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Lock-In Effects in Online Labor Markets 
 
 

Abstract 
 
This article reports on an investigation of the role of lock-in exploitation and the impact of 
reputation portability on workers’ switching behaviors in online labor markets. Online platforms 
using reputation mechanisms typically prevent users from transferring their ratings to other 
platforms, inducing lock-in effects and high switching costs and leaving users vulnerable to 
platform exploitation. With a theoretical model, in which workers in online labor markets are 
locked-in by their reputational data, we test the effects using an online lab-in-the-field decision 
experiment. In addition to comparing a policy regime with and without reputation portability, we 
vary lock-in exploitation using platform fees to consider how switching behavior might differ 
according to monetary motives and fairness preferences. Theoretically, this study reveals how 
reputational investments can produce switching costs that platforms can exploit. Experimentally, 
the results suggest that reputation portability mitigates lock-in effects, making users less 
susceptible to lock-in exploitation. The data further show that switching is driven primarily by 
monetary motives, but perceiving the fee as unfair also has a significant role. 
JEL-Codes: J240, D910, L510. 
Keywords: crowdsourcing, online markets, online labor, reputation portability, switching costs. 
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1. Introduction

On online platforms, lock-in effects arise from platform-specific reputation mechanisms. The
reputation mechanisms function to address market inefficiencies that arise from asymmetric
information (Dellarocas et al., 2006), but users generally cannot take their valuable, positive
ratings with them to another platform. By building up their reputation, users may become
increasingly tied to one platform; switching to another platform would risk incurring significant
costs to build their reputation all over again on the new platform. In turn, platforms can exploit
locked-in users by charging them higher fees.1 In online labor markets, online workers’ switching
behaviors likely reflect the influences of lock-in effects linked to specific online labor platforms.
We accordingly analyze whether a regulatory regime that requires reputation portability might
mitigate these lock-in effects and reduce worker exploitation. Our focus in this study is on online
labor markets, yet our findings likely have wider applicability to labor markets and the gig
economy more generally.

Notably, reputation portability could address lock-in effects (Crémer et al., 2019), but few
platforms allow users to import or export their ratings.2 Although Amazon previously allowed
sellers to import their reputational data from eBay, once eBay threatened to sue Amazon for
intellectual property infringement, it halted this practice, which likely relaxed the competition for
sellers (Resnick et al., 2000; Ba and Pavlou, 2002; Dellarocas et al., 2006). We also recognize that it
is technically feasible to transfer reputational data, such that when Rover merged with DogVacay,
it gave DogVacay’s users an easy path to transfer their ratings, reviews, and transaction history
to its platform (Farronato et al., 2020). However, dominant platforms such as Airbnb, Amazon,
eBay, and Uber appear to prefer limiting such transfers of reputational data, likely because the
switching costs created by user lock-in can mitigate competition, even if they harm users’ overall
welfare (Shapiro et al., 1998). If data transferability increases competition among platforms,
such that it is incentive-incompatible for these powerful actors, then regulatory action likely is
required.

Some relevant actions already are in place, introduced by regulators around the globe, in the
form of data privacy laws (Hesse and Teubner, 2019) that aim to mitigate lock-in effects, enhance
data ownership, and foster competition. For example, Article 20 (Right to Data Portability) of
the European Union’s General Data Protection Regulation (GDPR) stresses that individuals have
the right to request their own data, as well as transfer them to other online providers without
difficulty. Article 20 also seeks to promote and increase users’ negotiating power by reducing
lock-in effects and protecting the “fundamental rights and freedoms of natural persons and in particular
their right to the protection of personal data” (European Commission, 2016). Many other regulators

1Apple, for example, takes a 30% commission on the total sale price of all paid apps (Kotapati et al., 2020).
2As two exceptions that prove the rule, Bonanza.com and TrueGether.com allow users to import their ratings from

other platforms (Hesse et al., 2020).
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have introduced data portability laws,3 or proposed their introduction.4

Data privacy laws are often welcomed as a laudable step toward enhancing competition among
platforms and giving users control over their personal data (Engels, 2016; De Hert et al., 2018).
However, whether data portability can serve as an effective mechanism to address lock-in effects
and how it should be implemented remain open questions, as do discussions of how to overcome
lock-in effects and increase consumers’ negotiation power to include reputational data as part of
their personal data (Kathuria and Lai, 2018; Hesse and Teubner, 2019).5 That is, reputational
data do not fall under the scope of Article 20 according to current legal interpretations, because
ratings and reviews are provided by reviewers and not the user, such that a user does not legally
own her or his reputational data (Graef et al., 2013; Diker Vanberg and Ünver, 2017).

In an effort to understand reputation portability, exploitation by platforms, the likely effects
of policy changes, and the implications for online workers, we therefore develop a theoretical
framework that represents a variation of Holmström’s (1999) model of managerial incentives. In
this model, workers care about their future reputation and must choose the optimal effort to exert
when completing a task. We extend this model by allowing these workers to consider working
in a different labor market. Then we include switching costs, defined as the effort investment
that workers make over time to build their reputations and maximize their revenue streams.
Furthermore, we introduce a fee that the platform imposes on workers. Then we test two policy
regimes, with and without reputation portability. The first regime reflects the current situation,
with no right to reputation portability required by the GDPR. In the second policy scenario, we
imagine a case with reputation portability, in which platforms import workers’ ratings when they
switch.6 Across these regimes, we analyze workers’ switching behaviors in markets in which
(1) platforms are perfectly identical and charge the same fees at the same time or (2) only the
focal platform (i.e., where workers currently work) charges a fee. Thus we can specify switching
behavior based on monetary motives and fairness preferences that result when workers sense that
they have been treated unjustly by the platform that imposes a fee increase. We test the findings
from the theoretical model with an online lab-in-the-field decision experiment, conducted with
actual online workers who participate on the crowdsourcing platform Amazon Mechanical Turk
(AMT). Thus, we gain a natural setting for observing worker behavior, even as we manipulate
policy differences in reputation portability, and levels of exploitation by platforms.

In more detail, we distinguish two types of stylized workers: those with pure monetary motives
3Examples are the Californian Consumer Privacy Act of 2018, the Brazilian General Data Protection Law of 2020,

the Swiss Federal Act on Data Protection of 2020, the German Act against Restraints of Competition for a focused,
proactive and digital competition law 4.0 and amending other competition law provisions of 2021, and the Chinese
Personal Information Protection Law of 2021.

4For example, the Indian Personal Data Protection Bill, the Canadian Digital Charter Implementation Act, and the
Australian Consumer Data Right.

5To the best of our knowledge, the only formal initiative that tries to enforce reputation portability is the one
introduced by the Latium Regional Government (legge num. 4 del 12 aprile 2019).

6Reputation portability can be implemented via other designs too; for a comprehensive description of different
scenarios, see Hesse and Teubner (2019).
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and those who express fairness preferences (Kahneman et al., 1986). Workers with pure monetary
motives are driven solely by the amount of their wages, but workers with fairness preferences
care about the actions of the platform, such as the introduction of new fees. If they perceive
unfair treatment, these latter workers might reciprocate by switching away from a platform
that levies a fee, even if doing so causes them to lose wages. For this article, we define fairness
preferences as workers’ preference relative to a fee increase by the platform on which they are
currently working. Our proposed theoretical model, by accounting for these features, resembles
an ultimatum game (Güth et al., 1982) in which a proposer (the platform), endowed with some
good, must decide how to share it with a responder (the worker). The responder can decide to
accept or refuse the offer; if the responder refuses, both agents get nothing. Experimentally, we
study the reaction of workers to exploitation, as imposed by a platform fee, and test whether
their switching behavior is driven by monetary motives or fairness preferences.

According to prior studies, if workers regard wage decreases as unfair, they also might reciprocate
by lowering their effort (Fehr et al., 1993; Fehr and Falk, 1999), even if the wage reduction resulted
from exogenous causes, such as an economic recession (Bewley, 2007). Blount (1995) notes
though that the perceived intentions and identity of the proposer influence the responder’s
reaction, such that reciprocity tends to be weaker when the proposer is a machine engaged in
random assignments and stronger if the proposer is human. In our experiment, we determine the
level of exploitation randomly. Because we recreate the working conditions and environment for
workers on online platforms, the experimental participants’ reactions should mimic the real-life
responses of online workers (Henrich et al., 2001).

The theoretical and experimental results we thus obtain offer new evidence with regard to
switching behavior in online labor markets. First, with our theoretical model, we establish
that in a policy regime without reputation portability, reputational investments can become
switching costs that platforms can exploit, given workers’ reluctance to lose their valuable ratings.
Second, our experimental results indicate that workers switch platforms significantly more often
if the current platform introduces a fee, and this switching behavior is driven by both monetary
motives and fairness preferences. The results further clarify that a policy regime with reputation
portability significantly increases switching, such that workers are less likely to be exploited by
labor platforms.

