
Brueckner, Jan K.; Czerny, Achim I.; Gaggero, Alberto A.

Working Paper

Airline Delay Propagation: A Simple Method for Measuring
Its Extent and Determinants

CESifo Working Paper, No. 9369

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Brueckner, Jan K.; Czerny, Achim I.; Gaggero, Alberto A. (2021) : Airline Delay
Propagation: A Simple Method for Measuring Its Extent and Determinants, CESifo Working Paper,
No. 9369, Center for Economic Studies and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/248914

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/248914
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

9369 
2021 

October 2021 
 

Airline Delay Propagation: 
A Simple Method for 
Measuring Its Extent and 
Determinants 
Jan K. Brueckner, Achim I. Czerny, Alberto A. Gaggero 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 9369 
 
 
 

Airline Delay Propagation: A Simple Method for 
Measuring Its Extent and Determinants 

 
 

Abstract 
 
This paper offers a simple approach for identifying propagated departure delays and measuring 
their contribution to arrival delays. Under our approach, a propagated departure delay occurs when 
the arrival delay of the inbound flight exceeds the subsequent flight’s ground buffer. The size (or 
frequency) of such propagated delays relative to the size (or frequency) of arrival delays then 
measures the contribution of propagated delays to late arrivals. This approach differs from earlier 
attempts to quantify the contribution of delay propagation since it focuses on an individual flight 
and its immediate predecessor, without attempting to trace the sources of delay propagation back 
through the entire sequence of prior flights. The paper’s empirical results show that the 
contribution of propagated departure delays to arrival delays depends on several key determinants. 
JEL-Codes: L930, R410. 
 
 
 
 

Jan K. Brueckner 
Department of Economics 

University of California, Irvine 
USA – Irvine, CA 92697 

jkbrueck@uci.edu 
 

Achim I. Czerny 
Department of Logistics and Maritime Studies 

Hong Kong Polytechnic University 
achim.czerny@polyu.edu.hk 

 
Alberto A. Gaggero 

Department of Economics and Management 
University of Pavia 
Italy – 27100 Pavia 

alberto.gaggero@unipv.it 
  

 
 
 
July 2021 
 



Airline Delay Propagation: A Simple Method for Measuring
its Extent and Determinants

by

Jan K. Brueckner, Achim I. Czerny and Alberto A. Gaggero∗

1. Introduction

Delay propagation, where late arrival of an inbound flight leads to a late departure and

then late arrival of the subsequent outbound flight, is the main cause of flight delays in the US,

according to FAA data.1 A literature has emerged in transportation engineering and economics

studying delay propagation as part of a broader inquiry into the stochastic aspects of airline

operations. Two papers in particular, Arikan, Deshpande and Sohoni (2013) and Kafle and

Zou (2016), propose methods for measuring the extent of delay propagation.2 These methods

are ambitious, with the goal of quantifying the potential cascade of delay propagation through

the entire sequence of daily flights operated by a given aircraft. In other words, a late inbound

arrival may lead to a departure delay and then late arrival of the next flight, which may in

turn lead to late departure of the subsequent flight, and so on. With this broad view, isolating

the contribution of delay propagation to the on-time performance of any particular flight is

complex analytically, making an empirical implementation correspondingly complex.

The goal of the present paper is to offer and make use of a simpler approach to quantifying

delay propagation and its effects. Our approach has a limited purpose, which is to identify

propagated departure delays for individual flights without considering their ultimate sources.

In other words, we seek to determine whether a flight’s late departure was caused by late

arrival of the inbound flight, without asking whether the inbound flight’s lateness was itself

caused by prior delay propagation. This narrower focus, which looks at an individual flight and

its immediate predecessor rather than the entire daily flight sequence, yields straightforward

measures of the contribution of delay propagation.

∗ We thank Hanxiang Zhang for assistance in compiling the weather data.
1 See Figure 1 in Brueckner, Czerny and Gaggero (2021a).
2 See AhmadBeygi et al. (2008), AhmadBeygi, Cohn and Lapp (2010), and Deshpande and Arikan (2012)

for related papers. Kim and Park (2021) apply Kafle and Zou’s (2016) methods to Korean airports.
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Central to our exercise is the ability to identify propagated departure delays in the data

by applying the theoretical scheduling models of BCG (2021a,b). The theory indicates that

a propagated departure delay occurs when late arrival of the inbound flight, measured in

minutes, exceeds the ground buffer for the subsequent flight, equal to minutes of extra scheduled

ground time beyond the minimum feasible aircraft turnaround time (quantities that all can

be measured in the data). The difference between the inbound delay and the ground buffer,

when positive, equals minutes of propagated departure delay. A ratio based on this quantity,

minutes of propagated departure delay divided by minutes of arrival delay, gives our measure

of the contribution of propagated departure delays to late arrivals.

We also compute variants of this propagation measure that rely on flight counts at the

route level rather than minutes of delay for individual flights. One variant equals the number

of flights on a route having both a propagated departure delay and an arrival delay divided

by the number of flights with an arrival delay. This route-level propagation measure is also

adjusted to capture the contribution to arrival delays of moderate inbound arrival delays, which

do not automatically lead to a late departures.

The ultimate goal of the paper is to explore how the contribution of propagated departure

delays to arrival delays varies with route, airport, and airline characteristics. Our first finding

is that this contribution is lower when the origin airport is a hub for the airline. Thus,

airlines apparently seek to avoid propagated departure delays at their hubs, with such delays

contributing more to arrival delays on flights from non-hub origins, where the inbound flight

may be coming from a hub.3 Another finding is that the contribution of propagated departure

delays rises over the day, with flights later in the day affected more than earlier flights. This

finding presumably reflects the cumulative effect of prior delays during the day, whose causes

are a mixture of propagated delay and delays from other sources. A third finding is that

propagated departure delays contribute more to arrival delays in the case of low-cost carriers

than for other airlines, partly reflecting the quick turnarounds (short ground buffers) that are

a feature of their business model.4

3 Using a completely different methodology, Diana (2009) explores whether delay propagation is higher at
concentrated airports, which are usually hubs.

4 In addition to showing that low-cost carriers have short ground buffers, some of BCG’s (2021a) regressions
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These findings are presented late in the paper (in section 5), after we present preliminary

regressions that validate the underpinnings of our approach, which is done in section 4. The

first preliminary regression verifies that arrival delays for inbound flights do indeed create de-

parture delays. This flight-level regression relates minutes of departure delay to minutes of

inbound arrival delay, and the estimated positive relationship illustrates the source of propa-

gated departure delays.5 Next, we verify that an inbound arrival delay can indeed create an

arrival delay for the subsequent flight, with the regression relating minutes of arrival delay to

minutes of inbound arrival delay and showing a positive connection. We also present spline

versions of these regressions, where the impact of the inbound arrival delay is allowed to be

larger the greater its size relative to the ground buffer (a pattern that is confirmed).

Having validated the underpinnings of our approach, our next preliminary regressions

explore the main connection of interest, the one relating arrival delays to departure delays and

other covariates.6 We present flight-level regressions showing that the relationship is slightly

less than one-to-one, even when departure delays are decomposed into propagated delays and

delays from other sources. The near one-to-one connection appears to reflect the difficulty of

overcoming a departure delay by faster flying, as illustrated in additional regressions relating

airborne time to departure delay, which have very small negative coefficients.

With the underpinnings of our approach verified and the connection between arrival and

departure delays explored, we then return in section 5 to our measures that quantify the

contribution of propagated departure delays to late arrivals. We present regressions relating

the flight-level and route-level contribution measures to a host of covariates, as described above.

