ECOMNZTOR

Make Your Publications Visible.

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

Frank, Ulrich; Maier, Pierre; Bock, Alexander

Research Report

Low code platforms: Promises, concepts and
prospects. A comparative study of ten systems

ICB-Research Report, No. 70

Provided in Cooperation with:

University Duisburg-Essen, Institute for Computer Science and Business Information Systems

(ICB)

Suggested Citation: Frank, Ulrich; Maier, Pierre; Bock, Alexander (2021) : Low code platforms:
Promises, concepts and prospects. A comparative study of ten systems, ICB-Research Report,
No. 70, Universitat Duisburg-Essen, Institut fur Informatik und Wirtschaftsinformatik (ICB),

Essen,
https://doi.org/10.17185/duepublico/75244

This Version is available at:
https://hdl.handle.net/10419/248826

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.17185/duepublico/75244%0A
https://hdl.handle.net/10419/248826
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

@ _ cs

V Institut fur Informatik und
Wirtschaftsinformatik

Ulrich Frank

Pierre Maier

Alexander Bock

Low Code Platforms: Promises, Concepts and
Prospects
A Comparative Study of Ten Systems

_ ICB-Research Report No. 70
December 2021

Open-Minded

Die Forschungsberichte des Instituts
fir Informatik und Wirtschaftsinfor-
matik dienen der Darstellung vorlaufi-
ger Ergebnisse, die i. d. R. noch fiir
spatere Veroffentlichungen iiberarbei-
tet werden. Die Autoren sind deshalb
fir kritische Hinweise dankbar.

The ICB Research Reports comprise
preliminary results which will usually
be revised for subsequent publica-
tions. Critical comments would be ap-
preciated by the authors.

Alle Rechte vorbehalten. Insbesondere
die der Ubersetzung, des Nachdruckes,
des Vortrags, der Entnahme von Abbil-
dungen und Tabellen - auch bei nur
auszugsweiser Verwertung.

All rights reserved. No part of this re-
port may be reproduced by any means,
or translated.

Authors
Ulrich Frank
Pierre Maier

Alexander Bock

Institut fiir Informatik und
Wirtschaftsinformatik (ICB)
Universitdt Duisburg-Essen
Universitatsstr. 9

D-45141 Essen

ulrich.frank@uni-due.de

pierre.maier@uni-due.de

alexander.bock@uni-due.de

ICB Research Reports
Edited by:

Prof. Dr. Frederik Ahlemann
Prof. Dr. Fabian Beck

Prof. Dr. Torsten Brinda
Prof. Dr. Peter Chamoni
Prof. Dr. Lucas Davi

Prof. Dr. Klaus Echtle

Prof. Dr. Stefan Eicker
Prof. Dr. Ulrich Frank

Prof. Dr. Michael Goedicke
Prof. Dr. Volker Gruhn
Prof. Dr. Tobias Kollmann
Prof. Dr. Pedro José Marron
Prof. Dr. Klaus Pohl

Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Stefan Schneegafs
Prof. Dr. Reinhard Schiitte
Prof. Dr. Stefan Stieglitz

Contact:

Institut fiir Informatik und
Wirtschaftsinformatik (ICB)
Universitat Duisburg-Essen
Universitatsstr. 9

45141 Essen

Tel.: 0201-183-4041
Fax: 0201-183-4011

Email: icb@uni-duisburg-essen.de

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)
DOI 10.17185/duepublico/75244

Abstract

In recent years, the catchword “low-code” has evolved into what can be seen as a major trend
in software development platforms. A growing number of vendors respond to this trend by
offering software development platforms that promise limited need for coding only and a tre-
mendous boost in productivity. Both aspects have been the subject of intensive research over
many years in areas such as domain-specific modeling languages, model-driven software de-
velopment, or generative programming. Therefore, the obvious question is how "low code"
platforms differ from such approaches and what specific performance features they offer.
Since there is no unified definition of “low-code”, the only way to develop an elaborate un-
derstanding of what it is — and might be —is to analyze the actual use of the term. For obvious
reasons, it is not promising in this respect to rely on marketing announcements made by ven-
dors. Instead, it seems more appropriate to examine “low-code” platforms. This research re-
port presents a study of 10 relevant platforms, capturing and assessing common characteristics
as well as specific features of individual tools. The study is guided by a method that consists
of a conceptual framework, which provides a uniform structure to describe and compare “low-

code” platforms, and a process model that describes the sequence of steps.

List of Figures

FIGURE 1: SEMANTIC NET OF CORE CONCEPTS RELATED TO PRODUCTIVITY AND USER EMPOWERMENT............ 18
FIGURE 2: HIGH-LEVEL PROCESS MODEL OF ANALYSIS METHODc..ceoteterteeueseeesuesseesseesensessesseesesseensesseensesnes 26
FIGURE 3: QUICKBASE “MY APPS” OVERVIEW SCREENuceectteruteerueereeeesseeseeesseesssesssessssesssessssesssesssessssesssesssees 34
FIGURE 4: QUICKBASE EXAMPLE APPLICATION HOMEPAGEccuuteiuteetieeiteeeeeeiteesseesseeseseeeseeeeseesssessssessessssesssees 35
FIGURE 5: QUICKBASE VISUAL DATA MODEL EXAMPLEuceeiiteiieeteesteeeiteeseeesseesseesseesseessesssessssesssssssessssesseees 36
FIGURE 6: QUICKBASE EXCHANGEccueeuteitieieiteetesteeteeeesteesesseesesseessesssassesssesssessesssessesssessesssessesssessesssesssensenses 37
FIGURE 7: QUICKBASE APPLICATION TEMPLATESccectetteteeeetestessessessessessessessessessessessessessessessessssssssssessessessessenses 37
FIGURE 8: QUICKBASE PIPELINE EXAMPLEcuvviieetieeeereeeeieeeeesteeeeereeeesseeeesseseesseeesssseessssesensssseesssessssssesnssssssssesenn 40
FIGURE 9: QUICKBASE EXEMPLARY ADD ENTRY SCREENcccvietiertieeerteeeesseessesseessesseessesssessesssessesssessesssessessennes 41
FIGURE 10: TRACKVIA HOME SCREEN0ccueteteterteeeeeseesesassessessessessessessessessessessessessessessessessessesssssssessessessessenses 45
FIGURE 11: TRACKVIA APPLICATION OVERVIEW EXAMPLE......cccctteitterieeiteeneeesreesseesseesseessesssseesssesssessssessseesseens 45
FIGURE 12: TRACKVTIA DATA MODEL EXAMPLEveecttiiitesteeieestesiueeseeessseessessseesssesssessssesssessssessssesssessssesssssssees 46
FIGURE 13: TRACKVIA APP SCRIPT EXAMPLEcuteteteterieteeestessessessessessessessessessessessessessessessessessessssessessessessessenses 48
FIGURE 14: TRACKVTA FLOW EXAMPLE......ccccttictteeteesteeeteeseessseesseesssessseessssesssesssessssesssessssessssssssessssesssessssessssessses 49
FIGURE 15: TRACKVIA EXEMPLARY FLOW START SCREENccvttiuterieeniiersreeneessreessessseessseessessssesssesssesssesssesssees 50
FIGURE 16: BONITA PORTALcviteteieieieieteetetesteeeseeseesessessessessassessessessessessessessessessessessessessessesssssssessessessessenses 55
FIGURE 17: BONITA STUDIO BUSINESS DATA MODEL.......ccecteeiteestteenueeseieesseesseesseesssesssessssessssssssessssesssessssesssssssses 56
FIGURE 18: BONITA STUDIO SQL QUERY ON RELATIONAL H2 DATABASEcccvteeieetieeteeeteeereeeeeeeereeeeveeeseenanes 57
FIGURE 19: BONITA STUDIO EXAMPLE WORKFLOW MODELccvertietertereesseetesseeseseessesssessesssessesssessesssesssessesnes 60
FIGURE 20: BONITA STUDIO WORKFLOW CONNECTOR DEFINITION......ccccuteeteeiteenreesreeesseessesssseessesssessssessseessees 60
FIGURE 21: BONITA FORM DESIGNER........eeectteetteriersitenieesiteseessstesssessseessseessessseesssesssessssesssesssessssesssessssesssesssees 61
FIGURE 22: CREATIO STUDIO “STUDIO” WORKSPACE HOME SCREENcceeittiitieeieenreesreesseeeseessseesseesssessseesseens 66
FIGURE 23: CREATIO STUDIO “APPLICATIONS" WORKSPACE HOME SCREENccceevueiueeerenreeienreereereensessnenseenns 66
FIGURE 24: CREATIO STUDIO SECTION PAGE WIZARDccveietietesrestessessessessessessessessessessessessessessesessessessessessessenses 67
FIGURE 25: CREATIO STUDIO “OBJECT INHERITANCE”cutieiteeitieeiteestieeiteeeteesteesseesseesseessesssseesssessseesssessssessees 68
FIGURE 26: CREATIO MARKETPLACEccveitieteiteestesseeseessesseesesseessesseessesssessesssessssssessssssesssessesssessesssessssssessssssenses 69
FIGURE 27: CREATIO STUDIO PROCESS LIBRARYcecvetterierierestessessessessessessessessessessessessessessessessessesssssssessessessessenses 71
FIGURE 28: CREATIO STUDIO WORKFLOW SOURCE CODE.....ccuteitteeteenteeesueesseeesseesseessessssesssessssessssesssessssessssessses 71
FIGURE 29: CREATIO STUDIO WORKFLOW TYPE DIAGRAMceevetieeeenteeeesseesuesreessesseessesssessesssessesssessesssesssessenses 72
FIGURE 30: CREATIO SALES CASE EXAMPLEcccteteieteieteeessessessessessessessessessessessessessessessessessessesssssssessessessessenses 72

ii

FIGURE 31: MENDIX DEVELOPER PORTALceoutiiieteiieteneeeieneeeteseessestesseseesseessesseesesssassesssessesnsessesssesssensesnes 79

FIGURE 32: MENDIX STUDIO PRO DOMAIN MODELuectertieieereeteereesseesesseessesseessesssessesssessesssessesssessssssesssessesnes 80
FIGURE 33: MENDIX STUDIO PRO DATA IMPORT MAPPINGccveetistierertessessessesessessessessessessessessesessessessessessessenses 80
FIGURE 34: MENDIX STUDIO PRO VALIDATION RULE MODELING AND EXPRESSION DEFINITIONcc0ceeveenneen. 82
FIGURE 35: MENDIX STUDIO PRO JAVASCRIPT SOURCE CODE EDITINGcvestetetetentetetenteeeneeneesessessessesseseenses 82
FIGURE 36: MENDIX STUDIO PRO MICROFLOW......c.cccvetetterisessessessessessessessessessessessessessessessessessessesssssssessessessessenses 84
FIGURE 37: MENDIX STUDIO PRO "WORKFLOW "......cuttitieeteeieesteeiteesseeesseessseesseessesssesssseessesssessssesssessssessssessees 84
FIGURE 38: MENDIX STUDIO PRO NEW EDIT GUI PAGE EDITORccveeveeierteeresreesuesreessesssessessessesssessesssesssessennes 86
FIGURE 39: MENDIX STUDIO PRO NAVIGATION PAGE EDITORccueetietistertesessessesessessessessesessessessssessessessessessenses 86
FIGURE 40: MENDIX STUDIO APP TEMPLATESccuteetttettesteesteessteesseesseessssessseessessssesssessssessssssssessssssssessssessssssssens 87
FIGURE 41: MENDIX STUDIO GUI EDITOR........0cctesteettetietesieesesseeteseessesssessesssessesssessssssessssssesssessesssessesssesssensenses 87
FIGURE 42: WAVEMAKER PLATFORM HOME SCREENcccceetetististestessessessessessesessessessessessessessessssessessessessessessenses 92
FIGURE 43: WAVEMAKER DATA MODEL ...cccuttiittieieesteeeteeseeesseesssessseesseessssesssssssessssesssessssesssessssessssesssessssesssssssses 93
FIGURE 44: WAVEMAKER STUDIO JAVA SOURCE CODE EDITORcccvevueetesteeueseressesseessesssessesssessesssessesssessensenses 94
FIGURE 45: WAVEMAKER STUDIO GUI DESIGNERcoctetrtstistisressessessessessessessessessessessessessessessesssssssessessessessenses 95
FIGURE 46: ZOHO CREATOR HOME SCREEN.....c..cccttitieteeteeteereenteesesseessesseessesseessesssessesssessssssesssessessssssesssessasssens 100
FIGURE 47: ZOHO CREATOR FORM BUILDERcccttittetesteetessressessessesssesseessesseessesssessesssessssssesssessesssessesssessanssens 101
FIGURE 48: ZOHO CREATOR FORM TEMPLATEScecutetesttetessteteestessestensessesseessessesssessessesssessesssessasssessessseseens 101
FIGURE 49: ZOHO CREATOR SCHEMA BUILDERcecuteeteetieteeteesteeeesseessesseessesseessesssessesssessssssessssssessssssessssssasssens 102
FIGURE 50: ZOHO CREATOR AUTO-GENERATED JAVA CLASScevetietietieresteeresrestessessessessessessessessessessessessesseses 103
FIGURE 51: ZOHO CREATOR DELUGE SCRIPT EDITOR.......cccveeteesteeeueesreeasseesseessseesseessseesssessseesssesssesssssssssssssesses 104
FIGURE 52: ZOHO CREATOR WORKFLOW METATYPESccctieteeteeeesreertesseesseeseessesssessesssessssssessssssesssessesssessasssens 105
FIGURE 53: ZOHO CREATOR "ON A FORM EVENT" WORKFLOW TYPE EXAMPLE.....cccceeverteieresesesesseseesnnenens 106
FIGURE 54: ZOHO CREATOR "ON A BUSINESS PROCESS" WORKFLOW TYPE EXAMPLE........c.ccceeeerteereenreereenreeenens 106
FIGURE 55: ZOHO CREATOR GUI "PAGE"c.eiitieieteeieeteeteeteetee e steete s e esesreesaesseessesssesseessesssessesssessesssensanssens 108
FIGURE 56: ZOHO CREATOR ZIML EDITORccveoterteierereeeeeaessessesessessessessessessessessessessessessessessessessessessassesseses 108
FIGURE 57: ZOHO CREATOR AT FIELDSccetieieeeieesieesieenreesteeseesseesseesssessssssssessssesssessssesssessssesssesssssssssesssesses 110
FIGURE 58: MICROSOFT POWER APPS HOME SCREEN.......ccccteritteniersreeneessseeneessseessuessseesssessassssessssesssessssesssassnns 115
FIGURE 59: MICROSOFT POWER APPS MAPPING OF TABLE TO SCREENS OF APP.......cccecteruerierrerreenneensesneessennnens 116
FIGURE 60: MICROSOFT POWER APPS APP DESIGNER IN "MODEL-DRIVEN" MODE........c.ccceeeverueerreereenresreenseennens 118
FIGURE 61: MICROSOFT POWER APPS SPECIFICATION OF ENTITY TYPEcccvievterueeeeseeereseeeseseessessessesssessenssens 119
FIGURE 62: MICROSOFT POWER APPS PROCESS DESIGNEReevtetieteetesressessesesessessessessessessessessessessessssessessensens 122

iii

FIGURE 63: MICROSOFT POWER APPS “FORMS” MODE GUI DESIGNERcccovuvieerureeenreeeereeeensreeenreeeesneeeenens 123

FIGURE 64: MICROSOFT POWER APPS GUI DESIGNER IN MODEL-BASED APPROACHccoveevveveerrereeerenveennens 124
FIGURE 65: MICROSOFT POWER APPS AT BUILDER.......cccvciteteietietietestieteeessessessessessessessessessessessessessessessessesseseas 125
FIGURE 66: MICROSOFT POWER APPS OBJECT DETECTION MODEL BUILDERcccovueeentreeeereeeenneeeeeveeeeneeeennnns 126
FIGURE 67: APPIAN DESIGNER APPLICATIONS OVERVIEWc..vtiiieriueeniierireeneeesseessseesseesssessseesssessssesssessssesssessnes 130
FIGURE 68: APPIAN EXAMPLE APPLICATION OVERVIEW OF DESIGN OBJECTSvecveeverveveressesessesessesseseesseeesens 130
FIGURE 69: APPIAN DATA TYPE EXAMPLEcccutieiteeeteeeieeiteesteesseeeseesseessseesssesssessssesssessssesssssssesssessssessssssssesnses 131
FIGURE 70: APPTAN RECORD TYPE EXAMPLEccccttestesreerureeteeseessseesseessseessesssessssesssesssesssessssessssesssessssesssassnes 132
FIGURE 71: APPIAN "DECISION" DESIGN OBJECT EXAMPLEcvevtetteietietietestessessessessessessessessessessessessessessessesssses 133
FIGURE 72: APPIAN "EXPRESSION RULE" DESIGN OBJECT EXAMPLEccovuieeterenteeeteeeteeeseeeeseeeseesseeesssensseeseenses 134
FIGURE 73: APPIAN PROCESS MODELERuveeitteeieerieenieenieessessseessseesseessseesssesssessssesssessssesssassssessssesssessssesssassnee 135
FIGURE 74: APPIAN RPA "BROWSER" TEMPLATE......cectsetettetsesrietessessessessessessessessessessessessessessessessesseseesessassessens 136
FIGURE 75: APPIAN "INTERFACE" DESIGN OBJECT EXAMPLEcvvievieeteeeteeeteeenreeeteeeeseeesseenseeeseenseessssensseenseenses 137
FIGURE 76: APPIAN QUICK APPS DESIGNER MODULE.......ccuvecitteitieereesteeeereeeteeenseesseesseesseesseesssesssssssssesssessaennns 138
FIGURE 77: PEGA PLATFORM APP STUDIO EXAMPLE APPLICATION OVERVIEWcccciieieereenreeneeenreenseesseennns 142
FIGURE 78: PEGA PLATFORM APP STUDIO VISUAL DATA MODEL EXAMPLEcccveetieeerieeeeseeeeeseesseeeeesseeenens 144
FIGURE 79: PEGA PLATFORM APP STUDIO INTEGRATION MAP EXAMPLEL........ccccveetertierereeereseessessesseessensasssens 144
FIGURE 80: PEGA PLATFORM DEV STUDIO DECISION TABLEccctestteterteeteseeeeseeseeseessessessesssessasssessesssesseens 146
FIGURE 81: PEGA PLATFORM APP STUDIO CASE TYPE EXAMPLE......c.ccciettestieeeteeeesseesesseessesssessessessesssessasssens 148
FIGURE 82: PEGA PLATFORM DEV STUDIO PROCESS DIAGRAMccveuietietesteesessessessessessessessessessessessessessessesseses 148
FIGURE 83: PEGA PLATFORM APP STUDIO GUI PORTAL CONFIGURATIONceeeveereerrreereesveesseessseesssessesnnes 150
FIGURE 84: PEGA PLATFORM APP STUDIO GUI DESIGNERccveecueiteeieereenreeeesseeeesseesesseessesssessesssessesssessesssens 150
FIGURE 85: PEGA PLATFORM APP STUDIO AGILE WORKBENCHcccoeiitirtietiriesiestestessessesesessessessessessessesseses 152
FIGURE 86: PEGA PLATFORM PREDICTION STUDIO PRETRAINED MACHINE LEARNING MODELS........cc0eeuvene.. 153

iv

List of Tables

TABLE 1: THE PIVOTAL ROLE OF ABSTRACTIONveeeuteeteerrersueessressseessessseesssessseesssesssaesssessssesssessssesssassssessssesssesns 8
TABLE 2: CONCEPTS TO CHARACTERIZE THE STATIC PERSPECTIVEc.uvteiuieeieeteeereesreesseesseeeseesssessseesssessssensnes 21
TABLE 3: CONCEPTS TO CHARACTERIZE THE FUNCTIONAL PERSPECTIVEceccuteeieenrieereenieeeseesneesseesssessseesseens 22
TABLE 4: CONCEPTS TO GUIDE THE ANALYSIS OF DYNAMIC ABSTRACTIONSceoveeueerveerresreesrenseesenseessesseessennes 22
TABLE 5: CONCEPTS TO ANALYZE SUPPORT FOR GUI DEVELOPMENTcecvueeitieereenreesreesseeeseesssessseesssessssessnes 23
TABLE 6: FURTHER ASPECTS FOR THE ANALYSIS OF LICPS......coiotiiiieieieeeeteeee sttt ees 24
TABLE 7: PROVENANCE AND IMAGE OF LOW-CODE VENDORcceetististestestessesessessessessessessessessesesessessessessessenses 25
TABLE 8: OVERVIEW OF SELECTED LOW-CODE PLATFORMSccutertteuteterterseetesseensesseessesssessessesseessesseessesssessesnes 31
TABLE 9: QUICKBASE PROFILE OF VENDOR SUMMARYceetteteereeteereesseesesseessesseessesssessesssessesssessesssessesssessessesnes 33
TABLE 10: QUICKBASE STATIC PERSPECTIVE SUMMARYcecvetistietistisrestessessessessessessessessessessessessessssessessessessessenses 36
TABLE 11: QUICKBASE FUNCTIONAL PERSPECTIVE SUMMARYcecouieruieeireeneeeireesseesseessesssesssseesssesssesssesssesssees 38
TABLE 12: QUICKBASE DYNAMIC PERSPECTIVE SUMMARYcveetveiierieteeeesseesesreessesssessesssessesssessesssessesssesssssenses 40
TABLE 13: QUICKBASE GUI DEVELOPMENT SUMMARY ...cvtetetististestessessessessessessessessessessessessessesssssssessessessessessenses 41
TABLE 14: QUICKBASE FURTHER ASPECTS SUMMARYceeeteesteesueeesueesseeesseesseessesssesssessssesssessssessssesssessssesssssssees 42
TABLE 15: TRACKVIA PROFILE OF VENDOR SUMMARYeeouterierruresrueenieessseesssessseesssessseesssesssassssessssesssessssesssssssses 44
TABLE 16: TRACKVIA STATIC PERSPECTIVE SUMMARYccutetististisrertessessessessessessessessessessessessessessesssssssessessessessenses 47
TABLE 17: TRACKVIA FUNCTIONAL PERSPECTIVE SUMMARYuteeeuieeuieeireeneeesreesseesseeessessessssesssesssessssessssessees 48
TABLE 18: TRACKVIA DYNAMIC PERSPECTIVE SUMMARY ...ceevtiiuteriuerniierireeneessseessessseesssessseesssessssesssessssesssesssees 50
TABLE 19: TRACKVIA GUI DEVELOPMENT SUMMARYcertteteerreeeeeessessessesssessesssesseessesssessesssessesssessesssesssessesnes 51
TABLE 20: TRACKVIA FURTHER ASPECTS SUMMARYvtiiiieieesiieerueenseeesseeseeesseessseessesessesssessssessssesssessssessssessees 52
TABLE 21: BONITA PROFILE OF VENDOR SUMMARYceuttistterieenitesiueesseessseessessseesssessseesssesssassssessssesssessssesssssssees 54
TABLE 22: BONITA STATIC PERSPECTIVE SUMMARYteeuteteeiereeetenutessestessesssesseessesseessesssessessessesssessesssessensesnes 58
TABLE 23: BONITA FUNCTIONAL PERSPECTIVE SUMMARY ...ccuvteiuteerueeseeeeireeseeesseessseessessssesssessssessssesssessssesssesssees 58
TABLE 24: BONITA DYNAMIC PERSPECTIVE SUMMARYccvteietietietessessessessessessessessessessessessessessessesssssssessessessessenses 59
TABLE 25: BONITA GUI DEVELOPMENT SUMMARYcecuttiitieeteessteesueesseeesseesseeesseessesssessssesssessssessssesssessssessssessees 61
TABLE 26: BONITA FURTHER ASPECTS SUMMARY ...cccutteteeruierieenseessueeseessseesssesssessssesssessssesssessssesssesssessssesssssssses 62
TABLE 27: CREATIO STUDIO PROFILE OF VENDOR SUMMARYcceetististertessessessessessessessessesessessessssessessessessessenses 65
TABLE 28: CREATIO STUDIO STATIC PERSPECTIVE SUMMARYuveeiuieruieeireeeeeesreesseesseessseessesssseesssesssessssessseessees 68
TABLE 29: CREATIO STUDIO FUNCTIONAL PERSPECTIVE SUMMARYuveevieveevesreeteereesseessesseesesseessessesssessensesnes 69
TABLE 30: CREATIO STUDIO DYNAMIC PERSPECTIVE SUMMARYcvievitetereressessessessessessessessessesssssssessessessessenses 72

TABLE 31: CREATIO STUDIO GUI DEVELOPMENT SUMMARYcceoviiieueeeeteeeeereeeeiseeeensreeenseeeessseeessseesnnssesssseens 73

TABLE 32: CREATIO STUDIO FURTHER ASPECTS SUMMARYuveetietiereenteeeesseessesseessesssessesssessesssessesssessesssesssessennes 74
TABLE 33: MENDIX PROFILE OF VENDOR SUMMARYccutetietistietestessessessessessessessessessessessessessessessesesssssessessessessenses 77
TABLE 34: MENDIX STATIC PERSPECTIVE SUMMARYeeteteeteneteeenueessestessesnsesseessesssessesssessessessesssesseensessessesnes 80
TABLE 35: MENDIX FUNCTIONAL PERSPECTIVE SUMMARYuvtiiuteerueenurersueeseeesseessseesseesssesssessssesssesssessssesssssssses 82
TABLE 36: MENDIX DYNAMIC PERSPECTIVE SUMMARYcecvetietirresressessessessessessessessessessessessesssssssssssssessessessessenses 84
TABLE 37: MENDIX GUI DEVELOPMENT SUMMARY ...cccutteetieeiteesreeeiueesseeesseesseeesseesssesssessssesssesssessssesssessssesssssssees 85
TABLE 38: MENDIX FURTHER ASPECTS SUMMARYueiettirtiesiueenseessuessseessseesssessseesssesssessssesssassssessssesssessssesssssssses 89
TABLE 39: WAVEMAKER PROFILE OF VENDOR SUMMARYccucetietirtintissessessessesessessessessessessessessssesssssessessessessenses 91
TABLE 40: WAVEMAKER STATIC PERSPECTIVE SUMMARY ...cuveiiuieeiueenuieeireeseeesseessesssessssesssessssesssssssessssesssesssees 93
TABLE 41: WAVEMAKER FUNCTIONAL PERSPECTIVE SUMMARYuvteruiiriieerierireenreesseessseesessssesssesssesssesssesseens 94
TABLE 42: WAVEMAKER GUI DEVELOPMENT SUMMARYccueettetistesristessessessessessessessessessessessessesssssssessessessessenses 96
TABLE 43: WAVEMAKER FURTHER ASPECTS SUMMARYuveeitteruteerueeseeeesseesueesseesssesssessssesssessssesssesssessssesssssssses 97
TABLE 44: ZOHO CREATOR PROFILE OF VENDOR SUMMARYc.utectieierteeierreesesseessesseessesssessesssessesssessesssesssensesses 99
TABLE 45: ZOHO CREATOR STATIC PERSPECTIVE SUMMARYceeuteteeteneerresseeeesseessesseessesssessesssessesssessesssesseens 102
TABLE 46: ZOHO FUNCTIONAL PERSPECTIVE SUMMARYcecctteiieerveeseeesireensessseesssesssessssesssessssesssesssessssesssassnes 104
TABLE 47: ZOHO CREATOR DYNAMIC PERSPECTIVE SUMMARYceetieveereerreeeeseessessesssessesssesssessesssessesssessanssens 107
TABLE 48: ZOHO CREATOR GUI DEVELOPMENT SUMMARYveeuteteeuteneeeeenseeeesseessessessesssessesssessesssessesssesssens 109
TABLE 49: ZOHO CREATOR FURTHER ASPECTS SUMMARYuvectieienreereereeseereesseeseessesssessssssesssessesssssesssessasssens 110
TABLE 50: MICROSOFT POWER APPS PROFILE OF VENDOR SUMMARYuccvietiriesterseresessessessessessessessessesseseeses 114
TABLE 51: MICROSOFT POWER APPS STATIC PERSPECTIVE SUMMARYveeetteeiteenrreereesseesseesseesseesssessssessesnes 120
TABLE 52: MICROSOFT POWER APPS FUNCTIONAL PERSPECTIVE SUMMARYceevueerreerueenreeenseesuessseesssesseennns 121
TABLE 53: MICROSOFT POWER APPS DYNAMIC PERSPECTIVE SUMMARYccvevververrereresessessessessessessesseseseesens 122
TABLE 54: MICROSOFT POWER APPS GUI DEVELOPMENT SUMMARYuveeruieeireesrreeireesseesseesssessseessessssessesnes 124
TABLE 55: MICROSOFT POWER APPS FURTHER ASPECTS SUMMARYcceviuterierirrenieenreesueeseessseesssesssessssesssesnnes 126
TABLE 56: APPIAN PROFILE OF VENDOR SUMMARYcccveteteierisresresseses 129
TABLE 57: APPIAN STATIC PERSPECTIVE SUMMARYcccutteitieeureerieesteesseeesseesseessseesseessseesssessseesssesssesssssssssesssesses 132
TABLE 58: APPIAN FUNCTIONAL PERSPECTIVE SUMMARY ...cuvtiiterireenieriueeseessseessuessseesssessaesssessssesssasssesssessnes 134
TABLE 59: APPIAN DYNAMIC PERSPECTIVE SUMMARYcecteruteteeuieieeseenseeeessessesseesseseessesssessesssessesssessessseseens 136
TABLE 60: APPIAN GUI DEVELOPMENT SUMMARYcccuvteiutieieesieeseeesteessseesseessseesseessseesssesssessssesssessssessssesssesses 138
TABLE 61: APPIAN FURTHER ASPECTS SUMMARY ...c.veecveeteeteereesreesessesssesseessesseessesssessesssessssssesssessessssssesssessanssens 139
TABLE 62: PEGA PLATFORM PROFILE OF VENDOR SUMMARYuceeitteitieeteenreeeiseesseessseessessseesssesssessssssssssssesses 141

vi

TABLE 63: PEGA PLATFORM STATIC PERSPECTIVE SUMMARYccooiviiieiureeeitreeeereeeesreeeneeeeesseseessseeensseeeessneesnsnes 145