The remainder of the article is organized as follows: In Section 3, we relate our research question
to existing literature. Section 3 contains our theoretical model and outlines our hypotheses. In
Section 4, we detail our experimental setting and procedure. Section 5 describes the sample and
summarizes the experimental results. Finally, Section 6 concludes the article.
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2. Literature

The current article contributes to research into switching costs and reputation portability. We
follow Wohlfarth (2019) and assume that reputation portability, defined as the ability of users to
transfer their reputation from one platform to another, determines the degree of switching costs
and consequently lock-in strength. Switching costs more generally might be associated with
physical investments in devices, learning or transaction costs, complementary services, or even
psychological costs that reflect laziness, brand loyalty, and so forth (Farrell and Klemperer, 2007).
When users confront high switching costs, they are unlikely to switch even if the focal platform
becomes relatively more expensive than competitors’. In addition, various studies (Klemperer,
1987a,b, 1995; Farrell and Shapiro, 1988, 1989) show that the presence of switching costs for
customers triggers firms to engage in fierce ex ante competition to gain market shares but more
relaxed ex post competition, once those consumers become locked in to the firm. Thus, lock-in
effects enable firms to extract higher rents, as long as the difference in prices set by the firms
does not exceed the barrier determined by switching costs (Gehrig and Stenbacka, 2004). In our
study, workers invest effort to increase their reputation over time, and because this reputation
has significant economic value (Ba and Pavlou, 2002; Resnick et al., 2006; Moreno and Terwiesch,
2014; Luca, 2016; Saeedi, 2019), the workers are inclined to devote more effort to earn higher
wages by building their strong reputation and maintaining it over time (Fehr and Goette, 2007;
Mason and Watts, 2009; Cabral and Xu, 2021).

Scarce literature investigates the effects of data portability though. Wohlfarth (2019) proposes a
game-theoretic model that incorporates a competitive environment created by data portability
rights. He demonstrates analytically that data portability generally has a positive effect on
welfare but can induce negative consequences for consumers, if firms collect and reveal more
of their personal data for profit, compared with a situation without data portability. Krämer
and Stüdlein (2019) agree that data portability may increase firms’ willingness to extract and
disclose more data. On the demand side of the market, imported reputation data can increase
online workers’ trust in the platform (Kokkodis and Ipeirotis, 2016), as well as across platforms
(Otto et al., 2018), especially if the platform that imports their ratings is active in the same sector
as the platform of origin (Teubner et al., 2019; Hesse et al., 2020).

We contribute to this nascent literature on data and reputation portability by studying the supply
side of online labor markets and considering what would happen if reputational data could be
transferred across platforms. Thus far, the economic consequences of reputation portability on
users’ surpluses are unclear. Research has focused on the influence of reputation on a specific
platform (Resnick et al., 2006; Kokkodis and Ipeirotis, 2016) or the general idea of data portability
between platforms, which refers mostly to legal and technical dimensions (Dellarocas et al.,
2006; Engels, 2016; De Hert et al., 2018; Wohlfarth, 2019). Furthermore, existing literature on
switching costs tends to assume scenarios with homogeneous consumers, in the sense that they
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face the same switching costs (Gehrig and Stenbacka, 2004). Hesse and Teubner (2019) provide
a conceptualization and review of reputation portability that leads them to call for further
research on cross-platform tangible economic value, as well as more empirical and experimental
approaches.

In response, we investigate individual switching costs and the resulting switching behavior
exhibited by workers in a natural work environment. To the best of our knowledge, only one
previous study (Eurich and Burtscher (2014)) experimentally investigates switching behavior
while considering the strength of lock-in effects. They conduct an online lab experiment with
students to determine that dissatisfying changes in the business-to-consumer relationship, such
as increased prices, data leakages, or privacy violations, can have negative consequences for the
business and lead consumers to choose a competitor, despite the costs of switching.

We study the problem of lock-in effects for online labor markets, which are characterized by
high switching and set-up costs for workers, such that they typically discourage multi-homing
or activity across different platforms (ILO, 2018). Due to their monopsony power (Dube et al.,
2020), online labor platforms can impose lock-in effects that limit the choice, mobility, and
career development of workers, making them more vulnerable and susceptible to exploitation.
Choudary (2018) argues that the design of online labor platforms has important implications for
whether its workers are empowered or exploited by the organizations. For example, providers
with substantial market power might demand a higher percentage of workers’ wages in return
for providing the platform with their work (Kingsley et al., 2018). Some workers also confront
unstable earnings, unpredictable scheduling, unclear employment status, and a lack of social
protection or voice (Degryse, 2016; ILO, 2018; Johnston et al., 2018). Risks historically borne
by companies in traditional employment relationships can be shifted to workers, who in turn
earn less income than their counterparts in traditional employment relationships, at least in
industrialized countries (Felstiner, 2011; Bergvall-Kåreborn and Howcroft, 2014). Furthermore,
online workers’ income often is reduced by inappropriately calculated working times (Borchert
et al., 2018). Wood et al. (2019), evaluating job quality in the online gig economy, find that
platforms’ regulations often assign autonomy to workers but at the cost of irregular working
hours and strong competition, which creates downward pressure on their earnings. The right to
reputation portability, among other efforts, could help improve the position of online workers by
decreasing their platform dependency.

3. Theoretical Framework

We first aim to derive formal, testable hypotheses, then determine, with some simplifying assump-
tions, whether a platform can lock in workers using platform-specific reputation mechanisms,
which in turn would enable it to exploit locked-in workers by imposing a fee over some infinite
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time horizon. To derive testable hypotheses, we propose a model based on Holmström (1999)
that accounts for reputation formation for a representative worker, competing in an online labor
market managed by a monopolist platform. Present performance provides relevant information
about future performance, and an average rating achieved by a worker can invoke a premium or
extra remuneration the worker receives for each task, beyond any fixed wage. When workers
first subscribe to the platform, they have no ratings. As they start working, they establish ratings
that can change, according to their performance. A higher average rating should lead to higher
wages. In other words, ceteris paribus, two workers who engage in the same level of labor might
earn different wages if they have different average ratings.

Similar to Lambin and Palikot (2019), we consider ratings as a measure of the performance in
every period t:

rt = η + at + εt, t = 1, 2, ..., (1)

where η is the worker’s talent, which is fixed although the information about the worker’s talent
is incomplete for the worker and the platform. However, both share a common prior belief about
η. This prior belief is normally distributed, with mean m1 and precision h1, such that precision
is the inverse of the variance. Over time, learning about the talent of the worker takes place, by
observing the emerging rating rt. The labor input of the worker is at ∈ [0,∞), and εt represents
a stochastic noise term, normally distributed with mean zero and precision hε.

In every period t, the worker is paid according to the following revenue scheme:

ct = f + wt(rt−1),

where f > 0 is an exogenous fixed amount granted to workers who have completed a task,
independent of their performance,7 and wt(rt−1) is the premium associated with the average of
past ratings (rt = (r1; ...; rt)) received by a worker. We assume this information is known to the
market and used as a basis for wage payments; it usually appears next to the agent’s profile in
practice, as a representation of past performance. Furthermore, we assume a competitive market
and risk-neutral participants, who set their premium in line with their average rating:

wt(rt−1) = E[rt|rt−1] = E[η|rt−1] + at(rt−1), (2)

where at(rt−1) is the labor input, as the best response of the worker. Platforms act as interme-
diaries, for which service they may charge an ad valorem fee, required after each transaction.8

7Here, f does not affect the model results, because we assume the worker is risk neutral. We introduce this point in
line with the experiment, in which we pay participants a minimum compensation.

