

variable and time horizon) between 1000 posteriors of the IRF estimated across two different

samples. Since all responses in Figure 3 are below zero, a negative (positive) differential

indicates increase (decrease) in the response magnitude at the observed horizon.

Figure 4 displays the median, 68 and 95 percent confidence bands of the response

differentials between the estimation samples June and February, September and February,

and September and June 2020. We highlight the following results. For the real variables the

increase in the responses magnitude from February to June 2020 is statistically significant

on impact and up to about the first twelve months with 68 percent of confidence. These

differentials reduce over the pandemic period and are found to be not different from zero

from a statistical stance. The differentials for the nominal activity responses are smaller

than those of the real activity, though still significant between three to six months.

18Using data from a smaller survey conducted at the beginning of March 2020, Binder (2020) finds that
United States’ consumers expect high unemployment but also high inflation as a result of the pandemic.
The contrasting evidence about inflation expectations compared to the survey of Coibion et al. (2020),
which includes responses gathered in April 2020, may be because respondents had time to update their
information about price dynamics since March 2020.
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Table 2: Root Mean Square Forecast Errors from VANNAR.

Sample: February 2020 June 2020 September 2020
Variable/Horizon 1 3 7 10 12 14 1 3 7 10 1 3 7
Employment 0.83 7.79 3.24 3.21 2.82 2.40 0.69 1.74 2.75 3.11 0.69 1.09 2.12
PCE 2.06 5.31 1.15 2.84 2.19 2.49 1.71 3.61 4.90 6.04 1.33 3.08 4.83
Core PCE (price) 0.10 0.79 0.45 0.61 0.83 1.56 0.32 0.63 1.21 1.70 0.33 0.57 1.06

That change of macroeconomic volatility is associated with change in the magnitude of

the economy response to shocks is not a new finding. It is for example a recurrent result

from the Great Moderation macroeconomic literature, which gives evidence of permanent

structural breaks in leading macroeconomic indicators around the mid-1980s, see for ex-

ample Boivin et al. (2010). In contrast, the above results suggest that the increase in the

macroeconomic responses magnitude and uncertainty caused by the recent pandemic are

only temporary.19

Conditional Forecasts. Figure 5 shows the median, 68 and 95 percent confidence

bands of the out-of-sample forecasts of employment, aggregate consumption and prices until

December 2021 estimated from the VANNARs against the actual data (red dots) available

up to April 2021. Table 2 reports the corresponding root mean square forecast errors

(RMSFEs) at selected time horizons.20 As in Lenza and Primiceri (2020), for the sample

ending in September 2020 the forecast is conditioned on the consensus unemployment

prediction from October 2020 to December 2021 taken from the October 2020 release of

the Blue Chip Forecast. For the other two samples the forecast is further conditioned on

the actual unemployment rate data until September 2020. We highlight two main results.

First, the out-of-sample forecasts capture both the disruption on the wider economy caused

by the pandemic from February 2020, as well as the slow recovery from June 2020 onward

(R4). Second, according to the visual evidence and the computed RMSFEs, the forecast

accuracy is higher once the model is tasked to predict the recovery phase of the economy

19To further verify this statement, we have re-estimated the VANNAR using data up to April 2021.
The IRFs and differentials are similar to those shown in Figures 3 and 4 for September 2020. These are
reported in Appendix C.

20The RMSFEs are computed from the forecast errors measured out of 1000 posteriors of the conditional
forecasts for any starting period and horizon.
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(samples terminating in June and September 2020) rather than the sharp disruption in the

early months of the pandemic (sample ending in February 2020) (R5).21

4 Empirical Results: Alternative Approaches

Specification. We compare the responses to shocks and forecasts presented above with

those obtained from four alternative approaches recently proposed to deal with the VAR

instability caused by the Covid-19 pandemic. These are all based on a VAR with constant

coefficients in the equations for the mean but differ for the specification of the variance

covariance matrix.22 The first uses a constant variance covariance matrix and estimates

the VAR on data up until February 2020, in the same spirit of Schorfheide and Song (2020)

and Primiceri and Tambalotti (2020). We refer to this as the VAR-C.23 The second is the