TABLE 64: PEGA PLATFORM FUNCTIONAL PERSPECTIVE SUMMARYceeiuieeieenieenveenreesseeseeesseesssesssesssesssassnns 146
TABLE 65: PEGA PLATFORM DYNAMIC PERSPECTIVE SUMMARYueoietieuesresresiesressessessessessessessessessessessessssseses 149
TABLE 66: PEGA PLATFORM GUI DEVELOPMENT SUMMARYceeutetteuteneeetenieeeesseenseseessesssessesssessasssessesssesseens 151
TABLE 67: PEGA PLATFORM FURTHER ASPECTS SUMMARYveeiuteeiveenierireeseeesseessseesseesssesssessssessssesssessssasssessnes 153

vii

Table of Contents

LIST OF FIGURES......uooiiiinieinntnentntenentstesissssssssssssssssssessenssnssssensnssssssssssssssssssessasssses II
LIST OF TABLES \'%
1 INTRODUCTION 1
1.1 THE PROLIFERATION OF A NEW TRENDcccttiirirtiiiiniiriiieienteteteteteset ettt ettt saes e saenes 1
1.2 THE NEED FOR AN EXPLORATORY STUDYcctruiuiriiiriiiireeeneeenesteeseeesneesneeeseseenesae e sae e sae e ssesesneseeneneens 4
1.3 OUTLINE OF THE INVESTIGATIONcceutrteuirteutrieerietrsetesentesentesesteseseenessestsseseeseseesessesessesessenessenesseneesenene 5

2 BACKGROUND AND RELATED RESEARCHcocoviiiiininuinnnnnenennneesensennens 7
2.1 SOFTWARE DEVELOPMENT PRODUCTIVITY: INHIBITORS, DRIVERS, AND CONFLICTS.......cceeeurvemruennenes 7
2.2 MODELS AND LANGUAGEScocteutriiriiitieierttntterestestestessestestesse st ese s ssete st et est et et sss et s e saeesesnesaessessesae 10
221 Reference MOGELSccviuiuiuiuiiiiiiiiiiiicitttt ettt 10

2.2.2 Domain-Specific Modeling LANGUAGES...........cocvevevrueieiiiriieieiesieicieisteseescne e 11

2.2.3 Model-Driven Software Development...............cooveueieioiuiueieiiiiiiieieiciiciee e 12

2.3 REUSABLE AND ADAPTABLE SOFTWARE ARTEFACTScceveueieueremeieieteiererereresesesesesesesesesesesesesesesesenesenes 13
23,1 FFAIMEUIOTKS oottt ettt ettt ettt sttt sttt ettt et e et ea s ent e st eseaneentesenne e 13

2.3.2 Components ANd SETVICESouvvviiiiiiiiiiiii 14

2.4 END-USER EMPOWERMENTccurtrtrtrtrtrtrtrtrtrtstetetetetstetetesesesetetesesesesesetesenesenes 14
2.4.1 Focus on Simplified Computer MOGELScccoovviiiiinininiiiiiiiiiiiiiiii 15

2.4.2 Focus on Domain-Oriented Representationsccccccovivviiviiiiiiciiniiicciiniiicinisecssssesns 16

3 A METHOD FOR THE ANALYSIS OF THE LOW-CODE PHENOMENON 17
3.1 CONCEPTUAL FRAMEWORKoouteutruiriiitinierientierensentesessessesesessessensensentestententententestsseesessesseesessessessessenne 17
3.1.1 Focus on the Analysis of Low-Code Platforms............ccooivviiviniiiiiiniiiciiniiiciiicciiccccs 17

3.1.2 Focus on History and CONEEXT ..ottt 25

3.2 PROCESS IMODEL.....ccctiutiutiitiiinititeitnitniteite sttt saesse s st et sae st et a et ettt sat et et sse et st sat e st enesaessesbesne 25

4 SELECTION OF PLATFORMS........cccivnirnenenenereneenens 29
4.1 PROTOTYPICAL CATEGORIES OF LOW-CODE PLATFORMS......ccucottrterietenieieenteteeseeeesenaeesesseseessessenne 29
4.2 SELECTION CRITERIAcotettrteuertentrienertetetentesentesestesestesessestssentesensesessesessesessenessentesentesensesessesessesessenessenees 30

5 ANALYSIS OF PLATFORMS 32
5.1 BASIC DATA MANAGEMENT PLATFORMScctrtirtiniententententeteteteteeeeeteseeneetesesseesessesaeesessesaessessenne 32
5.1 QUICKDASE. ...ttt ettt ettt et et 32
5.1.1.1 Quickbase: Profile Of VENAOTccccieiieirieieiieee ettt s es 32

51.1.2 Quickbase: Analysis of Platform Features.............ccooeuvnieiniiinininiicecec s 34

5.1.1.3 Quickbase: CONCIUSIONocueuiriiieiiieieteieeeie ettt ettt s et be s ese s e st s e e esesseneesenes 42
5.1.2 THACKVIfu.ooiiiiiiiiiiiiiiiiiiiiii s 43
51.21 TrackVia: Appearance Of VENdOT ...t 43
51.2.2 TrackVia: Analysis of Platform Features ... 44
51.2.3 TrackVia: CONCIUSIONc.ceuiuiiiiiiiiieiciciictcteee ettt ne 52
5.1.3 “Low-Code” Basic Data Management Platforms: Conclusioncoeeevvvirueerircicieiereninnnnne, 53
5.2 WORKFLOW MANAGEMENT SYSTEMS....c..coutrttrterterteniensententensensentensensestetentestesteessesseesessessessessessessessense 53
O.2.1 BOWIEA..ucioiiiiiiiiiiiiiiiiiii s 53
52.1.1 Bonita: Appearance of VENAOT ..o s 53
52.1.2 Bonita: Analysis of Platform Features.............cccccoviiiiiiiiiiiiiiiiicccccc s 55
52.1.3 Bonita: CONCIUSIONccviiiiiiiiiiiiiic e s 63
5.2.2 Creatio STUMIO ..ottt 63
522.1 Creatio Studio: Appearance of VENdOrccccvuiiiiiiiiiiiiiiiiiicce e 63
5.22.2 Creatio Studio: Analysis of Platform Features............cccccocuriiinininicinicccnccesceeeece s 65
52.2.3 Creatio Studio: CONCIUSIONcucuiuiiiiiiiiiiiiiiicii bbb s 75
523 “Low-Code” Workflow Management Systems: CONCIUSIONcccovovviviririninieinininirninicicieirea, 75
5.3 EXTENDED, GUI-, AND DATA-CENTRIC IDES ..ottt ettt 76
5.3. 1 MENAIX oot s 76
53.1.1 Mendix: Profile Of VENAOTcccciuiiiiiiiiiiiiiciiicct e 77
5.3.1.2 Mendix: Analysis of Platform Features...........ccccoiiiiiiiniiiiicccc s 78
5.3.1.3 MendixX: CONCIUSIONccuviiiiiiiiiiti e 89
532 WAUBMEAKEY ...ttt s 90
53.2.1 WaveMaker: Profile Of VENAOTccccoiiiiiiiiiiiiiiiciiicicccec e ene 90
5322 WaveMaker: Analysis of Platform Features...........cccccocvuiiiiiniiiiiniiiiniiciccccs 91
5.3.2.3 WaveMaker: CONCIUSIONcccccuiiiiiiiiiiiiiiiici e 97
5.3.3 ZONO CTOALOT ...oovvviiiieiicttciee ettt 98
5.3.3.1 Zoho Creator: Appearance of VENdOTrccccoeuiiiiiiininiiiniiiiii s 98
5.3.3.2 Zoho Creator: Analysis of Platform Features.............ccccoocoiuiiniiiiniiiiiiiiccccccecs 99
5.3.3.3 Zoho Creator: CONCIUSIONc.cvuviviiiiiiiiiiiiiiii s 111
534 “Low-Code” Extended, GUI-, and Data-centric IDES: CONCIUSTION ...cocvvvveeveereieeveiieeseieeranenen. 111

5.4 MULTI-USE PLATFORMS FOR BUSINESS APPLICATION CONFIGURATION, INTEGRATION, AND
IDEVELOPMENTeeiititieetteeeeteeeeitteeeeseeesseaeasseeeassseesssesassssasssssasssssasssssasssssesssssssssssasssesssssesssssesssssssessssesanss 112

541 Microsoft POWEr APPS.......cccccoviiiiiiiiiiiiiiiiisititst sttt 112

7

8

5.4.1.1 Microsoft Power Apps: Profile of VeNdor ...
5.4.1.2 Microsoft Power Apps: Analysis of Platform Featuresccccocooviniviciiicnicccce,
5.4.1.3 Microsoft Power Apps: CONCIUSION........coviiiiiiiiiiiiiicc e
542 APPIAN oo
5421 Appian: Profile of VeNdOr ...
5.4.2.2 Appian: Analysis of Platform Features............ccocoiiiiiiiiiiiiiniccccs
5.42.3 Appian: CONCIUSION.......ccciiiiiiiiiiiii e
5.4.3 PeQa PLALfOTTI ..ot
5.4.3.1 Pega Platform: Profile of VENdOTcccceviiiiiiiiiiiiiiic s
5.4.3.2 Pega Platform: Analysis of Platform Featurescccccocoviiniiiniiiiniiccccccs
5.43.3 Pega Platform: CONCIUSION ..ot

544 “Low-Code” Multi-Use Platforms for Business Application Configuration, Integration, and

Development: CONCIUSIONc.cuvvvuiueriuiiiiiiiiititeictctcti ettt

DISCUSSION
0.1 KEY FINDINGS....octitititititititctcteieictctctct s
6.1.1 Low-Code Development and Source Code CONfIQUIALION.........covviiviiivivininiiiiiiiiiiiiiiiin,
6.1.2 Low-Code Development and the Provision of ADSITACIHONS ...,
0.2 LIMITATIONS......cuititititiuititeteteteseiesete et b s s s

OPPORTUNITIES FOR FUTURE RESEARCHiiinccncincnccnsencscsnenens

CONCLUSIONS

157
158
158
159
160
161

164

Low Code Platforms: Promises, Concepts and Prospects

1 Introduction

The short history of software development has produced a remarkable variety of approaches
that aim at improving development productivity and software quality. Given the importance
of software development and the notorious lack of programmers, there was always a great
need for such approaches. Among the most prominent methods and tools are rapid prototyp-
ing, computer-aided software engineering (CASE) tools, fourth-generation programming lan-
guages (4GL), and model-driven development. A plethora of vendors developed tools that
compete for a share of the huge market, which led to an almost unmanageable range of com-
mercial tools and reusable software artefacts. For a while, then, productivity growth fell off in
interest. One reason for this may be that productivity tools became a kind of commodity; an-
other reason may be the excessive attention given to agile approaches.

Nevertheless, the lack of programmers and the unsatisfactory productivity of software devel-
opment remained a pressing problem, the relevance of which is still increasing with the chal-
lenges of the digital transformation. It forces companies to reorganize their value chains or
even to change their business models, which in turn requires them to rebuild their processes
and products in software. Therefore, more tools and methods to increase the efficiency of im-

plementing business software are needed like never before.

1.1 The Proliferation of a New Trend

In the last couple of years, presumably fostered by the omnipresent need for software devel-
opers, a new trend has emerged that brings back the quest for productivity in professional
software development to the center stage. Under the heading of low-code, a new kind of plat-
forms is announced that aims at clearly widening the bottleneck in software development by
enabling an unprecedented increase in software development productivity. The term “low-
code platform” (LCP) designates a class of application development platforms that aim at
boosting development productivity and clearly reduce the amount of coding. They focus
mainly, though not exclusively, on the development of business applications that are aligned
with business processes. In addition, LCPs are often also intended to enable non-programmers

(“citizen developers”) to develop and adapt application systems that fit their personal needs.

Often, but not necessarily, low-code products are also touted to incorporate elements of a va-

riety of other classical and recent notions in systems development, such as, beside the already

mentioned “citizen developer”, “DevOps”, “user experience”, “business process manage-
77 "

ment” (BPM), “robotic process automation” (RPA), “IT-business alignment”, “artificial intel-

ligence” (AI), “machine learning” (ML), “microservices”, and “cloud native”.

Presumably coined in 2014 by a market research company (Forrester 2014), the label has been
adopted by a considerable number of software vendors. The trend is promoted by fulsome
1

Low Code Platforms: Promises, Concepts and Prospects

promises made by vendors and market research firms. They regard remarkable gains in de-
velopment productivity, e.g., "Enterprise low-code application platforms deliver high-produc-
tivity and multifunction capabilities across central, departmental and citizen IT functions.”
(Vincent, Natis, & et al., 2020), or "Some firms are turning to new, ‘low-code” application plat-
forms that accelerate app delivery by dramatically reducing the amount of hand-coding re-
quired." (Wyatt, 2018)

Other characterizations focus on the use of visual representations and the empowerment of
laypersons: “When you can visually create new business applications with minimal hand-cod-
ing — when your developers can do more of greater value, faster — that’s low-code.” ! "That’s
where the power of citizen development comes in —with no-code/low-code platforms, anyone
can build applications without software expertise, significantly faster, and at a fraction of the

cost."

The enthusiasm that carries the trend is additionally fueled by impressive success stories, e.g.:
"T-Mobile US Inc. developed a mobile app for employees to share their availability when about
80% of the stores were temporarily closed. The app, built within a matter of days in March by
a team of business analysts at T-Mobile's consumer markets organization using Power Apps,

lets field leaders determine staffing of stores that remain open." (Agam Shah, 2020).

Market research firms present staggering predictions concerning the volume of the market for
LCPs, which has aroused the interest of investors. According to the Wall Street Journal, For-
rester is predicting the market for LCPs to grow by 15% to USD 7.7 billion in 2021 (Agam Shah,
2020). As reported by a business analyst, Brandessence, another market research firm, values
the LCP market at almost USD 13 Billion already in 2020 and estimates a volume of USD 65
Billion in 2027 (Wyatt, 2018).

The trend is not restricted to industry. Recently, it was discovered by academia where it gen-
erated a considerable response. In 2020, a workshop series dedicated to low-code started as
part of the established Models conference.? It attracted the largest number of participants of all

Models workshops.

Our brief presentation of key features of the “low-code” trend allows us to draw the following

preliminary conclusions:

1 https://www.ibm.com/uk-en/automation/low-code, accessed 10-18-2021

2 https://www.pmi.org/citizen-developer, accessed 10-18-2021

3 https://lowcode-workshop.github.io/, accessed 10-18-2021

2

Low Code Platforms: Promises, Concepts and Prospects

LCPs address a problem of utmost relevance. The continuing digitization of business processes,
personal routines, and social interaction is accompanied by the extensive penetration of or-
ganizations, public spaces and private households with software. Software is changing the
world - and changing the world, or just coping with a changing world, does not only require
using software, but developing and maintaining it. As a consequence, the ability to develop,

adapt and deploy software quickly is a pivotal factor of many company’s competitiveness.

High relevance also from academic perspective. Even though methods and tools to support the
efficient design and implementation of software systems as well as their alignment have been
on the research agenda for long, various serious challenges remain that provide excellent op-
portunities for research. That suggests to also account for possible innovations offered by LCPs

and relate them to corresponding research findings.

Lack of clear and coherent conceptualization. Even a cursory glance at the market indicates a wide
range of products now sold under the label LCP. The diversity of these products as well as
corresponding characterizations by vendors and market research firms are compromised by
marketing jargon and hidden agendas. The most comprehensive definition of LCP that we
could find comes from Gartner: "An LCAP is an application platform that supports rapid ap-
plication development, deployment, execution and management using declarative, high-level
programming abstractions such as model-driven and metadata-based programming lan-
guages, and one-step deployments." (Vincent et al., 2020) While this definition may seem sat-
isfactory at first, on closer inspection, it shows an obvious lack of selectivity. High-level ab-
stractions are characteristic for most software development systems, especially for those that
make use of conceptual models. Also, it remains unclear what “metadata-based programming

languages” are or what is meant by “one-step deployment.”

In the academic literature, a clear conception of low-code has yet to evolve. Often, low-code
platforms are characterized along lines even more vague than our generic outline above.
Worse, some authors uncritically integrate marketing promises into their definitions. For ex-
ample, one author suggests: "The low-code platform is a set of tools for programmers and
non-programmers. It enables quick generation and delivery of business applications with min-
imum effort to write in a coding language and requires the least possible effort for the instal-
lation and configuration of environments, and training and implementation.” (Waszkowski,
2019, p. 376) Similar description are provided by (Chang Young-Hyun & Ko Chang-Bae, 2017,
2017; Thirwe, Di Ruscio, Mazzini, Pierini, & Pierantonio, 2020; Sanchis, Garcia-Perales, Fraile,
& Poler, 2020). Accordingly, the analysis of literature on low-code produces the insight that a
concise definition of LCP, that would allow discriminating tools that fall under that term from

others, does not yet exist.

Need for decision support. With respect to their prospective benefits, and given the considerable

marketing activities of vendors, it is likely that managers who are responsible for providing

Low Code Platforms: Promises, Concepts and Prospects

organizations with software get aware of LCPs and need to consider the introduction of an
LCP. The complexity and diversity of LCPs creates the need to support decisions related to the

selection, assessment, introduction and management of these tools.

1.2 The Need for an Exploratory Study

Apparently, the low-code trend is, to some degree, fostered by an often careless and ambigu-
ous use of the term. This is nothing unusual for trends in IT. One could even suspect that
ambiguity is an important driver of trends, since it allows addressing a wider range of possible
associations. The history of IT is not only packed with corresponding examples such as, to
name recent examples only, “cloud”, “microservice”, or “edge computing”, it also comprises
a large variety of trends that disappeared soon after they emerged. Against this background
the question arises as to how academia should deal with trends in general, with the low-code

trend in particular.

We do not think that research should account for every new trend. A trend that merely pro-
motes just another fad will usually not deserve our attention. Trends that build on grandilo-
quent promises or even myth should be approached with great caution, that is, we should be
reluctant embracing them without a critical assessment. In the case of low-code, it is at first
hard to determine, whether and to what extent promises and prospects are appropriate. At the
same time, the relevance of the subject for both, research and practice, recommends the anal-
ysis and assessment of the trend. Such an analysis requires a clarification of the term. Other-
wise, the subject of a respective investigation could not be clearly delineated.

The search for a convincing conceptualization of LCPs may follow three principle approaches.
First, one could distil a definition from existing definitions and descriptions. In contrast, the
second approach would rather follow an inductive schema. Based on an analysis of platforms
that carry the label LCP, one would search for common properties to condense them in a cor-
responding concept. Finally, one could take a more prescriptive approach and define the term
in a consistent and purposeful way without paying much attention to actual uses of the term.
While the last approach obviously corresponds to our responsibility to create and maintain
elaborate and consistent terminologies, it would probably result in a concept of LCP that could
be perceived as artificial and offensive, because it would likely exclude systems from carrying
a label they are known for. With regard to the lack of convincing definitions, the first approach
may be useful only with respect to the objective to develop a coherent concept that does not
contradict the use of the term in practice. Therefore, the most appropriate way to develop a
conceptualization of LCP or, at least, contribute to the clarification of the term, is the analysis

of products that carry the label.

From a scientific perspective, the study of products is, for serious reasons, a critical issue. In

general, scientific studies should focus on general knowledge about a certain subject that is

4

Low Code Platforms: Promises, Concepts and Prospects

applicable to a wide range of specific cases. Therefore, research should primarily aim at con-
cepts and theories rather than at the analysis of particular products. Apart from being specific,
insights into a certain product are not only volatile, because a product may change, they may
also be compromised by the fact that the subject, especially in the case of software products, is
of limited accessibility. Available descriptions of software may be insufficient or misleading.
Furthermore, the effort required for a comprehensive analysis of complex software systems

will often be beyond the available resources.

We were therefore initially hesitant to carry out a product study. However, in the end, we
decided to take this unusual step for two important reasons. First, as we explained already,
the low-code trend concerns a challenge that is of outstanding economic relevance and relates
to research topics at the core of business information systems. Second, the lack of a clear con-
ceptualization implies the need for clarification. This lack of a comprehensible definition does
not only compromise decisions related to the selection and use of LCPs, it also makes it widely
impossible to include the subject in university curricula. Third, the study is exploratory, that
is, the analysis and assessment of the selected tools is not its main purpose. Instead, the inves-
tigation of products serves the development of a conceptual foundation that goes beyond vol-

atile product features and the identification of possible future research topics.

In addition to this report, our research on LCPs is presented in two further publications. An
overview of the study that includes specific technical aspects of the tools is presented in (Bock
& Frank, 2021a). (Bock & Frank, 2021b) aims in particular to clarify the concept of LCP.

1.3 Outline of the Investigation

The exploratory study aims at a clarification of the subject. To this end, we shall, at first, focus

on the following questions.

What is an appropriate method for the analysis of LCPs?
What are criteria relevant for the selection of an LCP?
What images of LCPs do vendors create?

What are characteristic features of LCPs?

How well do they fulfil promises made by vendors?

AL N

How do LCPs compare with the current status of research, and what, if any, techno-
logical innovations are realized by these platforms?

7. What opportunities for future research arise from the present attention to low-code
development?

Further questions may evolve during the course of the investigation.

To avoid possible pitfalls of a product-centric study, we will present a method that guides the
investigation. At its core is a conceptual framework. It provides the concepts used to describe
and analyze the selected products in order to avoid bias through the use of product-specific

5

Low Code Platforms: Promises, Concepts and Prospects

terms. In addition, the method includes a process model that describes the course of the inves-
tigation. At its core, the study comprises an analysis of selected LCPs that follows a common
scheme. It concludes with a discussion of the results with specific emphasis on opportunities
for future research.

We start with a brief analysis of the subject addressed by LCPs, that is, of software develop-
ment productivity and user empowerment. At first, we will look at principle enablers of soft-
ware development productivity and related design conflicts. Against this background, we give
an overview of research aimed at productivity and end-user programming. The examination
of foundational aspects and related work serves two purposes. On the one hand, supports the
development of the conceptual framework. On the other hand, it is a prerequisite for assessing
whether and, if so, to what extend LCPs go beyond existing research results.

Low Code Platforms: Promises, Concepts and Prospects

2 Background and Related Research

Ever since the emergence of software engineering, it has been a pivotal goal of the discipline
to improve the efficiency of software development and maintenance. Software engineering
research in pursuit of this goal has produced such well-known methods and tools as rapid
prototyping, computer-aided software engineering (CASE) tools, fourth-generation program-
ming languages (4GL), and model-driven development. Similarly, business information sys-
tems research has long directed its efforts at the economic realization and adaption of infor-
mation systems. Among the best-known outcomes of corresponding research are methods for
conceptual modeling, methods for enterprise modeling, and, of particular significance, refer-

ence models.

Before we give a structured overview of research that concerns promises made by LCPs, we
briefly discuss principle objectives and challenges related to the economic construction of soft-

ware.

2.1 Software Development Productivity: Inhibitors, Drivers, and Con-
flicts

With respect to both, promoting software development productivity and decreasing develop-
ment costs, reuse of existing artefacts is of outstanding relevance. It requires the identification
of existing or possible commonalities shared by a set of systems. In order for software artefacts
to be reusable, they need to be integrated with other artefacts. Hence, integration is a further
enabler of reuse. During their lifetime, most software systems need to be adapted to changing
requirements. That recommends designing systems for adaptability in order to avoid exces-

sive maintenance costs.

The complexity of many software systems is an obstacle to the efficiency of the software devel-
opment process as well as to the quality of software, since it does not only increase the effort
required for system development, but also the risk of failure. The development of application
systems usually requires collaboration of different stakeholders such as users, system analysts,
programmers, etc. The notorious cultural chasm between these groups is a source of friction
and misunderstanding, which may seriously compromise the efficiency of the development
process and the quality of its outcome. Furthermore, the design of business software often
requires analysis and change of the organization of the action system to be supported by the
software. Hence, there is need for mutual adaptation (“business-IT alignment”), which in-

creases the overall complexity of the analysis and development process.

For promoting drivers and mitigating inhibitors of software development productivity, ab-
straction is of pivotal relevance. Table 1 provides a cursory representation of how abstraction
effects the various aspects of software development productivity.

7

Low Code Platforms: Promises, Concepts and Prospects

Table 1

Problem Measure

Complexity/Risk Reduction of complexity through abstraction from irrelevant aspects to gain a
clearer view of relevant aspects.

Communication Focus on concepts different stakeholders are familiar with through abstraction
toward common concepts.

Adaptability Accounting for possible and probable change through abstraction from prop-
erties that may change over time, especially from particular technologies.

Reuse Identification of commonalities shared by different use contexts through ab-
straction toward common properties.

Integration Enabling communication between software components through abstraction

toward common concepts that, e.g., allow the specification of interfaces.

Organizational Integration Enabling a clear correspondence between action system and software systems

(“Business-IT Alignment”) through abstraction toward common concepts to avoid friction.

Table 1: The pivotal role of abstraction

In order for an abstraction to become effective in a software development process, it has to be
captured in some kind of linguistic representation. On the one hand, that is the case for a repre-
sentation in implementation languages, for example, by expressing a generalization with a
superclass. On the other hand, there is also need for representing an abstraction in a language
the various stakeholder involved in a software development process are familiar with, e.g., by
stating “A bachelor thesis is a thesis.” As a consequence, there is need to bridge the semantic
gap between the universe of discourse (represented by the language spoken in a particular

domain) and the required implementation language(s).

In other words: there is need for conceptual models. First, they enable representations of soft-
ware systems by using concepts domain experts are familiar with and that can be transformed
to implementation documents, such as code. Second, they support communication between
different stakeholders by focusing on concepts and, thus, by fading out implementation level
peculiarities. In addition, enterprise models support organizational integration of software sys-
tems by integrating conceptual models of software with conceptual models of the correspond-

ing action system, such as business process models.

To systematically reduce the complexity of a system, it is useful to focus on certain aspects of
a system, and fade out others. One common approach to achieve this kind of reduction is to
focus on one of three generic dimensions of a software system (and of action systems as well).
Static abstractions focus on data. A typical example would be a data model. Functional abstrac-
tions serve representing the functions offered by a system and, maybe, data exchanged be-

tween functions. Finally, dynamic abstractions serve capturing the dynamics of a system, that

8

Low Code Platforms: Promises, Concepts and Prospects

is, possible changes of its state or processes. While abstracting on one specific dimension helps
with reducing complexity, the design of a software systems requires the integration of corre-
sponding models, e.g., of data flow diagrams and data models. Therefore, the languages and
tools used to create these models should support their convenient and consistent integration.

Abstractions in general, conceptual models in particular, are suited to promote reuse and,
hence, to increase productivity. However, with respect to the purpose of our investigation, we
need to take a closer look at the effects of abstraction on reuse. First, the productivity that results
from reusing an artefact depends on how well it fits a specific requirement. In other words,
the more specific an artefact is, the higher is its potential contribution to increasing productiv-
ity. For example, if one wants to develop a planning tool for sales representatives, a reusable
model that was designed exactly for this purpose will promote productivity significantly more
than a general model of planning tasks or even a generic computing model like a spreadsheet.
However, at the same time, the costs required for the acquisition of a more specific model will
usually be clearly higher than those of a more general model that allows for a clearly wider
range of reuse or, put differently: for much better economies of scale. To sum up this obvious
conflict succinctly: semantics of a reusable artefact promotes reuse productivity, but is an ob-

stacle to the range of reuse.

A similar conflict arises for integration. The integration of two artefacts implies common (in-
terface) concepts (such as, e.g., data types or classes). The more specific these common con-
cepts are, that is, the more semantics they represent, the higher is the degree of integration. A
high degree of integration translates into effective and consistent communication between the
connected artefacts. If, for example, two systems share a common concept of invoice, exchang-
ing a particular invoice will be more efficient and less error-prone than representing invoices
as strings only. However, this kind of selectivity, as with any communication, has its down-
side, too: it is an obstacle to openness, because it excludes all artefacts that do not share the
specific concept. To mitigate this problem, it is popular to recommend “loose coupling”, that
is, interfaces with little specific semantics, only. Usually, the downside of this recommenda-
tion, i.e., the resulting lack of efficiency and integrity, remains unmentioned. With respect to
its cause, this conflict is similar to the previous one. Semantics represented by an interface

promotes efficiency and integrity of integration, but is a threat to openness, cf. (Frank, 2011b).

The adaptability of an artefact depends on its semantics, too. The more generic an artefact is
the wider is the range of particular solutions it can be adapted to. A spreadsheet program is
an illustrative example of this effect. At the same time, it restricts the range of possible adap-
tations clearly less. Hence, semantics limits adaptability, but fosters the integrity of customiz-
ing an artefact. At best, an artefact is based on abstractions that cover the range of conceivable
changes, but do not allow for other changes. That, of course, requires a reliable theory of the

domain(s) targeted by an abstraction.