8For example, Amazon marketplaces charges fees ranging from 7 to 45%, depending on the product category;
Airbnb charges 3%; and online labor platforms such as AMT and TaskRabbit charge 20% and 15%, respectively.
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We assume this fee gets applied directly to workers’ premium revenue. Their atemporal utility
function thus is:

U(c, a, φ) =
∞∑
t=1

βt−1[ct − g(at)]−
∞∑
t=k

βt−1φct, (3)

where β ∈ [0, 1] is a discount factor; g(·) is an increasing and convex function that represents the
effort cost; and U(·, ·, ·) is publicly known. We assume that at time k, the platform introduces
a fee φ ∈ [0, 1].9 Therefore, before k, the platform’s profits are zero, and all wages go to the
worker.10 The outside option for the worker is not to work, which provides utility equivalent to
0. We thus write the problem of the worker for maximizing expected utility as follows:

max
a(·)

∞∑
t=1

βt−1[f + Ewt(rt−1)− Eg(at(rt−1))]−
∞∑
t=k

βt−1φ[f + Ewt(rt−1)]. (4)

Together, Equations (4) and (2) determine equilibrium. The market cannot observe workers’
labor input directly, but because (3) is general knowledge, we can use it to infer at by solving
workers’ maximization problem. Moreover, observing rt is equivalent to observing the sequence

zt ≡ η + εt = rt − at(rt−1). (5)

By observing this sequence, the market learns about η, given normality and independence
assumptions. The posterior distribution of η follows a normal distribution with means and
precision given by, respectively,

mt+1 =
htmt + hεzt
ht + hε

=
h1m1 + hε

∑t
s=1 zs

h1 + thε
, (6)

ht+1 = ht + hε = h1 + thε. (7)

By applying Equation (6), we then can write Equation (2) as:

wt(rt−1) = mt(zt−1) + at(rt−1). (8)

9We focus on workers’ reaction to the fee introduction or increase; we do not address the optimal time k when the
fee should be introduced to maximize the platform’s profits.

10Even without analyzing platforms’ business strategy, we might expect that, in a first period, it imposes no or
very low fees to attract workers. This well-known firm strategy supports rapid growth and market share (Belle-
flamme and Peitz, 2015). In practice platforms often change their pricing structure or increase their fees over
time. For example, in 2015, AMT doubled its commission fees for requests of more than ten workers (see
https://www.businessinsider.com/amazon-mechanical-turk-price-changes?r=US&IR=T). Netflix also has
increased its fees (see https://www.cnbc.com/2020/10/31/why-netflix-will-keep-raising-prices-with-

confidence.html).
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The expected premium associated with the past rating is:

Ewt(rt−1) =
h1m1

ht
+
hε
ht

t−1∑
s=1

(m1 + as − Eas(rs−1)) + Eat(rt−1). (9)

From Equation (9), it follows that for a non-stochastic equilibrium path of labor supply, the
marginal return of the expected premium to as for all s ∈ {1, ..., t − 1} in period t will be
αt = hε/ht, independent of labor inputs in other periods. The maximization problem in Equation
(4) is then:

max
a(·)

∞∑
t=1

βt−1[f +
h1m1

ht
+ αt

t−1∑
s=1

(m1 + as − Eas(rs−1)) + Eat(rt−1)− Eg(at(rt−1))]−

−
∞∑
t=k

βt−1φ[f +
h1m1

ht
+ αt

t−1∑
s=1

(m1 + as − Eas(rs−1)) + Eat(rt−1)].

(10)

Next, we maximize Equation (10) with respect to at and obtain, after rearranging:

∞∑
s=t

βs−tαs −
∞∑
s=t

βs−tIsφαs = g′(at(rt−1)), (11)

where Is is an indicator function that takes the following value, depending on the time:

Is =

0, s < k

1, s ≥ k.

As t → ∞, αs → 0. Therefore, the equilibrium sequence of labor inputs goes asymptotically
toward 0. As long as the talent of the worker is unknown, there are returns to supplying labor.
However, over time, the market learns the true value of η. At the limit, there are no returns to
trying to use labor input to bias performance evaluations, so the labor input goes to 0. Comparing
Equation (11) against the first-order condition in Holmström (1999),11 we can observe that the
marginal return to labor supply decreases with the fee requested by the platform.

3.1. Ratings as Switching Costs

Consider a setting with two identical platforms. In line with the current regulatory situation
in Europe, we start with a regulatory regime in which no reputation portability is possible.
11In Holmström (1999):

γt ≡
∞∑
s=t

βs−tαs = g′(a∗t (y
t−1)).
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Then for a second, hypothetical regulatory regime, we imagine a policy scenario that features
reputation portability, as if Article 20 of the GDPR were to extend from its current form to include
reputational data.

Policy Regime without Reputation Portability

Two platforms (% and #)12 are initially identical and set the same fee, which we normalize to
0. Both platforms offer a platform-specific reputation mechanism, so reputation built on one
platform cannot transfer to the other platform. They remain identical until time k. Then at time
k, Platform% raises the ad valorem fee to φ, while Platform# maintains its fee at 0. Therefore,
these two platforms unequally exploit their workers, because only one of them introduces a fee.
We abstract from strategic behaviors between platforms and assume that the fee increase on
Platform% happens for an exogenous reason, such as a new tax that it passes through to users.13

We further assume that workers cannot anticipate or predict the fee increase, because otherwise,
they would realize that subscribing to Platform# is always more profitable.

Assume Platform% sets a fee φ that gets imposed from time k onward. Workers are not aware of
the fee until time k, at which moment, they have two choices: (1) remain on Platform%, to keep
benefiting from the reputational investment made so far but lose income equal to the cost of the
fee, or (2) switch to Platform#, which does not impose a fee but requires them to rebuild their
reputations from scratch. To simplify the analysis and avoid asymmetric information (i.e., the
workers know more about themselves than the market), we assume that following a platform
switch, the learning process depicted in Equation (6) restarts. Even if workers know their own
skills, available tasks, and how the new platform works, they reasonably will remain somewhat
uncertain about how their skills will be evaluated by the new market.14 Thus, after time k,
workers face a new problem but will stay on Platform% if

∞∑
t=1

βt−1[(1− φ)ck+t−1 − g(ak+t−1)] ≥
∞∑
t=1

βt−1[ct − g(at)]. (12)

What is critical to notice here is that the difference between the utility obtained on Platform%
versus the utility on Platform# is equivalent to the premium associated with past ratings, dimin-

12Similar to Hossain and Morgan (2009), we avoid using symbols that might be associated with an order of preference.
13For example, Google passed the cost of the UK’s digital services tax on to British advertisers, raising its fees by 2%.

See https://www.theguardian.com/media/2020/sep/01/googles-advertisers-will-take-the-hit-from-uk-digital-
service-tax.

14Imagine a worker with a good reputation on Platform%, which informs this worker of her talent. Still, when
switching platforms, this worker seems likely to exert substantial effort to gain an equally good reputation on the
new platform or to impress the new employer.
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ished by the fee.15 By sticking with Platform%, at time k workers enter into a revenue scheme
that accounts for past ratings obtained thus far:

ck = f + wk(r
k−1).

However, by switching platforms, all past ratings from Platform% are lost, and on Platform#,
the worker has to restart from scratch. The inequality (12) implies that Platform% must set an
incentive-compatible fee to retain workers on its marketplace, such that

φ ≤
∑∞

t=1 β
t−1[ck+t−1 − g(ak+t−1)]−

∑∞
t=1 β

t−1[ct − g(at)]∑∞
t=1 β

t−1ck+t−1
. (13)

Because it is not possible to find an analytical solution to Equation (13), in Appendix (A.1),
we identify the existence of a fee that matches the inequality for some range of parameters
β, f,m1, h1, and hε.

In general, our model is similar to an ultimatum game (Güth et al., 1982), in which the proposer
is the platform and the responder is the worker. If the worker has pure monetary motives, the
incentive-compatible fee represents the lowest offer workers are willing to accept. If the fee
exceeds this value, workers refuse the offer and switch to the other platform. In the experiment,
we expect workers with purely monetary motives to switch any time their expected utilities are
higher on the other platform. Thus, we offer the following hypothesis:

Hypothesis 1a: Platform switching is driven by monetary motives.

Other factors could explain switching behavior by workers too. Considering the game structure
and that of the experiment, workers’ switching behavior may be motivated by monetary motives
but also by fairness preferences. Workers with fairness preferences face an additional disutility
when the platform introduces a fee because they also perceive it as unfair. Thus, the fee in
Equation (13) would not be incentive-compatible if the platform fails to account for the fairness
preferences of the worker. We capture this disutility created by workers’ fairness preferences
by adding a negative parameter δ(φ) ∈ [0,∞), increasing in φ. Then a worker with fairness
preferences will remain on Platform% if

∞∑
t=1

βt−1[(1− φ)ck+t−1 − g(ak+t−1)]− δ(φ) ≥
∞∑
t=1

βt−1[ct − g(at)]. (14)

15In the experiment, we also consider the switching behavior of workers if two platforms equally exploit them, such
that both introduce the fee simultaneously. In that case, the inequality (12) becomes:

∞∑
t=1

βt−1[(1− φ)ck+t−1 − g(ak+t−1)] ≥
∞∑
t=1

βt−1[(1− φ)ct − g(at)].

Unlike an unequal exploitation of lock-in effects, we expect that workers are less likely to switch if platforms
equally exploit their workers.