VAR with the ad-hoc modification of the variance covariance matrix proposed by Lenza and

Primiceri (2020), hereafter VAR-LP. Using information from observed data, this assumes

that volatility increases in the first three months of the pandemic, between March and

May 2020, and gradually decreases from June onward. Thus, when estimation is based on

the pre-pandemic period, no adjustment to the variance covariance matrix is required and

the VAR-LP is effectively equivalent to the VAR-C.24 The third and fourth alternatives

21As for the IRF, forecasts uncertainty increases significantly during the first four months of the pan-
demic, reducing only marginally afterwards. The effect of this change in uncertainty on the forecasts is of
course accounted for in the computed RMSFEs.

22For reason of space, we only describe in the paper the main features of each approach. The interested
reader can refer to the original sources for specific details. Each alternative model is estimated using
Bayesian methods with the support of a standard Minesota prior and on the same data employed for the
VANNAR. Further details on estimation and additional results are given in Appendix D.

23Schorfheide and Song (2020) consider a mixed-frequency VAR including eleven macroeconomic indica-
tors of the United States. They measure only out-of-sample forecasts, using first the VAR estimated with
data up to the end of 2019, and then a sequence of VARs recursively estimated up to June 2020. They
find that the VAR estimated until the end of 2019 gives more stable and reasonable forecasts than those
estimated on samples that include the early pandemic periods. Primiceri and Tambalotti (2020) consider a
VAR including monthly observations up to February 2020 of six indicators of the aggregate United States
economy. They forecast the impact of an ad-hoc shock that mimics the observed effects of Covid-19 on
the aggregate economy, under alternative scenarios regarding the duration of the pandemic. Our VAR-C
is in the spirit of the VAR proposed in these two studies in that we curtail the estimation sample to the
pre-pandemic period. As the objective is the comparison with the VANNAR, we neither evaluate the
effects of using mixed-frequency data nor consider the construction of an ad-hoc shock based on observed
aggregates.

24Lenza and Primiceri (2020) compute both for IRFs and out-of-sample forecasts. Our results for the
VAR-LP are based on the replication code made available by the authors on their webpage.
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follow the proposal of Carriero et al. (2021) of enhancing a VAR with stochastic volatility

allowing for temporary jumps in the variances of the disturbances through either fat-tailed

errors drawn from a Student-t distribution, as pioneered by Jacquier et al. (2004), or the

outlier-augmented stochastic volatility specification of Stock and Watson (2016). We refer

to these last two alternatives as VAR-SVt and VAR-SVO, respectively.25

It is useful to compare the variance covariance matrix of the last three approaches with

that of the VANNAR. In these three models volatility is formulated as Σt = B−1Hm
t (B−1)′;

where m = LP, SV t, SV O, B is a lower triangular matrix; and Hm
t is a diagonal matrix

given by HLP
t = s2tD, HSV t

t = O1
tDt(O

1
t )
′ and HSV O

t = O2
tDt(O

2
t )
′ in the VAR-LP, VAR-

SVt, and VAR-SVO, respectively. In the Hm
t matrices, D is diagonal, with coefficients

being either constant, in the VAR-LP, or stochastic, in the VAR-SVt and VAR-SVO. The

remaining elements capture drifts in volatility and their specification depends on whether

the sample includes abnormal outliers. In the estimation sample terminating in February

2020 st is set to be equal to one, while O1
t and O2

t are set as identity matrices. Thus

the VAR-LP is equivalent to the VAR-C, while both the VAR-SVt and VAR-SVO reduce

to a VAR with stochastic volatility. However, st, O1
t and O2

t are appropriately modified

to downweight the abnormal outliers in the June and September estimation samples. In

specific, st takes three different values between March and May 2020, and decays following

an autoregressive process from June onward. Both O1
t and O2

t are set as diagonal matrices

of mutually and serially i.i.d. unobserved states drawn from either a Student-t distribution