Low Code Platforms: Promises, Concepts and Prospects

All these conflicts relate to a further conflict that concerns the ease of (re-) using artefacts to
build custom solutions. The more the representation of an artefact (its structure, its functions
and its behavior) corresponds to concepts a prospective user is familiar with, the less is the
effort the user has to put into learning the use of the artefact. For example, hiding technical
terms like “file” or “data type” from a user with no programming skills, and instead present-
ing her with concepts like account, customer etc., will likely increase her ability and willing-
ness to make use of the corresponding artefact. At the same time, it is likely to reduce the range

of problems, the user can address.

The brief overview of abstraction and the challenges concerning its proper application serves
two purposes. First, it allows a characterization of the research approaches presented in the
next section. Second, it allows an assessment of the platforms analyzed in the study with re-
spect to the trade-offs they offer to cope with those principal design conflicts. From a vendor’s
perspective, this is a critical issue with respect to the market segments that should be covered

by a particular artefact and to economies of scale that might be achieved.

2.2 Models and Languages

Different from other kinds of models, conceptual models are created with a specific modeling
language. The following approaches aim at promoting the productivity of model-based soft-

ware development.
2.2.1 Reference Models

While conceptual models promise considerable benefits, their construction from scratch is a
serious obstacle to their use. Reference models represent a convincing approach to address this
challenge (cf., e.g., Becker & Delfmann, 2007; Fettke & Loos, 2007; Frank, 2007). A reference
model aims to represent not only one specific system, but an entire class of systems. To this
end, reference models come with both, a descriptive and a prescriptive claim. First, the design
of reference models aims at the representation of commonalities shared by a range of systems.
Second, reference models, at the same time, go beyond existing systems and their peculiarities

by aiming at improving the current state.

In an ideal case, they are developed with outstanding expertise and great care. Hence, they
promise to improve the quality of software and to decrease development costs at the same
time. These tantalizing prospects face two serious obstacles. First, it is clearly more expensive
to develop a reference model than a particular model of a specific system only. Therefore, it
requires convincing incentives for first movers to invest into the development of a reference
model. Often, corresponding incentives are missing, because both effort and return on invest-
ment are hard to predict in advance (Frank & Strecker, 2007). Second, reference models need

to be adapted to specific requirements. The adaptability of reference models to specific re-

10

Low Code Platforms: Promises, Concepts and Prospects

quirements depends on the abstractions they feature. In the case of data or object models, gen-
eralization is an attractive option, because it enables specialization as monotonic extensions
that do not compromise the reference model. However, specialization allows for limited ad-
aptation only. Various more specific approaches exist that aim at more versatile adaptation
(see, e.g., Becker, Delfmann, & Knackstedt, 2007).

Process models do not allow for specialization (Frank, 2012), because inserting further activi-
ties into a process model does not represent a monotonic extension. As a consequence, a key
advantage of generalization does not come into play: whenever a general process is modified,
the effects of this modification on a specialized process are not clear. For a thorough discussion
of this restriction see (Frank, 2012). Various approaches to express abstractions over a range of
specific process models have been proposed, such as “behavioral profiles” (Smirnov,
Weidlich, & Mendling, 2007) or “families” of process variants (Milani, Dumas, Ahmed, & Mat-
ulevicius, 2016).

2.2.2 Domain-Specific Modeling Languages

Apart from controlled adaptation, any modification is conceivable that can be expressed in the
underlying modeling language — at the risk of jeopardizing the integrity of a model. General-
purpose modeling languages (GPMLs) like the UML or the ERM are still widely used, but
come with a serious restriction. They require the design of models from scratch with basic
concepts like Class, Attribute etc. As a consequence, the construction of large models is not only
cumbersome, but also error-prone. Different from GPMLs, domain-specific modeling languages
(DSMLs) provide concepts that represent a reconstruction of technical terminologies used in
certain domains. Thus, they free designers from defining domain-concepts themselves. In ad-
dition, they support the construction of consistent models, because they restrict the scope of
possible models, or systems respectively, to those that a DSML allows to express. Last but not
least, DSMLs support the use of domain-specific notations, which foster comprehensibility of

models.

Research has produced a large variety of DSMLs (cf., Frank, 2011a; Frank & Bock, 2020; Volter,
2013) and various tools that support the convenient implementation of model editors for given
DSMLs (see, e.g., Frank, 2016; Gulden & Frank, 2010; Kelly & Tolvanen, 2008). A combination
of reference models and DSMLs represents an especially powerful foundation for reuse and
adaptation. First, a DSML reduces the effort required to develop a reference model. Second, it
fosters comprehensibility and, thus, the reusability of models.

The design of a DSML needs to account for the conflict between range of reuse and productiv-
ity of reuse. While a very specific DSML, e.g., one to model products of a specific car vendor,
promises to boost modeling productivity, its range of reuse is more limited than that of a more

general product configuration language, which in turn enables more favorable economies of

11

Low Code Platforms: Promises, Concepts and Prospects

scale. The only way to mitigate this conflict is to allow for additional abstraction (see, e.g.,
Frank, 2014).

2.2.3 Model-Driven Software Development

Usually, but not necessarily, conceptual models are not executable. Also, for good reasons,
they abstract specific implementation details such as peculiarities of the user interface or of
distribution, away. Therefore, it is required to transform models into executable representa-
tions such as code and to add missing aspects to the implementation. This does not only re-

quire considerable effort, it is error-prone, too.

Research on model-driven software engineering (MDE) (cf., e.g., Brambilla, Cabot, Wimmer,
& Baresi, 2017; France & Rumpe, 2007) “... is primarily concerned with reducing the gap be-
tween problem and software implementation domains through the use of technologies that
support systematic transformation of problem-level abstractions to software implementations.
The complexity of bridging the gap is tackled through the use of models that describe complex
systems at multiple levels of abstraction and from a variety of perspectives, and through au-
tomated support for transforming and analyzing models. In the MDE vision of software de-
velopment, models are the primary artifacts of development and developers rely on computer-

based technologies to transform models to running systems.” (France & Rumpe, 2007, p. 37).

MBDE is not only concerned with the development of software, but with supporting the entire
software lifecycle. Corresponding tools cover a wide, not clearly specified range, from model
editors, model checkers and model generators. Since models and code are usually represented
in separate documents, various approaches aim at relaxing the problem of synchronizing mod-
els and code, usually by total or incremental re-generating code from modified models (cf.,
e.g., Massoni, Gheyi, & Borba, 2011; Razavi, Kontogiannis, Brealey, & Nigul, 2009). A more
versatile approach is built on a common representation of models and programs, which allows
for the execution of models and the modification of a system using the representation of choice
(T. Clark, Sammut, & Willans, 2008; Frank, 2014).

In addition to research on model-driven software development, the Object Management
Group (OMG) aimed at developing a standard architecture for model-driven development,
called MDA (“model-driven architecture”). Among other things, it aims at promoting the re-
use of models and at protecting investments into models (for an overview, see contributions
in (Paige, Hartman, & Rensink, 2009)). To that end, it provides for avoiding dependencies from
implementation languages and platforms. Since conceptual models abstract certain aspects
away, these have to be added (see above). Instead of representing these aspects, like GUI ele-
ments, with constructs determined by a specific technology, MDA proposes to use a platform
and implementation language independent model (PIM) to represent these additional system
properties. Hence, a PIM can be used for a wide range of specific platforms, which requires a

transformation of a PIM into a platform-specific model.

12

Low Code Platforms: Promises, Concepts and Prospects

2.3 Reusable and Adaptable Software Artefacts

Software artefacts designed for reuse may be domain-independent such as operating systems,
database management systems, GUI libraries, middleware systems, code generators, compil-
ers, etc., or domain-specific. In contrast to conceptual models, reusable software artefacts do
not require transformation into code. Nevertheless, to satisfy specific requirements they need
to provide some kind of adaptation mechanism. Similar to the design of DSMLs, the construc-
tion of reusable artefacts has to cope with the conflict between range and productivity of reuse.
From a vendor’s perspective, this is a critical issue with respect to the market segments that
should be covered by a particular artefact. In addition to representing commonalities of a
range of systems, reuse also requires concepts that allow for convenient and safe adaptation
to individual requirements. Convenient adaptation depends crucially on the concepts models

are based on, and on how these are represented to the (re-) user.
2.3.1 Frameworks

The idea of frameworks has its origins in the realization that often a large number of similar
systems exists that were developed independently of each other. Similar to a reference model,
but on the level of already implemented software, a framework represents reusable and, hope-
fully, invariant commonalities of a range of systems to clearly decrease production and
maintenance costs. A framework is an incomplete software system that is designed for adapt-
ability (Codenie, Hondt, Steyaert, & Vercammen, 1997; Fayad & Johnson, 2000).

Frameworks provide for two principle kinds of adaptation. Black box reuse is restricted to
specific interfaces that allow for extensions, e.g. so called “plugins”, which do not affect the
core of the framework. White box reuse allows for adapting code, ideally through specializa-
tion and overriding existing methods. While white box reuse enables a clearly higher degree
of adaptability, it is more demanding and creates the problem that the introduction of new

versions of a framework requires costly adaptations.

Frameworks comprise infrastructure and development systems like persistency frameworks
that hide the peculiarities of actual persistency technologies from application systems or the
Eclipse Modeling Framework (EMF) (Steinberg, Budinsky, Paternostro, & Merks, 2009) that
serves the realization of modeling tools and code generators. Similar to most persistency
frameworks, EMF is aimed at professional software developers. Domain-specific frameworks
represent a common core of a range of domain-specific application systems. Prominent exam-
ples of domain-specific frameworks include skeleton enterprise systems for the financial in-
dustry (Bohrer, 1998), or frameworks that can be customized to individual web shops. Do-
main-specific frameworks, too, are aimed at professional developers. Making them accessible
to non-programmers would require representations that abstract implementation related is-
sues widely away (see 2.4). Also, supplementing frameworks with corresponding conceptual
models is beneficial in that respect.

13

Low Code Platforms: Promises, Concepts and Prospects

2.3.2 Components and Services

In addition to frameworks that emphasize a top-down approach, reuse can also be promoted
in a bottom-up fashion. This kind of reuse directly corresponds to the idea of building software
from pre-fabricated components of high quality, a vision that has inspired software engineer-
ing from its very beginning (Naur & Randell, 1969). Regardless of its charm, this vision is
fraught with significant challenges that relate to the selection and composition of reusable

software artefacts.

Various approaches have evolved that support finding and selecting reusable software arte-
facts such as components or services (which provide access to components or, in general, to
software while abstracting the implementation away). The idea of structured annotations of
components that enable effective automated search procedures has been around for long
(Prieto-Diaz, 1991). It evolved into approaches to allow for richer descriptions of services in
general, for web-services in particular (Garriga & Flores, 2019; Virgilio & Bianchini, 2010).
These approaches are based on representations of service descriptions on a conceptual, rather
than on a pure technical level. The performance of search procedures can be further improved
by the use of thesauri that extend the search space to service descriptions by accounting for

related terms, too.

After a software artefact that seems to fit a certain purpose was identified, it needs to be inte-
grated with other software artefacts in order to realize a complete software system. At first,
these approaches focused on “weaving” components into application systems (e.g., Schneider,
1999). Later, the focus shifted towards the composition of software systems through services.
The idea of developing enterprise software by first designing business processes and subse-
quently automate them by selecting “best of breed” services, became especially popular. Cor-
responding research produced numerous proposals to efficient and consistent service compo-
sition (cf., e.g., Moulin & Sbodio, 2005; Tilsner, Fiech, Zhan, & Specht, 2011), in part with the
intention to support domain experts with selecting and composing services (e.g., Weber, Paik,
& Benatallah, 2013). Recent work on “on-the-fly computing” follows this path. It aims at ena-
bling the automated composition of customized services from services offered somewhere in
the Internet (Karl, Kundisch, Meyer auf der Heide, Friedhelm, & Wehrheim, 2020).

In any case, bottom-up building blocks need to be supplemented with knowledge, provided,
for example, by reference architectures or models, in order to guide their composition to inte-
grated systems.

2.4 End-User Empowerment

Ever since the invention of the personal computer there have been numerous research ap-

proaches aimed at making the solution space opened up by software accessible to those who

14

Low Code Platforms: Promises, Concepts and Prospects

do not know the art of programming. On the one hand, that would help to address the noto-
rious shortage of programmers. On the other hand, it would be a contribution to the empow-
erment of users by enabling them to develop software that fits their needs and by relaxing

their dependency from professional developers.

To reach this goal, users need to be presented with representations that they are able to under-
stand without massive training. There are two principle approaches to achieve this goal. On
the one hand, simplified computer models aim at opening the power of the machine (or at
least a notable part of it) to users by hiding confusing peculiarities of general-purpose pro-
gramming languages, such as the dichotomy of types and instances, data and event manage-
ment, or specific aspects of GUI implementation. On the other hand, domain-oriented repre-
sentations abstract the computer even further away and offer representations that relate di-

rectly to concepts of the domain the user is familiar with.
24.1 Focus on Simplified Computer Models

Probably the most prominent example of simplified computer models are spreadsheet pro-
grams. The first spreadsheet-like program was available on mainframe computers in the late
sixties of last century. However, only with VisiCalc, the first implementation for personal com-
puters, the triumphal march of this software began. Even though spreadsheet programs did
not result from a specific stream of research in computer science or software engineering, but
from product-oriented research, they triggered various research approaches. Some focus on
improving the integrity of spreadsheets by adding type information (Mendes et al., 2017) or
by tools that allow detecting inconsistencies (e.g., Ahmad, Antoniu, Goldwater, & Krishna-
murthi, 2003; Dou, Cheung, & Wei, 2014). Others aim at improving spreadsheet quality by
providing specific analysis and design methods (Hermans, Pinzger, & van Deursen, 2011;
Mendes et al., 2017).

SQL may be regarded as a further example, because it enables access to a database through
set-oriented expressions, the use of which does not require specific programming skills. For
those users who nevertheless feel overwhelmed by learning SQL, “query-by-example” (Zloof,
1975) is intended to provide a more intuitive access to a database. A user is presented with a
table that she fills with values characteristic of the data objects sought. While such an approach
does not empower users to create databases on their own, it allows convenient access to a

database, provided the intended search is not too complex.

A further approach of this kind is “programming by example” (St. Amant, Lieberman, Potter,
& Zettlemoyer, 2000) which is aimed at inductively generating programs from a set of exam-

ples, which may consist of input-output pairs or examples of intended behavior.

Visual programming (Costagliola, Deufemia, & Polese, 2004; Ingalls, Wallace, Chow, Ludolph,
& Doyle, 1988), too, aims at abstracting the peculiarities of program code away. To this end,
visual programming languages provide icons that represent basic programming constructs.

15

Low Code Platforms: Promises, Concepts and Prospects

The icons can be annotated and arranged to represent a certain control flow. Among other
things, they are used for the implementation of simple workflows, user interfaces or database

queries.
24.2 Focus on Domain-Oriented Representations

The second principal approach, which may be combined with the first one, aims at providing
users with concepts that correspond directly to the technical terminology they are familiar
with, and with a functionality that that is tailored to a specific class of domain-specific tasks.
Apart from domain-specific application systems that allow for user-driven adaptation, the
most important concretization of this principal approach are the already mentioned domain-
specific languages, which may be represented in various forms such as textual, graphical, or
through tables. Examples include DSMLs that enable engineers to specify control software for
devices such as refrigerators (Volter, 2013, pp. 18ff.) or watches (Karna, Tolvanen, & Kelly,
2009).

The field of “end-user computing” or “end-user development” (Nardi, 1995), which aims at
"empowering end-users to develop and adapt systems themselves" (Lieberman, Paterno,
Klann, & Wulf, 2006, p. 1), comprises various streams of research that aim at supporting users
with developing small programs. While they also include approaches mentioned in the previ-
ous section, they emphasize the use of domain-specific concepts. Similar to model-driven de-
velopment (MDD), “model-based development” follows the idea to generate code from mod-
els. However, different from MDD, it does not address professional developers, but users with
no programming skills. A user “just provides a conceptual description of the intended activity

to be supported and the system generates the corresponding interactive application” (Lieber-
man et al., 2006, p. 4).

16

Low Code Platforms: Promises, Concepts and Prospects

3 A Method for the Analysis of the Low-Code Phenomenon

When we started to plan the study, it quickly became clear to us that the peculiarities of the
object of study required a specific method. First, the analysis of complex software systems is
fundamentally associated with specific challenges. They relate to the availability and reliabil-
ity of relevant information, the availability of the platforms, and the effort required for a dif-
ferentiated analysis. Second, the identification of the research subject itself is confronted with
an idiosyncratic problem. The fact that there is no clear conceptualization of LCPs represents
the pivotal motivation for conducting an exploratory study. However, without such a concep-

tualization the selection of platforms is a delicate task.

The outline of the method we used in the study follows a common concept. That is, a method
comprises two main components. First, it includes some kind of linguistic structure that serves
to purposefully represent the subject of an investigation (subchapter 3.1). Examples of respec-
tive linguistic structures include technical terminologies, conceptual frameworks, or, in the
case of a modeling method, modeling languages. Second, it includes a process model that
guides the course of an investigation (subchapter 3.2). To that end, the process model refers to

the linguistic structure.

3.1 Conceptual Framework

Our analysis distinguishes between two facets of the low-code phenomenon. First, and most
important, we aim at the identification and investigation of characteristic features offered by
LCPs, which includes an assessment of their contribution to development productivity and to
empowerment of non-professional developers. The impact of the phenomenon on the practice
of software development in organizations is likely to also depend on the image of LCPs ven-

dors created to market their products. The following framework addresses both facets.
3.1.1 Focus on the Analysis of Low-Code Platforms

In the previous chapter we gave on overview of research that is aimed at improving software
development productivity and at user empowerment. The semantic net shown in Figure 1

shows a high-level representation of relevant concepts.

17

Low Code Platforms: Promises, Concepts and Prospects

multi-user mode <——may supportw

Reference

- part of ———> LCP <——part of
Representation

integrates—‘ T

operates on— Component ——

available as

isa

Framework T
ts

’/—suppor
b Representation created with

Adaptability <——
yirequiresJ l generates/edits T

Foundational Language <———dependson

Abstraction may integrate
should suit is kind of

Targeted User Q depends on access to

Application <—depends on— Implementation

L Document
Use Case <—suited for subject of;
l Extensibility —
Platform <——targets Deployment
Economics External Artefacts <———————depends on integration of

Figure 1: Semantic net of core concepts related to productivity and user empowerment

Foundational abstractions focus on static, functional, or dynamic aspects of a system. Concep-
tual models are especially suited to represent abstractions for the purpose of software devel-
opment. But other (conceptual) representations like tables are also conceivable. Reuse is pro-
moted by reference representations such as reference models or reference data structures. The
languages used to create conceptual models can be either generic or domain-specific. The latter
promote modeling productivity, but may restrict the bandwidth of use cases that can be cov-

ered.

A further kind of abstraction concerns the interaction between a system and its users. Corre-
sponding models often represent interactive user interface elements (“widgets”) and their lay-

out within a reference frame, e.g., a window or a frame.

In addition, software systems can be subject of reuse. These may comprise (software) frame-
works or exemplary applications. In any case, reusable artefacts can be characterized by their
specificity, ranging from generic artefacts like a persistency framework for storing objects in a
relational database to domain-specific artefacts like a reference data model for a certain indus-
try.

Reuse demands for adaptability. Adaptability of a representation depends on the abstraction
enabled by the language the representation is created with. If, for example, a data modeling
language allows for generalization, specialization could be used for safe, that is monotonic,
and convenient adaptations. Especially in cases where representations do not cover all features

of a system, adaptability also depends on the ability to access and modify implementation

18

Low Code Platforms: Promises, Concepts and Prospects

documents such as code or schemas. Furthermore, a system can be adapted by extending it

with external artefacts such as components or services.

With respect to characterize an LCP in comparison to other kinds of SDEs, the range of appli-
cations, or use cases, it is suited to cover, is an important criterion. Is it suited for any kind of
application, be it small or large, local or distributed, or is it especially tailored for certain use

cases?

Among the components of an LCP, those that operate on representations are especially rele-
vant. Components like model editors support users with creating and managing representa-
tions. Furthermore, they may promote productivity by generating implementation docu-
ments. User empowerment depends chiefly on the representations users work on. The more
they abstract specific implementation-related aspects away, the better they should be suited
for laypersons. At the same time, professional developers may perceive it as a serious obstacle

if implementation details are faded out.

The development of applications may require more than one developer. In that case, support
for defining roles with specific access rights is a useful feature. At the same time, multi-user

access may also be a feature required by applications created with an LCP.

Deployment can be a serious obstacle to the provision of applications. Especially, if multiple
platforms have to be covered and new version have to be accounted for on a regular base. One
approach to reduce deployment effort is to abstract peculiarities of platforms away by provid-
ing a runtime environment that is available for multiple platforms. This approach can be com-
bined with the widely automated installation of software in data centers. Specific technologies
to support automated scaling of applications such as containers and orchestrators provide ad-

ditional support for deployment and maintenance.

Economics are of pivotal relevance for motivating the use of LCPs. It comprises acquisition
costs, license fees, cost savings realized through productivity gains, training costs, as well as
maintenance and deployment costs. In addition, economics of an LCP also depend on how
well corresponding investments are protected. This relates especially to the portability of ap-
plications to other environments. Despite their relevance, we will address economic aspects
only to a small degree, since acquisition costs and license fees were not available for all sys-
tems. While we aimed to shed light on the LCPs’ effect on development productivity, a com-
prehensive assessment of this effect is beyond the scope of this study since possible produc-
tivity gains depends on multiple, partly contingent factors all of which could not possibly be

accounted for.

In the following tables, the core concepts for the study are displayed. Table 2 represents criteria

relevant for capturing the extent and quality of static abstractions enabled by a LCP. The ex-

19

Low Code Platforms: Promises, Concepts and Prospects

tension of the static perspective through functions is captured in table 3. Subsequently, dy-
namic abstractions (table 4), GUI development (table 5), and further aspects for the evaluation
of LCPs (table 6) are laid out.

20

Low Code Platforms: Promises, Concepts and Prospects

Table 2: Concepts to characterize the static perspective

Focus on Representations
Conceptual representations

e data types
e data model
e object model

Languages Components

e GPML (e.g., entity rela- e model editor

Focus on Reuse and Adaptability

Reference abstractions

e generic abstractions

e domain-specific ab-
stractions

Comment: represented by

one or more conceptual

representations listed in the

leftmost column above

Focus on Integration

Common static abstractions
across a range of applica-
tions

Access to common data re-
positories across a range of
applications

tionship model) e generator
e DSML o database (DB) schema (DB type)
e proprietary language o code (programming language)
Language concepts Access to external sources and to implementa-

tion level documents

e generalization e data models
e encapsulation e databases
e composition e web

o files

e code

Comment: access to external sources will usu-
ally require interfaces such as ODBC, SQL,
HTTP etc.

Comment: If two applications can (re-) use the same static abstraction, e.g.,
the same data model, the exchange of data between these applications is fa-
cilitated

Comment: If, in addition, both applications have access to a common data re-
pository, e.g., a common database, instance-level integration (avoidance of
data redundancy) is possible.

21

Low Code Platforms: Promises, Concepts and Prospects

Table 3: Concepts to characterize the functional perspective

Focus on Representations

Conceptual representations Languages

e function hierarchies e DFDs

e data flows e UML

e message flows e proprietary

e business rules °
e object models

DSML, e.g., rule speci-
fication language

Focus on Reuse and Adaptability

Reference abstractions Language concepts

e generic abstractions e composition
e domain-specific abstrac- | e

tions

o specificity

Comment: represented by
one or more conceptual rep-
resentations listed in the left-
most column above

Components

e model editor

e generator
o code (programming language)
o interface definitions

Comment: generators require access to corre-
sponding static representations.

Access to external sources and to implementa-
tion level documents

e (web) services

e function libraries
e class libraries

e code

Comment: access to external sources will usu-
ally require interfaces such as APIs and spe-
cific protocols like REST or SOAP

Table 4: Concepts to guide the analysis of dynamic abstractions

Focus on Representations

Conceptual representations = Languages

e business process mod- e BPMN
els e UML
e generic process models e Petrinet
. e state chart

e proprietary

Focus on Reuse and Adaptability

Reference abstractions Language concepts

e generic abstractions e composition
e domain-specific ab- .
stractions
Comment: reuse of pro-

Comment: represented by cesses is confronted with se-

one or more conceptual rious obstacles
representations listed in the

leftmost column above

22

Components

e model editor

e generator
o code (programming language)
o workflow schema

Comment: generators require access to corre-
sponding static and functional representa-
tions.

Access to external sources and to implementa-
tion level documents

e workflow schema
e code (programming language)
[]

Comment: the execution of workflows may
require access to external functions/services.

Low Code Platforms: Promises, Concepts and Prospects

Table 5: Concepts to analyze support for GUI development

User Interaction Perspective

Conceptual representations = Components Architectural Aspects
e GUl models e GUI Editor approach to integrate GUI with rest of appli-
e Generic process models o drag-and-drop cation, e.g., model-view-controller (MVC) pat-
o .. o WYSIWYG tern
o platform-specific
style

o code generation

Focus on Reuse and Adaptability

Reference abstractions Adaptability
o library of general-pur- e Customization of widgets
pose and domain-spe- e (re-) definition of styles and templates

cific GUI elements

(frames, widgets, ..)
e example applications

with reusable GUIs

Adaptation to platform-specific look and feel

23

Low Code Platforms: Promises, Concepts and Prospects

Table 6: Further aspects for the analysis of LCPs

Accessibility and Convenience of Use

e guidance
o support for methodical development
o Built-in help function
e LCP user interface
o inadequacies of LCP user interface
o adaptable to different user groups
e modeling languages
o disseminated
o complexity, expressiveness

Modes of Use
Platform (i.e., Application Development)

e definition and management of access rights | e

e collaboration support (e.g., branching) .
e usein distributed environments .
e use in heterogeneous environments .

Focus on Deployment and Scalability

Application

definition and management of access rights

use in distributed environments

use in heterogeneous environments
collaboration support (e.g., collaborative editing)

Target Location Support

e |ocal machine e automated, transparent installation

e data center (cloud) e .. across various platforms

e supported platforms e accessibility of deployed application (e.g., provided

Focus on Artificial Intelligence

e internal Al services

e support for integration of external Al services
Focus on Training and Support

e Tutorials (manuals, screencasts, etc.)
e (online) courses
e external service providers

APIs)
further tool support (e.g., containers, Kubernetes)

Focus on Economics (criteria printed in grey not covered)

e costs of use/ownership (acquisition, license fees, etc.)

e availability of trained developers
e contribution to development productivity
e protection of investment

24

Low Code Platforms: Promises, Concepts and Prospects

3.1.2 Focus on History and Context

The second part of the framework aims at supporting a more comprehensive appreciation of

the low-code trend by guiding an analysis of the relevant background, that is, the history of

an LCP, its vendor’s profile, and the image at which the vendor’s marketing activities are di-

rected.

Table 7: Provenance and image of low-code vendor

Profile of Vendor

Product Portfolio and Market Position

range of development tools

relevance of LCP within product portfolio
range of further software systems

share of market

Product Provenance

first labeled as LCP
platform predecessors
product evolution

Focus on Marketing

unique selling proposition
targeted user groups
advertised use cases
promises

The framework provides a structure for analysis. It is primarily aimed at identifying those

features that are characteristic for LCPs, and features that vary between the products included

in the study.

3.2 Process Model

The high-level process model shown in Figure 2 gives an overview of how the method sug-

gests to proceed with the present study. Note that the process in part reflects serious con-

straints we had to account for, such as limited time and resources.

25

Low Code Platforms: Promises, Concepts and Prospects

Pilot Study 4\
L’ Selection of Platforms 4\
L’ Preparation of Test Environment 4\
L> Analysis of Platforms 4\
L

Conceptualization/Characterization 4\

> Reflection

Figure 2: High-level process model of analysis method

Pilot Study. It is a characteristic property of most process models that are part of a method to
start with a definition of the scope and the objectives of a project. This requires a delimitation
of the object of study. In the case of our study, this request is both mandatory and beside the
point. It is mandatory, because every investigation needs to focus on a certain subject. How-
ever, since a clarification of the subject is a main objective of the project, a clear demarcation
of the research subject does not exist at first. The pilot study aims at relaxing this paradoxical
situation by developing a preliminary notion of LCP that is suited to guide the necessary se-

lection of platforms.

The pilot study starts with identifying a number of systems that are advertised as LCP. To that
end, an iterative search of the web is combined with exploiting reports of market research
firms and further publications on LCPs. For each LCP, characteristic features are recorded
from the available sources. They comprise information on technical properties, on intended
use and target user groups, as well as on specific characteristics of vendors, like size and prod-

uct portfolio.

This analysis aims at developing a first idea of LCPs, which includes the identification of com-
mon properties and possible categories of LCPs in in the event that the systems under consid-
eration differ significantly in some aspects. It cannot be the goal of this phase to create a rep-
resentative selection of LCPs, since at this point too little is known about the systems. Never-
theless, the preliminary study should aim at accounting for platforms in every preliminary
category that was identified. The process of searching for LCPs should be continued until a
selection is achieved that is satisfactory in this respect. It needs to account, however, for pro-

ject-specific constraints such as time and resources.
26

Low Code Platforms: Promises, Concepts and Prospects

Selection of Platforms. Each platform that was identified in the previous phase needs to be re-
viewed as to whether it is suited for a closer inspection. Corresponding criteria include avail-
ability of products free of charge (this is not a mandatory request, but will often apply in re-
search projects) and manageable installation effort. With respect to limited resources, it will
often be required to limit the number of systems to analyze. To develop a rough idea of the
effort, a platform that is likely to be included in the selection should be installed and analyzed
with respect to the criteria proposed in the conceptual framework. Finally, this phase should
produce the list of selected LCPs together with a rationale that is suited to justify the selection

at this point in time.