The present paper is an outgrowth of our earlier research on flight delays and schedule

buffers (Brueckner, Czerny and Gaggero, 2021a,b; hereafter BCG). These papers developed

theoretical models of how airlines choose the magnitudes of schedule buffers, which are partly

designed to reduce the likelihood of delay propagation. The flight buffer is the amount by

which scheduled flight time exceeds the minimum possible flight time, and ground buffer is the

indicate that their flight buffers are also short, potentially contributing to late inbound arrivals.
5 Tan et al. (2021) carry out a similar exercise for Chinese airports, but are forced because of data limitations

to rely on airport averages rather than information for individual aircraft.
6 Wong and Tsai (2012) estimate somewhat similar regressions, using a hazard (survival-analysis) approach.
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analogous component of ground time, as mentioned above. These models generated predictions

relating the size of buffers to various determinants, and BCG (2021a) tested these predictions

via regression analysis relating buffer sizes to route characteristics, time-of-day and month,

airline identities, aircraft type, and previous flight-time variability.7 They relied on voluminous

US Department of Transportation data on the daily scheduled and actual flight and ground

times for individual aircraft, and these same data are used in the present paper to generate

and exploit measures of actual delay propagation.8

The plan of the paper is as follows. Section 2 explains the model-based derivations un-

derlying the empirical work, and section 3 discusses the data. As mentioned above, section 4

presents preliminary empirical results, while section 5 presents the regressions showing how the

arrival-delay contribution of propagated departure delays varies by route, airport and airline

characteristics. Section 6 offers conclusions.

2. The propagated delay measures

This section of the paper uses the scheduling model of BCG to derive the relationships that

underlie the subsequent empirical work. Section 2.1 derives the equation relating arrival delays

to departure delays, which underlies several of the regressions reported in section 4. Section 2.2

derives the formula that relates propagated departure delay to inbound arrival delay and the

ground buffer, which is used in quantifying the contribution of propagated departure delays to

arrival delays in section 2.3.

2.1. Preliminaries

For each of the millions of flights in our 2018 data set, we have information on its scheduled

and actual times of departure and arrival as well as information on the magnitude of the flight

buffer and the ground buffer prior to the flight. Following BCG, let td,i and ta,i denote the

7 Eufrásio, Eller and Oliveira (2021) carry out a similar exercise.
8 A collection of papers related to research on buffers focuses on the determinants of scheduled block (flight)

times and the issue of schedule “padding,” where flight times expand in response to growing airport congestion
and other sources of delays. See Sohoni, Lee and Klabjan (2011), Hao and Hansen (2014), Kang and Hansen
(2017), Kang and Hansen (2018), Zhang, Salant and Van Mieghem (2018), Fan (2019), Forbes, Lederman and
Wither (2019), Forbes, Lederman and Yuan (2019), Wang et al. (2019), and Yimja and Gorjidooz (2019). Fol-
lowing earlier work, a different line of inquiry is exemplified by Li and Jing (2021), who test for interconnections
between delays at different airports, thus characterizing a “delay propagation network.” Fleurquin, Ramasco
and Eguiluz (2013) carry out a similar exercise.
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scheduled departure and arrival times for flight i, and let t̂d,i and t̂a,i denote the flight’s actual

departure and arrival times. The departure and arrival delays for flight i, denoted Dd,i and

Da,i are then given by

Dd,i = t̂d,i − td,i (1)

Da,i = t̂a,i − ta,i. (2)

Note that these delay expressions can be negative (with departures or arrivals being early), as

they often are in the data.

To see the connection between arrival and departure delays, the determinants of flight

times must be considered. The actual arrival time of flight i is the actual departure time plus

the actual flight time, given by

t̂a,i = t̂d,i + mi + εi. (4)

In (4), mi + εi is the actual flight time, equal to minimum feasible flight time mi plus a positive

random term εi that accounts for the randomness of flight durations.

The scheduled arrival time ta,i equals the scheduled departure time td,i plus the scheduled

flight time, which equals the minimum flight time mi plus the flight buffer bf,i. With ta,i thus

equal to td,i + mi + bf,i, arrival delay is equal to

Da,i = t̂a,i − ta,i = t̂d,i + mi + εi − (td,i + mi + bf,i)

= Dd,i + εi − bf,i, (5)

using (2). Therefore, arrival delay equals departure delay plus the random flight-duration term

minus the flight buffer. With the random term held fixed, arrival delay then rises in one-for-

one fashion as departure delay increases. But since the random factor is not fixed in reality,

and since the buffer bf,i varies across flights, this one-for-one relationship is likely to hold only

approximately.
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2.2. Propagated departure delay

The discussion now turns to the determinants of departure delay, Dd,i in (5). In BCG

(2021a), the only cause of a departure delay is late arrival of the inbound flight. In other

words, a propagated departure delay is the only kind of departure delay in their model. In

their follow-up paper, BCG (2021b) realistically added random shocks to the ground time prior

to a flight, which provide another source of departure delays.

Suppressing such shocks to focus on propagated departure delays, let ta,i−1 and t̂a,i−1

denote the scheduled and actual arrival times for the inbound flight (flight i − 1). Then, the

inbound arrival delay is

Da,i−1 = t̂a,i−1 − ta,i−1. (6)

Furthermore, let the scheduled ground time prior to flight i be denoted tg,i and let the minimum

flight turnaround time be denoted tg,i. Flight i’s ground buffer then equals

bg,i = tg,i − tg,i > 0, (7)

being equal to the excess of scheduled ground time above the minimum turnaround time, as

noted above. The minimum turnaround is computed from the data and is specific to airports

and aircraft types.

To derive the departure delay in (5), note that the actual departure time of flight i equals

t̂d,i = max{td,i, t̂a,i−1 + tg,i}. (8)

To understand (8), note that t̂a,i−1 + tg,i is the earliest possible departure time for flight i,

equal to the arrival time of the inbound flight plus the minimum aircraft turnaround time. If

the inbound flight arrives on time (ta,i−1 = t̂a,i−1), then this expression equals ta,i−1 + tg,i <

ta,i−1 + tg,i = td,i, being less than the scheduled departure time (note tg,i < tg,i). The max

in (8) then equals the first td,i argument, so that flight i departs on time. But if the reverse

inequality holds, so that t̂a,i−1 + tg,i > td,i, then the flight’s earliest possible departure time

exceeds the scheduled departure time, and flight i departs late.
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To derive the magnitude of the resulting propagated departure delay, the scheduled depar-

ture time td,i is subtracted from both sides of (8), which becomes

Dd,i = t̂d,i − td,i = max{0, t̂a,i−1 + tg,i − td,i}. (9)

Adding and subtracting ta,i−1 from the second max expression in (6) yields

Dd,i = max{0, t̂a,i−1 − ta,i−1 + ta,i−1 + tg,i − td,i}

= max{0, Da,i−1 + ta,i−1 + tg,i − td,i}

= max{0, Da,i−1 + ta,i−1 + tg,i + tg,i − tg,i − td,i}

= max{0, Da,i−1 − bg,i}, (10)

where the last equality comes from adding and subtracting tg,i in the previous line and using

td,i = ta,i−1 + tg,i and tg,i − tg,i = bg,i. Therefore, the departure delay for flight i equals

the inbound arrival delay minus the ground buffer if this quantity is positive, equaling zero

otherwise. This result allows us to measure propagated departure delays in our data.

2.3. Measuring the arrival-delay contribution of propagated departure delays

As noted above, sources beyond delay propagation contribute to departure delays in actual

flight operations, and the notation of the model must be adjusted to reflect this reality. Accord-

ingly, let expression Dd,i in (10) be renamed D
prop
d,i

to reflect its measurement of propagated

departure delay. Also, let Dtot
d,i equal total minutes of departure delay from all sources, and let

Dother
d,i = Dtot

d,i −D
prop
d,i

denote minutes of departure delay from sources other than propagation.