11



Workers may have varying levels of tolerance for the fee, which could explain their switching
behavior. Those workers for whom δ = 0 are those with pure monetary motives, as depicted
in Equation (12). Respondents with δ → ∞ always switch, because they have pure fairness
preferences and cannot tolerate the imposition of even the smallest fee. Other workers might
perceive the fee increase as unfair (δ > 0) but tolerable, such that they would not switch if the
compatibility constraint in Equation (14) is respected. These workers exhibit both monetary
motives and fairness preferences. Workers with fairness preferences, who confront a platform fee
but tolerate it, endure the highest losses when reputation is not transferable. Thus, a policy regime
with reputation portability could be especially beneficial for workers with fairness preferences,
because switching would not imply the loss of reputational investments.

We expect that some workers exhibit fairness preferences and switch platforms after a fee increase,
even if they suffer a wage loss from doing so. If the utility difference between the two streams
is null, we expect a worker with fairness preferences to switch. If reputation portability were
mandatory and both platforms raised the fee simultaneously, by the same magnitude, the worker
with fairness preferences would react and switch, even if the final economic outcome is exactly
the same. Applying these considerations, we offer the following hypothesis:

Hypothesis 1b: Platform switching is driven by fairness preferences.

Policy Regime with Reputation Portability

If reputation portability were mandated by regulation, which would constitute an extension of
Article 20 of the GDPR, all workers could import their ratings when switching to a new platform.
Platforms even might implicitly enforce reputation portability by buying data to screen the
quality of new workers before allowing them to join the platform. Therefore, workers do not
lose their reputational investments and can easily switch between platforms.16 In this context,
we suppose that two platforms competing for workers set the lowest fees possible. Assuming
symmetry between the two platforms, Bertrand competition would follow, and the platforms
would set a fee equal to marginal costs, which we assume for simplicity to be 0. Therefore, we
presume that workers that have access to reputation portability naturally switch more often,
because switching costs are virtually nullified.

Hypothesis 2: A policy regime with reputation portability increases switching behavior, and this effect is
exacerbated if workers experience a fee introduction.

16We implicitly assume that both platforms consider ratings on the other platform trustworthy. In other words, there
is perfect interoperability between the reputation systems of the two platforms.
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4. Experimental Design

In this section, we describe the experimental design that allows us to analyze our hypotheses,
and we present the sample.

4.1. Treatments

With a fictitious online labor market, we implement three interventions, combined into a lab-
in-the-field experiment with seven to ten rounds. Workers were randomly assigned to either
a treatment or control condition, within a 2 × 2 × 2 between- and within-subject experimental
design. In accordance with our theoretical model, ratings yield a premium, such that a higher
rating is associated with a higher wage in the next round. Therefore, with a probability of
50% participants are randomly assigned to one of two policy regimes, one that allows for the
portability of participants’ ratings, and the other that does not. Then during each round, starting
with round four, with a 25% probability, participants confront a platform fee that remains in
force after it has been introduced. Finally, to identify switching due to monetary motives or
fairness preferences, we compare platform switching behaviors when (1) the platforms are
perfectly identical and simultaneously charge fees with the same ad valorem amount (equal
exploitation of lock-in) and (2) only the platform the participant currently works on charges
a fee while the other one does not (unequal exploitation of lock-in). Recall that participants
are randomly assigned to these two policy conditions with 50% probability. We can identify
switching based on fairness preferences if and only if, in response to a fee increase, workers
switch to another platform where they earn an equal or lower wage (scenario 1). However, if
workers respond to a fee increase by switching to another platform that pays them a higher wage,
switching might occur because of both fairness preferences and monetary motives (scenario
2). Switching as a signal of fairness preferences can occur in every treatment condition and
is subject to participants’ ratings, whereas monetary motives by definition cannot arise when
participants’ ratings are portable and the exploitation treatments are equal.

By subtracting the fraction of workers who switch with ”pure” fairness preferences (scenario
1) from the fraction of workers who switch in line with fairness preferences and/or monetary
motives (scenario 2), we obtain the fraction of workers who solely switch for monetary reasons.
Table 1 provides an overview of our experimental treatments and the number of observations
we collected in each treatment.

— Table 1 about here —

With this experimental design, we also can examine second-order effects pertaining to the
strength and frequency of exploitation due to lock-in effects. In the experiment, the platform
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fees take varying levels ($0.00, $0.01, $0.05), so in turn, we can compare switching behavior
across conditions with an initial low fee of $0.01 (i.e., low exploitation of lock-in) versus an
initial high fee of $0.05 (i.e., high exploitation of lock-in).17 If a platform introduces a low fee, in
each subsequent round and with a probability of 25%, it can charge a higher fee. Therefore, to
test for second-order effects of the frequency of lock-in exploitation, we compare switching in
response to an immediate high fee introduction versus a high fee increase that occurs after a low
fee introduction.

4.2. Procedural Details

Our study was approved by the Ethics Commission, University of Bremen (project 2020-16), and
is registered at the AEA RCT Registry (Ciotti et al., 2021). After being assigned randomly to the
treatments, the study participants considered working in a new online labor market that contains
two labor platforms: Platform% and Platform#. The experiment consisted of a minimum of
seven and a maximum of ten rounds, each with the same structure. Starting with round seven,
to prevent end round effects, a random mechanism decided with a 33.3̄% probability whether
the study ended with the last round that had been completed. In each round, participants
began by choosing the platform on which they wanted to work. After making this decision, they
had to complete a task on that platform (i.e., counting zeros from a series of zeros and ones).
After completing each task, participants received a performance rating, displayed as an average
that reflects their past performance across all transactions in previous rounds. In each round,
the minimum amount offered to complete a task was $0.10, but their ratings, based on their
performance, also affected participants’ wage level in the next round. Depending on their rating
(ranging from 1 to 5 on each platform), participants could earn more money for a task, such that
they received $0.15 if their rating exceeded 3.50 and $0.20 for a rating greater than 4.50.

Participants received information about their ratings, the platform’s introduction or increase of a
fee starting in the next round, wages for the next task, and the total wages over all rounds after
each task, separately for Platform% and Platform#. With this information, participants again had
to choose which platform to work on in the next round and perform another zero-counting task.
Starting with round four, a random mechanism decided with a probability of 25% whether the
platform would charge a fee for the next round. We avoided charging fees in earlier rounds so
that participants could establish a rating first, which created the possibility of lock-in. To address
the second-order effects pertaining to the extent and frequency of a platform fee, another random
mechanism determined, with 50% probability, whether a platform that had been randomly
chosen to charge a fee would charge $0.01 or $0.05. This fee would not be reduced in subsequent
rounds but, again with a 25% probability, it could be increased from $0.01 to $0.05. Finally,

17Note that initial in this context indicates that the fee might be raised in later rounds; it does not refer to the first
round of an experiment.
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we asked participants to complete a questionnaire to control for confounding variables and
individual heterogeneity.

4.3. Sample

The participants, workers we recruited from the AMT crowdsourcing platform, were all at least
18 years of age and citizens or legal residents of the United States.18 As one of the largest online
labor platforms in the world (Pittman and Sheehan, 2016), AMT provides participants who are
real online workers, and it represents a much larger respondent pool than other services can
offer (Sheehan, 2018), which also implies greater diversity in their backgrounds (Mason and
Suri, 2012). Various studies have successfully replicated established economic and psychological
effects in empirical validations of AMT as a useful data collection tool (Sprouse, 2011; Crump
et al., 2013; Litman et al., 2015; Buhrmester et al., 2016).

We collected the data between February 12 and 23, 2021, using the software Unipark. We
recruited a total of 2,148 participants but excluded those who provided invalid information
about working hours or weekly income from online labor and who monotonously switched
back and forth between platforms during the experiment. We also removed participants who
received the lowest possible rating (1) in every round or who consistently failed to identify the
correct number of zeros (i.e., were accurate no more than twice). Thus we can exclude bots and
participants who click randomly during the task, without paying attention. The final sample
includes responses from 1,622 participants. On average, each experimental session lasted about
20 minutes, and participants earned an average of $1.36 plus an additional fixed amount of $1
for participating.19

5. Experimental Results

In Section 5.1, we present how lock-in effects determine switching behavior and analyze workers’
motives to switch platforms due to exploitation, in the form of a fee. Then we analyze the role of
reputation portability on switching behavior in Section 5.2. In Section 5.3, we investigate how
the strength and frequency of the platform’s exploitation of workers’ lock-in, as second-order
effects, influence switching behavior. When comparing the means across treatments, we apply

18A filter applied during the tendering process on AMT and an additional query at the beginning of the experiment
confirmed these criteria.