Preparation of Test Environment. From a technical perspective, the test environment requires the
installation of all selected LCPs. That may comprise the installation of or connection to addi-
tional components like DBMS or other systems in a tool chain. Each installation should be
briefly documented, highlighting specific restrictions that may apply to the test version. In
most cases, however, a comprehensive description of these restrictions is not possible. Along-
side the Analysis of Platforms, this step also applies to each considered LCP separately.

Analysis of Platforms. This is the main phase of the study. It starts with a training phase to
achieve a satisfactory degree of familiarity. For this purpose, it is a good idea to use existing
training material, such as handbooks, screencasts, or examples provided with a platform. Note
that this training phase is not explicitly documented in this report. Each platform and its ven-
dor is then characterized according to the criteria provided with the conceptual framework. If
the analysis is compromised by the lack of information or unreasonable effort, this is re-
marked. This is the case, too, for specific peculiarities that are relevant for the assessment of a

platform, but are accounted for in the conceptual framework.

The analysis of each LCP follows three successive steps. First, the history and profile of the
low-code vendor is explored following the structure from table 7. Second, the technological
capabilities of the platform are examined according to the conceptual framework laid out in
section 3.1.1. Third, a concise conclusion is presented that summarizes key aspects and reflects
on the provision of abstractions, role of IT professionals, and scope of feasible applications

within the platform.

Conceptualization/Characterization. Based on the descriptions of the selected platforms, this
phase serves a final conceptualization of LCPs. That includes a critical review of the conceptual
framework and, if required, a revision of the prototypical categories of LCPs deduced as part
of the pilot study. If the diversity of platforms denoted as LCP does not allow for a precise
conceptualization, an overview of commonalities and differences discovered within the range

of selected systems is suited to represent the actual use of the term.

Reflection. The final phase serves two main purposes. First, it should produce a critical review

of the study and its specific limitations. Second, it aims at assessing LCPs from a scientific

27

Low Code Platforms: Promises, Concepts and Prospects

perspective. This recommends above all a comparison against the state of the art of related
research. In addition, it could be analyzed whether and how the momentum created by the

low-code trend could serve as an inspiration for future research.

The results from our Pilot Study and the Selection of Platforms (chapter 4) therefore precedes the
analysis of respective LCP solutions in chapter 5. The Conceptualization/Characterization as well

as a corresponding Reflection of the platform analyses is presented afterwards in chapter 6.

28

Low Code Platforms: Promises, Concepts and Prospects

4 Selection of Platforms

Before conducting our in-depth analysis of low-code platforms, a list of potential candidate
platforms needs to identified and selected. The first identification and selection of LCPs was
achieved through a pre-study of available products and is elaborated in this chapter. Next to
a derivation of possible categories of LCPs, a more comprehensive list of criteria is presented

that serves to make a reasonable selection of platforms for our subsequent analysis.

4.1 Prototypical Categories of Low-Code Platforms

The first identification of LCPs was achieved by numerous means. At first, we examined re-
ports from market research companies dating back to 2014 — the year the term “low-code” was
apparently coined by Forrester (see chapter 1). At second, we researched product offerings by
large and well-known companies such as Google, Salesforce, or Oracle. Some of the platforms
identified in this second step might have been unnoticed in a mere exploration of market re-
search companies’ reports since, e.g., they might not meet the criteria of the market research
company or might simply be too novel as to be considered in even the most recent reports. At
last, we included platforms that we knew of for other reasons (e.g., platforms which might be
relevant for our general research activity) that adopted the notion “low-code” in their market-
ing image. This first identification of platform products resulted in approximately 30 potential
candidates for further in-depth analysis. Each of the identified LCPs was then subject to an
exploratory survey, based on first impressions gathered during a preliminary look at the plat-
forms, from which four prototypical categories were derived. These prototypical categories
are (1) basic data management platforms, (2) workflow management systems, (3) extended,
GUI- and data-centric integrated development environments (IDEs), and (4) multi-use plat-
forms for business application configuration, integration, and development. The boundaries
between these categories are fluid and, therefore, categories may overlap. Hence, the proto-
typical categories serve mainly to distinguish LCPs with respect to certain features that we

consider particularly relevant with respect to our research goal.

Basic data management platforms resemble data management systems with an accompanying
GUI design module. Within these LCPs, applications mainly serve to view and edit a limited
range of data, organized in GUIs according to a user’s needs. Productivity increase of these
platforms shall be realized through providing a user-friendly management of entities. Further
features for workflow management or functional specification might be partially considered
but are not in the foreground. Platforms of the category workflow management systems focus the
visual design of workflows with additional support for workflow execution and third-party
connections. Opposed to basic data management platforms, the focus lies especially on the
realization of dynamic aspects of an application. The availability of source code editors within
these LCPs may vary, but is generally no necessary feature for using the platform. This is not
29

Low Code Platforms: Promises, Concepts and Prospects

the case for extended, GUI- and data-centric IDEs. LCPs that are assigned to this prototypical
category resemble regular IDEs either with extensive support to write and adjust source code
within the platform or specific support to integrate source code files from external sources.
Any efficient in-depth use of such platforms would thus demand some familiarity with pro-
gramming languages. Typically, platforms assigned to this category do not have a specific
focus on either data or workflow management. At last, multi-use platforms for business applica-
tion configuration, integration, and development aggregate the preceding elements with an appar-
ent focus on integrating and developing a variety of application artifacts. Like workflow man-
agement systems, these platforms emphasize the need to integrate several internal and exter-

nal development artifacts.

The four prototypical categories serve as a first step towards structuring this opaque notion of
“low-code” and associated products. At the same time, they served us as an orientation for a

balanced, not necessarily a representative, selection of LCPs (see Section 4.2).

4.2 Selection Criteria

Given the four prototypical categories and a list of some 30 potential LCP candidates, it is
required to argue for selection of some subset of LCP candidates that should be considered
within our in-depth study. Given our research aim and analysis method, explained in chapters
1 and 3 respectively, we can note two straightforward aspects that must be fulfilled. The first
aspect is the explicit use of low-code label by the vendor itself. This requirement must be met
since we aim to conduct an inductive clarification of the notion “low-code” and do not desire
to take over superficial features elsewhere associated with the label. The second aspect is con-
cerned with accessibility. An elaborate, in-depth analysis of LCPs cannot rely on marketing
material provided by vendors. Instead, it requires access to platforms. The consideration of
these two criteria eliminates approximately 10 potential LCP vendors which include, among

others, Salesforce, Google, Oracle, and ServiceNow.

The remaining LCP vendors were then classified according to criteria such as vendor size,
market influence, intended user audience, market research companies’ classification of the
platform, and prototypical platform category. Two requirements served to further narrow
down the selection. First, each of the identified prototypical categories shall be sufficiently
represented, meaning that at least two LCPs from each category are to be considered. Second,
the final selection focused on those remaining products that seem to have reached a consider-
able market position. They have been around for some time and are relatively well known.
The use of this criterion is based on the assumption that most organizations will prefer plat-
forms which are already established. The selection process resulted in the platforms presented
in table 8. Included in this overview are also the most recent classification from Gartner and

Forrester as of November 2021.

30

Low Code Platforms: Promises, Concepts and Prospects

Table 8: Overview of selected low-code platforms

Section Platform Name Vendor 2021 Forrester 2021 Gartner
Classification4 Classification’

5.1 Basic Data Management Platforms

5.1.1 Quickbase Quickbase n.a. niche player
5.1.2 TrackVia TrackVia n.a. n.a.

5.2 Workflow Management Systems

5.2.1 Bonita Studio Bonitasoft n.a. n.a.

5.2.2 Creatio Studio Creatio n.a. niche player

5.3 Extended, GUI-, and data-centric IDEs

5.3.1 Mendix Studio (Pro) Mendix leader leader
5.3.2 WaveMaker Studio WaveMaker challenger n.a.
5.3.3 Zoho Creator Zoho n.a. n.a.

5.4 Multi-Use Platforms for Business Application Configuration, Integration, and Development

5.4.1 Microsoft Power Apps Microsoft leader leader
5.4.2 Appian Appian strong performer challenger
543 Pega Platform Pegasystems strong performer challenger

4 https://reprints2.forrester.com/#/assets/2/54/RES161668/report, accessed 09-27-2021

5 https://www.gartner.com/doc/reprints?id=1-27I1IPKYV &ct=210923&st=sb, accessed 09-27-2021

31

Low Code Platforms: Promises, Concepts and Prospects

5 Analysis of Platforms

The following inspection of the selected platforms is structured according to the preliminary
categories identified in the pre-study (see chapter 4). Note that these categories may have to
be revised and potentially adjusted following the study.

5.1 Basic Data Management Platforms

We consider “low-code” basic data management platforms to put a clear emphasis on features
typically found in database management systems, such as the definition of entity types, data
modeling, or system-managed persistence of data. Further aspects that are potentially relevant

for application development might also be included.
5.1.1 Quickbase

The first versions of the platform Quickbase appeared about 20 years ago, making it one of the
tools with the longest history. The vendor, also named Quickbase, has its headquarters in Bos-
ton, MA.

5.1.1.1 Quickbase: Profile of Vendor
Product Portfolio. The Quickbase platform is the only product offered by Quickbase.

Product Provenance. According to Quickbase, the company emerged in 1999 and adopted its
current name in 2000.° An early marketing statement describes the Quickbase platform as a
“web-based service [...] to easily design and use databases” (Dec 11, 2001). Further assertions
suggest that the early focus of Quickbase’s marketing was to offer a platform as an improve-
ment over mailing spreadsheets to support the management of “business information” for
“everyday business people” (Jun 09, 2002). Application building is explicitly advertised since
2003 along the slogan “Build Solutions in Minutes, Not Months” (Sep 28, 2003). It cannot be
clearly deduced from the archived web presence of the company what functionalities such an
“application” is supposed to overcome. Around 2010, the platform is advertised as an “online
database” (Jan 09, 2010) with an apparent focus on database application development. Pre-
built applications and “ready-to-use templates” (ibid.) are also mentioned —later in connection
with the slogan “no code, compromise” (Apr 13, 2015). On the same date, support for “work-
flows” (solely for integrating data from external sources) and “team collaboration” is adver-
tised. The Quickbase platform label “online database” was dropped on Dec 01, 2015. “Low &
No Code Development” is mentioned explicitly since at least May 27, 2017 and the label “low-
code platform” can be identified as early as Feb 12, 2018

6 https://www.quickbase.com/about-us, accessed 08-04-2021

32

Low Code Platforms: Promises, Concepts and Prospects

Focus on Marketing. Quickbase refers to its platform as low-code and no-code interchangeably.
On the company’s web pages, low-code is advertised as “a modern agile way to build and
continually improve business applications” and a ”visual app building approach”” with “pre-
built templates and components that significantly reduce the amount of hand-coding needed
to build.”® RAD platforms, application platform as a service, or high-productivity application
development platforms are said to be alternative notions for “low-code”.” “No-code” is under-
stood as a feature of an LCP.1® According to Quickbase, low-code shall provide a higher degree
of security, a more holistic approach to software development, a web-based Ul, alignment of
business and IT through overcoming the “barrier between organizations and their big ideas”,
e.g., by enabling “citizen development”." Use cases are related to, e.g., HR, sales or field data.’?

There is no focus on any specific domain.

Table 9: Quickbase profile of vendor summary
Product Portfolio

e |ow-code platform is the only product of
Quickbase

Product Provenance

e designated as “low-code platform” since
early 2018

e previously marketed as “online database”
for “business people”

Focus on Marketing

e emphasis on “agility” and reusability

e |ow-code as a “modern agile way”

e ‘“citizen development”, platform for layper-
sons

e promises
o improved business-it-alignment
o higher degree of “security”

7 https://www.quickbase.com/business-application-platform/what-is-low-code, accessed 08-04-2021

8 https://prod2.marketing.quickbase.com/resources/articles/low-code-development-platforms, ac-
cessed 08-04-2021

9 https://prod2.marketing.quickbase.com/resources/articles/low-code-development-platforms, ac-
cessed 08-04-2021

10 https://www.quickbase.com/business-application-platform/what-is-low-code, accessed 08-04-2021

11 https://www.quickbase.com/blog/a-brief-history-of-low-code-development-platforms, accessed 08-
04-2021

12 https://www.quickbase.com/solutions-overview, accessed 08-04-2021

33

Low Code Platforms: Promises, Concepts and Prospects

5.1.1.2 Quickbase: Analysis of Platform Features

The home screen of the cloud-based platform (see figure 3) consists of the available tabs, i.e.,
“My Apps”, “Pipelines”, and any additionally opened app, and an overview of the user’s ap-
plications. Within QuickBase, an “application” encompasses a user-specified set of tables as
designed through a relational data model. Each application has exactly one data model asso-
ciated with it and vice versa. Per default, each application is divided into “pages” — one for
each user-specified table, one “Home” page, and one “Users” page (see figure 4). The pages
that display tables (and, as such, exactly one entity type) allow for viewing, editing, and add-

ing entities.

pierremaier ? © | HiPiere Maier ~

& Pipelines Tutorial: Getting to Know Quick ... Project Tracker

Quickbase - My Apps in pierremaier Quickbase Admin v

Try Quickbase with a sample app

1]

My apps
y app Get an app from Exchange to see examples
of what a Quickbase app can do to help
Adv. search create better ways to work.

Search apps Q vaRs
Explore sample apps

O ©
@ Account Admin
Manage my account

Project Tracker Tutorial: Getting t... Create new app
Learning and help

3 Community

Discussion forums for asking
questions, getting answers, and
learning from fellow builders.

B Help

Guides for getting started, using
apps, building apps, or administering
Quickbase at your organization.

@ University
Self-paced learning covering all of

Quickbase, from orientation to app
building, plus certification.

B Builderresources | A How-tovideos

Your trial ends in | 29 | days. Call us at 1-855-725-2293. |

Figure 3: Quickbase “My Apps” overview screen

34

Low Code Platforms: Promises, Concepts and Prospects

pierremaier © * Q ? O | HiPereMaier v
i MyApps & Pipelines Tutorial: Getting to Know Quick Base Project Tracker @ New App

N S (@] Eh B a8 (+]

Home Users Customers Activities Documents Assets Contacts New Table
& Tutorial: Getting to Know Quick Base - Home P Import/Export [Print this page € Customize this Page

» Welcome to 'Getting to Know QuickBase'

New Customer

Customer Status Customer Locations
New Activity ¥ e Winnipeg QuEBEC -
+ Va"c 9 - ONTARIO =
New Document - | Pasn. A >
1-NewlLea Portland “'9 ¢
O MAINE
S.D. Mi \

9 wis. C iy
AHO /
Reports 088 wyo. Madisbr 9 .Q° N
NEBR. 1owaA L - 7 =5
Customers Grouped by Status 90
= 5 A 5 OLIO lew York
New Leads and Qualified 2. Qualified Prosp A oo United Stati IND..
Mo.

NEV.
Prospects 3
Y. VA
oK,
ict
K.
LosQigF'es NM. w BE
"~ 3.Active Customer: 1 o
Ciudad Judrez
B.C.

List All Activities

List All Documents

TEXAS

MISS? o
La.
Houston £
1.New @ 2. ® 3. Active COA.
Bal

Lead Qualified Customer

Prospect B:C. 53

hamas
SIN. Mexico TAM. © Mapbox © OpenStreetMap Improve this map

Activitine ha Tuma and Nuratian far Each @alac Dan
Your Quickbase trial ends in days | I'mreadytosignup | Questions?

Figure 4: Quickbase example application homepage

Static Perspective. The core of each Quickbase application is a data model (exemplified in figure
5). The data model editor is called the “Visual Builder”. In the “Visual Builder”, entity types
and associations between them can be defined. Next to familiar data types like string (“text”)
or integer (“numeric”), some generic business-oriented data types like “address” and “phone”
are available. The values of attributes can be calculated through “formulas”, which are similar
to common spreadsheet functions. It is not possible to add user-specified data types. Further-
more, a user is restricted to using one-to-many relations in the Visual Builder. The missing
possibility to model one-to-one relations poses a clear threat to system integrity. To model
many-to-many relations in the Visual Builder an auxiliary entity type must be defined, a typ-
ical workaround for relational databases. The data that is used by Quickbase applications is
persisted by the platform, the exact mechanisms and internal database schemata are inacces-
sible, omitting any further assessment in this regard. Each application relies on its own user-
specified data model. Cross-references to data models from other (Quickbase or external) ap-
plications are not supported. Data reference models might be available as part of entire appli-
cations that can be acquired through the Quickbase Exchange app library. Otherwise, it is pos-
sible to select one of five data model “templates”, which are small data models consisting of
approximately three to seven interrelated entity types that can be adjusted by the platform

user according to one’s needs (see figure 7).

35

Low Code Platforms: Promises, Concepts and Prospects

Table 10: Quickbase static perspective summary

Focus on Representations

Conceptual representations Languages Components

e data model e largely inac- e diagram editor
cessible pro-
prietary lan-
guage

Focus on Reuse and Adaptability

Reference abstractions Language con- @ Access to external sources and to implementa-
cepts tion level documents

e general data types for strings, e one-to-many e no access to implementation-level docu-

numbers, etc. relations be- ments

. . tween entity e persistence on Quickbase platform
e some generic business data types
types

like “address” or “phone”
e data model “templates” available

and adaptable
Focus on Integration
Common static abstractions across a Data models cannot be shared across Quickbase applications.
range of applications
Access to common data repositories Data model of each application is managed separately. No common
across a range of applications data repository can be access by Quickbase users.

pierremaier * Q ? O | HiPiereMaier v

i MyApps o Pipelines Tutorial: Getting to Know Quick.... Project Tracker

£+ Project Tracker All changes saved m

»

@ Department App properties

B Table 12 fields

1%

TEXT

T Text App name

Project Tracker

T= Text-multi-line Projects N
19 fields Description

'We're building projects at our organization
T Richtext

i= Text-multiple choice

Expenses Tasks
13 fields 17 fields

Y= Multi-select text

&

Checkbox

NUMERIC

Numeric @ Documents

14 fields
$ Currency

o,
A Percent Go to app properties All changes saved

A n

Figure 5: Quickbase visual data model example

36

Low Code Platforms: Promises, Concepts and Prospects

pierremaier ? © | HiPiereMaier v
o Pipelines University Management Tutorial: Getting to Know Qui... Project Tracker
Quickbase -~ Exchange My shared apps
ﬂ Sortby MostPopular +
Categories
Al Latest Quickbase Exchange Staff Picks
Staff Picks
Community Contributed (630) == — Inventory Manager Starter
Construction (24) -=T .
ownloads i 158 downloads
Covid-19 (14) = Quick Base h
Education (23) < 8w EAQ . |[>
Examples (2) =
o
Fast Track to the Future of Work
19)
Governance Risk and
Compliance (2) .
Health Care (46)
Legal (15)
Manufacturing (39)
Modules (16) Simple Project Manager Complete Project Manager Simple Contact Manager
Quick Base 01-0CT13 Quick Base 23-SEP-13 Quick Base 01-0CT-13
Other (9)
Pipelines (13) dede i 28,343 downloads . 22,891 downloads T 13,302 downloads
Professional Services (67) Track projects and tasks with this easy- Manage multiple projects and tasks in It's time to connect with the right
) to-use project management software, one central location. You'll have the people at the right times. With this
Project Management (4) which is feature-fill ... visibility you need t ... simple contact managemen ...
Real Estate (25)
Starter Apps (10)
By B
Supply Chain (18) B @ 2 O®wOoO $m © Cc @
Team Management (2)
Training (119) + Get thisapp (@) Details 4 Get this app () Details 4 Get thisapp (@) Details
Universitv (26)
Your Quickbase trial endsin [25 |days | I'm readytosign up | Questions?
Figure 6: Quickbase Exchange
What are you working on?
Tell us about your project, process, or information.
=]
< Manage customer Market our Service our >
relationships organization facilities
We're managing Our group organizes We're coordinating
customer relationships marketing activities for work to service our sites
for our organization our company and facilities
Cancel

Figure 7: Quickbase application templates

Functional Perspective. Regarding user-specified functions in Quickbase, three mechanisms can
be distinguished. First, it is possible to define the computing of attribute values through “for-
mulas” (see Static Perspective). Second, users of Quickbase can specify so-called “Quickbase

actions”. Quickbase actions consist of a CRUD (create, read, update, delete) operation and an

37

Low Code Platforms: Promises, Concepts and Prospects

additional condition, e.g., to remove all customers from the customer table, whose last pur-
chase is older than five years. CRUD operations as well as conditions are system-defined and
only the required variables (i.e., the attributes) and values must be provided by the user.
Quickbase actions can only be accessed within the same Quickbase application. Third, so-
called “channels”, themselves part of Quickbase “pipelines” (see Dynamic Perspective), allow
to specify functions for use across multiple Quickbase applications. Within pipelines, a chan-
nel can be used as a “trigger”, a “query”, or an “action” (see figure 8). External functions can
be accessed via the pre-defined “action” channels in Quickbase pipelines, e.g., to add a file to
a Dropbox folder or to send an email message. The integration of specific external functional-

ities, e.g., through manually coded APIs, is not included.

Table 11: Quickbase functional perspective summary

Focus on Representations

Conceptual representations Languages Components

e noconceptual represen- e inaccessible functions are specified according to Quickbase
tation of functions avail- offered GUI screens
able

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implementa-
tion level documents

e general, database-cen- e inaccessible e implementation-level documents cannot
tric operations pre-im- be accessed
plemented e |imited set of external functions can be ac-
cessed

e no custom specification
beyond system-specified
options supported

e no domain-specific refer-
ence functions available

Dynamic Perspective. In Quickbase, workflows that serve to integrate different data sources are
called “pipelines”. Pipelines consist of “steps”, each of which incorporates a “channel” (see
Functional Perspective). A step can be succeeded either by a further step or an if-else condition
(see figure 8) — no further concepts for pipeline modeling are available. Surprisingly, no chan-
nels for database connections are included, only flat data files (e.g., CSV) can be integrated.

38

Low Code Platforms: Promises, Concepts and Prospects

According to Quickbase’s own documentation, these “pipelines” shall contribute to data inte-
gration."® It appears that pipelines mainly serve the purpose to provide some set of basic func-

tionalities across Quickbase applications.

13 https://university.quickbase.com/series/data-integration, accessed 08-04-2021

39

Low Code Platforms: Promises, Concepts and Prospects

Table 12: Quickbase dynamic perspective summary
Focus on Representations
Conceptual representations = Languages Components
e generic process models e proprietary e diagram editor
Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-

tation level documents

e no reference pipelines e “Steps” that contain e implementation-level documents cannot
available channels be accessed

e Conditions

q pipelines Myapps My pipelines Activitylog Channels @ Switch touser v Hi, Pierre Maier v

ETL Process &

On C Refresh schemas = Activity
m Channels Search all channels
<wW Yy Starred = Al
A q Record Created Record Updatec Trigge
| Record Deleted Trigge
QO 2= i -
w Event rigge
Rl + Create Record Action
I £ Update Record Action
© Add conditions i Delete Record Action
Q. Search Records Query
Then Qg Fetch a Linked Record Action
I Q_ Look Up a Record Action
N\,
A ®
Drag a step Don't see the step you need? Let us know.
here or: Insert a Stop
condition pipeline
> Attachments o

Figure 8: Quickbase pipeline example

GUI Development. As elaborated in the Static Perspective analysis category, every Quickbase
application consists of at least n+2 pages for n user-specified entity types. The auto-generated
pages for a single entity type display the persisted data of the respective entity type in tabular
form. These GUI “pages” can contain subpages that either display user-defined charts of the
data or provide a data entry form (see figure 9). A standard entry form is auto-generated based
on the defined attributes of the entity type. This standard entry form can be adjusted by the
user with regards to, e.g., grouping input fields in section, changing the order of input fields,
or adding conditional rules for the visibility of input fields (e.g., to show input field A only
when input field B is not null). The “Home” and “Users” GUI pages cannot be edited. It is also

40

Low Code Platforms: Promises, Concepts and Prospects

possible to add an optional number of GUI pages, whereby these can also be specified via
HTML and CSS.

pierremaier © % Q ? O | HiPireMaier v

o Pipelines PHO1 Virtual Event Managem... Complete Project Manager Tutorial: Getting to Know Qui.. Project Tracker © NewApp

Home Users Projects Tasks Customers TeamMembers TimeCards Expenses Documents NewTable

g Tasks AddTask m Cancel & Customize this Form
» Repors & Chans

v Task

) Task Name *

Task Condition egend i
Q @overae Dtssue @ontime © petayedstart @ inactive

v_Related Project

Project Name

v _Details
Assigned To 1 # of Hours Allocating

D Project Phase Priority Milestone

» Description

~ Time Plan

D start » Duration (Days)

» Predecessors
Add Predecessors

~_Financial Performance

© Labor Costs Budget §.

Status % Complete Date Complete
NotStarted s s %
days | 1 wosignup | Questions?

Figure 9: Quickbase exemplary add entry screen
Table 13: Quickbase GUI development summary

User Interaction Perspective

Conceptual representations ~ Components Architectural Aspects
e GUI pages as a “tab” of e GUI Editor e each entity type is associated to one (sys-
an application e navigation pane cannot tem-defined) GUI page and vice versa

be adjusted e implementation of MVC pattern, with

“controller” facet being largely inaccessi-

ble
Focus on Reuse and Adaptability
Reference abstractions Adaptability
e example applications e fields can be arranged and adjusted just in self-developed applications

can be adapted

Further Aspects. Deployed Quickbase applications are only accessible within the platform itself.
An organization is provided with a subdomain to access the acquired instance of the Quick-
base platform. The web-based platform, as well as all applications developed with it, can there-
fore be accessed through the same URL. For mobile devices, Quickbase also offers a Quickbase
app to access the developed applications. Quickbase applications cannot be exported as a

whole, only the user-defined, persisted data can be exported through known formats such as
CSv.

41

Low Code Platforms: Promises, Concepts and Prospects

The Quickbase platform must be managed by one so-called “Quickbase administrator”, who
can invite users to and remove them from the platform. This Quickbase administrator also
assigns new users to Quickbase applications in order for them to access and edit them. Users
who create new applications are per default the respective application administrator. These
assign the roles for users of the applications. Roles are specified according to the common
CRUD scheme, which can be specified for each entity type separately. Additionally, different
roles can be provided with different GUI pages, e.g., to show different charts to a project man-
ager as opposed to a team member. Other than a definition of roles and users for application
development, we could recognize no further collaboration support for developers and end-

users.

Quickbase does not offer any Al services within the platform nor any integration of external

Al services.
Table 14: Quickbase further aspects summary
Accessibility and Convenience of Use

e no specific methodical support for development
e fairly convenient and easy-to-use

o GUI pages can be adjusted according to different user roles
e use of largely inaccessible, proprietary modeling languages

Modes of Use
Platform (i.e., Application Development) Application

e CRUD-based right specification (application = ¢ CRUD-based right specification
users as application developers) e scarce integration capabilities between applications
e no further support for collaborative appli- e no further support for collaborative use of platform
cation development
Focus on Deployment and Scalability

Target Location Support

e cloud-based platform, accessible via a reg- = no further accessible support mechanisms
ular web browser
e data persisted on platform

Focus on Artificial Intelligence

e no Al services included

5.1.1.3 Quickbase: Conclusion

Emphasized Areas of Application Development. The identified features of the Quickbase platform
mostly focus on static aspects of application development. This is exemplified through the
provided visual data model editor and pre-defined business-oriented data types. Dynamic as-
pects are only partly accounted for through the use of so-called “pipelines”, where system-

developed connectors and event listeners can be accessed and executed. However, common

42

Low Code Platforms: Promises, Concepts and Prospects

workflow modeling concepts are not considered: It is not possible to assign users to tasks, to
monitor workflows at runtime, or to add connections other than the system-offered ones. Sim-
ilarly, the platform lacks mechanisms that support the specification of functions. Collaborative
development among different developers is also not addressed.

Provision of Abstractions. The focus of Quickbase platform lies more on abstracting away im-
plementations details rather than to a to account for domain-specific use cases. Although some
general, business-oriented data types are provided to specify entity types, they hardly provide
productivity increase for more specific business domains. The small number of “templates” to
define data models are also no reasonable candidates to contribute to more efficient applica-
tion development. Additional aspects relevant for application development (e.g., data redun-

dancy) are not accounted for with the obvious risk of producing inconsistent system states.

Role of IT Professionals. It is conceivable that most features of the Quickbase platform are gen-
erally accessible to lay developers, which conforms to their marketing focus on “citizen devel-
opers”. Unreflective use of the platform features might, however, lead to inconsistent system
states. Examples for this are the lack of data integration across Quickbase applications as well
as the incapability to defined one-to-one associations in a data model. To manage the limita-
tions of the Quickbase platform, more experienced developers would be required. The mar-
keted image of Quickbase, which focuses exclusively on use by lay developers, is therefore

misleading.
5.1.2 TrackVia
TrackVia is offered by a vendor of the same name. The company is based in Denver, CO.

5.1.2.1 TrackVia: Appearance of Vendor

Product Portfolio. The low-code platform of TrackVia is the only product offered by the com-
pany.