Since our data allow measurement of the actual and scheduled arrival times of all flights

along with magnitude of the ground buffer for individual flights, D
prop
d,i

in (10) can be computed

along with Da,i in (2). To measure the contribution of propagated departure delays to late

arrivals, we then form the ratio

R
flight
i =

D
prop
d,i

Da,i

=
minutes of propagated departure delay for flight i

minutes of arrival delay for flight i
, (11)
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where the flight superscript on R indicates that the ratio is measured at the individual flight

level. Note that R
flight
i captures the share of just one source, propagated departure delay, in

minutes of arrival delay. Additional sources are minutes of departure delay caused by factors

other than propagation along with random elements (weather, unanticipated congestion) that

affect flight times (note that flight time equals airborne time plus taxi-in and taxi-out times).

While R
flight
i is computed for each flight in our data set, it is also possible to compute

an R ratio at the route level, where a route consists of two endpoint airports connected by

nonstop service. Rather than using minutes of delay, this route-level aggregation simply counts

the number of flights on a route with both propagated departure delay and arrival delay along

with the number of flights with arrival delay, yielding

Rroute
r =

# route-r flights with propagated departure delay and arrival delay

# route-r flights with arrival delay
, (12)

where r denotes the route and an arrival delay occurs when Da,i > 15 minutes, following the

FAA definition. Among flights with arrival delay, Rroute
r thus gives the share that also had a

propagated departure delay. In actuality, the route-level aggregation is finer than indicated in

(12), with aggregation occurring at the route × week (or month) level.

While the Rroute
r tells whether a late-arriving flight also had a propagated departure delay,

it does not net out the other factors that may have contributed to the late arrival. However,

an adjusted measure can be constructed that does so. To produce this adjusted R ratio, which

better captures the share of late arrivals caused solely by propagated departure delays, we

compute the share of flights at the route level with no departure delay that also experienced

an arrival delay, equal to Aroute
r . The adjusted ratio is then R

adj
r = (1 − Aroute

r ) × Rroute
r ,

where the share of flights with no departure delay that arrived late is netted out.9 However,

because Aroute
r is on average near zero, this adjustment has little effect. The near-zero value

shows that flights without a departure delay are very seldom late (with Da,i > 15 minutes), so

9 Specifically,

Aroute
r =

number of route-r flights without departure delay but with arrival delay

number of route-r flights without departure delay
.
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that arrival delays are almost exclusively due to departure delays. This conclusion can be seen

in a different way by replacing D
prop
d,i

in the ratio in (11) with Dtot
d,i , which yields a modified

ratio whose average value is close to 1 (equal to 0.85), showing that arrival delay minutes on

average approximately equal minutes of total departure delay.

If the inbound flight experiences an arrival delay smaller in magnitude than the ground

buffer, then a propagated departure delay as we have defined it does not occur. However, the

shortening of the available turnaround time as a result of the inbound delay offers a greater

chance for stochastic ground-time factors to make the flight depart late. As a result, it could be

argued that a moderate inbound arrival delay could generate an indirect propagated departure

delay via this channel. To capture the arrival-delay contribution of departure delays from such

indirect propagation, the following variant of Rroute
r is computed:

R̃route
r =

# route-r flights with 0.5bg < Da,i−1 ≤ bg , with departure delay, and with arrival delay

# route-r flights with arrival delay
(13)

This ratio equals the share of flights with an arrival delay that have both a departure delay

and a moderate inbound arrival delay (between half and the full ground buffer), which may

have contributed to the departure delay.

3. Data description

The sample used in this paper covers US domestic airline operations for the year 2018.

It is constructed by combining information from the US Department of Transportation and

Weather Underground.10

The USDOT data is from the ‘Marketing Carrier On-Time Performance’ dataset, which

at the aircraft level, uniquely identified by the aircraft’s tail number, provides information

on the carrier operating the flight, the origin and destination airports, the departure date,

the scheduled and actual departure and arrival times, the taxi-out and taxi-in times, and

the airborne time (flights to and from foreign destinations are not covered). From this initial

dataset, we remove canceled or diverted flights as well flights from/to US Commonwealth areas

10 See https://www.transtats.bts.gov/Fields.asp?gnoyr VQ=FGK for the former and https://www.

wunderground.com for the latter source of data.
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and Territories. Flights with an arrival or departure delay greater than 120 minutes are also

excluded to prevent outliers from affecting our results.11

Our regressions have a panel structure, with the time dimension corresponding to the days

of 2018 and the cross sectional dimension corresponding to aircraft with different tail numbers.

Accordingly, the regressions include date fixed effects as well as tail-number fixed effects.

To calculate the ground buffer using (7), we first compute the scheduled ground time tg,i

that separates flight i and flight i−1 in the sequence of flights operated by the observed aircraft

during the day. Then we calculate the minimum turnaround time as the shortest actual ground

time observed across all aircraft of a given type using the turnaround airport. The ground

buffer for flight i is then obtained by subtracting this minimum feasible ground time from the

scheduled ground time, as in (7).12 Finally, as in BCG (2021a), we exclude from the sample

aircraft that operate more than 8 flights during the day.13

The weather data are obtained from Weather Underground, a commercial meteorological

service that provides weather reports at each airport roughly every half-hour or every hour,

depending on the airport. Among various meteorological metrics, each weather report shows

the general weather condition (i.e., sunny, cloudy, rainy, etc.) and the temperature, which are

two relevant pieces of information used in the regressions. The weather data are included in

our sample by matching the actual take-off and landing times of each flight with the latest

available weather report at the origin and destination airports, respectively. For example, if a

flight leaves at JFK at 9:15 AM and arrives at LAX at 12:15 PM, then JFK hourly weather at

9:00 AM and LAX weather at 12:00 PM are the origin and destination weather observations

11 We also excluded flights below the first percentile of the arrival or departure delay distributions (very early
arrivals or very early departures).
12 Since the Marketing Carrier On-Time Performance dataset does not include international flights, except

those from/to US Commonwealth areas and Territories, we restrict the ground buffer to be not greater than
200 minutes, to exclude possible incomplete records that may arise when an aircraft flies to a non-domestic
destination (e.g., Canada or Mexico, returning to the same US airport) between two domestic flights (the
resulting time gap would be incorrectly identified as a ground buffer). Furthermore, in order to have confidence
in the accuracy of the observed minimum ground time used in the buffer computation, we require that the
number of observations used to generate it is at least equal to 30.
13 This restriction mostly removes ‘ping-pong’ flights, which are flights that, multiple times in a day, operate

a very short-haul route linking a hub to non-hub airports (e.g., Hawaiian flights between Honolulu and the
other Hawaiian islands). Although these flights are generally characterized by a short ground buffer, delay
propagation is not an issue.
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for the flight.14

Table 1 presents summary statistics for the sample, which contains more than 4.2 million

flights. The mean arrival delay, listed in the second row, is −0.61 minutes, reflecting the fact

that, despite widespread concerns about delays, most flights arrive early. This fact is also

illustrated in the darkly shaded histogram in the first panel of Figure 1, which shows that the

mode of the delay distribution lies in the negative range (the minimum is -49 minutes). A long

positive tail exists, however, which is truncated at 120 minutes per our sample restriction.

As seen in Table 1, the mean (total) departure delay is positive at 4.53 minutes. The

lightly shaded histogram in the first panel of Figure 1, which shows departure delays, reveals

that negative delays are again common, occurring when all passengers have boarded and an

early departure is otherwise feasible. But since aircraft cannot leave too far in advance of their

scheduled departure, the minimum departure delay is −19 minutes, with most values above

−10 minutes.

The difference between the arrival and departure-delay distributions is shown in the sec-

ond panel of Figure 1, which confirms that the distributions have very similar positive tails

while showing that, in the negative range, departure delays are more concentrated near zero.