19Because the experiment could be completed in approximately 20 minutes, these payments correspond to an hourly
remuneration ranging from $6.75 up to $8.70, above the average payment on AMT (Hara et al., 2018) and in line
with the federal minimum hourly wage in the United States of $7.25 (29 USC Chapter 8, Section 206 – Minimum
Wage Statutes).
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two-sample chi-square tests of proportions, Fisher’s exact tests, and two-sample t-tests.20

5.1. The Impact of Exploiting Lock-in Effects on Switching Behavior

With a within-subject analysis, we determine if introducing a fee prompts participants to switch
platforms. In the experiment, 1,349 participants (83.2%) confronted a fee, whereas 273 partici-
pants (16.8%) never encountered these charges. Figure 5 illustrates the differences in switching
behavior when a platform introduces a fee, versus switching in all rounds before any fee was
charged. In line with our prediction that switching behavior triggered by a platform fee differs
from switching behavior in prior rounds without a fee, we find that the fraction of participants
switching platforms increases from 24.4% to 38.6% following a fee, a significant increase of 14.2
percentage points (two-sample chi-square test of proportions, z = 6.025, p < 0.001). Figure 6
also reveals that this effect is driven mostly by switching behaviors in response to a fee charged by
the focal platform (unequal exploitation). Switching behaviors prior to a fee might be explained
by curiosity, a strategic desire to build good ratings on multiple platforms to avoid the issues
related to a lack of reputation portability,21 or an effort to avoid the negative implications of a
poor rating received in earlier rounds, which also requires a policy regime without reputation
portability.22 We summarize this finding as follows:

Result 1. Introducing a platform fee increases switching behavior.

— Figures 5 to 6 about here —

With Figure 7, we can analyze why participants switch platforms in response to a fee. In our
experimental design, workers may be motivated by monetary reasons and/or have fairness
preferences, such that they might react to platform fees even in the absence of monetary incentives
to switch (Dhami, 2016). If workers with fairness preferences perceive the fee as unfair, they
thus might switch to another platform, even if they earn the same or a lower wage. But if they
earn a higher wage on the other platform, participants could be motivated by both their fairness
preferences and their monetary motives. Their behaviors also should depend on their tolerance
level for fees.

20In Table 2, we also present the results of a test for whether the computerized randomization created a balanced
sample using F-tests. These results indicate that the F-test for risk ambiguity is only weakly significant at the 10%
level, so we include risk ambiguity as a control variable for the regression analyses.

21Prompted by an item in the questionnaire, a participant offered a reason for switching platforms: “I felt it was wise
to create a high rating on each platform. That way if there was a difference in the fee or I made a mistake, I could
use the platform with the highest rating since it would be saved from when I switched from it.”

22We check whether the rating differs systematically across participants who switched and those who did not, in
rounds before the fee increase, and find that they are significantly different (two-sample t-test, t = 26.563, df =
5, 049, p < 0.001). That is, some workers left the focal platform due to a poor rating. Those who switched had a
rating of 3.60, compared with an average of 4.62 for those who did not switch.
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Of the 1,349 participants who encountered a fee, 417 (30.9%) would have earned a higher wage
on the other platform, so their platform switching might reflect monetary motives, fairness
preferences, or both. We find that 327 (78.4%) workers switched platforms in this setting. For
932 participants, the fee increase coincided with an equal or lower wage available on the other
platform; specifically, 447 workers would have earned the same wage in the next round, and 485
would have earned less, had they switched platforms. Exhibiting their fairness preferences, 194
(20.8%) workers switched platforms (148 who earned an equal wage and 46 participants who
earned less).

Next, to calculate the fraction of workers who switched solely for monetary reasons, we subtract
the 20.8% fraction of workers who switched due to “pure” fairness preferences (t-test against zero,
t = 16.465, df = 968, p < 0.001) from the 78.4% fraction of workers whose switching behavior
signaled fairness preferences and/or monetary motives (t-test against zero, t = 38.495, df =

445, p < 0.001). The difference, of 57.6 percentage points, identifies workers who switched
solely for monetary reasons and reveals that the difference in switching motives is statistically
significant (two-sample chi-square test of proportions, z = 12.837, p < 0.001). Overall, our
findings are in line with Hypothesis 1a, in which we predicted that platform switching behavior
is driven by monetary motives, and with Hypothesis 1b, in which we anticipated that it is driven
by fairness preferences.23 Therefore,

Result 2. If a platform introduces a fee, 57.6% of workers switch based on monetary motives, and 20.8%
switch due to fairness preferences.

— Figures 7 and 8 about here —

Workers also might perform differently after encountering a newly imposed or increased fee,
which we test according to their ratings. In Table 3, we present the results of ordinary least
squares regressions and assess the average ratings in round k on the platform on which the
participant currently works as the dependent variable. Workers charged a fee who switch, but
without monetary incentives to do so, exhibit poorer performance than they did before the fee
introduction (column (2)). More precisely, their average rating decreases by 0.43 in the rounds
after the fee introduction (After Fee Introduction), holding all other variables constant.24 These
results are in line with our theoretical model, in which workers who confront a lower wage
reduce their equilibrium effort accordingly. This effect even becomes exacerbated if workers

23When we consider switching behavior after a fee introduction for each portability regime separately (see Table 8),
we find a significant increase in “pure” switching behavior due to fairness preferences, from 15.4% to 30.2%, when
reputation portability exists (two-sample chi-square test of proportions, t = 2.437, p = 0.015). If participants earn
more on the other platform after the fee is introduced, switching behavior increases from 72.6% to 80.1%. However,
this difference is not statistically significant (two-sample chi-square test of proportions, z = 1.346, p = 0.178).

24If we control for the size of the fee, we find that workers with fairness preferences perform significantly worse after
they encounter the platform fee. These results are available on request.
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express fairness preferences, because the fee introduction constitutes an additional disutility for
them. We therefore conclude:

Result 3. Workers with fairness preferences perform more poorly after they confront a fee.

— Table 3 about here —

To confirm our findings related to switching behavior based on monetary motives and fairness
preferences, we also run a regression analysis, informed by responses to the questionnaire, such
that we analyze in depth why participants chose to switch after being charged a fee. According
to prior experimental research, risk-averse people tend to prefer outcomes with low uncertainty
over those with high uncertainty (Kahneman et al., 1991; Tversky and Kahneman, 1991), and
ambiguity-averse people prefer known over unknown risks (Ellsberg, 1961; Camerer and Weber,
1992). In addition to testing for the effects of risk attitudes (i.e., risk aversion and ambiguity
aversion) and perceptions on switching behavior, we investigate whether switching behavior
might constitute a form of negative reciprocity, such that workers seek to respond to the fee by
punishing the platform, even at a cost to themselves (Güth, 1995; Kritikos and Bolle, 2001), or
if they simply regard the fee as unfair, which is sufficient to prompt them to switch platforms
(Kahneman et al., 1986; Rabin, 1993).

First, to classify workers according to their relative risk aversion (Butler et al. (2014)), we asked
participants to choose their preferred lifetime earnings profiles. Second, we implemented a
thought experiment developed by Ellsberg (1961) that requires participants to choose between
two urns. Third, with measures of negative reciprocity from the 2005 personality questionnaire
of the German socioeconomic panel, we asked participants how much they agreed with six
self-descriptive statements, on 7-point Likert scales ranging from ”does not apply to me at all”
to ”applies to me perfectly.” Fourth, we solicited the main reasons participants switched by
offering a list of seven options, then asking them to rank the reasons that applied, in order of
importance.25 The dummy variables Boredom, Curiosity, Poor Rating, Earn Higher Wages, and
Fee Perceived as Unfair were derived from their responses. All these dummy variables equal 1 if
participants rank that reason for switching among the top three, suggesting that it represented a
relevant consideration for them. In addition, we control for the extent of lock-in by including
participants’ ratings in round k and the round the fee was introduced. The probit regression
includes Switching as the dependent variable and involves only those participants who confronted
a fee at some point during the experiment.