(with five degrees of freedom) in the VAR-SVt or a uniform distribution (with support

between two and twenty) in the VAR-SVO. Aside from not requiring these ad-hoc changes,

the variance covariance matrix of the VANNAR in equation (3) differs from these alternative

models in two main dimensions. Firstly, it measures time variation additively through the

ANNs, as in McAleer et al. (2008). Secondly, it does not restrict the matrices Σk, k ≥ 1, to

be diagonal. Thus, unlike the alternative specifications, the VANNAR allows time variation

in the variances and covariances to be independent from each other.

25Carriero et al. (2021) use monthly observations for sixteen macroeconomic and financial indicators for
the United States from March 1959 to September 2020. They employ the VAR-SVt and VAR-SVO only
for out-of-sample forecasting. As replication codes were unavailable at the time of writing, the results
for the VAR-SVt and VAR-SVO models presented in this paper are based on our implementation of the
algorithms described in their paper.
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(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 6: Median, 68 and 95 percent confidence bands of responses to unanticipated increase
in the rate of unemployment from the VAR-C (first column only) and the VAR-LP (all
columns). All variables are in logs × 100.

(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 7: Median, 68 and 95 percent confidence bands of responses to unanticipated increase
in the rate of unemployment from the VAR-SVt. All variables are in logs × 100.
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(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 8: Median, 68 and 95 percent confidence bands of responses to unanticipated increase
in the rate of unemployment from the VAR-SVO. All variables are in logs × 100.

Table 3: Median response differentials between alternative models and the VANNAR.

Sample: February 2020 June 2020 September 2020
Model/Horizon 1 12 24 60 1 12 24 60 1 12 24 60

Employment
VAR-C -0.002 0.007 0.032 0.009 0.128∗ 0.061 -0.000 0.010 0.112 0.048 0.044 0.074
VAR-LP -0.002 0.007 0.032 0.009 -0.091 -1.577∗∗ -1.838∗∗ -1.642∗ 0.088 -0.066 -0.095 -0.075
VAR-SVt -0.003 0.068 0.096∗ 0.054 0.064 -0.056 -0.095 -0.101 0.070 0.010 0.015 0.037
VAR-SVO -0.003 0.068 0.096∗ 0.054 -0.166 -0.520∗∗ -0.668∗∗ -0.772∗ 0.083 0.061 0.064 0.071

PCE
VAR-C 0.046 0.016 0.041 0.029 0.243∗ 0.024 0.017 0.061 0.214∗ 0.031 0.037 0.105
VAR-LP 0.046 0.016 0.041 0.029 -0.205 -1.213∗ -0.950 -1.441∗ 0.172∗ -0.041 -0.015 -0.019
VAR-SVt 0.044 0.040 0.024 -0.008 0.043 -0.341∗ -0.565∗ -0.901∗∗ 0.089 -0.188 -0.311∗ -0.446∗

VAR-SVO 0.044 0.040 0.024 -0.008 -0.254 -0.803∗∗ -1.159∗∗ -1.860∗∗ 0.177∗ -0.007 -0.046 -0.020
Core PCE (price)

VAR-C 0.005 -0.010 -0.021 -0.035 0.007 -0.012 -0.031 -0.034 0.010 0.004 -0.003 0.002
VAR-LP 0.005 -0.010 -0.021 -0.035 -0.010 -0.464∗∗ -0.887∗∗ -1.245∗∗ 0.007 -0.037 -0.068∗ -0.090
VAR-SVt 0.009 0.020 0.032∗ 0.041∗ 0.059 0.040 0.038 0.034 0.010 0.034 0.052 0.095
VAR-SVO 0.009 0.020 0.032∗ 0.041∗ 0.064∗ 0.074 0.091 0.135 0.012 0.033∗ 0.053∗ 0.084∗