Product Provenance. The first archived web page of TrackVia is from Jul 16, 2006, where its
platform is marketed as a “web-based database” for use by “any group of people”. In particu-
lar, the platform is advertised as superior to spreadsheets solutions with regards to the scope
of included functionality and “sophisticated software” solutions in terms of comprehensibil-
ity. In 2008, the TrackVia platform is described as a “form-maker to easily create web forms”
(Jul 01, 2008). Later marketing statements refer to the platform as an online database with web
forms and pre-defined templates (Mar 30, 2009). At a later point, it is also possible to identify
slogans that indicate a clear correspondence to the current low-code trend: The TrackVia plat-
form is referred to as an “easy-to-use application builder in the cloud” (Sep 02, 2011) with “0%
coding required” (Mar 16, 2012) for “business people to create and use their own [...] applica-
tions” (Mar 08, 2013). Without any apparent changes in the platform’s features, it is relabeled

as an “online workflow software” on Apr 02, 2015, and as a “low-code application software”

43

Low Code Platforms: Promises, Concepts and Prospects

on Jun 03, 2017. Currently it is alternatively referred to as “no-code/low-code platform”'* and

“no-code app builder”?.

Focus on Marketing. On the TrackVia web page, “low-code” is associated with faster develop-
ment and increased ease-of-use.!® The platform is marketed to provide support for “citizen
developers” through “drag-and-drop configuration”". It appears that the mainly promoted
selling proposition for the TrackVia platform is to provide central data management as op-
posed to managing data through a stack of papers or numerous distributed spreadsheets. Ad-
vertised use cases are field services, project management, or also supply chain management,

among others.

Table 15: TrackVia profile of vendor summary

Product Portfolio

e LCP only product of TrackVia

Product Provenance

e emerged as “web-based database” for “any
group of people”

e overtime increased focus on “application
development”

e |ow-code label adopted in 2017

Focus on Marketing

e increased “ease-of-use” and development
speed

e centralized data management as advantage
over spreadsheet solutions

e focus on citizen developers

e project management, field services, supply
chain management as use cases

5.1.2.2 TrackVia: Analysis of Platform Features

The home screen of the TrackVia platform presents an overview of all available applications
(see figure 10). The “Pluto’s Norway” in the top left corner is an exemplary logo and company

name that can be adjusted. Each TrackVia application consists of nine GUI pages: “Tables”,

14 https://trackvia.com/software-apps-low-code-development/, accessed 08-06-2021

15 https://trackvia.com/, accessed 08-06-2021

16 https://trackvia.com/software-apps-low-code-development/, accessed 08-06-2021

17 https://trackvia.com/it-professionals-app-building-platform/, accessed 08-06-2021

44

Low Code Platforms: Promises, Concepts and Prospects

“Views”, “Forms”, “Dashboards”, “Filters”, “Roles”, “Table Relationships”, “Flows”, and

“App Overview”, the latter of which is displayed in figure 11.

lz PLUTO’S NORWAY ®Q ALL APPLICATIONS v Help QO

Apps

Alphabetical A»Z

Project Management Quality Control University Management

08/09/2021

0771412020 07/22/2020
03:15pm 02:39pm o12ipm
Edit & Edit & Edit &
B8 6 Tables Delete © 8 5 Tables Delete B 2 Tables Delete [
W6|come 07/29/2020
09:10pm
Edit &
8 1Table Delete &
Figure 10: TrackVia home screen
B PLUTO’S NORWAY () PROJECT MANAGEMENT v Q| Goto.. Help O
Tables Views Forms Dashboards Filters Roles Table Relationships ~ Flows App Overview Trial expires in a month

& Tables

Alphabetical A>Z

8 Customers =] Employees] Project Type Tasks
06/30/2020 07/22/2020 06/25/2020

09:44pm or:23pm 0551pm
(@) 3 Views Import 4 (i) 4 Views Import & @) 1 View Import
B 2Forms Edit & B 3Forms Edit & B 2Forms Edit &
Y 1Filter Delete ¥ 3Filters Delete & Y Filters Delete &
] Project Types =] Projects B Tasks

07/08/2020 07/14/2020 07/14/2020

1005pm 09:25pm 0302pm
@ 1 View Import 4 (i 9 Views Import @ 12 Views Import 4
B 2Forms Edit & B 3Forms Edit & B 3Forms Edit &
Y Filters Delete & Y 5Filters Delete Y 7Filters Delete &

Views Add New View For Table

Alphabetical A>Z
[Customers] Defau... e [Employees] Defau... e [Project Type Tas... 0512512020

09:44pm 01:23pm 05:51pm
B8 Customers B Employees B Project Type Tasks
B 1Form B 1Form B Forms
2. 1Role Export .1 2 1Role Export .1, 2 Roles Export L
[Project Types] D... S [Projects] Default View e [Tasks] Default View

Figure 11: TrackVia application overview example

Static Perspective. To specify entity types, several system-defined data types can be used within

the TrackVia platform. Some of them are generic text and number types, others are tailored
45

Low Code Platforms: Promises, Concepts and Prospects

towards general business use like currency or location. It is not possible for a user to define
additional data types. Entity types can be referenced across different TrackVia applications.
Each TrackVia application is based on a single data model which can be viewed graphically in
an ERD-like notation in the “Table Relationships” GUI page (see figure 12). Association types
can be named. Role designators cannot be added. Only one-to-many associations can be de-
fined, whereby multiple associations between two entity types can be added. According to
TrackVia, users can add multiple one-to-many associations to replace many-to-many assoca-
tions in some cases, e.g., three one-to-many associations shall represent one three-to-many as-
sociation. Such a workaround therefore proposes to fix the cardinality of a many-to-many as-
sociation on one end. The persistence of data is handled by the TrackVia platform. The persis-
tence mechanisms as well as the database schema are not accessible. Data reference models

are not available.

B PLUTO’S NORWAY () PROJECT MANAGEMENT ¥ Q| Goto.. Help 2
Tables Views Forms Dashboards Filters Roles Table Relationships Flows App Overview Trial expires in a month
App ERD B -« Properties x
Tables:
Employees Prolect
Customers
Types Employees
Project Type Tasks
Project Types
Projects
Project Tasks

Project
>
Type Project
Type|Task

Customer

Manager,

~—~ /\ —=
Relationships:

Task
Resource

Project
Type Tasks

Customer
Inspector

Link to Projects
Project Manager
Project Type

Project Type Task Plan
Rework Employee

LiPk
to Projects

Figure 12: TrackVia data model example

46

Low Code Platforms: Promises, Concepts and Prospects

Table 16: TrackVia static perspective summary

Focus on Representations

Conceptual representations = Languages Components
e data model e proprietary language e diagram editor
similar to ERM

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implementa-
tion level documents

e general data types for e (multiple) one-to-many ' e no access to implementation-level docu-
numbers, strings, etc. relations between entity ments
e some more specific types
data types, e.g., for cur-
rency, users, or loca-
tions
e no reference data mod-
els available
Focus on Integration

Common static abstractions = single entity types can be referenced across applications
across a range of applica-
tions

Access to common datare- = underlying data repositories inaccessible
positories across a range of
applications

Functional Perspective. The TrackVia platform offers users two options to specify customized
functions. The first option is to add so-called “formula” attributes to user-defined entity types.
The values of “formula” attributes are calculated based on a set of predefined formulas, which
resemble spreadsheet functions. The value of a regular “formula” attribute is calculated anew
each time it is requested (e.g., for charts). Users can also define a formula attribute as “trig-
gered”, in which case the value of an attribute is only calculated when a respective entity is
created, updated (i.e., either its type definition or some values of the entity), or deleted. The
second option for functional specification is the implementation of so-called “Application
Scripts”. These user-defined scripts are written in the Groovy programming language. A
source code editor can be accessed within the TrackVia platform (see figure 13). References to
entity types in application scripts are possible but do not update automatically — if the attribute
name of an entity type is altered, it has to be updated manually in every affected script. It is
also worth noting that TrackVia’s application scripts cannot be used to reference and execute
other application scripts within the platform. The execution of each application script must be
triggered by some system-defined event, whereby only database-related events (e.g., update

entry, insert entry) are offered.

47

Low Code Platforms: Promises, Concepts and Prospects

2 PLUTO’S NORWAY (2 AS ORGANIZATION ¥ Q| Goto... Help 2

Tables Views Forms Dashboards Filters Roles Table Relationships Flows App Overview Trial expires in a month

¢ Back to Location Script Editor Error Log

AppScript Name * Trigger Event Enabled Dark Mode

Before Insert Before Insert &

//If no phone number for location is added, enter customer phone number

Before Insert

Add A New Script

String customerPhoneNumber = currentValues["Customer"]["Customer Phone Number"] as String

~ if(currentValues["Location Phone Number"]==null) {
currentValues["Location Phone Number"]=customerPhoneNumber

}

ONOUTAWN

Figure 13: TrackVia app script example
Table 17: TrackVia functional perspective summary

Focus on Representations

Conceptual representations Languages Components
e no conceptual represen- e proprietary language e code editor for app scripts
tation beyond code for formulas
o spreadsheet-like for- | e Groovy programming
mulas language for scripts

o application scripts
Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implementa-
tion level documents

e generic arithmetic func- e composition e implementation-level documents beyond
tions app scripts unavailable

e no further reference
functions available

Dynamic Perspective. Within the TrackVia platform, two distinct modules explicitly address
dynamic aspects of application development. One is a separate integration platform called
workato’®, the other is the “Flows” page available within each TrackVia application. Although

workato is embedded within the TrackVia platform, since it is technically a separate platform

18 https://www.workato.com/, accessed 08-10-2021

48

Low Code Platforms: Promises, Concepts and Prospects

which does not offer any trial version, the functionality of workato for TrackVia applications
cannot be adequately assessed. According to resources provided by TrackVia'® connections
can be based either on one of the already established connectors or through self-programmed
HTTP, SQL, or SFTP requests.

The available “Flows” page gives access to editing und using “flows”, which are also referred
to as workflows by TrackVia. User-defined flows specify a sequence of GUI forms to view,
add, and edit data entries. Flows are defined through a diagram editor, which distinguishes
between “task”, “decision”, and “start/end” (see figure 14). “Task” nodes correspond to some
GUI form, where user-defined entities can be viewed, added, or updated. “Decision” nodes
are used to define conditional statements. An exemplary start screen of a flow is displayed in
figure 15. It appears that TrackVia’'s flow models only serve to automate navigation between
GUI forms within one application. Reference flow models are not available.

 PLUTO’S NORWAY (R UNIVERSITY MANAGEMENT v Q| Goto.. Help 2

Tables Views Forms Dashboards Filters Roles Table Relationships Flows App Overview Trial expires in a month

Add Current Lecture m Save As Cancel Delete Flow

Create New Task

<

Create New Decision

——>»| Add Course

Create End Yes

)\ View Course Update List of
Enter Lecturer No Add Students Information ™ current Lectures

New Course?

Figure 14: TrackVia flow example

19 https://university.trackvia.com/integration-platform, accessed 08-10-2021

49

Low Code Platforms: Promises, Concepts and Prospects

JB PLUTO’S NORWAY (QUALITY CONTROL ¥ Q| Goto.. Help 2
Trial expires in a month

Tables Views Forms Dashboards Filters Roles Table Relationships Flows App Overview

Dashboards v~

New Inspection @qCinspections » B Start Inspection

Step 1: Enter Product Information

Date and Time Inspector

08/10/2021 03:52PM ® o + Q

Product

+Q
Use barcode scanner to enter serial number
Serial Number
Location of Inspection)) . -
& NORD o & =
%, Hﬁggiﬁfﬁe & NORDVIERTE < s
L9 & 0
%, Krupp-Park Bo Q 2 e
8 ., ALTENDORF inyssenkrupp@Q) | lonersia s e
,_C_'}O gle izress Atendorfer St XXXLutz Kroger Essen Ge Hap data 620276 (©2009) Termsof Use Report amap emtor
Address GPS
UniversitatsstraBe 9, 45141 Essen, Germany 51.465087890007425 7.006851669926725 @
Figure 15: TrackVia exemplary flow start screen
Table 18: TrackVia dynamic perspective summary
Conceptual representations | Languages Components
e Generic process model e proprietary e diagram editor
Focus on Reuse and Adaptability
Reference abstractions Language concepts Access to external sources and to implementa-
tion level documents
e no reference abstrac- e “Task” and “Decision” ' e no access to implementation-level docu-

tions available nodes ments

GUI Development. GUI pages can be designed in three tabs of the TrackVia platform: “Views”,
“Forms”, and “Dashboards” (see figure 11). In “Views” and “Forms” users are provided with
a drag-and-drop GUI editor. Charts can be added in “Forms” only. A dashboard is any com-

bination of views and forms on a single GUI page. Reference GUIs are not available.

50

Low Code Platforms: Promises, Concepts and Prospects

Table 19: TrackVia GUI development summary

User Interaction Perspective

Conceptual representations = Components Architectural Aspects
e GUl models e Drag-and-drop GUl edi- | e Implementation of MVC pattern
tor

Focus on Reuse and Adaptability
Reference abstractions Adaptability

e none available -

Further Aspects. The cloud-based TrackVia platform is accessible through a regular web
browser. TrackVia also offers a separate mobile application of its platform for Android and
iOS, which shall optimize interaction with developed applications on mobile devices. Appli-
cations as a whole, and thus also any specified application scripts and flows, cannot be ex-
ported. Single forms may be exported through a “Webform Generator” in HTML format?,
single tables as CSV files. Exported tables do not include any related data from other entities.
External applications can interact with the TrackVia platform via a TrackVia AP]J, that provides
GET, POST, DELETE, and PUT operations.?! Within TrackVia, the use of this API is referred

to as a “microservice” .22

One so-called “super administrator” of the platform assigns users to applications. Given the
provision of access to a certain application, no further CRUD-based distinction of rights is
possible. This also means that users of an application are not distinguished from application

developers.

TrackVia does not include any internal or external Al services. We could not determine
whether this is the case for workato, too. We can only speculate that Al services would likely

be advertised with workato if they existed.

20 https://developer.trackvia.com/downloads/webform-generator/, accessed 08-11-2021

21 https://www.npmijs.com/package/trackvia-api, accessed 08-11-2021

22 https://developer.trackvia.com/microservices/, accessed 08-11-2021

51

Low Code Platforms: Promises, Concepts and Prospects

Table 20: TrackVia further aspects summary

Accessibility and Convenience of Use

e no methodical development support

e fairly convenient and easy-to-use

e no adaption to particular user groups

e use of largely inaccessible, proprietary modeling languages

Modes of Use
Platform (i.e., Application Development) Application
e access to applications granted by “super e nodistinction of CRUD rights
administrator” (application users as appli- e no further support for collaborative use of platform

cation developers)

e nodirect access to external database sche-
mata

e no further support for collaborative appli-
cation development

Focus on Deployment and Scalability

Target Location Support

e cloud-based platform, accessible viaareg- e outside accessibility through RESTful API
ular web browser
Focus on Artificial Intelligence

e no Al services included in TrackVia

5.1.2.3 TrackVia: Conclusion

Emphasized Areas of Application Development. Although TrackVia offers separate features to han-
dle static, functional, and dynamic aspects of application development, the platform’s focus is
clearly on static aspects and GUI design. The execution of user-defined functions is restricted
to system-defined events. Workflow modeling features are, as far as accessible, rudimentary
and limited to navigation of GUI pages. Further application development lifecycle activities

like, e.g., testing or requirements engineering are not explicitly addressed.

Provision of Abstractions. Domain-specific abstractions are only scarcely embedded in TrackVia
through the provision of some general business-oriented data types like currency. Productiv-
ity increase is realized through fading out implementation-specific peculiarities. Examples for
this are the flow diagram editor or the drag-and-drop GUI editor. Users of the TrackVia plat-

form cannot access or edit any underlying implementation documents.

Role of IT Professionals. On its web pages, TrackVia explicitly advertises to provide support for
so-called “citizen developers”. While most features considered in our analysis seem generally
accessible to lay developers, the specification of application scripts can be noted as an excep-
tion here. The lack of cross-references in application scripts, which is likely to contribute to

52

Low Code Platforms: Promises, Concepts and Prospects

functional redundancy, and the lack of dynamically updating embedded references, clearly

restricts productivity increase through TrackVia’s application scripts.
5.1.3 “Low-Code” Basic Data Management Platforms: Conclusion

One aspect seems especially interesting among the two examined LCPs: both vendors adver-
tise an apparent superiority over spreadsheets and paper-based data management. The prom-
ises made by the vendors also appear constant over time: quicker application development,
central data management to cope with dispersed information, and easy development even for

“everyday business people” (Quickbase) and “any group of people” (TrackVia).

Our analysis of platform features proposes that both platforms emphasize a static perspective
on applications. Features of the functional and dynamic perspectives are not completely dis-
regarded, but only considered in a limited sense. The use of drag-and-drop editors for GUI
pages and a form- and model-based development approach, partly embedded in the consid-
ered LCPs, is also hardly novel. Opposed to such earlier approaches, however, Quickbase and
TrackVia are partly tailored towards generic business needs as showcased by, e.g., system-
defined data types such as address or currency.

In both LCPs, users can scarcely access and edit source code, which limits the range of possible
adjustments to the provided mechanisms of the platform. The limited export capabilities, i.e.,
mostly to spreadsheet files, also increase vendor dependency, which poses a clear risk to the
protection of investment. Aside from these risks, limitations, and challenges, both platforms
do allow for a quick development of simple data-centric applications without much experience
in database design or application development. That is however not to suggest to mitigate the
role of professional developers as proposed by the vendors’ claims. The presented integration
challenges and vendor dependency make the two LCPs no viable option for enterprise-wide

applications.

5.2 Workflow Management Systems

LCPs in this category showcase a clear focus on workflow modeling capabilities and a histor-

ical development of the platform as centered around business process management.
5.2.1 Bonita

Since it was founded in France in 2009, Bonitasoft has had a clear focus on workflow manage-
ment. This is reflected by the Bonita platform, which is still marketed as a process automation

solution.

5.2.1.1 Bonita: Appearance of Vendor

Product Portfolio. The Bonita platform is the only product offered by Bonitasoft and it is avail-
able in a community and enterprise edition, the former of which is used for the subsequent

analysis.
53

Low Code Platforms: Promises, Concepts and Prospects

Product Provenance. The earliest archived home page of Bonitasoft is from Jun 25, 2009.
Bonitasoft is marketed as “the open source BPM company” (Jul 26, 2009). In line with this
proclaimed focus of the company, the Bonita platform is marketed to “generate, deploy and
integrate process-based applications” (Sep 17, 2009)?. The notion of “process-based”, or alter-
natively, “process-driven” applications is used continuously since then. The slogan “less code,
more business value” is presented on Feb 29, 2012. Low-code is mentioned at least since Oct
13, 2017, as part of the platform labels “model-driven, low-code business process application
development platform” and “low code application development platform”. The latter is still

in use today alongside the notion of a BPM platform.

Focus on Marketing. For Bonitasoft, the term “low-code” is used to denote application develop-
ment platforms, which offer a set of reusable, out-of-the-box artefacts that can be adapted ac-
cording to the developers” needs.? It is notable, that LCPs are thereby advertised as providing
support for “development teams”/”the technical teams”, and explicitly not lay developers
(ibid.). Additionally, the Bonita platform is supposed to support “DevOps and Continuous

Delivery”? as well as “Process Mining and AI"”2.

Table 21: Bonita profile of vendor summary

Product Portfolio

e LCP Bonita as only product of Bonitasoft

Product Provenance

e clear focus on BPM and “process-driven ap-
plications” since product emergence
e denoted LCP since 2017

Focus on Marketing

o |ow-code marketed as support to tailor ref-
erence solutions for increase development
speed and application quality

e focus on “development teams”, i.e., techno-
logically-affine people

2 http://www.bonitasoft.com/products/bonita-v4.php (archived)

24 https://www.bonitasoft.com/low-code-application-development-platform, accessed 08-12-2021

25 https://www.bonitasoft.com/bonita-continuous-delivery, accessed 08-12-2021

26 https://www.bonitasoft.com/process-mining-Al, accessed 08-12-2021

54

Low Code Platforms: Promises, Concepts and Prospects

5.2.1.2 Bonita: Analysis of Platform Features

The Bonita platform consist of three components: Bonita Studio, Bonita Portal, and Form De-
signer. Bonita Studio is the main development environment of the platform. It is a separate soft-
ware system that supports the development and deployment of the so-called process-driven
applications. Some elements of Bonita Studio, which are elucidated further below, can be con-
nected to web-based GUIs. The development and design of web-based GUIs is handled in the
Form Designer, the user-facing application can be accessed via Bonita Portal. The home screen

of Bonita Portal is displayed in figure 16, where the registered user can access and execute open

tasks.
i Welcome: Walter Bates e User v | Settings
(s Bonitasoft | son
< Filters > Form Comments Overview 2 G
To do Process m Case
Attention : this is a temporary form generated automatically for testing. Before you
My tasks 0 Q put your process into production, create and map the necessary forms.
Done tasks

Tasklist C Review and Answer Claim

1-1/1

L Taskname Process name Due date

&L Review and Answer Claim ClaimsManagement

1-1/1

Figure 16: Bonita Portal

Static Perspective. The definition and maintenance of “business data models” is managed in
Bonita Studio. Users of Bonita Studio can only interact with so-called “business objects”, which
is an overloaded concept that may represent entity types and classes, but also respective in-
stance. These business objects are defined through a set of attributes, each of which is specified
through a data type. Common, generic data types are offered for this purpose, among others,
string, integer, Boolean, long, or float. The information provided in the business model editor
GUI (see figure 17) suggest that business objects simultaneously serve to specify Java classes
and entity types. For example, it is explicitly stated that the data type “TEXT” is mapped to a
Java string and database character large object (CLOB). Generalization/specialization of these
“business objects” is not possible. Once a business object is defined, it can also be used in the
definition of other classes through an aggregation or composition relation. This provides de-
velopers an opportunity to associate business objects with one another. Reference models or

any further domain-specific data types are not available on the platform. The data/object
55

Low Code Platforms: Promises, Concepts and Prospects

model can also be edited via the corresponding XML file. The definition of entity types/classes
can serve to instantiate objects for use in workflow models. The data generated in workflow
instances (so-called “cases”) are persisted by Bonita itself on an H2 relational database. Data
models cannot be viewed graphically, but database schemata are accessible via regular SQL
queries (see figure 18).

9-H @ @ . S I 26 v
[Project explorer 3¢ = O A ClaimsManagement (1.0) 4 Business Data Model editor 52 =8
BEESw 3§ " < N
BB Sw 3 Model Unique constraints Queries Indexes bom.xml
v 1My project -
« £ Organization # Deploy T Clean deploy (% Export [Import ©, Explore @ Validate
<= ACME.organization (active) List of Business Objects Claim
v | Business Data Model - Deployment re
| bom.xml - Deployment required FFXEE o
v & Diagrams v com.company.model pesipton
i3 ClaimsManagement-1.0.proc Sauillea
" . 1 Claim
> ™ Environments
Attributes
%+ X B
Name Type Multiple
description STRING']
answer STRING [
satisfactionLevel INTEGER O
g = Detail:
[20 Problems %2 7 8 a etails
0items Attribute description
Description
Length
265]
Maven artifacts properties
Use STRING if you need a unique constraint and/or indexes. Its maximum length depends on your database.
Groupid 8 For longer strings, choose the type TEXT. Database equivalent: varchar
com.company.model
22 xml

Figure 17: Bonita Studio business data model

56

Low Code Platforms: Promises, Concepts and Prospects

154 S Auto commit “0 ‘0 | Maxrows: 1000 @ @ os Auto complete ~ Off © Autoselect On B (2)

) jdbch2:file:/Applications/BonitaS | Run| |Run Selected | | Auto complete | |Clear| SQL statement:

= BUSINESSOBJECT SELECT * FROM CLAIM
& CLAM

INFORMATION_SCHEMA

%
®
(D H2 1.4.199 (2019-03-13)

SELECT * FROM CLAIM;
PERSISTENCEID ANSWER DESCRIPTION PERSISTENCEVERSION |SATISFACTIONLEVEL ATTRIBUTE

3 no answer |example text |1 null null
35 null I have a problem 0 null null
(2 rows, 5 ms)

Edit

Figure 18: Bonita Studio SQL query on relational H2 database

57

Low Code Platforms: Promises, Concepts and Prospects

Focus on Representations
Conceptual representations

e data model

Table 22: Bonita static perspective summary

Languages

e proprietary, based on

Java and SQL represen-

tations

Focus on Reuse and Adaptability

Reference abstractions

e common data types
like string, integer,
float, etc.

e No further reference
data types or data
models available

Focus on Integration

Common static abstractions
across a range of applica-
tions

Access to common data re-
positories across a range of
applications

Language concepts

e aggregation/composi-
tion associations

Components

e form-based GUI editor synced with XML
file

e generates Java classes and SQL state-
ments

Access to external sources and to implementa-
tion level documents

e access to corresponding XML file
e database can be accessed, possibility to
define SQL queries

use of common data models and integration thereof depends on specified

workflow types

all data is persisted in one H2 relational database

Functional Perspective. Bonita Studio does not offer any functional modeling component. Users

can implement custom function through a built-in Groovy source code editor. The written

scripts can be embedded in workflow models. Some basic functions to access nodes in a work-

flow or reference particular users are pre-implemented and accessible through the workflow

engine APL

Focus on Representations
Conceptual representations

e no representation be-
yond source code

Languages

e Groovy programming

language

Focus on Reuse and Adaptability

Reference abstractions

e small set of pre-defined

system functions for
workflows

Language concepts

° none

58

Table 23: Bonita functional perspective summary

Components

e Groovy editor

Access to external sources and to implementa-
tion level documents

e Groovy source code

Low Code Platforms: Promises, Concepts and Prospects

Dynamic Perspective. Workflows in Bonita Studio are modeled according to the business process
model and notation (BPMN) modeling language. An exemplary workflow for claims manage-
ment is displayed in figure 19. An instance of a workflow model is referred to as a “case”
within the platform. Each workflow type can include many “business variables”, each of
which is reference to some user-define “business object” (see Static Perspective). Business vari-
ables are embedded in workflows through “contracts” which specify the expected input data
type at each node in the workflow. Application user roles (as “actors”, see Further Aspects) can
be assigned to task types and lanes. Furthermore, task types include a reference to a web-based
GUI “form” (see GUI Development). Connectors to external systems can be defined at the input
or output of a task type (see figure 20). These can serve to integrate the workflow with further
systems according to common interfaces (e.g., through SOAP) or through self-programmed

connectors.?”
Table 24: Bonita dynamic perspective summary
Focus on Representations
Conceptual representations = Languages Components

e business process model ' o BPMN e BPMN diagram editor

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implementa-
tion level documents

e generic process ele- e concepts from BPMN e no access to implementation-level docu-
ments as included in e business objects and ments within Bonita Studio
BPMN notation contracts

e no further abstractions
provided

27 https://documentation.bonitasoft.com/bonita/2021.1/connector-archetype, accessed 08-16-2021

59

Low Code Platforms: Promises, Concepts and Prospects

P)H @6 = S5 SNC

I #0206

roject ex . Diagram t laimsManagement (1. 7 Business Data Model editor
%5 Proj P9 i =] ClaimsM: (1.0) 8 B del edi =i
BEESw §
v 52 My project —
> £ Organization =
> || Business Data Model .)
© A iagrams O forb
A Clair 1.0.proc /]
> [Pages/Forms/Layouts H Submit laim
> ™ Environments ¥ ©
> miJava Fl
-
——Tasks
@ 28 = HP
o HE]
- - 153 R — A Good
Activities HE Answer Claim)9 y
(= I - satisfaction Level End Client Satisfied
Start Events -
)
Int. Events H - et »
@ 5 customer
()] ® & =
(O
End Events
O®e® &6
®
1] Problems 53 YV 8 = B JGeneral 2 [Data ¥ Execution Af Appearance @ Validation status < Minimap wa?)
0 errors, 2 warnings, 0 others I ClaimsManagement
Description Actors @
& Ul Designer form type is selected a | g =
& Ul Designer form type is selected a e
Search keys Add Name ~ Description
— () Customer Actor
Unset initiator s :
Employee actor This is an example of actor that is mapped to any ACME users
Delete Manager Actor
Note: when no initiator is set, the process can only be started programmatically
Figure 19: Bonita Studio example workflow model
). (2] Lid [’ ' 4+ X > ’ [NN Connectors v
5 Projectex 8 O Diagramt = B & *Clai Select a ==l
BEESSw § | Select a connector definition from the list below
+ 1% My project Tl - = E
> . Organization =
> || Business Data Model Q Display custom definitions only
L — £ Categories Comector dfiiions
S a0 P hccess 2010 105C & database cuery
i Eng.mnmems Y 3 > BICMS 45,AS400 JDBC 4 database query
S i dener s > 45 CRM 27 Call a function
P > (] Calendar B Create a folder
— > [Database il Create Event l
> E*ERP + Create Object
= > [LbAaP [§ Datasource database query
HH > [AMessaging [DB2 9.7 JDBC 4 database query
HH > ioffice 1L/ DELETE
HE > yo/REST # Delete a document
§ L > 5% Robotic process automation 2 Delete a document version
> &% SOAP Web Services £ Delete a folder
> |2 Script i1 Delete Event
— > % Social « Delete Object |
Download a document
H Definition version
z: Description
2
Send an email using SMTP (RFC 5321)
121 Problems 83 Y § = 8 J General @Dz i =
0 errors, 2 warnings, 0 others Q Deal withit] Cancel
Description
& Ul Designer form type is selected a oA @
& Ul Designer form type is selected a i
Form Add...
Operations Edit...
Connectors out Remove
Up
Down

Figure 20: Bonita Studio workflow connector definition

60

Low Code Platforms: Promises, Concepts and Prospects

GUI Development. Applications developed with Bonita Studio can be accessed through Bonita
Portal — an example is displayed in figure 16. Applications focus exclusively on the execution
and management of workflows specified in Bonita Studio. Therefore, only GUI pages which
are referenced in the design of workflows can be viewed. GUI pages are generated automati-
cally according to the defined contracts of a workflow type. Customization of GUI forms is
enabled in the separate Form Designer module of the Bonita platform (see figure 21). Entire
GUI pages beyond these “form” containers cannot be adjusted and must follow the system-
specified style. Apart from GUI forms that serve to execute workflow instances, an “applica-
tion page” can be specified which lists all past workflow instances. Reference GUIs are not

included.