The results in Table 4 corroborate our main findings. Participants’ average rating has a negative
effect on their switching behavior after the fee introduction. If the average rating increases
by one unit, the probability of switching decreases by 7.7% in response to a platform fee, all
25These choices were ”I was bored,” ”I was curious,” ”I had a low rating,” ”I perceived the fee increase as unfair,” ”I

could earn more money on the other platform,” ”I did not switch platforms,” and ”other reason.”
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else being equal. This result confirms that reputation can lock-in workers. We also find strong
support for our predictions about monetary motives and fairness preferences; both a desire to
earn higher wages and the perception that the fee is unfair significantly increase the likelihood
that participants switch platforms. In detail, an opportunity to earn higher wages increases
switching behavior by 27.6%, holding all other variables constant. Perceiving the fee as unfair
increases this behavior by 18.1%, all else being equal. In a comparison of switchers with fairness
preferences against all other participants subject to a fee, we find that 39.7% of workers with
fairness preferences, but only 27.5% of other workers, regard the fee as unfair. This difference is
statistically significant (Fisher’s exact, p = 0.001), so workers with fairness preferences perceive
the fee as more unfair. Risk aversion, risk ambiguity, negative reciprocity, a poor rating, and the
round in which the fee was introduced do not influence workers’ switching behaviors, though
boredom and curiosity increase them. We summarize the regression findings as follows:

Result 4. The better the rating, the less likely workers are to switch. The desire to earn higher wages and
perceiving a fee as unfair significantly increase workers’ switching behaviors; risk aversion, risk ambiguity,
negative reciprocity, and a poor rating do not.

— Table 4 about here —

5.2. The Effect of Reputation Portability on Switching Behavior

Can a policy regime that mandates reputation portability mitigate the lock-in effects that we
identify in online labor markets? To answer this question, we compare switching behavior
after a platform introduces a fee in regimes without and with reputation portability. As noted
previously, if switching increases more in the latter policy scenario, it offers evidence that workers
are exploited by the lock-in effects that arise in the absence of reputation portability. As detailed
in Figure 9, switching behavior in a policy regime without reputation portability increases after a
fee, from 18.3% to 23.3%. However, the 5 percentage point increase is not significant (two-sample
chi-square test of proportions, z = 1.380, p = 0.168), in line with our theoretical finding that
platforms exploit their workers in the absence of reputation portability. In a policy regime
with reputation portability though, switching behavior increases by 23.8 percentage points,
from 30.7% to 54.5%, which is statistically relevant (two-sample chi-square test of proportions,
z = 7.643, p < 0.001). The difference between these increases (5 versus 23.8) also is statistically
significant (Fisher’s exact, p < 0.001), which offers support for Hypothesis 2, because the policy
regime with reputation portability increases the probability of switching platforms. Formally,

Result 5. Platforms can exploit lock-in effects more effectively in a policy regime without reputation
portability, whereas a policy regime with reputation portability significantly increases switching behavior
and reduces the chances that workers in online labor markets will be exploited by the imposition of a
platform fee.
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— Figure 9 about here —

Figure 10 also sheds light on the differential switching behaviors of workers, depending on the
strength of the lock-in effects. In our experimental setup, a rating greater than 3.50 is associated
with higher wages, and we anticipate that the lock-in effects might be particularly strong for
highly rated workers. Whether we consider switching in all rounds prior to the fee or only in
the round in which the fee has been introduced, workers with ratings higher than 3.50 switch
significantly more if they can take their reputation score with them (i.e., reputation portability)
than do workers with comparable ratings but without reputation portability. The difference is
consistently statistically different from 0 at a 5% level. In contrast, workers with ratings below
3.50 switch significantly less often in rounds prior to the fee (two-sample chi-square test of
proportions, 66.4% vs. 39.1%, z = −4.596, p < 0.001). After the fee is introduced, the difference
in switching behavior for workers with poor ratings is only weakly significant at the 10% level
and decreases by 17.4 percentage points, from 75.6% to 58.2% (two-sample chi-square test of
proportions, z = −1.769, p = 0.077). A policy regime with reputation portability leads to more
platform switching among highly rated workers. Arguably, it also could increase the quality of
information available in the market.

To gain further insights, we investigate whether a policy regime with reputation portability has
a positive effect on workers’ wages. We compare the total wages, defined as the total amount
participants have received by the end of the experiment, between policy regimes. As Figure 11
shows, the average total wage increases by $0.03 from $2.38 to $2.41 in a policy regime with
reputation portability. If we control for risk ambiguity, this difference is only weakly significant
at the 10% level (Table 5, column (1)). If we run the same regression for workers with a rating
greater than 3.50 in the last round of the experiment (column (2)), we find that a policy regime
with portability increases these high-quality workers’ total wages by $0.04, holding all other
variables constant. Thus, we offer strong evidence that a regulatory regime with reputation
portability can function as a mechanism to empower workers in online labor markets, by making
them less vulnerable to being exploited by platforms. We summarize these findings as follows:

Result 6. Lock-in effects affect highly rated workers more than poorly rated workers. A policy regime with
reputation portability increases the switching behavior of highly rated workers and reduces the switching
behavior of poorly rated workers. In addition, a policy regime with reputation portability increases highly
rated workers’ wages.

— Figures 10 to 11 and Table 5 about here —

5.3. The Strength and Frequency of Exploiting Lock-in Effects

Recall that during the experiment, starting with round 4, a random mechanism decided, with
a 25% probability, whether the platform introduced a fee of $0.01 (low exploitation of lock-in

20



effects) or $0.05 (high exploitation). Once participants were subject to this platform fee, it
remained in effect, but we also allowed platforms that introduced the low fee of $0.01 to raise it to
the high level in each following round, with a probability of 25%. With this mechanism, we can
determine if high initial exploitation of lock-in effects triggers significantly more switching than a
lower level of exploitation. Furthermore, we test whether the frequency of this exploitation affects
switching behaviors, according to the fraction of switchers from a platform that immediately
introduces a $0.05 fee versus one that charges a fee of $0.05 only after it introduced a fee of $0.01
in previous rounds.

As we argued previously, if workers switch significantly more often in response to a fee of
$0.05 compared with a fee of $0.01, it constitutes evidence that workers switch more if they
perceive they are being highly exploited. As depicted in Figure 12, 35% of participants switch
platforms on average if the platforms introduce a low fee of $0.01, whereas 42.1% switch if the
platform directly introduces a fee of $0.05. This increase in switching behavior differs by 5.6
percentage points, which is only weakly significant at the 10% level (two-sample chi-square test
of proportions, z = 1.649, p = 0.099). Formally:

Result 7. The strength of the exploitation of lock-in effects barely influences switching behavior.

— Figure 12 about here —

To determine if the frequency of this form of exploitation further affects switching behavior,
we test for a difference in platform switching between participants immediately confronted
with the high fee ($0.05) versus those who receive notice of a low fee first ($0.01) and then a
further increase to the high fee ($0.05) in a later round.26 As Figure 13 shows, workers switch
significantly more often if a platform initially introduces a fee of $0.05, compared with the step-up
situation in which the platform initially introduced the $0.01 fee and then increased it to $0.05
(two-sample chi-square test of proportions, z = 3.004, p = 0.003). Because the platforms are not
perfectly identical in this case, and only the focal platform charges a fee, this finding reconfirms
the notion that fairness preferences are at play (Figure 14). If the markets are perfectly identical
and charge fees of the same amount at the same time, workers instead switch less often, in line
with our theoretical model (Equation 12). In summary,

Result 8. If only the platform on which workers currently work charges a fee, workers are less likely to
switch platforms if they experience rising subsequent fees. If the platforms are identical, switching behavior
does not depend on the frequency of fees.

— Figures 13 to 14 about here —
26If both platforms are perfectly identical and equally exploit lock-in effects, it does not matter if the worker is

currently active on Platform% or Platform#. However, in the case of unequal exploitation of lock-in effects, only
the platform on which the worker was active at the time of the fee introduction might charge $0.01, so we only
consider those participants on that same platform when the fee increases to $0.05.
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6. Conclusion

This article presents a theoretical model and empirical evidence that online labor markets
can exploit the lock-in effects generated by platform-specific reputation mechanisms; a policy
regime with reputation portability would mitigate such lock-in effects and their exploitation
by platforms. To the best of our knowledge, this study represents the first effort to investigate
lock-in effects in conjunction with reputation portability, as well as whether workers might
switch platforms for monetary reasons or due to fairness preferences. Theoretically, we show
that a platform can impose a fee on workers and sustain it over an infinite horizon, without
losing workers, if reputation portability is not made mandatory. Because its workers are locked
in, the platform can exploit their reluctance to switch. Experimentally, the online lab-in-the-
field decision experiment relied on actual workers from the crowdsourcing platform AMT
to test whether a policy regime with or without reputation portability affects their switching
behaviors in response to newly introduced fees. As we show, platforms exploit lock-in effects
more intensely when reputation portability mechanisms are absent. A policy regime with
reputation portability instead substantially increases workers’ switching behaviors, mainly due
to monetary incentives, though fairness preferences also play a role. These results likely apply to
various online marketplaces in which multi-homing is difficult and reputation is not transferable
across platforms.