Note: ∗ and ∗∗ indicate significance at 68 and 95 percent confidence, respectively.
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Impulse Responses. Figures 6, 7 and 8 present the median, 68 and 95 percent

confidence bands of the responses of employment, aggregate consumption and the price

level to an unanticipated increase in the rate of unemployment estimated from the VAR-

LP, VAR-SVt and VAR-SVO, respectively. As noted above, the VAR-LP estimated on the

sample ending by Febraury 2020 is equivalent to the VAR-C. Thus, the macroeconomic

responses from the VAR-C can be simply observed from the first column of Figure 6. In

each model, the shock to the rate of unemployment is identified using the same protocol of

Lenza and Primiceri (2020) used for the VANNAR.26

The main result we highlight is that, to a great extent, the responses from the four

alternative models yield structural inference similar to that obtained from the VANNAR

(R6). The responses of the real economy (employment and consumption) are qualitatively

similar across the four alternatives and to those obtained from the VANNAR, in that the

shock generates a sharp and long-lasting reduction in the real activity. The responses of

the nominal economy estimated from the VAR-C and the VAR-LP are also similar to those

from the VANNAR, in that the shock leads to a persistent reduction in the price level, but

differ from those estimated from the VAR-SVt and the VAR-SVO which do not show similar

reductions. Further, the macroeconomic responses from the VAR-LP, the VAR-SVt and

the VAR-SVO display an increase in magnitude and uncertainty as the estimation sample

changes from February to June 2020 thereby including the early pandemic observations.27

Uncertainty reduces only partially as the economy progresses over the pandemic but it is

still higher than that measured for the pre-pandemic period, as visible when comparing the

bands around the responses in June 2020 with those in September 2020.

To further evaluate these results, we construct an empirical test of the difference be-

tween the responses from the alternative models and the VANNAR.28 Table 3 presents the

26Vertical axes in the figures are not harmonized across the estimation samples to facilitate visualization.
In particular, note how the scale increases by a factor of 10 when moving from February to June 2020.

27By construction, the macroeconomic responses from the VAR-C are time invariant, being exactly the
same for February, June and September 2020.

28For each alternative model we compute 1000 posteriors of the IRF for any of the three samples and
at any given horizon. We then subtract (from each of these) 1000 posteriors of the corresponding IRF
estimated from the VANNAR to construct empirical densities of the response differentials. We extract
from these densities the median differential, the 68 and 95 percent confidence bands. Evidence in favour of
macroeconomic responses from an alternative model being different from those of the VANNAR is gained
if zero is not included in the confidence bands at a given statistical level.
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(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 9: Median, 68 and 95 percent confidence bands of out-of-sample forecasts from
VAR-C (blue) and VANNAR (grey) conditional on the unemployment prediction from the
Blue Chip Forecast and actual data (Feb. and Jun. 2020). All variables are in logs × 100.

results from this exercise for the responses of employment, aggregate consumption and price

level evaluated at four given horizons over the three estimation samples. Each row reports

the median differential of a given alternative model relative to the VANNAR, with one and

two stars indicating whether this is different from zero with 68 and 95 percent confidence,

respectively. According to these results, the macroeconomic responses estimated from the

VANNAR are statistically not different from those obtained under any of the alternative

models for the majority of samples and time horizons. The few instances where the re-

sponses are statistically different tend to be concentrated within the June sample and for

the variables measuring the real activity, employment and consumption.29

Conditional Forecasts. Figures 9, 10, 11 and 12 display the median, 68 and 95 percent

confidence bands of the conditional forecasts of employment, aggregate consumption and

price level from the VANNAR against those from the VAR-C, VAR-LP, VAR-SVO and

VAR-SVt, respectively. As for the VANNAR, the forecasts are computed starting from

the end of each estimation sample. In each figure, solid black lines until the start of the

29As a further robustness check, we recomputed the test using the mean differentials as opposed to the
mean. The results are essentially unaltered.
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(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 10: Median, 68 and 95 percent confidence bands of out-of-sample forecasts from
VAR-LP (blue) and VANNAR (grey) conditional on the unemployment prediction from
the Blue Chip Forecast and actual data (Feb. and Jun. 2020). All variables are in logs ×
100.