/) FORM EDITOR & Sawe v 2 b Prevew

WIDGETS

Description *

ut.claiminput

Text Area
Debug message
user {{formOutput._submitError.message}} {{submit_errors_list}}

Autocomplete

Select an element on the
whiteboard, then set its
® properties here

Radio Buttons

VARIABLES v ASSETS

Name ¢ Value Type

http:// forminput { "claiminput" : { "description” : "" } } JSON
Link

E‘@

File Viewer

formOutput return { clai : $data.forminput. } Javascript expression

submit_errors_list if(data.formOutput && $data.formOutput._submitError && $dat... Javascript expression

Figure 21: Bonita Form Designer
Table 25: Bonita GUI development summary

User Interaction Perspective

Conceptual representations = Components Architectural Aspects
e GUI models consisting e “Form” Editor implementation of MVC pattern, strict corre-
of “forms” o drag-and-drop GUI | spondence to workflow model specified in
editor Bonita Studio

Focus on Reuse and Adaptability

Reference abstractions Adaptability
e library of general GUI e theme and parameters of GUI elements can be adjusted
elements

e example applications
not available

61

Low Code Platforms: Promises, Concepts and Prospects

Further Aspects. Hosting of the relational database and workflow engine is managed by
Bonitasoft. The server to host applications needs to be specified by the developers. All JAR,
XML, and further files generated by Bonita Studio are freely accessible.

To define user roles, Bonita Studio allows to specify hierarchically arranged roles which shall
loosely correspond to an organizational structure. This shall allow simple dynamic references
to roles, e.g., “manager of X”. Each application user is assigned to a certain role, but roles do
not include any set of rights. The modification and access rights of roles is specified separately
in each workflow model. Bonita Studio does not offer any support to specify roles and rights

for developers of an application.

While Bonitasoft seemingly advertises Al services explicitly on their website as part of a “pro-
cess mining” module?, no such capabilities could be identified. The entire documentation of
Bonita? does not yield any results for “process mining”, “artificial intelligence”, or “machine
learning”. It seems that neither internal nor external Al capabilities are currently included in

the community edition.
Table 26: Bonita further aspects summary
Accessibility and Convenience of Use

e no methodical development support

e implementation and use split into three environments

e implementation in Bonita Studio demands some familiarity with programming concepts
e use of BPMN for workflows

Modes of Use
Platform (i.e., Application Development) Application

e need for two supplementing environments: e access to developed applications is granted through

Form Designer and Bonita Studio Bonita Portal
e no specific support for collaborative devel- = e definition of hierarchical role structures with set of
opment predefined interrelations (e.g., “is manager of”)

e roles are defined to a set of workflow elements
within one lane

Focus on Deployment and Scalability
Target Location Support

e application hosting needs to be managed no further accessible support mechanisms
by developer

Focus on Artificial Intelligence

e no Al services identified for Bonitasoft

28 https://www.bonitasoft.com/process-mining-Al, accessed 08-16-2021

29 https://documentation.bonitasoft.com/bonita/2021.1/, accessed 08-16-2021

62

Low Code Platforms: Promises, Concepts and Prospects

5.2.1.3 Bonita: Conclusion

Emphasized Areas of Application Development. The Bonita platform primarily offers support to
model sophisticated workflows. This includes mechanisms to design and integrate GUI forms
as well as to assign roles to workflow lanes. Capabilities to specify functions and data models
are limited: custom functions can only be implemented via a built-in Groovy source code edi-

tor and visual representations of data models are not available.

Provision of Abstractions. Both Bonita Studio (generally for any static, functional, or dynamic
specification) and Form Designer (only GUI design and integration with underlying function-
ality) do not provide domain-specific abstractions. No reference models are available. Bonita
Studio allows a rudimentary representation of organizational structures through user and role
definitions. However, this approach is not satisfactory in cases where an elaborate representa-
tion of organizational structures is required. Generally, the platform provides higher-level rep-
resentations of a source code-based implementation (see, e.g., business object specification).
This makes Bonita Studio hardly accessible to lay developers. Noticeably, abstraction from pro-
gramming concepts is not only provided through visual modeling and input forms, but also
through a simplified representation of standard programming concepts. The synthesis of clas-
ses and entity types as “business objects,” and fading out of the respective object-relational
mapping, might increase comprehensibility and productivity while restricting modification

options for more experienced developers.

Role of IT Professionals. Bonitasoft explicitly targets professional application developers. With
respect to Bonita Studio, it seems indeed reasonable to assume that only experienced develop-
ers will benefit, since familiarity with client-server architecture, object-oriented programming,
and development with IDEs is required. Source code can partly be accessed and a built-in
source code editor allows to define custom scripts. The Form Designer, which allows to develop
GUIs per drag-and-drop, can also be used by lay developers since no advanced programming
concepts are included here. However, no features to support collaborative development with
lay developers can be detected.

5.2.2 Creatio Studio

Creatio Studio is offered by Creatio, a company that has offices in six countries. It is not clear,

though, where its headquarters is located.

5.2.2.1 Creatio Studio: Appearance of Vendor

Product Portfolio. Creatio’s product portfolio is somewhat opaque at first sight. On Creatio’s

home page, a distinct BPM and customer relationship management (CRM) component of the

63

Low Code Platforms: Promises, Concepts and Prospects

same “Creatio platform” is advertised.* The former includes three products (Creatio Sales, Cre-
atio Service, Creatio Marketing), the latter only one (Creatio Studio). The entire “Creatio platform”
and Creatio Studio is marketed as an LCP. However, a “Creatio platform” is not available as
such and only the four products listed above can be acquired. This begs the question what the
denoted “Creatio platform” shall refer to and whether the three CRM products are also con-

sidered low-code by Creatio.

A closer look at each of the products clarifies this circumstance. Each Creatio product can serve
as a stand-alone platform. Every platform includes two “workspaces” per default: one for ap-
plication use (application workspace) and one for application development (development
workspace). Creatio’s CRM product line offers pre-implemented application workspaces tai-
lored towards particular business needs. The development workspace is the same for all four
products. It is thus also possible to acquire any combination of Creatio products and access
them via the same Creatio platform — one would have then access to multiple application
workspaces. The BPM Creatio Studio platform includes only the development workspace and
aa generic application workspace (denoted as “applications”) which does not offer any pre-
implemented business application. At the same time, the development workspace is also
called Studio in each of Creatio’s products. Since the focus of our investigation is on LCPs, we

will refrain from a closer look at particular CRM products.

Product Provenance. The company was renamed to Creatio only in 2019. Previously, it was
called bpm’online 3! The earliest archived web page of bpmonline.com from May 15, 2011 states
that “BPMonline CRM is a comprehensive CRM solution which provides enhanced business
process management (BPM) features”. It seems that only one CRM product was offered at this
time. An early product advertisement of its “Process Management Platform” (May 17, 2011)3
describes a web-based platform that allows for integrating external sources and can be cus-
tomized to specific requirements. On Aug 31, 2013 this platform is marketed as a solution for
“process driven CRM” that shall enable “users to build applications they need at the click of a
mouse” (Jul 01, 2015). “Out-of-the-box processes” and multi-channel application access is ad-
vertised on Feb 01, 2017. The dissemination into four different products (see Product Portfolio)
can be noted at least since Aug 05, 2013. The entire catalog of products is still referred to as a
single “platform”, even though products can be deployed independently. Since at least Jun 30,
2019, the term low-code is used to market the platform. On this date, the platform itself is
referred to as an “Agile Platform for Business Process Automation and CRM” with “ready-to-

30 https://www.creatio.com/, accessed 08-18-2021

31 https://www.creatio.com/company/news/17893, accessed 08-18-2021

32 http://www.bpmonline.com/products/platform (archived)

64

Low Code Platforms: Promises, Concepts and Prospects

use apps and templates”. The renaming of the company from bpm’online to Creatio on Oct 30,

2019 is apparently accompanied by designating its platform as a low-code BPM platform.

Focus on Marketing. On Creatio’s web pages, low-code is marketed as an innovation that serves
to reduce development and improve communication between business and IT professionals.?
The Creatio LCP is said to improve the adaptability of applications to a changing environment
and is more intuitive to use than other platforms.* It shall enable everyone within an organi-
zation to develop the applications they need.® This indicates a marketing focus on lay devel-

opers.

Table 27: Creatio Studio profile of vendor summary

Product Portfolio

e (Creatio Studio as LCP and business process
management platform

Product Provenance

e previously named BPMonline

e early focus on business process and cus-
tomer relationship management

e renaming of company to Creatio was accom-
panied by relabeling as LCP

Focus on Marketing

e quicker development time and improved
business-IT alignment
e focus on citizen developers

5.2.2.2 Creatio Studio: Analysis of Platform Features

The home screen of the Studio workspace is displayed in figure 23, the home screen of the
Applications workspace can be seen in figure 24. Both constitute the Creatio Studio. For all work-
spaces, three GUI “panels” can be distinguished. The side panel on the left serves to navigate
the workspace, the communication panel on the right serves to interact with other users via,
amongst others, chat, phone, or mail, and the “main panel” (not designated as such by Creatio)

comprises a search bar in the top and a working area underneath. This might be supplemented

33 https://www.creatio.com/blog/do-you-really-need-learn-code-why-anyone-can-be-developer-low-

code-platforms, accessed 08-18-2021

34 https://www.creatio.com/blog/how-businesses-can-maximise-benefits-creatio-low-code-platform,
accessed 08-18-2021

35 https://www.creatio.com/our-technologies/low-code, accessed 08-18-2021

65

Low Code Platforms: Promises, Concepts and Prospects

by a folder and filter area next to it. Both, the side and the communication panel, can be ex-

panded or condensed by the user.

Studio homepage Creatio = =

Active users, now Expiring licenses Started processes, total for today Finished processes, total for today Py
Process library -I 0

Active users, today
Process log
Web services
Lookups c
System settings @
Message Records creation dynamics, 30 days Process errors, today e
templates
ML models o

ML model errors, today

o)

Figure 22: Creatio Studio “Studio” workspace home screen

Creatio p—
Applications s 7 NO-CODE g
HACKATHON
P
fx Home LEARN. DEVELOP. WIN A PRIZE.
Creatio is calling for business analysts and
il Dashboards tacts citizen developers from all over the world
Learn how to build apps using a low-
code/no-code approach and engage your
g Employees R team to create their own solution!
[l £ -
A Contorts REGISTER NOW!
B3 Accounts 2§ Admin area e
. Pr
K Activities 9
o o @~ (=)
b : Q
er d
W communiy e
tplace
Connectwith us

Figure 23: Creatio Studio “Applications" workspace home screen

Static Perspective. Three business-generic entity types are pre-implemented in Creatio Studio:
employees, contacts, accounts, and activities. Per default, each of these constitute a section of
the Applications workspace (see figure 23). There are two options to specify custom entity
types. First, users can design GUI pages — the sections of the Applications workspace — per drag-
and-drop that correspond to entity types (the “section page wizard” is displayed in figure 25).
Each field of the GUI page corresponds to an attribute of the entity type. Therefore, the fields

66

Low Code Platforms: Promises, Concepts and Prospects

must incorporate some specified data type. This includes generic types like Boolean, Integer,
or String, but it is also possible to define “lookup” fields, which are a reference to other entity
types within the Creatio Studio platform. Second, users can define entity types under the “Sys-
tem Administrator” area of the Studio workspace (see figure 24). Here, it is additionally possi-
ble to define “object inheritance” relations. The exact inheritance mechanisms are inaccessible.
For both options, it is also possible to access and edit SQL and C# source code — which shows
that the specification of entity types simultaneously serves to define C# classes. Visual data
models are not available in Creatio Studio. Data persistency is realized through a relational
database managed by Creatio Studio. Additionally, it is possible to search for and eliminate
redundant data. The search for duplicates is dependent on user-defined rules, such as to re-
move person entries when the phone number and first name is identical.

& SECTION WIZARD PAGE BUSINESS RULES OURCE CODE

= ideas

Contact

Figure 24: Creatio Studio section page wizard

67

Low Code Platforms: Promises, Concepts and Prospects

CLOSE -

Figure 25:

Creafio

Creatio Studio “object inheritance”

Table 28: Creatio Studio static perspective summary

Focus on Representations

Conceptual representations = Languages

e no conceptual repre- .
sentation beyond GUI
designer and relational e
database system

Focus on Reuse and Adaptability

no visual modeling lan-
guage provided

Classes are imple-
mented in C#; database
requests are in SQL

Reference abstractions Language concepts

e common data types like o
string, int, etc. are pro-
vided

e very restricted set of .
general business entity
types can be adopted

Focus on Integration

generalization/
specialization sup-
ported

references between en-
tity types through
“lookups”

Components

e user-friendly GUI for entity type specifica-
tion
e access to database system

Access to external sources and to implementa-
tion level documents

e generated SQL code can be accessed and
modified

e corresponding C# classes can be viewed,
but not edited

Common static abstractions = Entity types provided by Creatio are necessarily part of every application. Be-

across a range of applica- yond this, it is up to the application developer to make use of common static

tions abstractions.

Access to common datare- | All applications access the same underlying database instance persisted on

positories across a range of | Creatio.

applications

68

Low Code Platforms: Promises, Concepts and Prospects

Functional Perspective. Functions in Creatio Studio can be written in C# through a built-in source
code editor. For this purpose, the LCP offers several libraries for implementation support.
Among others, it supports the definition of customized event listeners for custom entity
types.3® The script-based, pre-implemented workflows (see Dynamic Perspective) can serve as
reference functions. No dedicated component for modeling functions is available. Creatio also
offers a marketplace where anyone can provide enhancements to the Creatio platform either
for free or for some price (see figure 26). These enhancements are categorized either as a tem-
plate, an add-on, a connector, or a “software solution”. This is reminiscent of the “on-the-fly-
computing” paradigm presented in chapter 2. Notable here are especially the various add-ons
that are available. Add-ons comprise, among others, the “ATF.Repository for Creatio” for data
modeling and explicit object-relational mappings, an add-on for creating pivot tables as Excel
exports, or a command line interface for Creatio. “Software solutions” are complete Creatio
applications (i.e., an application use workspace, see remarks in Product Portfolio) that include
specific entity types, data schemas, domain-specific functionalities, and workflow models. Ex-

emplary application domains are, among others, compliance or risk management.

Search 193 solutions [Sortby: Popularity v

W Applications

Add-on

Connector

& software solution CHAT MASTER

[op—

'l Templates

Data protection tools:
anonymization and data
access

Data export to Excel
spreadsheets

Messaging platform for Kanban view for Creatio

[certified contact centers sections

Category v

O sales
O Marketing
[service and telephony

SurveyMonkey*

O collaboration

O Productivity

[Document Management

QQoVC

() HR management

Surveys and market research

todl Document flow automation WordPress-connector GDPR for Creatio

[Finance and Accounting SMS and Viber Sender
[Analytics

[J ata Migration

[pevelopment and

configuration
[industry-specific solutions @
[Risks and Compliance

. infobip

BOT MASTER
O Free Goersenoen QQOVC

M paid ot

Figure 26: Creatio marketplace
Table 29: Creatio Studio functional perspective summary
Focus on Representations

Conceptual representations Languages Components

3% A complete list of available C# libraries can be explored at https://academy.crea-
tio.com/api/netcoreapi/7.17.0/index.html, accessed 08-24-2021.

69

Low Code Platforms: Promises, Concepts and Prospects

e no conceptual represen- e none for visual model- = e access to available C# source code
tation for visual modeling ing
of functions o CH

e CH-based source code
Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e function libraries for gen- = e no platform-specific e function libraries and source code can be
eral platform functionali- language concepts accessed
ties

Dynamic Perspective. According to Creatio, workflow types (“processes” in Creatio Studio) are
modeled according to the BPMN 2.0 specification.’” It is possible to define sub-workflow mod-
els which can be embedded in super-workflow models. A sizable number of workflows, most
of which are based on custom scripts, are pre-implemented on the platform. These depict ge-
neric functionalities for using the platform, such as, e.g., “actualize contact age” or “bulk du-
plicate search”. All custom or system-defined workflow models can be viewed and edited in
the process library section of the Studio workplace (see figure 28). It is worth noting that Cre-
atio’s CRM products share the same set of system-defined workflow types as the Creatio Studio
platform. For every modeled workflow type, the auto-generated C# code can be viewed (see
figure 28). An example workflow diagram is displayed in figure 29. Entities persisted on Cre-
atio can be accessed directly from the workflow designer. Remote API calls are enabled
through the “call web service” task type which allows to define REST and SOAP-based re-
quests via a pre-configured Ul. C# code snippets can be embedded through a “script task”
type and the “predict data” task type uses user-define ML models to make predictions (see
Further Aspects). Domain-specific reference workflow models, as well as additional pre-config-
ured connectors, can be downloaded via the Creatio marketplace (see Functional Perspective).
In addition to workflows, so-called “cases” can be added to each section of the Applications
workspace. Cases can assign a status to an entity. An example from the Sales workspace is
displayed in figure 30, where a “lead” entity is currently in the “Handoff to sales” status (see

status bar at the top).

37 https://www.creatio.com/page/bpmn, accessed 12-19-2021

70

Low Code Platforms: Promises, Concepts and Prospects

. .
Creatio
Studio VIEW ~ lc;
B Active Filters/folders
-~ ® Runbyobjectsigna x B activ
A Home e
+ M Actty acation leave request
Yes 320PM
Process library. * Audit
+ M Contact Yes 320PM
Process log + M Documents ’
Yes 320PM
+ M Feed notifiation
Web services + Financial loss Yes
' ncidents Request approval
Lookups 1320PM 32PM
+ M installed application
Message/comment S Yes ™M 10723120 -
System users o ‘ 0230
+ Risk case followers Sent task tigat
i i cieases 12021 3:04PM 3127
System settings X%
+ M Sociallke ves 304PM
Messay
ge * User mention Check financial "
templates < & —_—
~ @ Runbytimer e SOARH o
ML modeis Minutes and hours = = Ves p— 12Rar0
oay e
Py Yes 304PM 3 0151 PM
- Favorites Yes 3:04PM 4
-m A o crente ek e
Approval processes Y 12/ OATAM
System processes B Vs -
Yes 304PM 1 45AM
Yes 303PM
Yes 03pM

Figure 27: Creatio Studio process library

Creatio

zationRunnerPro. return Lizatd tartsubp g @

}

B UsrContactageActuali

protected virtual Createt) {
ProcessschenabxclusiveGatenay gateway = new ProcessSchemaéxclusiveGateway(this) {

UId = new Guid("e72e958c-3a57-4707-9807-Cb7fa620889") ,
ContainerItenIndex = 0,
ContainerUId = new Guid("dofe79eb-45ea-4702-bsad-7200272e0e16"),
CreatedInOunerSchenaUld = new Guid("bb4de6e7-826b-4b27-b646-8F5C77¢1e89d"),
CreatedInPackageld = new Guid("bbadc8ds-42c8-4398-8175-Fda6efoabges”),
CreatedInSchemaUld = new Guid("5466ac94-10a4-4dob-06c-ece72e4¢7b4s"),

HanagerTtenUId = new Guid("
HodifiedInschemalld = new Guid("5466aco4-10a4-4deb
iame = @"ExclusiveGateway2",

= new Point
SerializeToDB = fals
Size = new Size(
UseBackgroundhiode

49F7570-607-416-90e5-663a198c6C7C")
6c9-ece72e4£7b48"),

s

return gateuay;

protected virtual ProcessschemalntermediateCatchTimerEvent CreateIntermediateCatchTimer1IntermediateCatchTimerEvent() {
tchTimerEvent schemaC, i = new ateC Event(this) {

new Guid("47¢93b2e-3¢09-4276-8e41-28a0F87266¢d") ,

AttachedToUId = Guid.Empty,

1 N
Cancelactivity = fa

ContainerItenIndex = o,

ContainerUId = new Guid("dofe79eb-asea-4fe2-bsed-7200272e0e16"),

CreatedInOunerSchenaUld = new Guid("bb4d6607-026b-4b27-b640-8F5¢77¢1e89d"),
CreatedInPackageld = new Guid("bbadc84s-42c8-4398-8175-Fd460foanges”),
CreatedInschemaUld = new Guid("5466aco4-10ad-4deb-06c9-ece72e4f7bas"),
EntitySchemaUld = Guid.Empty,

InageList = null,

InageNane = nul

IsLogging = true,

ManagerItenUId = new Guid("97d1af3d-ef13-465c-b6ds-5425¢78bF000"),
HodifiedInSchemalld = new Guid("5466aco4-10a4-4dob-06co-ece72e4f7b48"),
Name = @"IntermediateCatchTimer1”

Position = new Point(165, 136),

Size = new Size(27,

Figure 28: Creatio Studio workflow source code

71

Low Code Platforms: Promises, Concepts and Prospects

Vacation leave request

SETTINGS ~ PARAMETERS ~ METHODS

BpmVacationRequestProcessing

0

0 $ty

Business Process

BpmRequests

100

[#[PropertyValue:Caption}#]

Active

Enablelogging

a

Serialize in DB
Actual version

[use system security context

Figure 29: Creatio Studio workflow type diagram

.
Hardware / Alice Phillips, Streamline Development Creatio ?

Home

Hardware
Dashboards NEXTSTEPS (1) 45 -

Created automatically
Feed Contact customer, specify need, budget, decision-making role.

15,000.00
Leads COMPLETE

Accounts

Contacts
Alice Phill B treamline Development
Activities ce Phillips g Streamline Development

Opportunities *

Orders

gC6006

% Contracts

Invoices

Documents

Products A

Projects

Knowledge base

Figure 30: Creatio Sales case example

Table 30: Creatio Studio dynamic perspective summary
Focus on Representations
Conceptual representations = Languages Components

e business process model e BPMN 2.0 e diagram editor
e synchronized C# source code

Focus on Reuse and Adaptability

72

Low Code Platforms: Promises, Concepts and Prospects

Reference abstractions Language concepts Access to external sources and to implementa-
tion level documents

e process library offers e BPMN 2.0language con- e C# code can be accessed
some reference work- cepts
flows with generic e composition

functionalities

GUI Development. Apart from the integrated Applications workspace of Creatio Studio, addi-
tional workspaces can be added either through the Creatio marketplace or through the acqui-
sition of further Creatio products. Other than that, it is only possible to adjust the available
Applications workspace. The Applications workplace consists of a number of “sections” (see fig-
ure 24). Next to a “Home”, “Dashboard”, “Feed” section, each additional section represents
exactly one entity type (see Static Perspective). Per default, a section displays all available data
entries for an entity type. Every section consists of at least one “page”, which allows to view
and edit the available data entries. An example for a page in Creatio is displayed in figure 30.
Multiple views can be designed for the same page (e.g., the elements can be arranged differ-
ently or some elements or hidden), whereby each user has always access to exactly one view
of a page. Pages are developed with a drag-and-drop GUI editor. Some of the few “style”
templates available on the Creatio marketplace enable a change of the color scheme or offer

more icons for workspace sections, among others.

Table 31: Creatio Studio GUI development summary

User Interaction Perspective

Conceptual representations = Components Architectural Aspects
e “workspace” consisting e drag-and-drop GUl edi- | GUI development can serve to simultaneously
of “sections” that cor- tor specify entity types

respond to entity types
e sections can contain
multiple pages to inter-
act with the entity type
Focus on Reuse and Adaptability

Reference abstractions Adaptability

e general-purpose GUl el- e available GUI elements can be adjusted with regards to size and color
ements are provided by
Creatio
e no further domain-spe-
cific elements or free-
of-charge applications
are available

Further Aspects. The cloud-based Creatio Studio platform can be accessed via a regular web

browser. Additionally, Creatio provides an app for mobile devices running iOS or Android,

73

Low Code Platforms: Promises, Concepts and Prospects

that enable access to the application use workspaces. It is possible to export entire Creatio
applications in a proprietary format. The exported files can be imported only by an existing

Creatio platform. The persisted data can be exported as .xIsx files.

In Creatio Studio two types of roles can be defined: functional roles and organizational roles.
The former is assigned to a particular user, the latter defines CRUD rights for particular entity
types (or, more specifically, single entities or columns). A functional role is assigned to multi-
ple organizational roles. Organizational roles can be arranged hierarchically. This allows to
aggregate specified CRUD rights, e.g., a sales department lead might have the combined rights
of a sales manager and a salesperson. Collaborative use of the platform is supported through
the inherent communication panel of the platform. Creatio also offers a separate Creatio Portal.
Developers can specify restricted views on the Applications workspace for access through end

users that are external to an organization.

For ML models, a separate module is available in the Studio workplace. These models can then
be deployed, e.g., in workflows. ML in Creatio focuses exclusively on supervised learning.
Developers can select entity types and the corresponding dependent and independent varia-
bles for a selected ML model type. The chosen entity types must be persisted on the platform.
In addition to the GUI-based definition of hyperparameters, re-training can be scheduled in
regular intervals to keep the productive ML model consistent with the currently available data.

The inclusion of external Al services is not explicitly supported by Creatio Studio.
Table 32: Creatio Studio further aspects summary
Accessibility and Convenience of Use

e no methodical development support

e fairly convenient and easy-to-use

e access to underlying database and source code to most user-developed artefacts
e use of well-known workflow modeling language

Modes of Use

Platform (i.e., Application Development) Application

e internal chat functionalities shall support e distinction between functional and organizational
collaborative application development roles

e development and use of applications not e organizational roles can be arranged hierarchically as
clearly distinguished to aggregate specified CRUD rights on higher levels

e platform chat shall support collaborative application
use

e separate Creatio Portal shall enable restricted access
to organization-external users

Focus on Deployment and Scalability
Target Location Support

e cloud-based platform, accessible via a reg- | no further accessible support mechanisms
ular web browser

74

Low Code Platforms: Promises, Concepts and Prospects

Focus on Artificial Intelligence

e separate ML module enables specification and configuration of inductive, supervised ML models

5.2.2.3 Creatio Studio: Conclusion

Emphasized Areas of Application Development. Creatio Studio serves to design and develop work-
flow-centric applications with no dedicated support for user-friendly data management. Every
application developed on the Creatio platform must follow the predefined structure of the
platform with system-defined navigation and communication panel. Most features of the Cre-
atio Studio LCP support the specification of functions and workflows. Workflow models are
based on the well-known BPMN 2.0 specification and can include user-based tasks, conditions,
and ML predictions, among others. Functions can be specified through custom C# scripts
which can be embedded in workflow diagrams. A library of functions and some generic work-

flow models are pre-implemented on the platform.

Provision of Abstractions. Creatio aims to provide domain-specific abstractions to increase
productivity. However, most provided abstractions stay on a rather generic level. Predefined
entity types are scarce and cannot serve as a reference model for any domain. Available work-
flow models serve to provide basic functionalities to update persisted data. Nonetheless, it is
possible to access more specific abstractions through the Creatio marketplace. Not all available
enhancements can be used for free. Abstractions from implementation-related details are also
embedded. Consider, e.g., the specification of entity types through a GUI wizard. The under-
lying source code for the specification of entity types, functions, and workflows can also be
viewed but not edited. Interestingly, the specification of entity types and C# classes happens
simultaneously through the definition of “objects”. This hints at the attempt to provide busi-
ness users with concepts they are familiar with, while keeping some correspondence to the

underlying technology.

Role of IT professionals. Creatio explicitly advertises its platform for use by lay developers. This
also conforms to our findings. Most features are not particularly demanding and do not re-
quire in-depth knowledge of programming concepts for their use. Some features, however,
are hardly accessible to lay developers. This includes the specification of object inheritance
relations or the writing of C#-based scripts for custom function. By this regard, professional
application developers can make use of more features of Creatio Studio than lay developers.

5.2.3 “Low-Code” Workflow Management Systems: Conclusion

Both LCPs of this prototypical category showcase a clear emphasis in supporting the manage-
ment of workflows — this applies to their marketing image as well as the platforms’ features.
Creatio as well as Bonita Studio have emerged around 2010 as BPM platforms and only re-
cently adopted the low-code label to designate their platform solutions. It is apparent that not

only different users but also different kinds of applications are aimed at compared to the basic
75

Low Code Platforms: Promises, Concepts and Prospects

data management analyzed LCPs in subchapter 5.1. Features of the static perspective are ra-
ther faded out to some degree: Bonita’s data modeling capabilities are rudimentary, and Cre-
atio Studio does not offer any visual modeling component. Source code editing, at least in the
sense of adding small scripts for enhanced functionality, is available for both LCPs. It is notable
that both platforms use the term “object” simultaneously to refer not only to types and in-

stances but also to entity types and classes.

The two vendor’s marketing explicitly addresses different kinds of users: Bonita is marketed
for use by professional developers and Creatio highlights use by citizen developers. The anal-
ysis of the platform features suggests any exclusive focus on developer types would be too
restrictive for the respective LCP. Bonitasoft’'s Form Designer hardly demands any professional
training or experience. C#-based source code editors in Creatio Studio, on the other hand, defi-
nitely require knowledge of object-oriented programming concepts. Both vendors thereby ad-
vertise that their LCPs shall support the collaboration and communication between business
and IT professionals. No convincing features to support this purpose beyond the implemented

workflow modeling features could be identified in either platform.