Our study thus extends research on switching costs and reputation portability by investigating
why workers switch to other platforms, how they react when they feel exploited, and whether
reputation portability is necessary. The results indicate that reputation portability is a valuable
means for workers to be able to avoid exploitation, a goal that is particularly important in
online labor markets where workers rely on valuable ratings of their quality and face precarious
working conditions, significant setup costs, and limits to their multi-homing. The current analysis
also informs questions about whether reputational data should be regulated. In line with the
purposes of recent regulations such as the GDPR, the Californian Consumer Privacy Act, or
the Chinese Personal Information Protection Law, we recommend the imposition of reputation
portability rules to mitigate lock-in effects and improve online working conditions. In addition,
introducing reputation portability in online labor markets could increase competition among
platforms, which improves the bargaining power of workers.

As relevant extensions to our theoretical model and experimental design, we offer several
potentially interesting options. First, we consider reputation portability specifically, but other
designs pertaining to reputational data also might influence switching behaviors (Hesse and
Teubner, 2019). Second, researchers might address how platform competition changes when
regimes implement reputation portability. When lock-in effects are likely, firms usually compete
fiercely in a first stage, then relax their competition later, and it is unclear if a situation that
mitigates these lock-in effects is worse in terms of overall welfare. In the presence of reputation
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portability, platforms may have greater incentives to coordinate on prices but less drive to invest in
the overall quality of their marketplaces and reputation systems. In traditional network settings,
such as telecommunications, the outcomes of number portability on providers’ investments
in quality remain uncertain (Bühler et al., 2006), and in any case, the cost of maintaining or
developing the infrastructure for online marketplaces would be significantly lower than required
in traditional network settings. Third, an online market with imperfect competition or frictions
also might affect switching behavior differently. Allowing for reputation portability could
reinforce the well-established positions of incumbent users and raise barriers to entry for new
users of online marketplaces. Here again, these impacts might affect overall welfare in the market.
Fourth and finally, further research might account for information asymmetries across platforms
and users, as well as strategic choices by users to transfer their reputation when they have the
right, but not the obligation, to reputation portability. For example, in a policy regime with
voluntary reputation portability, the market might interpret a transfer of reputational data as a
positive signal. We leave this question for further research.
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Appendix A.

A.1. Existence of an incentive-compatible fee

Because it is not possible to find an analytical solution to Equation (13), we use hypothetical
values of β, f,m1, h1, and hε to find a fee that can fit with this inequality. For a sufficiently low
value of β, several periods after the introduction of φ on Platform%, the additional discounted
value of another completed contract is ≈ 0.

Consider a setting in which the effort cost function is quadratic:

g(at) =
1

2
a2t (rt−1). (A-1)

Then we can derive an explicit function of both the effort and the labor input in inequality (13).
Assume the worker stays on Platform%. Following the steps detailed in Section 3, we find the
first-order condition:

∞∑
s=1

βs−1(1− φ)αk+s−1 − βt−1g′(ak+t−1(rk+t−2)) = 0.

Rearranging and assuming quadratic effort costs yields:

ak+t−1(rk+t−2) =
∞∑
s=t

βs−t(1− φ)αk+s−1. (A-2)

We then look for the equilibrium labor input when the worker switches to Platform#. The
first-order condition in this case is:

∞∑
s=1

βs−1αs − βt−1g′(at(rt−1)) = 0.

By rearranging and assuming quadratic effort costs, it follows that

at(rt−1) =
∞∑
s=t

βs−tαs. (A-3)

With this explicit form of the effort cost function, inequality (13) can be expressed entirely in
terms of β, f,m1, h1, hε, and φ. Figure 1 depicts the incentive-compatible fee introduced after
four rounds, with some previously established parameters.

Figure 2 then indicates the incentive-compatible φ, depending on the time the worker has spent
on Platform%. The more time the worker spends on Platform%, the lower the surplus that
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Figure 1: Incentive compatible φ
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Figure 2: Variations of k
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the platform can extract; this effect is nullified even more when k →∞ (with the values from
Figure 2, where k = 1000000000, and then φ∗ = 0.044413846). The more time workers have spent
on the initial platform, the more the market knows about their talent, and the lower the workers’
incentive to bias their evaluations. Thus, switching to another platform becomes slightly less
unattractive with more time spent on the initial platform.

Figure 3 reveals how the difference in utilities between Platform% and Platform# depends on
the precision term h1. A straightforward interpretation of h1 is that it represents the inverse of
the variance of talent η in the market. We also can interpret it as the precision of the platforms’
reputation systems. When h1 is lower, there is a lower incentive to switch to another platform
too. Due to the poor precision of assessments of workers’ talent in early rounds, it becomes less
interesting for workers to switch, which would require them to start building a new reputation
by supplying costly, large amount of labor. Therefore, with lower precision, the platform can
impose a larger fee.

Figure 4 indicates the difference of utilities between Platform% and Platform#, according to the
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Figure 3: Variations of h1
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Figure 4: Variations of hε
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precision term hε. In contrast with the example in Figure 3, the incentive to stay on the initial
platform is higher when the variance of the noise term is lower.
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A.2. Experimental Results

Figure 5: Fee Introduction

Figure 6: Exploiting Lock-in Effects
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Figure 7: Monetary Motives and Fairness Preferences

Figure 8: Portability Regime, Monetary Motives, and Fairness Preferences
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Figure 9: Portability Regime

Figure 10: Portability Regime and Ratings
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Figure 11: Portability Regime and Total Wage

Figure 12: The Strength of Exploiting Lock-in Effects
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Figure 13: The Frequency of Exploiting Lock-in Effects

Figure 14: The Frequency of Exploiting Lock-in Effects by Exploitation Treatment
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Table 1: Experimental Conditions

Conditions Portability Regime Exploitation Fee N
of Lock-in Effects

1 No Portability Equal No 64
2 No Portability Equal Yes 334
3 No Portability Unequal No 72
4 No Portability Unequal Yes 352
5 Portability Equal No 65
6 Portability Equal Yes 340
7 Portability Unequal No 72
8 Portability Unequal Yes 323

1,622

Notes: The table shows the experimental treatment conditions. Participants in treatment conditions 1, 3,
5, and 7 were not affected by a fee introduction or a fee increase, reflecting the randomized mechanism
that decided before each round, starting in round 4, whether the platform would introduce a fee, with
a probability of 25%.
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Table 2: Randomization Check

Conditions
1 2 3 4 5 6 7 8 R2 F-test

Socio-Economic Background
Age (yrs) 37.469 0.771 2.559 0.673 -2.423 -0.466 0.253 -0.661 0.006 0.221
Female (y/n) 0.547 -0.136 -0.075 -0.098 -0.131 -0.106 -0.099 -0.157 0.005 0.363
Education (yrs) 15.75 -0.178 -0.083 -0.071 -0.119 -0.062 0.347 -0.199 0.004 0.458
Weekly Working Hours 34.845 1.830 1.517 2.776 3.433 2.086 -0.760 1.627 0.002 0.752
Annual Inc. ($) 34,297 3,622 3,411 4,680 972 5,696 3,342 2,932 0.002 0.799
Work Experience
Hours Online Labor 19.266 -0.355 -1.224 -1.428 0.365 -0.133 -2.738 -0.086 0.003 0.755
Weekly Inc. Online Labor ($) 76.875 2.667 -7.833 4.483 21.679 3.269 26.569 1.633 0.004 0.786
Platform Registrations 1.953 0.724 -0.120 -0.050 0.847 0.088 0.186 -0.139 0.006 0.489
Completed Tasks AMT 8,971 2,567 3,001 2,383 5,066 2,720 -980.075 746.136 0.006 0.118
Approval Rate AMT (%) 98.33 -0.014 0.019 0.010 0.087 -0.099 -0.286 -0.232 0.006 0.212
Preferences
Risk Aversion (0-1) 0.125 0.016 0.014 0.057 -0.033 0.054 0.000 0.005 0.005 0.245
Risk Ambiguity (0-1) 0.672 -0.172 -0.130 -0.180 -0.118 -0.187 -0.067 -0.146 0.008 0.056

Notes: This table provides the results from ordinary least squares regressions with treatment dummies as independent variables. The
questionnaire, completed by participants after the experiment, is the source of the dependent variables. The treatment conditions are in
Table 1. The omitted treatment condition is condition 1, a policy regime without reputation portability, equal exploitation of lock-in
effects, such that both platforms are perfectly identical, and no fee. The first column shows the mean values of this treatment condition.
The last column shows the p-values of the F-test of joint significance of the treatment dummies. The variables Completed Tasks AMT and
Approval Rate AMT are winsorized at the 10% level to account for outliers. Robust standard errors (not shown). * p < 0.05, ** p < 0.01,
*** p < 0.001.
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Table 3: Performance in Rounds Prior a Fee vs. After Fee Introduction