Returning to Table 1, the first row shows that the mean arrival delay of -2.24 minutes for

previous flights (flight i − 1) is even more negative than the flight-i mean, a consequence of

the fact that previous flights are earlier in the day on average, when delays are less common.

Propagated departure delays, given by D
prop
d,i

in (10), have a mean of 1.73 minutes (by

definition, they must be positive) and maximum of 113 minutes. Other departure delays,

given by Dother
d,i and equal to the difference between total and propagated delays, have a mean

of 2.80 minutes and a maximum at the truncated value of 120 minutes.

The remaining rows of Table 1 show summary statistics for the different versions of the R

ratio, which capture the contribution of propagated departure delays to arrival delays. The

flight-based R
flight
i , which is defined only for positive arrival delay, has a mean of 0.127,

showing that minutes of propagated departure delay are on average about 13% of arrival-delay

minutes. Thus, for flights that arrive late, the contribution of propagated departure delay is

14 A similar approach is adopted by Bubalo and Gaggero (2015, 2021).
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fairly modest in size when delays are measured in minutes.

Note that, while one would expect R
flight
i to be less than 1, its maximum value is 44,

reflecting an unusual situation where an appreciable propagated departure delay was almost

entirely overcome, leading to a small arrival delay. However, cases with R
flight
i > 1 are

relatively rare, accounting for just 2.5% of the 1,432,430 observations with a positive arrival

delay, and among these observations, the median value is 1.25, not far above 1.

The next row of Table 1 shows the route-based R, computed at the route × month level.

The mean value of 0.354 indicates that among flights with an arrival delay longer than 15

minutes, 35% had a propagated departure delay. The subsequent row of the table shows

Rroute
r instead computed at the route × week level, which has a somewhat smaller mean equal

to 0.271.

The final two rows of the table show the route-level R variables based on moderate inbound

arrival delays, computed at the month and week levels. The values are smaller than those of

the Rroute
r variables, indicating that the combination of a moderate inbound arrival delay and

a departure delay is less common than a propagated departure delay as a cause of late arrival.

Summary statistics for our other covariates are shown in Table A1 in the appendix. The

weather and hub variables are self explanatory, while the congestion variables are equal to

airport traffic in the hour of a flight’s arrival or departure divided by the number runways (see

BCG, 2021a) and the competition variable equals the number of airlines competing nonstop

on the route.

Table 2 shows how the mean R ratios vary by airline, carrier type, and the origin airport’s

size as well as its hub and slot-control status. The flight-based R in the first column ranges

between 0.061 (for Hawaiian) and 0.196 (for Frontier). Because Hawaiian operates mostly long

distance flights where aircraft turnaround is not a large factor in delays, its small R may make

sense. By contrast, the high R values for Allegiant, Frontier, and Jet Blue could reflect the

small ground buffers (and thus quick turnarounds) favored by low-cost carriers, which raise the

likelihood of propagated departure delays. While Southwest and Spirit have lower R values,

low-cost carriers on average have higher R values than legacy carriers, as seen in the next panel

of the table. Consistent with this difference, the three big network carriers (American, Delta
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and United) have relatively low R values, consistent with their less-aggressive turnaround

scheduling. The regressions presented in section 5 confirm that, when controlling for other

factors, LCCs continue to have higher R values than other carriers.

The magnitudes of the R variables also depend on airport characteristics, the most impor-

tant of which is the hub status of the origin airport. As can be seen in first column, non-hub

origins have higher flight-based R values than hub origins, a pattern again confirmed by our

section-5 regressions. Thus, the contribution of propagated departure delays to late arrivals

is greater for flights with non-hub origins. Column 1 of the table also shows that the mean

R varies directly with origin-airport size, although this variation may be mainly capturing a

hub/non-hub difference. By contrast, slot-controlled airports (which tend to be large) have

higher R values.

Turning to the other columns of Table 2, the means of the route-level variable Rroute
r at

both the month and the week level show rankings across airlines similar to the ranking in the

first column. The effects of airport characteristics are also similar, except that slot control

now has little effect. By contrast, the R̃route
r variable, designed to capture the arrival-delay

contribution of indirect propagated departure delays, shows different patterns. The range of

values in the third column, which shows the month-based measure, is narrower than in column

2, and the ranking across carriers differs. Now, the LCC value is only slighly larger than

the legacy value, and hub/non-hub and large/small patterns are reversed, with R̃route
r larger

at hubs and at large airports. This measure, which attempts to capture the contribution of

indirect propagated departure delay, thus varies across airports and airlines differently than

the variable Rroute
r , which is based on a strict definition of propagated departure delay and

thus captures the direct effect. Further discussion of these differences is presented in section 5.

4. Preliminary regressions

As explained in the introduction, this section of the paper reports the results of preliminary

regressions that have two purposes. The first is to validate the underpinnings of our approach

by showing that an inbound arrival delay can lead to a late departure and late arrival for the

subsequent flight. The second purpose is to explore the connection between departure delays
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and arrival delays, showing that the two are closely linked.

The first two columns of Table 3 confirm the basic mechanism of delay propagation by

relating departure delay in minutes to minutes of arrival delay for the inbound flight along

with a host of control variables. While column 1 shows the expected positive effect in an

equation with a single inbound delay variable (whose coefficient is 0.302), column 2 allows the

effect of the inbound delay to depend on its size relative to the ground buffer bg,i.

This second regression is a continuous spline specification that allows the inbound delay

coefficient to be different for the cases where Da,i−1 ≤ 0.5bg,i (Da,i−1 smaller than half the

buffer), 0.5bg,i < Da,i−1 ≤ bg,i (between half the buffer and the full buffer), and bg,i < Da,i−1

(greater than the buffer).15 Since this latter case is the one where a propagated departure

delay exists according to our definition, we expect the third coefficient to be the largest of the

three and near 1. This is exactly what the regression shows, with an extra minute of inbound

arrival delay leading to 0.872 additional minutes of departure delay when the inbound delay is

already larger than the ground buffer. By contrast, when the inbound arrival delay is less than

half the size of the buffer, an additional minute of inbound delay leads to a neglible increase in

departure delay (0.040 minutes), as expected. But in the intermediate case, where the inbound

arrival delay is moderate, lying between half the ground buffer and the full buffer, an extra

minute raises departure delay by 0.535 minutes. While the inbound delay in this case is not

large enough to not automatically create a departure delay, it narrows the window for avoiding

a delay, making it more likely that other factors will tip the flight into a situation where it

departs late. This effect is seen in the moderate magnitude of the estimated coefficient, and

its existence provides the motivation for the R̃route
r ratio.

While these regressions confirm the mechanism leading to a propagated departure delay,

15 If the three spline regimes are given by Dtot
d,i = α + βDa,i−1, θ + γDa,i−1, µ + τDa,i−1, with continuity

required at the break points G1 = 0.5bg,i and G2 = bg,i, then the departure delay regression is

Dtot
d,i = α + β[(Da,i−1 − G1)I1 + G1]

+ γ[(Da,i−1 − G2)I2 + (G2 − G1)(1 − I1)]

+ τ (Da,i−1 − G2)(1 − I1 − I2),

where I1 = 1 if Da,i−1 ≤ bg,i and zero otherwise and I2 = 1 if 0.5bg,i < Da,i−1 ≤ bg,i and zero otherwise. The

estimated β, γ, and τ coefficients are shown in column 2.
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the last two columns of Table 3 study a more-indirect linkage by relating the arrival delay of

flight i (Da,i) to the inbound arrival delay of the previous flight (Da,i−1). The first regression

has a single delay coefficient (equal to 0.113), while the second regression again is a spline

specification. The pattern of coefficients is similar to that in column 2, with the magnitude

of the third coefficient showing that an increase in Da,i−1 when it is already larger than bg,i

leads to an additional 0.695 minutes of arrival delay. Since arrival delay is less directly linked

to Da,i−1 than is departure delay, it is natural that this coefficient is smaller than the 0.872

coefficient in column 2. The first coefficient in column 4 is actually negative, while the second

is moderate and size but smaller than the corresponding coefficient in column 2.