One key difference between the two considered LCPs lies in the development environment.
Bonita Studio is a locally running development environment with a separate Form Designer
module to develop applications. The development workspace of Creatio Studio can be accessed

through a regular web browser.

5.3 Extended, GUI-, and Data-centric IDEs

LCPs within this prototypical category show some overlaps in their marketing and features to
the platforms presented in the preceding two subchapters. The important difference is that no
single focal point like data or workflow management is advertised. Rather, a more general
support for application development can be noted. For this purpose, LCPs of this category

provide LCPs that are in some parts reminiscent of common programming IDEs.
5.3.1 Mendix

Founded in the Netherlands about 15 years ago, Mendix maintains more than 15 offices in
Europe, North America, Asia, and Australia. The company has recently made headlines in

business newspaper, when it was acquired by Siemens, reportedly at a significant price.3

38 https://www.forbes.com/sites/adrianbridgwater/2018/08/06/siemens-buys-low-code-mendix-the-dig-

ital-factory-race-climbs-higher/., accessed 09-12-2021

76

Low Code Platforms: Promises, Concepts and Prospects

5.3.1.1 Mendix: Profile of Vendor
Product Portfolio. The low-code platform is the only product offered by Mendix. The LCP is

separated into two development environments, one is targeted towards more experienced ap-
plication developers (Mendix Studio Pro), while the other is advertised as proficient for citizen

developers (Mendix Studio).

Product Provenance. The earliest archived web entry of mendix.com can be identified on Nov
30, 2005. On this date, one central slogan of Mendix” platform — then labeled XML-based appli-
cation platform — is advertised: the platform shall support the development of “process-centric
software solutions” through the provision of “off-the-shelf” software components. Since at
least Dec 23, 2005, Mendix markets its platform as an approach to model-driven software de-
velopment. Later, the platform is also labeled as the Mendix Model-Driven Application Platform
on Nov 21, 2008.% On Dec 12, 2009, the slogan “No Code, Just Glory” is advertised. The plat-
form is at some time marketed as an “app platform for the enterprise” (May 25, 2012) with a
focus on visual and collaborative app development (Mar 01, 2014. Mendix is denoted as a low-

code platform at least since May 01, 2017.

Focus on Marketing. A slogan on the Mendix homepage states: “Create better software faster by
abstracting and automating the development process with Mendix, the all-in-one low-code
platform.”#° On another web page, Mendix defines low-code as “a visual approach to software
development” that improves cooperation between business and IT.* The platform is supposed
to serve professional as well as citizen developers. Applications can be developed either with
the “no-code”, web-based Mendix Studio or the “low-code”, locally deployed Mendix Studio Pro
IDE. A large variety of different use cases and industries are discussed, among them smart

banking?®?, logistics tracking®, and product portfolio management*.
Table 33: Mendix profile of vendor summary
Product Portfolio

e Mendix LCP as the only product of Mendix

Product Provenance

3 http://www.mendix.com/products (archived)

40 http://www.mendix.com, accessed 08-26-2021

41 https://www.mendix.com/low-code-guide/, accessed 08-26-2021

4 https://www.mendix.com/solutions/ai-smart-banking/, accessed 08-26-2021

https://www.mendix.com/solutions/iot-logistics-tracking/, accessed 08-26-2021

44 https://www.mendix.com/solutions/product-portfolio-management/, accessed 08-26-2021

77

Low Code Platforms: Promises, Concepts and Prospects

e previous emphasis on “process-centric soft-
ware” and model-driven development

e code avoidance in connection with applica-
tion development was explicitly marketed

e designated as low-code platform since 2017

Focus on Marketing

e LCP forincreased development speed and
improved communication between business

and IT

e lay and professional developers are both ad-
dressed

e advertised use cases cover broad range of
domains

5.3.1.2 Mendix: Analysis of Platform Features

The Mendix platform comprises nine components, five of which are directly concerned with
application development.? Next to the already mentioned Mendix Studio and Mendix Studio
Pro IDEs, these include a “data hub”, a marketplace, and Atlas UI. A so-called Developer Portal
provides an overview to users of all available applications (see figure 31). Mendix Studio Pro is
the main development IDE with a broader range of implemented features than the web-based
Mendix Studio. The GUI of Mendix Studio Pro is reminiscent of a common programming IDE

with a file explorer, an editor window, and a console.

4 The remaining components provide rather indirect support for application development, such as a

forum for developers, a Mendix FAQ, or an online academy for platform training.

78

Low Code Platforms: Promises, Concepts and Prospects

i (@D DeveloperPortal CompanyBuzz Company Apps Search

y Apps

All Pinned

Most Recent v

P P P P

SoccerSquad MockHrService_8_18_0 Summerhill Hospital MockHrSer- SLA Task App
vice_9_1_1Mod-...

Free App P Free App Pl Free App < Free App P Free App >

Studio Tour Coffee Service

ree App > Free App Ped

Figure 31: Mendix Developer Portal

Static Perspective. Every application consists of two system-generated “modules” — a system
module encompasses all Mendix-provided functionalities, a custom module can be used by
developers to specify application artefacts. Developers can also add more modules. The mod-
ules of an application can be accessed in Mendix Studio Pro. Every module contains exactly one
“domain model”, a set of GUI pages, and further files (e.g., microflows, JSON structures, or
Java actions, see subsequent analysis sections). A “domain model” is a data model. An exam-
ple is displayed in figure 32. Entity types can be defined through common data types such as
Integer or String. No domain-specific data or entity types are pre-implemented. Although
complete Mendix applications can be downloaded on the Mendix marketplace, reference data
models are not available. Domain models follow an ERM-like notation. Developers can specify
one-to-one, one-to-many, and many-to-many associations between entity types. It is possible
to refer to entity types from other domain models within the same application (see the “Em-
ployee_Account” association in figure 32). Inheritance of entity types is also supported. In fig-
ure 32, the “Employee” entity type inherits from the “System.User” entity type. The specifica-
tion of entity types allows to auto-generate corresponding Java classes. The object-relational
mapping is inaccessible and cannot be adjusted. Data can be persisted by Mendix. To use ex-
ternally persisted data, a mapping between internal and external entity types must be defined
(see figure 33). It is also possible to specify transient entity types, which are displayed as or-
ange boxes in a domain model (see figure 32). Integration of data schemas between Mendix
applications shall be supported through Mendix” “data hub” but this component requires an

additional license and is thus not considered here.

79

Low Code Platforms: Promises, Concepts and Prospects

App Explorer
Q Filter
5]
B O © App ‘Summerhill Hospital
© @ Settings
© & Seaurty
© ¢ Navigation
© 3 System texts
O € Marketplace modules.

= QueueTaskStatus

= UserType

WorkflowTeskState:
5 © & UserMonsger

P Oomain mode

8 ¢ Eimport

0 © ACT_Department Employee Import]

© © ACT_Employee Cancel
© © ACT_Employee_Save
© 85 ImM_Department Employee
© (> Java_action
© [JSON_Department Employee
© £ OverviewPages
© [Home_Web
© B Images

D Home) o Java acti &

©ntity [Amotation View » 5\ Update securty @ Import web senvice ML fe..

&

PlanningPeriod

Properties Toolbox Connector

@Zoom|100% | Dorein modef ool Usronager

Unassignedshi:

Name (String)
Abbrevation (String)

Employeeld (integer)
Tite (String)

O—ferpimes Account} D conir stng)

®

HasAccount (Boolean)

© Changes @ Errors @) Mxdssist Performance Bot | Console
B> Start 8 Stop | Clear (3 Scroll Lock | Advanced +

EndDate (Date and time)

StartTime (Date and time)
EndTime (Date and time)
St (integer)

Number (nteger)

Date/time Log node Message

Figure 32: Mendix Studio Pro domain model

¥ Common
Documentation

English, United States (default)

App Explorer
 Fiter
o]
B O @ App 'Summerhill Hospital
© @ Settings
© & Seaurity
© ¢ Novigation
© 5 System texts
© & Marketplace modules
50 @ System
© & Domain model
ceType
© = EventStatus

) ShowHomePage
= Userfype
5 VerityPassword
WorkflowState
= WorkflowTaskState
B © @ UserManager
£ Domain model
8 © B import
°

© © ACT_Employee Cancel
© () ACT Employee Save.

© D) JSON_Depsrtment Employee
@ O [5] OverviewPages

© [Home Web.

0 B images

T_Department Employee_Importi

D Home o Java actic

[Select elements... (1] Map automatically... (Clear mappings

Department

Departmentid (integer)
Name (string)
Abbreviation (tring)

1

Tite (string)

85 ImM_Department Empioyee [UserManager] X (5 VerifyPassword [System]

Department &)

/' Employee_Department

Employeeld (nteger)

Firstname (tring)

[create new object

Name (tring)
Abbreviation String)

Employeeld (nteger)
Tite (String)
Firstname (String)

Gender (string)

Stories @) Changes @ Errors) MxAssist Performance Bot Console
1> Start 8 Stop | © Clear (3 Scroll Lock | Advanced ~

Gender (string)
Phone (Sring)
lobitle string)
Specilty (string)
Email(String)

Date/time Log node Message

Figure 33: Mendix Studio Pro data import mapping

Table 34: Mendix static perspective summary

Properties Toolbox Connector
Object mapping element Employee”

Entity UserManagerEmployee
Optional No

' Obtain Mendix Obje
Method Create an object

1f no object was fou Create
v Schemasource.

Name Employee.
Namespace

Type

Type Namespace

Path (Array)/(Object)/Employee
Nillable True

MinOccurs 0

MaxOceurs unbounded

Defautt name (map. Employee
v Setassociation to parent object
Setassociation Yes
Association UserManagerEmployee D

English, United States (default)

Focus on Representations

Conceptual representations

Languages

Components

model”)

e data model (“domain .

ERM-like notation

e model editor
e Java code generator

80

Low Code Platforms: Promises, Concepts and Prospects

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e only generic data types one-to-one, one-to- Implementation-level documents cannot be

are offered many, many-to-many accessed within the development environ-
associations

inheritance of entity

e domain-specific refer- ment

ence abstractions

types
might be accessed e Distinction between
through the Mendix transient/persistent
marketplace data

Focus on Integration

Common static abstractions = use of common static abstractions depends on developer; is generally sup-
across a range of applica- ported
tions

Access to common datare- = depends on developer, generally possible to, inter alia, persist all data within
positories across a range of = Mendix for this purpose
applications

Functional Perspective. Some generic functionalities are pre-implemented for use in micro- or
nanoflows (see Dynamic Perspective), e.g., the generation of documents or showing web pages.
Rules and expressions can also be modeled via simple conditions and actions (see figure 34).
Additional functionalities beyond the offered tasks for rule and workflow modeling need to
be implemented using Java or JavaScript. The definition of Java or JavaScript functions within
Mendix Studio Pro focusses on a contract-like definition of parameter and return types, not the
actual implementation. Source code editing within Mendix Studio Pro is only possible for Ja-
vaScript (see figure 35). Java functions must be implemented in another IDE, no built-in Java
source code editor is provided. Mendix offers a set of APIs and an SDK for developers to in-
teract with a Mendix application.* Support for the integration of external functions is provided

in the workflow modeling components (see Dynamic Perspective).

46 See https://docs.mendix.com/apidocs-mxsdk/ for a full list. Accessed 09-01-2021

81

Low Code Platforms: Promises, Concepts and Prospects

Fle Edit V

App Explorer

pp ‘Summerhill Hospital

Decision

Common

D Employee. ACT_Employee Save UserMansger) * Propertes | Toolbox | Connector

ministration) anager] ® X | ¥
Rule [W 2] (€] @ Zoom 100% = O Filter
ci] %] Expand All

ACT_Department_Employee_|

Colapse All
 Object activities

0 Cast object

© Retrieve
© Uist activites

Caption

—

® Aggregate list
@ Change st

Create st

Decision Type @ Expression O Rule

Bxpression

 List operation
 Action call activities
Java action call

Expression wizard. Microfiow call

InputToCheck

5 Variable activities

i= empty and crim(

Comn

© L7 PlanningPeriod_Overview

[shift NewEdit

[shift Overview

[kil New€it

[kil Overview

[UserRole Select
[Home Web

R Images

Ready
o

 Change variable
Create variable
E Logging activities
® Log message
 Decisions

Decision
Object type decision
Merge

B Other

[@ Annotation

Parameter
Loop.

Bvents

Start event

o event
Continue event

Cancel Breskc event

tories @ | Changes @ Erors O MasistPerformance ot

B Refresh @ Deta

Stoy

Show completed stories en document Stories of sprint ‘Get started due 12.09.2021

Status

English, United States (default) ~

Figure 34: Mendix Studio Pro validation rule modeling and expression definition

Summerhill H

ital (M

ontrol Language Help line)

App Explorer

Fitter

@ App Summernil Hospital
@ system

S © @ UserManager
Domain model
8 Elimport
ACT_Department Employee,Impor
ACT Employee.Cancel
ACT_Employee Save
8 ImM_Department Employee
[JSON Departmen Employes
M
Orderpice
& WF_Complaint Management
& Workfow
@ © B OverviewPages
03 Home web

T images

Order_Price [UserManager] * ACT_Employee_Cancel [UserManager] UserM X & WE Complaint Management [UserManager] 8o ImM_Department Employee [UserManager] ¥ Properties Toolbox Connector

Settings | Code

This file was generated by Mendix Studio Pro No tools available

the following code will be retained
list
betueen BEGIN USER CODE and END USER C

hen actions are regener

EGIN EXTRA CODE
// END EXTRA CODE

13

14 eturns {Promise.<void>
16 export async functio

17 / BEGIN USER

19

%}

Stories @ | Changes @ Erors Q) MadsistPerormance Bot _ Console

Stories of sprint ‘Get started" due 12.09.2021

B Refresh Show completed sories

en document

Stoy Status

Ready English, United States (default)

Figure 35: Mendix Studio Pro JavaScript source code editing

Table 35: Mendix functional perspective summary

Focus on Representations

Conceptual representations Languages Components

82

Low Code Platforms: Promises, Concepts and Prospects

e rule models e proprietary e diagram editor
Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e generic abstractions pro- = e composition e access to libraries and SDK
vided like conditionals or e built-in JavaScript source code editor
activities

e support for integration of external
sources in workflow models

Dynamic Perspective. Three different workflow model types are provided in Mendix Studio Pro:
“nanoflows”, “microflows”, and “workflows”. Conceptually, nanoflows and microflows are
identical, i.e., they implement the same modeling components consisting of a large set of pre-
implemented “activities”, “decisions”, and “events” (see figure 36). The difference between
these two workflow model types lies in implementation-related details. For example,
nanoflows are executed client-side (potentially relevant for native, offline running mobile
apps) while microflows are executed server-side. Nanoflows and microflows focus exclusively
on automated tasks (i.e., where no user input is required), while “workflows” (currently still
in a beta-version) offer a more restricted set of modeling concepts only to combine microflows
with manual interactions from users. An example of such a “workflow” is displayed in figure
37. Nano- and microflows can serve to define rule-based functionalities that are executed at
certain predefined events (e.g., button on-click). This can include calling REST services, data

imports/exports, or some GUI-based operations (e.g., open page).

83

Low Code Platforms: Promises, Concepts and Prospects

ntrol Langua

Help

App Explorer
Filter

8 © © App ‘Summerhil Hospital
© Settings
Q Security
0 Navigation
£ System tets
© Marketplace modules
+ Administration
Domain model
System Adminisration
User Management
At Core
Atlas Web_Content
® DataGrid
NanoflonCommons
Webctons
® O @ system

@@

 © @ UserManager
Domain model
Import

1 Model

Microflow

w

Employee

ACT_Department_Employee_ImportFromRest

ACT_Employee Cancel

3 ImM_Depriment Employee
D) JSON Department Employee
OvervienPages

Department NewEdit

Department Overview

Employee Newkdit

Employee Overview

[PlanningPeriod_ Newkdit

[PlanningPeriod_Overview
Rule_StringNotEmpty

[Shift_NewEdit

Shift_ Overview

) Skill_NewEdit

[kil Overview

DO

UserRole Select

[Home_Web

T Images

Ready

<

ACT_Department Employee ImportFromRest [UserManager]

Create Boolean
variable

I

Emplojeevalid

Show validation
messageon Crange variable
member Title' » (B employeevaia

of mployee

Stories @ | Changes @ Erors @) Madssit Performance Bot

) Refresh . Deta

Sty

Show completed stories

oot e}

D) Employee. NewEdit [UserManager

Commit

Employes. >\ 8

Figure 36: Mendix Studio Pro microflow

McAssistLogic Bot o7 @)@ Zoom 95

Retrieve
Account by Commit
semployee/Emp| P 0 Account

Ioyee_Account
Account

l

@ Closepage

anager] X

Stories of sprint ‘Get started" due 12092021

Satus

Properties Toolbox | Connector

#) Expand All) Collapse All
© List activities
 Aggregate list
@ Change st
Create st
 List operation
B Action call activiies
Java action call
Microfiow call
 Variable activities
 Change variable
Create variable
© Client actiities
 Close page
® Download file
Show home page
@ Show message
Show page
 Synchronize to device
Validation feedback
& Integration activities
Call REST service:
Call web service
@ Export with mapping
3 Import with mapping
© Logging activities
8 Log message.
& Document generation
Generate document
5 Workfio
Call workfiow

v activties

Complete user task
® Show user task page
B Show workflow admin page
B Decisions
Decision
Object type decision
Merge
& Other
[@ Annotation
Parameter
Loop
B Events
Start event
@ End event

English, United States (defaul) ~

App Explorer

Filter

8 © @ App Summerhil Hospta
@ Settings

& Security

& Navigation

£ Systemtexts

 Morketlace modules

A Domain model
DeviceType
Erenttotus

 images

QueueTaskStatus
ShowomePage
Usertype
VritPassword
Workfowsiate
WorkfowTaskState

8 © ® UserManager

Domain mode!

&

B mport
ACT Department Employee Import
ACT Employee_Cancel
ACT Employee Save
8 ImM_Department Employee
Jova_action
D) JSON Department Employee
& Workion
OvervienPages
[Home_Web
1 Images
Ready

[UserManager]

£ Workfiow

Stories @ | Changes @ Erors € Madsit Performance Bot

[Refresh

Stoy

Focus on Representations

Conceptual representations

generic process models

ACT_Employee._Save [UserManager]

Show completed stories

ACT_Employee_Cancel

WF Complaint Management

D
®

‘Generate Complaint

Automatic response
ufficient?

@
®

Generate manual
respons

Console

Open do

Figure 37: Mendix Studio Pro "workflow"

Publish

nager] @

Stories of sprint ‘Get started" due 12092021

Satus

Table 36: Mendix dynamic perspective summary

Languages

based on BPMN
(nanoflows, microflows)

84

Components

model editor

Properties Toolbox Connector

+) Expand All =) Collapse All

& General

Decision
Parallel split
22 Jump

S User tasks

D Usertask

ystem actions
® Cal microflow

English, Urited States(defaut) ~

Low Code Platforms: Promises, Concepts and Prospects

e proprietary (“work-

flows”)
Focus on Reuse and Adaptability
Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents
e generic abstractions e composition no access to implementation-level documents

like events or activities

GUI Development. GUI pages can be created automatically based on a defined domain model.
For each entity type an “overview” and “edit” page is created per default, respectively show-
ing persisted data entries and allowing to add a new data entry. An example for an edit page
in Mendix Studio Pro is displayed in figure 38. Next to the single pages for viewing and adding
data entries, each application contains one navigation panel (see figure 39). Atlas Ul is a col-
lection of libraries for different generic layout and GUI elements. Other libraries may be self-
developed and integrated within the Mendix environment. A number of “app templates”
serve as reference GUIs (see figure 40). Per default, each application is based on a responsive
web GUI, which offers layout elements that adjust automatically to different screen sizes. Each
GUI page can be designed with a drag-and-drop GUI editor. GUI pages can also be edited in
Mendix Studio (see figure 41).

Table 37: Mendix GUI development summary

User Interaction Perspective

Conceptual representations = Components Architectural Aspects
e GUI model e drag-and-drop GUI Edi- = implementation of MVC pattern
tor

Focus on Reuse and Adaptability

Reference abstractions Adaptability
o library of general-pur- e GUI elements can be adjusted with regards to their position, color, and
pose GUI elements size

through Atlas Ul

85

Low Code Platforms: Promises, Concepts and Prospects

Summerhill Hospital (M:

App Explorer [Home.\ . & £, Domain

erManager] X ~ Properties Toolbox Connector

Fit:

[Page [T 5 Dsta view B2 Data grid (8 Templste grid 55 Listview | Add widget... Add buikling block... Showstyles @ Zoom 100% - [Strcture mode | Designmode Widgets | Buiding blocks

8 Empioyee page parameter Fier
B © © App Summerhil Hospita ———

@ settings = : eaders
& secury
on v employee. Has acco.. | Yes | No % Heroheader
) Novigation - Heroheader background
2 System texts e ,
Title Employee @ Heroheader with action
B © @ Marketplace modules - Pageheader
5 © @ Administston
. ” Firsiame | Frstoame Username | e - Pogeheader vith back
omsin model - Pageheader with contros
0 B ystem Adrministation
” Lastname | [uastrame Lastlogin S @ Pageheader with search
0 £ User Mansgement - Pogeheader image
Atis Core
At " c Gender nder] Blocked @= Pageheader image with back
s Web,_Content B Pageheader image withcontrols
80 @ Datscrid i
P NanoflowC: Phone Active E Lists.
snofonCommons st double e
WebActions | -
) o sobtite [User role » st single ine
o Ustithimage
8 ® Uservansger . -
attosgs specy Language | (ser Listitem double fne
omsin mode List e single ine
import Time zone | (user Tmezone/Timezone/Codel 52 Listitem with ima
emai istitem vith image
© 85 ImM_Department Employee Email
[JSON Department Employee
o - plove Departme. ® o= Cord
verviewPages = Card action
© [Department_NewEdit
o B emmmen et . P - Cord acton withimage
cpartment_Overview 3 Cord background
PR pioyce Newai 3 Cardwith image
© [Employee_Overview & Forms
© [3 PlanningPeriod NewEdit e

- Fom horizontal
© [PlanringPeriod. Overview
o [shift Newtit v

© [shift Overview EoneTs

Form horizontal with action
Form horizontal with title

o
0 jout > Emple p

p Form vertical
Stories @ | Changes @) Erors O Madsit Performance Bot

[Refresh @, Detils +” Show completestories [, Open do

Stories of sprint ‘Get started due 12092021 |

Story Satus @ Master detail horizontal
@ Master detailvertical

T images

& Breadcrumbs

@ Breaderumbs
& Breadcrumbs underine

&= Timeline

@ Timeline vith image
Wizards

&= Wizard arrow
& Wizard arrow setp.

Ready English, United States (default)

Figure 38: Mendix Studio Pro new edit GUI page editor

Publish

App Explorer omplsint Management [UserManager) o ImM_Depsrtment Employee [UserManager] MINI UserManager] ACT Employee Save [UserMansger] ¢ Navigation X [Employee_ Newdit [UserManager] Propertes Toolbox Connector
Filter Profiles. =
- | Nevigaton profies can be sed to creste adifferent nvigationfor ifernt devices andsereens. Notools svalable
8 © @ App Summerhil Hospta Add navigaion profile
@ Settings
& secury Responsive web
@ General

ystem texts

appictontite == e
80 Marketplce s

o gyetem Applicaion con [t Core.Content Mendix seect.. | [Show
& UserManager Home pages

Domain model Detoulthome page [UseiManagerHome Web seect.. | [Show
8 o Blimport

ACT Department Employee Importi Role-based home pages ~[(none) G

ACT Employee Cancel rogessve e App

ACT_Employee_Save.

[Publish a5 2 Progressive Web App

85 ImM_Department Employee
© [Javacriptaction

) JSON_Department Employee
° ® MM
© & Order price
© & WF_Compisint Management

o & Workfow
OverviewPages Menu
[Deparment Newédit [Newitem [New subitem otarget. [Expand all =) Collapseall | 2 Role-based view

D) Department Ovenvew

D) Employee Newidit Capton cton User Roes
™) Employee_Overview A Home [Open page UserManager.Home_Web'
[PlanningPeriod_ Newkdit & Departments [Openpage UserManager.Department_Ove.
[PlanningPeriod Overview 2 Employess [Openpage UserManager.Employee_Oveni
Rule, StringNotEmpty 2 sdls [Openpage UserManager.Skil_Overview
[shift Newkdit
By i Planning Periods Openpage UserManager MlanningPeriod_.
s = o
[skil Newéit o Logot @ sgnout
[SkilOverview & tmport Callmicroflow UserManager ACT_Departm.
[} UserRole Select
[Home_Web
% Images v
Stories () | Changes @) Erors () MuAssist Performance Bot Console
[Refresh ©. Detail: Show completed stories [, Open document Stories of spint Get stated due 12.09.2021
Sty S

Ready English, United States (default)

Figure 39: Mendix Studio Pro navigation page editor

86

Low Code Platforms: Promises, Concepts and Prospects

App from a spreadsheet Approval A BETA
Blank Web App pp p pp rr GD

Sp—— Generate a fully functional app Build your approval workflow in
P based on your own data 5 minutes

App Templates

Don't know where to start? Get inspired by our app templates, including feature demos, academy training apps, and ready-made apps. You can also add your own template
here.

Al Uni-due Q

‘t%l Marketing Content > o lt%l E-mail Requests

Approve marketing requests ‘Approve marketing email content
Review implementation ~ Define mailing lsts and audiences.

Track content Schedule sending dates

Forms Template Marketing Content Approvals Marketing Email Request Approval Template

V950 Starter Apps V9,50 Starter Apps V9,50 Starter Apps V9,50 Starter Apps

=}
gg Surveys, Quizzes & Polls Tasks & Planning @E/ Asset Management Eg Finance & Budgeting

HR and onboarding Create teams
Setup wizards ~ Assign tasks
Collect data > N ‘Track progress

Track your stock

Opex/Capex spending

Handle requests Budget forecasting

Update inventory

Create budget plans

Figure 40: Mendix Studio app templates

Studio Preview Publish v hecks @

Show: Toolbox Properties Buzz

= m Task Tracker (5 Sign Out
'

Widgets Building Blocks

0O © O &

v Headers
Mehd
Header Title
Aerospace Header Title
Welcome, {DisplayName}
Heroheader :;c’l‘(’;‘f:‘;’:g
®©
Team Progress {TeamProgress}% Header Title
[——]
View Team Heroheader with action Pageheader
® ®
To Do Add Task Ben B -
" Pageheader with
. . Pageheader with back st
{Title} O {Title} controls
® ®
Q - i -
D/ Assigned to {DisplayName} Pageheader withsearch | Pageheader image
{Priority} ® ®
@ | {Priority}

Figure 41: Mendix Studio GUI editor

87

Low Code Platforms: Promises, Concepts and Prospects

Further Aspects. Mendix applications are deployed on a cloud server and can be accessed via a
custom URL through a common web browser. The locally deployed Mendix Studio Pro comes
with an integrated version management system. Mendix provides some features that shall
support agile software development methods, e.g., to list user stories, show sprint dates, or
update the product backlog. User stories can be accessed Mendix Studio and Mendix Studio Pro.
Within Mendix Studio, a “Buzz” tab is available for each GUI page, where users can exchange
comments in reference to particular GUI elements. These comments can be viewed in the De-

veloper Portal.

User and module roles can be specified in Mendix Studio Pro. Each user is assigned to a user
role and each user role can be assigned to multiple module roles. Module roles can be provided
with unrestricted access rights to GUI pages, various workflow model types, and domain

models. A more specific differentiation in CRUD rights is not offered.

Mendix Studio Pro offers an Mx Assist Logic Bot which is considered Al. The “bot” provides
“next best action” advice when designing micro- and nanoflows. After each node in the dia-
gram, a number of possible actions are suggested that might follow the preceding node. It is
unclear how the ML model to achieve this has been trained, or what ML model is even under-
lying this mechanism. This makes the bot’s effectiveness not assessable and the results appear

as more or less arbitrary suggestions.

non

Mendix runs a marketplace for software artefacts such as "app services", "templates"”, "widg-
ets", etc. It is supposed to attract contributions from third parties in order to generate consid-
erable value for Mendix users. Currently, the offer is modest in scope and largely restricted to

contributions by Mendix itself.

88

Low Code Platforms: Promises, Concepts and Prospects

Table 38: Mendix further aspects summary

Accessibility and Convenience of Use

e two IDEs (Mendix Studio and Mendix Studio Pro) address different kinds of developers
o Mendix Studio is fairly convenient and intuitive
o Mendix Studio Pro demands some training and knowledge of development-related concepts
e methodical support shall be provided through the inclusion of Scrum-related concepts like user stories,
product backlog, and others
e use of multiple models for data and different workflows that are based on standard modeling notations

Modes of Use
Platform (i.e., Application Development) Application

e locally deployed IDE that runs version con- | e access rights managed through “module roles”

trol system e noinherent support for collaborative use of applica-
e access rights managed through “module tions
roles”

Focus on Deployment and Scalability
Target Location Support

e Mendix public cloud server per default, ap- = ® use of Kubernetes for container orchestration
plication can be accessed via web browser

e alternative deployment options (e.g., pri-
vate cloud) are also supported

Focus on Artificial Intelligence

e Mx Assist Logic Bot to support modeling of workflows not convincing

5.3.1.3 Mendix: Conclusion

Emphasized Areas of Application Development. Mendix provides two development environments
that emphasize different aspects of application development. Mendix Studio allows users to
intuitively design web-based GUIs. Mendix Studio Pro enables developers to define multiple
data and workflow models. Additionally, the Mendix environment provides methodical sup-
port for agile application development. This is showcased by the possibility to define user
stories, sprints, and a product backlog. No single area of application development is exclu-

sively addressed.