(1) (2)
Rating Rating
in Round t in Round t

After Fee Introduction -0.027 -0.428***
(0.037) (0.133)

Round k 0.046*** 0.130***
(0.007) (0.024)

Risk Ambiguity 0.241*** 0.300***
(0.040) (0.108)

Intercept 4.081*** 3.591***
(0.045) (0.113)

Observations 11,016 1,575
Adjusted R2 0.020 0.034

Notes: The table contains the results of the probit regression for switching behavior. The dependent
variable is the participant’s average rating in round t. In column (1), we consider all participants
who confronted a fee. In column (2), we only include participants who confronted a fee and had no
monetary incentive to switch. In column (1), standard errors are clustered by worker and reported
in parentheses; in column (2), robust standard errors are reported in parentheses. + p < 0.10, **
p < 0.05, *** p < 0.01.
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Table 4: Channels

Switching
Average Rating in Round k -0.077***

(0.009)
Risk Aversion -0.022

(0.031)
Risk Ambiguity 0.017

(0.023)
Negative Reciprocity -0.005

(0.008)
Round k -0.004

(0.007)
Most important self-reported switching mo-
tives as a response to fee introduction
Earn Higher Wages 0.276***

(0.021)
Fee Perceived as Unfair 0.181***

(0.024)
Curiosity 0.152***

(0.023)
Boredom 0.083*

(0.032)
Poor Rating -0.014

(0.031)
Observations 1,349
Pseudo R2 0.241
P=1 38.6%

Notes: This table contains the results of the probit regression for switch-
ing behavior. The dependent variable is a dummy variable that indi-
cates whether the participant switched platforms after the fee intro-
duction. The coefficients are average marginal effects. Robust standard
errors are reported in parentheses. + p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 5: Total Wage and Portability Regime

(1) (2)
Total Wage Total Wage

Portability 0.029+ 0.039***
(0.016) (0.015)

Risk Ambiguity 0.069*** 0.033**
(0.016) (0.015)

Intercept 2.318*** 2.372***
(0.013) (0.013)

Observations 1,349 1,227
Adjusted R2 0.015 0.008

Notes: This table contains the results of the ordinary least squares re-
gression for total wages, in line with the robustness results presented in
Figure 11. The dependent variable is the total wage each participant had
received by the end of the experiment. In column (1), we consider all
participants subject to a fee. In column (2), we consider participants who
confronted a fee but also earned a rating greater than 3.50 by the end of
the experiment. Robust standard errors are reported in parentheses. +
p < 0.10, ** p < 0.05, *** p < 0.01.
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A.3. Experimental Instructions

[Note: These are the written instructions, presented to participants in the treatment without reputation
portability and unequal exploitation of lock-in effects. Amendments to the other treatment conditions are
enclosed in square brackets.]

Instructions

To earn the highest possible amount during this study, please carefully read this introduc-
tions page. The study begins immediately thereafter.

Thank you for participating in this study. The instructions will provide you with all the informa-
tion you require for participation in the study. The instructions accurately reflect how decisions
and processes will unfold. We will not deceive or lie to you in any way.

In this study, the duration of your participation will vary between 7 and 10 rounds. Each round
has the same structure. From the 7th round onward, a random mechanism will decide whether
the study ends or not. After the 7th round, there is a 2/3 probability that another round will take
place. At the end of your last round, you will be asked to fill out a questionnaire and will receive
your study completion code.

Market Environment

• Imagine a fictitious crowdsourcing market that consists of two online labor platforms,
Platform% and Platform#, and a requester. Platform%, Platform#, and the requester are
programmed.

• You enter this new market as a worker.
• In each round, the requester publishes the exact same task on both platforms.
• You can perform the task only on one platform.
• You can earn money for each task you complete.
• Platform% and Platform# each have an integrated reputation system to evaluate your

performance. You will automatically receive a rating for each task you complete.
• Your earnings depend on the average rating you build up during the study and a possible

fee Platform% and Platform# can charge its workers.
• Platform% and Platform# use an identical reputation system and they have the same

payment structure. Platform% and Platform# differ only in terms of how they increase
their fees.

• [Equal exploitation of lock-in effects treatment condition: Platform% and Platform# are per-
fectly identical: They have the same payment structure, reputation system, and plat-
form fee.]
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• Your rating is platform-dependent (i.e., it is stored on the respective platform and cannot
be transferred to the other platform). This means that if you have established a rating
on one platform and decide to switch to the other, you will need to rebuild a new rating.
However, after you have built a rating on a platform, it will be stored on that platform
until the end of the study. Thus, if you decide to switch platforms and return to the first
platform later on, the rating that you built up before you switched will be stored there.

• [Reputation portability treatment condition: Platform% and Platform# use a cross-platform
reputation system. This means you only have one rating that is applicable for both plat-
forms. As soon as you build a rating on one platform, it will be transferred to and displayed
on the other platform as well.]

Details on the payment structure, rating, and platform fees will be provided below.

Study Procedure

All rounds follow an identical scheme:

• Step 1 – Make a decision: You decide on which platform you want to work during the
next round. Registration on a platform is not necessary. You can directly start working.

• Step 2 – Work on a task: Your task is to count the number of zeros in a table. Your
performances will be rated, and you will receive a new average rating after completing a
task.

• Step 3 – Receive information: After completing the task, you will be informed separately
for each platform about (a) your current rating, (b) your wage in the next round, (c) the
fee the platform will charge you in the next round (if any), and (d) your net earnings for
the task in the next round.

You will receive all necessary information before each round. The information will be shown in
a table. The following figure provides an example:
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Your Task

Your task is to count the zeros in a table that lists a series of zeros and ones. The following
figure shows the work screen you will use later on:

You will always see whether you are currently working on Platform% or Platform#. Enter the
number of zeros into the “Answer” field at the bottom of the screen. After you have entered the
number, click the “Continue” button. In each round, you will have only one try to solve the task.

Rating, Platform Fee, and Earnings

In each round, your earnings depend on your rating and whether or not the platform you are
currently working on increased its platform fee.

Rating

The procedure for calculating your reputation is identical on both platforms and will result in
a rating ranging from 1.00 to 5.00. A rating of 1.00 is given for the worst performance and a
rating of 5.00 for the best performance. Your rating in each individual round depends on how
accurately you count the number of zeros in the table:

• If you count the correct number, you will receive a rating of 5.00.
• If your counted number differs by +/– 1, you will receive a rating of 4.00.
• If your counted number differs by +/– 2, you will receive a rating of 3.00.
• If your counted number differs by +/– 3, you will receive a rating of 2.00.
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• If your counted number differs by more than +/– 4, you will receive a rating of 1.00.

Example: Assume that the correct number of zeros in a table is 10. You counted 9 zeros (i.e.,
you miscounted by 1). This means your rating in that round is 4.00.

Furthermore, platforms will consider your average rating (i.e., the average of your past perfor-
mance across all transactions in the past rounds). That means that each round is important for
your next and final payoff. The rating is always rounded to two decimal places.

Example: Assume that you receive a rating of 5.00 in the first round, 4.00 in the second round,
and 5.00 in the third round. Your average rating is therefore (5.00 + 4.00 + 5.00) / 3 = 4.67.

Platform Fee

During the study and starting with round 4, the platforms may charge a fee to its workers. A
fee is introduced with a 1/4 probability by a random mechanism. The fee will be automatically
deducted from your earnings per completion of a task. The fee is announced at the end of a
round and always takes effect in the next round. After a fee increase is introduced, it will not be
reduced in the following rounds.

Earnings in a round

In each round, the minimum amount offered for a task is USD 0.10. Depending on your rating,
however, you can also earn more money in the next round for completing the task:

• USD 0.10 for a rating less than 3.50.
• USD 0.15 for a rating of at least 3.50.
• USD 0.20 for a rating of at least 4.50.

Your net earnings in each round are given by USD 0.10 but increase depending on your rating
minus the platform fee (if any). In other words, for each platform, your net earnings are
calculated in each round as follows:

(USD 0.10 + increase due to your rating) – platform fee.

In the first round, or the first time you switch to the other platform, you will earn USD 0.10 for
completing the task, as you have not yet established a rating.

[Equal exploitation of lock-in effects treatment condition: In the first round, you will earn USD 0.10
for completing the task, as you have not yet established a rating.]

Total Earnings

Your total earnings are the sum of your net earnings on both platforms from all rounds plus
USD 1 for taking part in this study.
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