(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 11: Median, 68 and 95 percent confidence bands of out-of-sample forecasts from
VAR-SVt (blue) and VANNAR (grey) conditional on the unemployment prediction from
the Blue Chip Forecast and actual data (Feb. and Jun. 2020). All variables are in logs ×
100.
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(a) Feb. 2020 (b) Jun. 2020 (c) Sep. 2020

Figure 12: Median, 68 and 95 percent confidence bands of out-of-sample forecasts from
VAR-SVO (blue) and VANNAR (grey) conditional on the unemployment prediction from
the Blue Chip Forecast and actual data (Feb. and Jun. 2020). All variables are in logs ×
100.

forecasts indicate actual data, red dots denote actual data over the forecasting horizon until

April 2021. The main results observable from these figures is that each of the alternative

models yield out-of-sample forecasts qualitatively similar to those from the VANNAR (R7).

This is supported by three observations. Firstly, no model estimated with data up until

February 2020 can accurately predict the effects of the pandemic on the wider economy.

This is particularly evident for the large decline in the real economic activity more than the

nominal activity. Secondly, the accuracy of the forecasts visibly improves once considering

the estimates in June and September 2020, though still most of the models appear to

understate the observed recovery of aggregate consumption. Thirdly, under all alternative

models, macroeconomic uncertainty increases once estimation includes the latest data.

To formally evaluate how the forecasts from these alternative models compare to those of

the VANNAR, we constructed an empirical test of the ratio between the RMSFEs estimated

under each alternative model and the VANNAR, based on 1000 posteriors of each model

conditional forecast for any starting period and horizon. The resulting empirical densities

are then used to evaluate the mean RMSFE ratios, the 68 and 95 percent confidence bands.
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Table 4: Root Mean Square Forecast Errors Ratios between alternative models and the
VANNAR.

Sample: February 2020 June 2020 September 2020
Model/Horizon 1 3 7 10 12 14 1 3 7 10 1 3 7

Employment
VAR-C 0.42∗∗ 1.34∗∗ 1.27 1.44 2.21 6.65 12.53∗ 5.90 4.11 3.47 3.01 4.90 1.49
VAR-LP 0.41∗ 1.34∗∗ 1.27 1.46 2.23 7.01 12.69 6.39 5.10 5.17 8.27 2.51 1.54
VAR-SVt 0.78 1.31∗ 1.99∗∗ 2.14∗∗ 3.23∗∗ 10.27∗∗ 36.89∗ 23.55 24.90 20.99 48.33 33.46 10.84
VAR-SVO 0.78 1.31∗ 1.99∗∗ 2.14∗∗ 3.23∗∗ 10.27∗∗ 3.38 2.00 2.15 1.70 2.03 2.21 1.40

PCE
VAR-C 1.86∗ 1.73∗∗ 8.93 5.02 7.00 7.77 107.26 11.38 6.43 21.15 7.48 2.42 4.31
VAR-LP 1.82∗ 1.73∗∗ 10.13 4.91 7.38 3.91 230.85 12.52 6.79 30.49 8.93 2.87 4.52
VAR-SVt 2.26∗ 1.15 6.44 2.59 3.51 10.43 53.08 8.02 4.43 21.22 7.48 5.20 3.33
VAR-SVO 2.26∗ 1.15 6.44 2.59 3.51 10.43 62.98 6.46 3.27 13.01 2.26 2.66 2.45