The coefficients of the control variables in columns 1 and 2 show that departure delays

are higher for longer flights, at hub origins, when congestion is high at both endpoints, when

there are more competitors on the route, and that delays are mostly higher later in the day

(early morning is the default) and when weather is bad at either endpoint. The effects of the

control variables on arrival delays are qualitatively very similar, except that delays are lower

when the flight is longer and a hub is the destination (the competition effect is also absent).

Evidently, airlines make special efforts to have flights arrive on time at their hubs so as not to

disrupt network operations. Note that, in addition to weather at the origin airport, destination

weather can affect departure delays if flight controllers impose a “ground hold” at the origin.

Similarly, weather at both endpoints, which affects takeoffs and landings, will matter for arrival

delays.

Table 4 serves the second purpose mentioned above by presenting regressions that show

the connection between arrival delays and departure delays. These regressions, which follow

equation (5) in section 2, provide quantitative evidence on the arrival-delay impact of prop-

agated and other departure delays. This impact underlies the propagated-delay contribution

measures R
flight
i and Rroute

r , whose determinants are explored in next section of the paper.

Column 1 of Table 4 shows that total departure delay translates almost one-for-one into

arrival delay, with an extra minute of total departure delay leading to 0.876 extra minutes of

arrival delay. Column 2 decomposes the total departure delay effect by allowing propagated

departure delay (D
prop
d,i ) and other departure delay (Dother

d,i ) to have different coefficients. As
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can be seen, the D
prop
d,i

coefficient is the smaller of the two, indicating that an extra minute

of propagated departure delay leads to 0.765 additional minutes of arrival delay, while an

extra minute of other departure delay leads to 0.909 additional minutes of arrival delay. The

coefficients are statistically different from one another, as the test at the bottom of the table

indicates. These results evidently show that airlines work harder to overcome the arrival-delay

impact of a departure delay when the departure delay is propagated rather than caused by

other factors. Carriers perhaps view lateness due to propagated departure delays as more

damaging to their reputations, although the coefficient difference is not large.

Column 3 shows a logit version of the same regression, with a flight counted as late if Da,i

is greater than 15 minutes. As can be seen, the D
prop
d,i

coefficient is once again smaller than

the Dother
d,i coefficient, again suggesting that airlines try harder to offset propagated departure

delays than delays from other causes.

The results from columns 1 and 2 of Table 4 suggest that it is hard to overcome depar-

ture delays, which translate almost one-for-one into arrival delays. The most obvious way of

overcoming a departure delay is for the aircraft to fly faster en route, and the one-for-one

relationship suggests that this potential remedy is not able to help much.16 The regressions

in Table 5 provide explicit evidence for this conclusion by relating airborne time at the in-

dividual flight level to total departure delay. Regardless of whether the magnitude of Dtot
d,i

is unrestricted, constrained to be positive, or constrained to be greater than 15 minutes, the

regressions show that an extra minute of departure delay leads to very small reduction in

airborne time (between 0.048 and 0.069 minutes). Thus, flying faster does not provide much

scope for overcoming departure delays.17

Returning to Table 4, column 4 provides a more flexible specification that allows a depar-

ture delay’s effect on arrival delay to depend on the magnitude of the delay. The regression

16 Aktürk, Atamtürk and Gürel (2014) analyze increases in aircraft speed as a means of offsetting departure
delays, recognizing the penalty of higher fuel consumption.
17 The airport-specific control variables in Table 5 are measured only for the destination, which is appropriate

since, once a flight is airborne, origin characteristics no longer matter. A greater distance naturally increases
airborne time, while time is longer when the destination is congested or has bad weather (although low tem-
peratures reduce it). A hub destination reduces airborne time, as does the presence of more competitors on
the route, and airborne time is lower early and late in the day.
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is a two-regime continuous spline, where the break point (Kr) equals the mean minus the

minimum airborne time on the route, on the belief that delays shorter than this value can be

more easily made up by faster flying.18 The mean value of Kr is 19.5 minutes. The results in

column 4 show that, when Dtot
d,i is less than Kr, an extra minute of departure delay translates

into only an additional 0.113 minutes of arrival delay. But when Dtot
d,i is larger than Kr, an

extra departure delay minute leads to 1.026 additional minutes of arrival delay. The coefficient

values naturally bracket the 0.876 coefficient in column 1, which can be viewed as a weighted

average of the spline coefficients. This regression suggests that long delays, which translate

one-for-one into incremental arrival delays, are the source of Table 5’s evidence that departure

delays are hard to make up by faster flying. Evidently, greater speed or other actions can

mostly offset shorter departure delays.

The control-variable coefficients in Table 4 almost always have the same signs and signif-

icance as the coefficients in columns 3 and 4 of Table 3, with arrival delays higher (lower)

when the origin (destination) is a hub, higher when either endpoint is congested, when the

route has more competitors, when the flight occurs later in the day, and when the weather at

either endpoint is bad. As in Table 3, arrival delays are lower for long-distance flights, which

may offer the airline a better chance to offset a departure delay. This relationship is shown

in Figure 2, which graphs arrival delay as a function of departure delay (using mean values),

with each curve showing a different distance range. As can be seen, a longer distance range

leads to a lower-level curve.

Finally, it is useful to consider an econometric issue that may influence the magnitude

of the departure-delay coefficients in Table 4. Recall from equation (5) that arrival delay

equals departure delay plus the random flight-duration term minus the flight buffer bf,i, with

the latter factors constituting part of the regression error term in the Table 4’s regressions.

It is possible, however, that carriers adjust the flight buffer upward in response to repeated

departure delays, so as to reduce arrival delays. If so, the −bf,i component of the regression

18 If the two spline regimes are given by Da,i = α + βDtot
d,i , θ + γDtot

d,i with continuity required at the break
point Kr , then the regression is

Da,i = α + β[(Dtot
d,i − Kr)I + Kr] + γ(Dtot

d,i − Kr)(1 − I)

where I = 1 if Dtot
d,i ≤ Kr and zero otherwise.
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error term is negatively correlated with the departure-delay covariate, biasing its coefficient

downward. Therefore, the fact that the 0.876 coefficient in column 1 is less than 1 may reflect

this downward bias, rather than revealing a true arrival-delay impact slightly less than one-

for-one. However, since this estimated coefficient is very close to one, the issue may be mostly

moot. One might argue that the bias could be eliminated by including the flight buffer (which

we can measure) as an additional covariate in the arrival-delay regressions. But since the

buffer is endogenous (being chosen by the airline schedulers) and suitable instruments are not

apparent, this remedy would simple replace one econometric issue with a new one.

5. Determinants of the arrival-delay contribution of propagated de-

parture delays

Having explored the interconnections among inbound arrival delays, departure delays, and

subsequent arrival days in sections 3 and 4, this section presents regressions showing the

determinants of the R ratios, which capture the contribution of propagated departure delays

to arrival delays. Table 6 presents the regression results when the flight-based R ratio is the

dependent variable. Column 1 shows the basic regression, while columns 2–4 show the results

under several sample restrictions. Referring to column 1, the results show that the contribution

of propagated departure delays increases over the day, with the time-of-day coefficients rising

monotonically across the time intervals. Recalling that its mean in Table 1 is 0.13, the increase

in R
flight
i moving from morning to evening, equal to 0.178 − 0.42 = 0.136, is roughly equal

to the mean value. Thus, time-of-day has a large effect on the contribution of propagated

departure delays, apparently reflecting the cumulative effect of delays over the day, which

make a propagated delay more likely near the day’s end. Switching from a non-hub to a

hub origin also has a large negative effect on the contribution of propagated departure delays,

reducing R by 0.104, an amount just below the mean (matching the pattern in Table 2). Thus,

propagated departure delays contribute less to arrival delays for hub-departing flights, with

their contribution greater at smaller, non-hub origins.

A hub destination, by contrast, raises the contribution of propagated departure delays,

evidently through a reduction in arrival delays (as seen in Tables 3 and 4), which reduces the
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denominator of the R ratio, raising the ratio’s magnitude. The effect is smaller in absolute

terms, however, than that of a hub origin.

As for the other covariates, distance in column 1 of Table 6 has a positive effect on Rroute
r ,

the effects of airport congestion are mixed, competition has no effect, and the weather variables

have mostly negative coefficients. Bad weather at either endpoint generates arrival delays

for a host of reasons, thereby reducing the contribution of propagated departure delays and

apparently yielding negative effects on the R ratio.

The results in columns 2–4 of Table 6, which are based on various sample restrictions, are

similar to those in column 1, showing the robustness of those findings. While arrival delays

are restricted to be positive in column 1, further restricting them to exceed 15 minutes, as in

column 2, has very little effect on the estimated coefficients despite a more than 50% reduction

in the sample size. Returning to positive arrival delays but requiring the total departure delay

to be positive, as in column 3, again has little effect on the results. Dropping the positive-

departure-delay requirement but requiring R
flight
i to be less than 1 (which reduces the sample

size by 2.5%) serves to reduce the absolute magnitudes of the coefficients without changing

their qualitative implications, as seen in column 4. This outcome is expected given the smaller

average size of the R variable.

Table 7 presents regression results using the route-based R variables. While carrier dummy

variables could not be included in the regressions of Table 6 due to collinearity with the tail-

number fixed effects, the route-level regressions partly circumvent this problem. To see how,

note that, since the R variables in the table are measured at the route level, the covariates must

also be measured at this level. Therefore, each regression covariate is the route-level average of

the corresponding variable, with the average specific to either a month or week. In the case of

carriers present on the route, this averaging would yield an average of airline dummy variables,

equal to the flight shares of the different carriers. But rather than focusing on specific airlines,

we instead chose to only distinguish between low-cost carriers (LCCs) and other airlines, on the

belief that the different LCC business model requires a separate treatment. Accordingly, the

first variable in Table 7 is the LCC flight share on the route, which is a result of the averaging

process applied to LCC dummies.
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Turning to the Rroute
r results in Table 7, column 1 shows coefficients often similar in size and

significance to those in column 1 of Table 6. The results show a similar sizable negative effect

of a hub origin on the arrival-delay contribution of propagated departure delays. In addition,

their contribution rises over the day, with the coefficients strikingly similar in magnitude to

those in column 1 of Table 6, while congestion effects are again mixed. In contrast to Table

6, a hub destination has no effect, while greater competition strengthens the contribution of

propagated departure delays. The coefficients of the weather variables are insignificant more

often than before, but remain negative when significant. The week-based regression in column

2 yields very similar results for the non-weather variables along with weather coefficients that

are more frequently significant, showing that weather effects that are lost with a month-level

aggregation can be seen at the week level.

Finally, the positive and significant coefficients of the LCC variable in columns 1 and 2

show that propagated departure delays contribute more to arrival delays in the case of low-

cost carriers than for other airlines. This finding presumably is tied to one feature of the LCC

business model: quick aircraft turnarounds, which make propagated departure delays more

likely (as seen in Table 2). The effect is not as large as the effect of a hub origin or an evening

departure, but it is still appreciable in size.

Columns 3 and 4 of Table 7 show regressions using the R̃route
r variable. Reflecting the

reverse pattern seen in Table 2, the hub-origin coefficient is positive in both columns and

significant in column 4, instead of being negative. As in the Rroute
r regressions, R̃route

r is

mostly higher later in the day, although the evening-morning differential is much smaller than

in columns 1 and 2. Weather effects are mostly insignificant in column 3 but usually positive

and significant in column 4, reversing the pattern in Table 6. Even though the LCC effect in

Table 2 was very modest, the LCC coefficients in columns 3 and 4 are positive and significant,

with magnitudes similar to those in columns 1 and 2.

To appraise these differences relative to the Rroute
r regressions, recall that the moderate

inbound arrival delay underlying R̃route
r is not by itself sufficient to generate a departure delay,

with contributions from other random ground-time factors also being required. Since R̃route
r

then captures a composite of the forces leading to arrival delays, its connections to underlying
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determinants cannot be expected to exactly mirror the connections between those determi-

nants and Rroute
r , which solely captures the contribution of propagated departure delays. The

upshot is that, while the R̃route
r regressions are informative, we focus on the Rroute

r and R
flight
i

regressions in drawing conclusions about the contribution of propagated departure delays to

late arrivals.

These regressions yields three important conclusions. First, the contribution of propagated

departure delays to arrival delays is lower when the origin is a hub airport rather than a non-

hub endpoint. Therefore, airlines appear to run their hubs to limit the extent of propagated

departure delays for outbound flights. Second, propagated departure delays contribute more to

arrival delays later in the day. Thus, late inbound flights, and the propagated departure delays

they generate, appear to be a more significant factor toward the end of the day, when the

effects of prior delays have accumulated. Third, the arrival-delay contribution of propagated

departure delays is greater in the case of LCCs than for other airlines, reflecting their different

business model.

6. Conclusion

This paper has offered a simple approach for identifying propagated departure delays and

measuring their contribution to arrival delays. Under our approach, a propagated departure

delay occurs when the arrival delay of the inbound flight exceeds the subsequent flight’s ground

buffer. The size (or frequency) of such propagated delays relative to the size (or frequency)

of arrival delays then measures the contribution of propagated delays to late arrivals. This

approach differs from earlier attempts to quantify the contribution of delay propagation since

it focuses on an individual flight and its immediate predecessor, without attempting to trace

the sources of delay propagation back through the entire sequence of prior flights. The paper’s

empirical results show that the contribution of propagated departure delays to arrival delays

depends on several key determinants.

We hope that other researchers can make use of our approach or extend it to further analyze

the effect of airline scheduling decisions on on-time performance. Given the dislike of flight

delays by both airlines and passengers, this subject will always be one of ongoing interest.
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Table 1: Summary statistics of the delay variables

Variable Description Mean Std. Dev. Min Max Obs.

Da,i arrival delay for flight i− 1 -2.235 21.688 -49 120 4,205,229

Da,i arrival delay for flight i -0.609 23.224 -49 120 4,205,229

Dtot
d,i departure delay for flight i 4.529 19.296 -19 120 4,205,229

Dprop
d,i max{0, Da,i−1 − bg,i} 1.733 8.556 0 113 4,205,229

Dother
d,i Dtot

d,i −Dprop
d,i 2.796 15.199 -71 120 4,205,229

Rflight
i

Dprop
d,i

Da,i
, defined if Da,i > 0 0.127 0.418 0 44 1,432,446

if Da,i > 15 0.202 0.330 0 3 678,244

Rroute
r,month

# route-r flights with Dprop
d,i >0 and Da,i>15 by month

# route-r flights with Da,i>15 by month
0.354 0.301 0 1 61,953

Rroute
r,week

# route-r flights with Dprop
d,i >0 and Da,i>15 by week

# route-r flights with Da,i>15 by week
0.271 0.360 0 1 255,085

R̃route
r,month

# route-r flights with 0.5bg,i<Da,i−1≤bg,i, with Dtot
d,i>0, and Da,i>15 by month

# route-r flights with Da,i>15 by month
0.111 0.164 0 1 61,953

R̃route
r,week

# route-r flights with 0.5bg,i<Da,i−1≤bg,i, with Dtot
d,i>0, and Da,i>15 by week

# route-r flights with Da,i>15 by week
0.086 0.205 0 1 255,085
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Table 2: R variables