Core PCE (price)
VAR-C 15.68∗ 0.71 7.10 7.51 3.81 3.16 6.23 6.70 11.28 1.47 6.74 16.35 4.26
VAR-LP 16.96∗ 0.69 6.78 6.89 3.94 3.31 14.70 15.38 20.77 4.27 3.17 11.68 4.36
VAR-SVt 8.74 1.43 2.52 3.56 1.43 0.84∗ 1.55 4.00 5.27 2.43 2.83 11.29 2.72
VAR-SVO 8.74 1.43 2.52 3.56 1.43 0.84∗ 1.53 2.99 1.08 2.15 4.08 5.82 2.64

Note: Values above (below) one indicate that the forecast from a given alternative model does
not (does) improve that from the VANNAR. ∗ and ∗∗ indicate significance at 68 and 95 percent
confidence, respectively.

Table 4 presents the results from the computed mean RMSFE ratios. Values above (be-

low) one indicate that the forecast from a given alternative model does not (does) improve

that from the VANNAR, with one and two stars indicating 68 and 95 percent confidence,

respectively. According to the results in the table, none of the alternative models can

produce more accurate forecasts relatively to the VANNAR, regardless of the estimation

sample and for the majority of forecast horizons considered (R8). In particular, consid-

ering February 2020, the VANNAR forecasts for employment, over most of the forecast

horizon, and consumption, up to three months ahead, are more accurate than most alter-

natives. Forecasts of consumption beyond three months and of the price level turn out to

be not statistically different. As the starting period of the forecast moves to either June

or September 2020, the mean RMSFE ratios are generally greater than one in most in-

stances, pointing towards the greater accuracy of the VANNAR forecasts relatively to the

alternatives considered. However, in almost all instances the improvement in the forecast

performance turns out to be not statistically significant at the conventional levels due to

the large standard errors from the alternative approaches in these two samples, as visible
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from figures 9, 10, 11 and 12.30

5 Conclusion

In this paper we develop a regime switching vector autoregression where artificial neural

networks drive time variation in the coefficients of the conditional mean of the endogenous

variables and the variance covariance matrix of the disturbances. The model, which we term

vector artificial neural network autoregression (VANNAR), includes a stability constraint

to ensure non-explosive dynamics in any instance where a (non)linear VAR would otherwise

be unstable. The proposed VANNAR methodology is entirely data driven and designed to

capture not only many of the typical characteristics observed in nonlinear time series data,

such as randomness, cycles and stochastic trends, but also more extreme events, such as

jumps, asymmetric adjustments and large outliers that cannot be captured adequately by

linear homoscedastic VARs.

We confront the proposed methodology with one of the latest challenge in empirical

macroeconomics, the estimation of VARs on aggregate data that include the large outliers

caused by the Covid-19 pandemic. The empirical results show that the VANNAR delivers

plausible (R1) and stable (R2) structural inference, with the magnitude and uncertainty of

the macroeconomic responses to shocks temporarily increasing during the pandemic periods

(R3). The model forecasts capture only in part the macroeconomic slump observed in the

first three months of the pandemic, tracking much better the subsequent slow recovery phase

(R4 and R5). As a robustness exercise, we compare these results with those from four

alternative methodologies recently proposed to deal with VAR estimation in the presence

of the large outliers. We find that structural inference undertaken with any alternative

model is generally consistent with that from the VANNAR (R6). All alternative models

yield out-of-sample forecasts qualitatively similar to those from the VANNAR (R7), but

none of them can produce more accurate forecasts relatively to the VANNAR (R8).

30For example, the estimated RMSFE ratio between the VAR-LP and the VANNAR for PCE at the one
month horizon is very large (230.87) because the density of the forecasts from the VAR-LP is very diffuse
while that from the VANNAR is much tighter at the one month horizon. Thus the RMSFEs sampled from
the VAR-LP are large, while those from the VANNAR are much smaller, hence the large ratio. The very
diffuse density of the VAR-LP forecasts also determines the statistical insignificance of the RMSFE ratio.
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