Rflight
i Rroute

r,month Rroute
r,week R̃route

r,month R̃route
r,week

AIRLINE
Alaska Airlines 0.071 0.247 0.159 0.118 0.084
Allegiant Air 0.191 0.354 0.186 0.092 0.048
American Airlines 0.113 0.310 0.243 0.113 0.091
Delta Air Lines 0.131 0.325 0.238 0.100 0.077
Frontier Airlines 0.196 0.392 0.237 0.117 0.071
Hawaiian Airlines 0.061 0.151 0.110 0.082 0.069
JetBlue 0.182 0.433 0.358 0.123 0.100
Southwest Airlines 0.133 0.426 0.335 0.131 0.103
Spirit Airlines 0.137 0.343 0.223 0.100 0.065
United Airlines 0.127 0.322 0.247 0.098 0.077
Virgin America 0.106 0.258 0.193 0.119 0.084
CARRIER TYPE
Legacy carrier 0.118 0.310 0.233 0.106 0.082
Low-cost carrier 0.146 0.398 0.284 0.117 0.084
ORIGIN AIRPORT SIZE
Large 0.094 0.283 0.219 0.126 0.098
Medium 0.120 0.335 0.257 0.116 0.090
Small 0.208 0.418 0.279 0.087 0.058
ORIGIN HUB STATUS
Hub 0.074 0.234 0.183 0.121 0.096
Non-hub 0.158 0.391 0.282 0.106 0.078

0.156 0.347 0.278 0.116 0.093
ORIGIN SLOT CONTROL 
Slot-controlled airport 
Non-slot-controlled airport 0.126 0.346 0.252 0.110 0.082

Notes. Rroute
r,month, Rroute

r,week, R̃route
r,month, and R̃route

r,week are computed at airline level. The classification of large,
medium, and small airport is based on the ranking obtained from the Department of Transportation (DOT),
which reports the total number of enplaned passengers on U.S. and foreign airlines for the main U.S. airports.
Large airports are top-10 airports in terms of total number of enplaned passengers in year 2018 (the year of
our sample), medium airports are those ranked between positions 11 and 50, small airports are those whose
rank is below position 50 or which do not appear in the airport list provide by DOT (for the raking list see
https://www.bts.gov/airport-rankings-2018, sheet ‘Total’). The slot controlled airports are: Reagan
National (DCA) airport in Washington, DC and LaGuardia (LGA) and John F. Kennedy (JFK) airports in
New York City.
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Table 3: Departure and Arrival Delay

(1) (2) (3) (4)
Dependent variable Dtot

d,i Dtot
d,i Da,i Da,i

Da,i−1 0.302*** 0.113***
Da,i−1 ≤ 0.5bg,i 0.040*** -0.178***
0.5bg,i < Da,i−1 ≤ bg,i 0.535*** 0.448***
bg,i < Da,i−1 0.872*** 0.695***

Distance 0.070*** 0.072*** -0.177*** -0.175***
Hub origin 0.618*** 1.133*** 0.726*** 1.265***
Hub destination 0.067 -0.078* -0.521*** -0.675***
Congestion origin 0.135*** 0.114*** 0.235*** 0.213***
Congestion destination 0.083*** 0.070*** 0.254*** 0.240***
Competitors -0.081*** -0.110*** 0.032 0.002
Morning 1.591*** 1.515*** 1.816*** 1.722***
Afternoon 3.835*** 3.711*** 4.725*** 4.574***
Late Afternoon 5.276*** 5.044*** 7.099*** 6.831***
Evening 4.995*** 4.687*** 7.035*** 6.683***
Cloud origin 0.083*** 0.245*** 0.183*** 0.358***
Cloud destination 0.102*** 0.118*** 0.982*** 1.000***
Rain origin 1.209*** 1.664*** 3.081*** 3.569***
Rain destination 0.933*** 0.936*** 4.806*** 4.813***
Fog origin 0.215*** 0.414*** 1.765*** 1.975***
Fog destination 1.652*** 1.653*** 3.625*** 3.630***
Snow origin 1.089*** 1.635*** 14.360*** 14.948***
Snow destination 0.324*** 0.424*** 3.145*** 3.257***
Storm origin 5.142*** 5.881*** 12.968*** 13.766***
Storm destination -2.375*** -1.825*** 7.659*** 8.263***
Low temperature orig. 0.757*** 0.975*** 0.915*** 1.155***
Low temperature dest. 0.026 0.004 0.850*** 0.831***
R2 0.164 0.275 0.064 0.149
Observations 4,205,120 4,205,120 4,205,120 4,205,120

Notes. Ordinary Least Squares estimation with tail number and date fixed-effects, airport of origin fixed
effects, airport of destination fixed effects; constant not reported. The estimated coefficients marked with
***, ** and * are statistically significant at, respectively the 1%, 5% and 10% level. The standard errors,
not reported, are clustered by tail number.
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Table 4: Arrival Delay

(1) (2) (3) (4)
Dependent variable Da,i Da,i Pr(Da,i ≥ 15) = 1 Da,i

Dtot
d,i 0.876***
Dtot

d,i ≤ Kr 0.113***
Dtot

d,i > Kr 1.026***
Dprop

d,i 0.765*** 0.086***

Dother
d,i 0.909*** 0.104***

Distance -0.244*** -0.245*** -0.004*** -0.142***
Hub origin 0.436*** 0.289*** 0.198*** 0.990***
Hub destination -0.580*** -0.558*** 0.029** -0.470***
Congestion origin 0.107*** 0.108*** 0.014*** 0.175***
Congestion destination 0.201*** 0.198*** 0.026*** 0.195***
Competitors 0.108*** 0.115*** 0.003 0.058***
Morning 0.140*** 0.133*** 0.005 0.988***
Afternoon 0.798*** 0.763*** 0.170*** 2.683***
Late Afternoon 1.579*** 1.564*** 0.399*** 3.859***
Evening 1.414*** 1.470*** 0.283*** 3.394***
Cloud origin -0.002 -0.011 0.076*** 0.158***
Cloud destination 0.989*** 0.970*** 0.209*** 0.939***
Rain origin 1.664*** 1.609*** 0.426*** 2.527***
Rain destination 4.344*** 4.264*** 0.779*** 4.238***
Fog origin 1.172*** 1.193*** 0.341*** 1.561***
Fog destination 2.376*** 2.296*** 0.490*** 2.541***
Snow origin 13.866*** 13.680*** 2.155*** 14.522***
Snow destination 3.315*** 3.224*** 0.563*** 3.252***
Storm origin 8.735*** 8.418*** 1.432*** 10.081***
Storm destination 10.821*** 10.662*** 1.717*** 10.026***
Low temperature orig. 0.102** 0.070* 0.221*** 0.600***
Low temperature dest. 0.803*** 0.812*** 0.016 0.757***
Test Dprop

d,i = Dother
d,i 7,963*** 568***

Test (Dtot
d,i ≤ Kr) = (Dtot

d,i > Kr) 408,745***
R2 0.546 0.548 0.450
Observations 4,205,120 4,205,120 1,297,732 4,205,120

Notes. Columns (1)-(3): Ordinary Least Squares estimation with tail number and date fixed-effects, airport
of origin fixed effects, airport of destination fixed effects; constant not reported; standard errors, not reported,
are clustered by tail number. Kr = route mean airborne time – route shortest airborne time. Column (4):
Logit estimation with tail number and date fixed-effects; constant not reported. The estimated coefficients
marked with ***, ** and * are statistically significant at, respectively the 1%, 5% and 10% level.
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Table 5: Flight-time Regressions

(1) (2) (3)
Dependent variable AirborneT ime AirborneT ime AirborneT ime
Sample restrictions None Dtot

d,i > 0 Dtot
d,i ≥ 15

Dtot
d,i -0.048*** -0.059*** -0.069***

Distance 11.757*** 11.743*** 11.746***
Hub destination -0.225*** -0.465*** -0.469***
Congestion destination 0.182*** 0.180*** 0.195***
Competitors -0.574*** -0.831*** -0.703***
Morning -0.543*** -1.186*** -1.632***
Afternoon 0.151*** -0.459*** -1.156***
Late Afternoon 1.122*** 0.510*** -0.472***
Evening -0.491*** -1.286*** -2.663***
Cloud destination 1.179*** 1.328*** 1.433***
Rain destination 3.462*** 3.396*** 3.276***
Fog destination 1.849*** 1.851*** 1.698***
Snow destination 2.626*** 2.734*** 2.855***
Storm destination 7.297*** 7.610*** 6.747***
Low temperature dest. -0.136*** -0.391*** -0.537***
R2 0.953 0.952 0.947
Observations 4,205,166 1,456,809 663,051

Notes. Ordinary least squares estimation with tail number and date fixed-effects, airport of destination
fixed effects; constant not reported. The estimated coefficients marked with ***, ** and * are statistically
significant at, respectively the 1%, 5% and 10% level. The standard errors are clustered by tail number.
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Table 6: Flight-based R Regressions

(1) (2) (3) (4)

Dependent variable Rflight
i Rflight

i Rflight
i Rflight

i

Sample restrictions Da,i > 0 Da,i > 15 Da,i > 0, Dtot
d,i > 0 Da,i > 0, Rflight

i < 1

Distance 0.003*** 0.003*** 0.004*** 0.000***
Hub origin -0.104*** -0.127*** -0.139*** -0.056***
Hub destination 0.029*** 0.032*** 0.026*** 0.017***
Congestion origin 0.000** -0.001*** -0.000 0.001***
Congestion destination -0.005*** -0.006*** -0.005*** -0.002***
Competitors -0.001 0.001 -0.001 0.001**
Morning 0.042*** 0.094*** 0.067*** 0.027***
Afternoon 0.060*** 0.152*** 0.092*** 0.048***
Late Afternoon 0.107*** 0.240*** 0.152*** 0.084***
Evening 0.178*** 0.364*** 0.245*** 0.130***
Cloud origin 0.000 -0.002 0.000 -0.001
Cloud destination -0.023*** -0.032*** -0.027*** -0.013***
Rain origin -0.016*** -0.024*** -0.017*** -0.009***
Rain destination -0.066*** -0.091*** -0.077*** -0.041***
Fog origin 0.005 0.005 0.006 0.009***
Fog destination -0.051*** -0.083*** -0.061*** -0.032***
Snow origin -0.129*** -0.148*** -0.151*** -0.073***
Snow destination -0.074*** -0.095*** -0.084*** -0.047***
Storm origin -0.099*** -0.136*** -0.118*** -0.072***
Storm destination -0.125*** -0.170*** -0.128*** -0.096***
Low temperature orig. -0.020*** -0.038*** -0.023*** -0.015***
Low temperature dest. -0.004 -0.009** -0.004 -0.003*
R2 0.065 0.227 0.086 0.096
Observations 1,432,411 678,230 1,010,689 1,396,135

Notes. Ordinary least squares estimation with tail number and date fixed-effects, airport of origin fixed
effects, airport of destination fixed effects; constant not reported. The estimated coefficients marked with
***, ** and * are statistically significant at, respectively the 1%, 5% and 10% level. The standard errors are
clustered by tail number.
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Table 7: Route-based R Regressions

(1) (2) (3) (4)

Dependent variable Rroute
r,month Rroute

r,week R̃route
r,month R̃route

r,week

Low-cost carrier 0.077** 0.056** 0.058*** 0.057***
Hub origin -0.104*** -0.055** 0.019 0.037***
Hub destination 0.063 0.041* 0.028 0.044***
Congestion origin 0.006*** 0.007*** 0.003*** 0.003***
Congestion destination -0.000 0.003*** 0.002*** 0.003***
Competitors 0.024*** 0.042*** 0.010*** 0.014***
Morning 0.041** 0.017* 0.020* 0.011**
Afternoon 0.073*** 0.044*** 0.013 0.014***
Late Afternoon 0.128*** 0.097*** 0.033*** 0.026***
Evening 0.174*** 0.139*** 0.031*** 0.031***
Cloud origin 0.024*** 0.024*** 0.006 0.005***
Cloud destination -0.028*** 0.002 -0.013** 0.002
Rain origin 0.028 0.069*** 0.050*** 0.032***
Rain destination -0.043** 0.006 0.005 0.015***
Fog origin 0.029 0.060*** -0.000 0.021***
Fog destination -0.020 0.020* 0.007 0.008
Snow origin -0.089** 0.025** 0.069*** 0.073***
Snow destination 0.007 0.042*** 0.046* 0.033***
Storm origin 0.024 0.105*** 0.035 0.063***
Storm destination -0.115*** -0.009 0.007 0.022***
Low temperature orig. -0.032*** 0.001 -0.007 0.005*
Low temperature dest. 0.054*** 0.030*** 0.009 0.006**
R2 0.009 0.006 0.003 0.003
Observations 61,953 255,084 61,953 255,084

Notes. Ordinary least squares estimation with route fixed-effects; constant not reported. The panel identifier
is route r in all columns, whereas temporal dimension of the panel is month in columns (1) and (3) or week
in columns (2) and (4). The estimated coefficients marked with ***, ** and * are statistically significant at,
respectively the 1%, 5% and 10% level. The standard errors are clustered by tail number.
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Figure 1: Delays

(a) Distribution of Dtot
d,i and of Da,i
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Figure 2: Minutes of delay by route distance (in miles)

0

15

30

45

60

75

90

105

120

A
rr

iv
al

 D
el

ay
, D

a,
i

0 15 30 45 60 75 90 105 120

Departure Delay, Dtot

Distance < 500 500 £ Distance < 1000

1000 £ Distance < 2000 Distance ³ 2000

d,i

29



Appendix 

Table A1: Description and main statistics of the regressors

Regressors Description Mean

(Std. Dev.)

Distance Route distance, in 100-mile units 7.846

(5.610)

Hub origin Dummy variable = 1 if airport of origin is a hub of the airline 0.382

(0.486)

Hub destination Dummy variable = 1 if airport of destination is a hub of the

airline

0.320

(0.466)

Congestion origin Number of landing and departing domestic flights at the air-

port of origin in the same hour when the flight is scheduled

to depart divided by the number of runways of the airport of

origin

12.366

(7.650)

Congestion destination Number of landing and departing domestic flights at the air-

port of destination in the same hour when the flight is sched-

uled to land divided by the number of runways of the airport

of destination

10.640

(7.533)

Competitors Number of nonstop competitors on the route 1.045

(1.11)

Morning-Evening Set of departure-time dummy variables, Morning (9.00-

11.59), Afternoon (12.00-15.59), Late afternoon (16.00-17.59)

and Evening (18.00-23.59); the omitted category is Early

morning (0.00-8.59)

Cloud-Storm Set of dummy variables for the weather condition at the air-

port of origin or destination. Fair is the omitted category

Low temperature orig. Dummy variable = 1 if the temperature at the airport of origin

is below 32 degrees Fahrenheit

0.059

(0.236)

Low temperature dest. Dummy variable = 1 if the temperature at the airport of des-

tination is below 32 degrees Fahrenheit

0.060

(0.238)

Low-cost carriers Share of flights operated by low-cost carriers (i.e. JetBlue,

Frontier Airlines, Allegiant Air, Spirit Airlines and Southwest

Airlines). The statistics are for r,month

0.376

(0.449)
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