Provision of Abstractions. Mendix Studio and Mendix Studio Pro fade out implementation-related
details to a larger extent. In Mendix Studio, the GUI can only be edited via drag-and-drop of
predefined GUI elements. In Mendix Studio Pro, a broad range of visual models enable devel-
opment without specifying source code. Domain-specific abstractions are only partially ad-
dressed through the available GUI templates and the Mendix marketplace. A lack of domain-
specific reference models can also be noted in Mendix Studio Pro.

Role of IT Professionals. The two development environments of Mendix clearly address different

kinds of application developers. Lay developers can use Mendix Studio to specify application

89

Low Code Platforms: Promises, Concepts and Prospects

GUISs. Users of Mendix Studio Pro have access to a broader range of features. Professional de-
velopers are concerned with the specification of most static, functional, and dynamic aspects
of an application while lay developers can adjust GUI pages, add comments to GUI elements,
and manage user stories. Integration between both views is not aimed to be achieved via a
conceptual integration of common development concepts (like class, database, workflow, etc.),
but rather through some additional communication mechanisms between both development

environments.
5.3.2 WaveMaker

The company behind WaveMaker, also named WaveMaker, seems to have its roots in an In-
dian software company. In 2013, it was acquired by VMWare, a large US software firm that is

focused on software virtualization.

5.3.2.1 WaveMaker: Profile of Vendor
Product Portfolio. The WaveMaker LCP is the only product offered by WaveMaker.

Product Provenance. The company is called WaveMaker only since 2007. Previously, it was
called ActiveGrid. The earliest archived web page of ActiveGrid can be identified on Jul 29,
2004. The ActiveGrid platform is advertised to consist of two components: a “grid application
server” and an “application builder”. The former is associated features around scalability and
deployment (Mar 30, 2005)*, the latter is described as a “rapid application development envi-
ronment [...] which enables to graphically and iteratively create, deploy, and test enterprise
applications” (Apr 09, 2005)*. The rebranding of ActiveGrid to WaveMaker in 2007 did not
result in decisive differences in the product offering. WaveMaker claims to enable “everyone
[to] quickly build and deploy great-looking web applications” with a “visual AJAX” locally
running IDE (Sep 30, 2008). Application development should be faster and require close to no
coding (Dec 01, 2008). The platform does not carry any particular label, but customer testimo-
nials like “It took me less than 10 minutes to build an Employee maintenance application. And
I'm not even a developer!” (Oct 03, 2011) correspond to current low-code promises. Wave-
Maker itself states that its platform has been rebuilt as an LCP since 2013%, but the analysis of
its archived web presence suggests otherwise. The relabeling to a low-code platform can be
noted at least since Feb 02, 2017, which does not seem to be accompanied by particular tech-

nological changes.

47 http://www.activegrid.com/products/index.php (archived)

48 http://www.activegrid.com/products/ab.php (archived)

49 https://www.wavemaker.com/about/, accessed 08-30-2021

90

Low Code Platforms: Promises, Concepts and Prospects

Focus on Marketing. Low-code development on the WaveMaker platform is understood as a
mixture of RAD, aPaaS, BPM, and no-code.’® In reference to these concepts, the vendor pro-
motes low-code as offering (i) techniques to increase development speed (RAD), (ii) a single
cloud-based platform for development and deployment (PaaS), (iii) automation and modeling
of business processes (BPM), and (iv) a drag-and-drop GUI editor (no-code). The company
explicitly targets professional developers in their marketing messages and promotes improved

alignment of business and IT.

Table 39: WaveMaker profile of vendor summary

Product Portfolio

e LCPis the only product of WaveMaker

Product Provenance

e early distinction between application server
and rapid application development

e code avoidance and broad accessibility is ad-
vertised since at least 2009

e |abelled as LCP since early 2017

Focus on Marketing

e improved business-it-alignment

e quicker application development

e business process automation

e emphasis on professional application devel-
opers

5.3.2.2 WaveMaker: Analysis of Platform Features

The WaveMaker platform consists of five modules for development: “Pages”, “Databases”,
“Web Services”, “Java Services”, and “APIs”. The home screen of the WaveMaker platform,

which provides an overview of all available apps, is displayed in figure 42.

50 https://www.wavemaker.com/application-platform-as-a-service-apaas/, accessed 09-01-2021

91

Low Code Platforms: Promises, Concepts and Prospects

Custom Ul Design

No description found No description found Tutorial Application (Data Table Design

(@) Live Form Settings

Live Filter Configuration

Charts.

Incorporating REST Services

Integrating SOAP Services

Figure 42: WaveMaker platform home screen

Static Perspective. Features of the static perspective are mainly provided through the “Data-
base” module of the WaveMaker platform. It is possible to specify a connection to an external
database and access/edit its schema within WaveMaker. Data can also be persisted on the
WaveMaker platform. Data models are based on a proprietary modeling language, loosely
based on an ERM-like notation (see figure 43). The definition of entity types and associations
is close to common database definitions: data types for attributes are based on SQL and Java
(i.e., the mapping of data types is accessible). Their specification can be refined by familiar
constraints. (e.g., nullable, unique). Many-to-many associations need to be defined through an
auxiliary table, each table requires at least one primary key. Each entity type corresponds to
one Java class. The exact object-relational mapping is not accessible. Adjustments to the data
model result in an SQL statement that can be accessed and modified before execution. A sep-
arate “Query” tab provides developers with a built-in editor to define HQL (Hibernate Query
Language) and SQL queries. Reference data models are not available.

92

Low Code Platforms: Promises, Concepts and Prospects

ResearchGroup

Design

stabases » £ ResearchGroup

5 Employee

[Programectures
COLUMNNAME DATATYPE
studyProgra

ectureiD

 StudyProgram

COLUMNNAME DATATYPE

COLUMN NAME

DATATYPE

> Jenvirec e

frsthame
IastName
acadademicDegr.
jobTite
startDate

endDate

COLUMN: termiD

5 AcademicDegree

COLUMNNAME DATATYPE

COLUMNNAME DATATYPE

» integer

B Tem
MNNAME DATATYPE

5 Lecturer

COLUMNNAME DATATYPE

lecturelD

AT g

& DB Tools

Figure 43: WaveMaker data model
Table 40: WaveMaker static perspective summary

Focus on Representations

Conceptual representations = Languages Components

e data model e proprietary e model editor
e generator
o SQL statements for relational data-
base

o corresponding Java classes

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implementa-

tion level documents

auto-generated SQL (DDL/DML) state-
ments can be accessed and adjusted

generalization .

like string, int, etc. are | ® encapsulation
e composition

e only generic datatypes o

available e built-in HQL and SQL editor can be used

for further queries
Focus on Integration

Common static abstractions = No direct support for common static abstractions is offered. The developer is

across a range of applica- responsible for this.

tions

Access to common datare- | All data persisted by WaveMaker is in the same data repository.
positories across a range of

applications

93

Low Code Platforms: Promises, Concepts and Prospects

Functional Perspective. WaveMaker provides developers with GUI forms to guide the integra-
tion of web services through REST, SOAP, and WebSockets. Custom “Java Services” can be
defined with a built-in source code editor (see figure 44). WaveMaker offers several runtime
APIs for use in these Java Services. To assign a function to GUI elements, additional REST APIs
must be specified. These are generated automatically for user-defined Java Services. Some
REST APIs with the corresponding functionality are pre-implemented, such as, e.g., CRUD

APIs to access database entities.

InvoiceReportservice 55 Plerre Maler BM
o]

@PostConstruct
o 6 initQ {

[rrT— :
ey TInputStream jraml Input
{

jrxmlInput .getClass().getClassLoader(). getResource("Orde jrxml").openStrean();
JasperDesign design - JRXmlLoader . load(jrxml Input);
jasperReport - JasperCompileManager . conpileReport(design);
} C DR
(e.getMessage(), €);

i
T0Utils. closeQuietly(jrxml Input);

DownloadResponse generatePdfReport(int orderId)
Connection conn
{

conn - datasource. getConnection();

Logger.info(" Connection:" + conn);

Map parametershap HashMap();
parametersMap . put(d",orderTd);

JasperPrint jasperPrint - JasperfillManager. fillReport(jasperReport, parametersMap, conn);
[pdfBytes - JasperExportManager. exportReportToPdf (jasperPrint);

DownloadResponse response DownloadResponse(new ByteArrayInputStrean(pdfBytes), "appl n/pdf", "invoice_"+orderId:".pdf");
logger. info(" Co d Su %
response

e)

Logger.info("Error

oH
(e.getMessage(), €);

{

{
conn.close();
ignore) {}

Figure 44: WaveMaker Studio Java source code editor
Table 41: WaveMaker functional perspective summary

Focus on Representations

Conceptual representations Languages Components
e only represented as Java e Java e built-in code editor
functions

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e no particular abstractions = e no particular language e Java source code can be accessed and ed-

beyond Java source code concepts beyond Java ited
concepts e support for the integration of external
sources via REST, SOAP, and WebSockets

e provision of runtime APIs

94

Low Code Platforms: Promises, Concepts and Prospects

Dynamic Perspective. WaveMaker does not offer any explicit support for workflows. No work-
flow modeling component is available. Dynamic aspects are largely defined through a user’s
interaction with GUI pages. For example, CRUD event listeners for a database can be accessed
via a runtime API in Java services, and other form-based event listeners can be assigned to
“variables” in the GUI editor (see GUI Development).

GUI Development. Each WaveMaker application consist of a number of GUI screens (“Pages”),
which can be designed through a visual drag-and-drop interface (see figure 46). The JavaScript
, HTML and CSS code can be accessed and edited through built-in code editors. A GUI page
can be created based on a pre-defined template and a corresponding theme that determines
the color scheme of a page. Chosen templates can be edited and it is also possible to define
templates and themes independent of any particular application for reuse across WaveMaker
applications. Pages can contain widgets and so-called “prefabs”. Widgets range from dialog
windows to charts, buttons, and simple containers. “Variables” in WaveMaker Studio are the
binding element between the “model” and the “view” in the implemented MVC pattern. They
define some target action like, e.g., retrieving data from a table or executing a Java operation.
Any functional GUI element needs to be manually connected with a variable. No automatic
GUI generation based on data models is available. Prefabs denote some GUI container with
specifically defined actions as, e.g., an Instagram Login prefab or a Google Maps prefabs. Eight

prefabs are currently pre-implemented within WaveMaker Studio.

Figure 45: WaveMaker Studio GUI designer

95

Low Code Platforms: Promises, Concepts and Prospects

Table 42: WaveMaker GUI Development summary

User Interaction Perspective

Conceptual representations = Components Architectural Aspects

e GUI model e GUI Editor implementation of MVC pattern
o drag-and-drop
o WYSIWYG

e Synchronized markup
(HTML), style (CSS), and
script (JavaScript) edi-

tors
Focus on Reuse and Adaptability
Reference abstractions Adaptability
o library of general-pur- e all GUI elements can be adjusted according to their size, position, and
pose GUI elements style

Further Aspects. The WaveMaker platform can be accessed via a web browser and responsive
web applications can be deployed on WaveMaker or other web servers. The entire source code
and associated files for an application can be exported and accessed via other IDEs. It is, how-

ever, not possible to access WaveMaker-specific libraries.

WaveMaker Studio provides a version control system to support collaborative development.
The exact mechanisms of this version control system are inaccessible. The definition of sepa-
rate end user and developer roles is not explicitly supported by the platform. More extensive
licensing models of the platform are said to include a “Team collaboration” module for man-
aging different users and roles.>! The current analysis relies on the solo version of WaveMaker

Studio, omitting any detailed assessment of this feature.

No specific AI components are part of the WaveMaker platform. It is, however, feasible to

develop Al functions with Java or to integrate Al services via a generic APIL.

51 https://docs.wavemaker.com/learn/teams/overview, accessed 09-03-2021

96

Low Code Platforms: Promises, Concepts and Prospects

Table 43: WaveMaker further aspects summary

Accessibility and Convenience of Use

e no methodical application development support

o except for superficial data model adjustment and GUI development, the platform largely requires some
sort of source code specification

e proprietary data modeling language

Modes of Use
Platform (i.e., Application Development) Application

e version control to support collaborative de- e no direct support for collaborative application use by
velopment WaveMaker

e elaborate definition of developer roles not
assessable in considered version

Focus on Deployment and Scalability

Target Location Support

e cloud-based platform, accessible viaareg- e support to build docker images
ular web browser

e domain name can be customized for appli-
cations

Focus on Artificial Intelligence

e no specific support for any Al service

5.3.2.3 WaveMaker: Conclusion

Emphasized Areas of Application Development. The core features of the WaveMaker platform are
its drag-and-drop GUI editor, a data modeling component, and the specification of custom
Java operations. Built-in source code editors are of high prominence in WaveMaker and can
be accessed for each of the mentioned components. WaveMaker can be described as a web-
based IDE with a built-in version management system and additional support for GUI devel-
opment, data modeling, and deployment.

Provision of Abstractions. Productivity increase is achieved through the provision of additional
representations of source code. This includes the capacity for visual data modeling and the
provision of visual GUI elements. For these cases the corresponding source code can also be
accessed, enabling the respective developer to choose between the provided representations.
Domain-specific abstractions are not provided by WaveMaker. However, it would be possible
for a developer to specify domain-specific GUI artefacts that can be accessed across all Wave-

Maker application.

Role of IT Professionals. WaveMaker explicitly addresses only professional developers in their
marketing. The analysis of platform features largely supports this claim. Source code editors

are of high prominence and the specification of custom functions must be code-based. The

97

Low Code Platforms: Promises, Concepts and Prospects

features of the WaveMaker platform reduce the effort for recurring tasks of application devel-
opment, such as the implementation of the MVC pattern, an object-relational mapping, or the
development of GUI pages. Lay developers might use the LCP only superficially through vis-
ual adjustment of visual data models or single GUI pages. Collaboration between differently

trained application developers is not addressed.
5.3.3 Zoho Creator

Zoho, originally named AdventNet, the vendor of the Zoho Creator platform, was founded in
India about 25 years ago. According to its web pages, it has grown into a company that runs

offices on all continents.>2

5.3.3.1 Zoho Creator: Appearance of Vendor
Product Portfolio. Zoho currently offers approximately eighty different products that are cate-

gorized according to different needs (e.g., sales, legal, or collaboration) and can be accessed in
various bundles (e.g., CRM or IT management). The entire catalog of products is aggregated
in the Zoho One platform, which is marketed as the “Operating System for Business”.5* Two
of these eighty products are labeled “no-code” and one is designated as a low-code platform.
The LCP of Zoho is called Zoho Creator

Product Provenance. Zoho's original parent company AdventNet was founded in 1996.> Zoho
Creator was among the first products the company released and is publicly available since
March 2006. AdventNet was renamed to Zoho Corporation in 2009. Since its early advent, the
platform has advertised increased development speed with “no coding required” (Sep 02,
2006). On March 21, 2007 the development of “online database applications” is advertised. The
following years alternate between the notions of “database applications” and “business appli-
cation” until the terminological focus on databases is, apparently, dropped in late 2016. Since
at least Aug 30, 2009, workflows and business rules are advertised as features of the platform.
Additional claims, like enabling business users to develop applications (Aug 03, 2015), show
clear parallels to common promises associated with low-code. On October 08, 2015, the plat-
form is described as an “easy-to-use and low coding platform”. Itis designated as an LCP since

at least Jun 28, 2020. No particular changes in the platform’s features or promises can be noted.

Focus on Marketing. Zoho advertises generic benefits of LCPs: applications can be developed

quicker and costs can be reduced. > To achieve this, “prebuilt app-building components” and

52 https://www.zoho.com/contactus.html, accessed 09-02-2021

53 https://www.zoho.com/one/overview.html, accessed 09-02-2021

5 https://www.zoho.com/aboutus.html, accessed 09-02-2021 (see also for a complete list of product in-

troductions)

55 https://www.zoho.com/creator/overview.html, accessed 09-05-2021

98

Low Code Platforms: Promises, Concepts and Prospects

an “easy to understand logical scripting language” are mentioned.* Both, citizen and profes-
sional developers are addressed in Zoho’s marketing statements. Advertised use cases for
Zoho Creator include enterprise architecture, legacy modernization, business process man-

agement software, and workflow automation

Table 44: Zoho Creator profile of vendor summary

Product Portfolio

e broad range of approximately 80 software
products as part of “Zoho One” landscape

e LCP as one of four application development
products

Product Provenance

e early focus on code avoidance can be noted
since 2006

e focus shifted from “database applications”
to “business applications”

e labelled as LCP since 2020

Focus on Marketing

e quicker development and reduced costs
through reusable app components

e focus on lay and professional developers”

e broad range of advertised use cases

5.3.3.2 Zoho Creator: Analysis of Platform Features

The home screen of the Zoho Creator platform provides an overview of all accessible applica-
tions (see figure 46). An application in Zoho Creator consists of “pages”, “forms”, “reports”,
and “workflows”. Pages, forms, and reports all denote some type of GUI page (see GUI Devel-
opment). All applications consist of two GUI elements: a navigation bar and the set of imple-
mented GUI pages. It is also relevant to distinguish two available development environments
within Zoho Creator. At first, there is a more restrictive and user-friendly editor which is based
solely on drag-and-drop interfaces and display forms. At second, access to source code and

further functionalities is provided through the respective “developer tools” of an application.

56 https://www.zoho.com/creator/application-development/low-code.html, accessed 09-05-2021

99

Low Code Platforms: Promises, Concepts and Prospects

& Creator All Set? Upgrade Now! 5 . ik

My Applications Import Fie

You have access to the following applications. You can also edit and manage applications to which you have permission.

All my applications

= E)

Product Repository Order Management Incident Tracker Sales Management
Created on Sep 06, 2021 Created on Sep 06, 2021 Created on Sep 06, 2021 Created on Sep 06, 2021

Course Planner
Created on Sep 06, 2021

@ w s Trial expires in 11 days | Upgrade ®

Figure 46: Zoho Creator home screen

Static Perspective. Entity types can only be created through GUI “forms”. For this purpose,
Zoho Creator includes a “form builder”, which is a drag-and-drop editor for a set of pre-de-
fined fields (see figure 47). Fields are used to specify the attributes of an entity type. The Zoho
Creator platform includes generic data types like text and number or business-oriented data
types like currency. Numerous templates to define forms are available within Zoho Creator
(see figure 48). Although it is evident that data is persisted by the platform itself, the persis-
tence mechanisms are inaccessible. A “form” can also be auto-generated based on some
spreadsheet import or a connection to a Salesforce, QuickBooks, or any other Zoho product
domain. “Forms” can be associated with one another through lookups. Lookups can also be
defined across applications. A visual representation of entity types and their interrelations can
be accessed in the developer tools (see figure 49). The proprietary data modeling language can
only display entity types as node and relations as edges. No additional tools to edit or work
with the visual data model is offered, the definition of “forms” is the only option to configure

entity types.

100

Low Code Platforms: Promises, Concepts and Prospects

Order Management

Employee
Basic Fields 1F Field Properties
Advanced Fields + Field name
Special Fields 45 123 Employee ID Personal Information
Al Fields - ! Field link name
i & Name :
: : Personal_Information
~ = i Q Office Phone i [Show header for this section
Prediction Keyword Extraction]
| & startedon | Appearance
@ Field type
! fw Daysin Office t
Sentiment Analysis OCR
o
9,
Object Detection
N Sales Revenue Predicted
123 Items Sold
fw Revenue per Item
$ Sales Revenue Last Quarter
* & Trial expiresin 11days | Upgrade E8 H@ILEH @
Figure 47: Zoho Creator form builder
< Back Select a Form Template
Booking 9 Q Sear
Business Category 5) Booking
Construction 4
— Name Name Name Compony Nome
. =R Moblle Number B Employee - sattio At b
Education 7
Emaila Ematia] il Em .
— o e Number = Deporime -
Human Resource s) " ot et v
o Address S Gender- Moo Choose a room: = Conference room 1
p—— Fomale Conteranca room2 e
Feature Specific Forms 1 . omers Conteroncoroom3 Telephone Number-
Bookng Date From DateTime]
(2
IT Category =/ Appointment Booking Cab Booking Conf Room Booking Exhibition Stall Booking
Medicine Category 6
Wpact o od Name- Party Objective- * Binthday Coledration Nome:
Order Management 4 F— P e Visiing Pt tane
Emat T Moble Number: 91 -
- e o - Offcel ey Emai-
Personal 4 il Y = -
rectin o Adaess 0 Cocuatry oo nswion ®
;. . Check.Out [] — Private Party
Registration 4 | — i === =X=N=
& personst normation & Emerge 2
| p— FEE D&
Nome Nome B ———) o] o] () (][]
Sales 9 S s ¥ Porty Theme: : 5o) 158 s
Hostel Room Booking Hotel Room Booking Party Hall Booking Seat Booking
Surveys 5
Volunteer Management 4)

Name ofOrgaisaton(AssociatonCIUbGrou)

Name of Eventcy

® a Trial expires in 11 days | Upgrade &= ®

Figure 48: Zoho Creator form templates

101

Low Code Platforms: Promises, Concepts and Prospects

— Course Planner

@ Design & Workflow 48} Settings © Upgrade | Share 4 Access this application

Schema Builder

Shows the relationships of entities or forms stored

Tutoring Approval Col..

\

@ | C|@| Select v

Add Topic
J @a
| Add Course Material |

| Tutoring Request

Add Course

Enroll User

| Course Payment |

(Course Subscription) ~—— +
AN

Trial expires in 11 days | Upgrade B ®

Figure 49: Zoho Creator schema builder

Table 45: Zoho Creator static perspective summary

Focus on Representations
Conceptual representations

e GUI “forms”
e data model

Focus on Reuse and Adaptability

Reference abstractions

e fields can be specified ac-
cording to generic data types
(e.g., text, number), busi-
ness-oriented data types
(e.g., currency)

e broad range of domain-spe-
cific GUI “forms”

Focus on Integration

Common static abstractions
across a range of applications

Access to common data reposito-
ries across a range of applications

Languages Components

e proprietary e diagram viewer
o “forms” editor

Language concepts Access to external sources and to implemen-

tation level documents

e GUI “forms” can implementation-level documents cannot be
be interrelated

through lookups

accessed

GUI “form” templates can support the specification of common static ab-
stractions, but the choice of fields and entity types still belongs to the
developer

It appears that all data is per default persisted through the Zoho platform

102

Low Code Platforms: Promises, Concepts and Prospects

Functional Perspective. Some basic CRUD-based functions are pre-implemented and can be
used with the specification of different workflows (see Dynamic Perspective). Other than this,
Zoho Creator enables the specification of custom function through built-in source code editors.
Source code can be programmed in three languages: Java, JavaScript (Node.js), and Deluge —
a proprietary programming language from Zoho. The auto-generated structure of a Java class
is displayed in figure 50. Familiarity with Zoho APIs is required to access run-time objects. It
is unclear how (or if) application-wide and cross-application variables can be defined. In the
Deluge source code editor, some basic operations can be added via drag-and-drop (see figure

51; the list of operations is on the left).

Product Repository

replaceProduct

replaceProduct.java

|mport ccom.zoho.cloud.function.Context;
replaceProduct java import com.zoho.cloud.function.basic.*;
public class replaceProduct implements ZCFunction {
public void runner(Context context, BasiclO basiclO) throws Exception {
context.log("Log Data");
basiclO.write('TestData");
}
}

config.json

lib

CENONGO AN R

a Trial expires in 10 days | Upgrade Bz [}

Figure 50: Zoho Creator auto-generated Java class

103

Low Code Platforms: Promises, Concepts and Prospects

Order Management

= calculateProfit
{Eﬂ Deluge

Condition
if
else if
else
conditional if

Data Access

add record
fetch records
aggregate records
update records
for each record
delete records

Miscellaneous

set variable
call function
send mail

add comment

ch <myvariable> in <form> [

<expression> ;

calculateProfit(Product product, Order order, Employee employee)

<field> <opr> <expression>]

Done

Syntax Assist (On ()) [J] Versions Refer Fields

SAVE EXECUTE

Trial expires in 11 days | Upgrade &= ®

Figure 51: Zoho Creator Deluge script editor

Table 46: Zoho functional perspective summary

Focus on Representations

Conceptual representations

no representation beyond °

source code

Focus on Reuse and Adaptability

Reference abstractions

Languages

source code can be
edited in NodelsS,
Java, and the proprie-
tary Deluge language

Language concepts

e Deluge source code of- °

fers some basic opera-

tions

composition

104

Components

e built-in source code editor

Access to external sources and to implemen-
tation level documents

e Zoho runtime APIs

e Java, NodelS, Deluge source code files

Low Code Platforms: Promises, Concepts and Prospects

Dynamic Perspective. In Zoho Creator, one of six different “workflows” can be implemented
(see figure 52). “On a form event”, “on a scheduled date”, and “on approval” share an identical
editor. The only difference between workflows of these categories is that they are triggered by
different events. For example, “on a form event” must be triggered by some form-related
CRUD event. Workflow types from these categories include sequential steps of “actions” and
conditions (see figure 52). The definition of actions and conditions does not require any source
code editing. The set of available actions depends on the “workflow” category selected by the
developer. Six actions (e.g., disable field, hide field, define field value) can be defined for “on
a form event” workflow types. The “on a function call” button (see figure 52) simply redirects
to a source code editor that enables the specification of custom functions (see Functional Per-
spective). These functions are not inherently connected with any event. “On a business process”
workflow types are managed in another editor (see figure 54). The proprietary modeling lan-
guage only distinguishes between stages and transformations. Stages do not contain any fur-
ther information other than their name. Transformations denote actions that are to be executed
by a pre-defined set of users and automatic actions to be performed after the transition, e.g., a
user needs to input some string which is thereafter transformed to lowercase. These workflows
must be restricted to a single entity type. Reference models are merely available as part of the
selected reference applications within Zoho Creator. The source code of a workflow type can
be viewed in the proprietary Deluge programming language within the developer tools sec-

tion of an application.

Form Report Page Workflow

When do you want to run your action?

On a form event On a scheduled date On a function call

On an approval activity On a payment activity On a business process

Trial expires in 11 days | Upgrade EZB ®

Figure 52: Zoho Creator workflow metatypes

105

Low Code Platforms: Promises, Concepts and Prospects

Order Management

Initiate Onboarding

Employee > Created > Field rules > Initiate Onboarding

Actions will be executed on form load and on user input of any of the fields participating in the condition. Learn more

& Execute only if started_on in last 5 days

‘ @ Hide fields [Days_in_Office, Items_Sold, Revenue_per_ltem, Sales_Revenue...

‘ @D Set field values of [Office_Phone]

@) Execute without condition

‘ GD Set field values of [Average_Sentiment_Score]

0 Add New Action

o 2 Trial expires in 11 days | Upgrade EZ3 ®

Figure 53: Zoho Creator "on a form event" workflow type example

Order Manageme:

Sale

- |+ < Edit Transition w

Start Transition name

T—J Customer dissatisfied

Sale of Product Get Customer Feedback — Complaint Mgmt

Before After

Customer contacted

Transition Owners ©
Choose users who can view and perform transition

® Everyone

Get Customer Feedback

Customer dissatisfied

Selected users

Criteria
Define the criteria to display the transition button
+ Add Criteria

Complaint Mgmt \f Calculate Sentiment Score
Transition Properties

Require tooltip

Customer satisfied

Require confirmation before execution

Save Bluepri Cancel

L) & Trial expires in 11days | Upgrade E= @

Figure 54: Zoho Creator "on a business process" workflow type example

106

Low Code Platforms: Promises, Concepts and Prospects

Table 47: Zoho Creator dynamic perspective summary

Focus on Representations

Conceptual representations = Languages Components
e sequence of linear e proprietary e diagram editor for “on a business pro-
steps cess” workflow types

e generic process model
Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

o reference workflow e generic concepts like e Deluge source code can be accessed
types are available as stage, action, and con-
part of reference appli- dition
cations e composition

GUI Development. Three types of GUI pages are distinguished within Zoho Creator: “forms”,
“reports”, and “pages”. “Forms” are used to specify entity types as elaborated in the Static
Perspective analysis category. The creation of a “form” yields a section with two auto-generated
GUI pages (not to be confused with the “pages” of Zoho Creator): one to add a new entity and
one that provides a tabular overview of all persisted entities. Additional GUI pages for “form”
sections, i.e. a GUI page for the same entity type, can be defined through a Zoho Creator
“page” (see figure 55). The third type of GUI pages, i.e., a “report”, is not restricted to a single
entity type and also not assigned to any of the auto-generated “form” sections. One of eight
different report templates can be selected (e.g., pivot table, calendar, spreadsheet, and Kanban)
The navigation panel can also be edited to rearrange sections and GUI pages. A drag-and-drop
editor with a predefined set of GUI elements is provided for all three types of GUI pages. All
GUI pages can also be accessed in the “developer tools” and edited in the proprietary ZML
markup language (see figure 56). ZML provides native support for Deluge scripts. GUI screens
are automatically adjusted to different screen sizes. Smartphone and tablet views can be edited

separately.

107

Low Code Platforms: Promises, Concepts and Prospects

Course Planner

TestPage

Panel Configure T

Chart

Region performance in this quarter

Gauge @ 1 5%

Search

Form

Report

Snippets
Configure the chart type and data to be displayed Configure the chart type and data to be displayed

m o B O 9

Button

85 Widgets

Upcoming Courses

2 Trial expires in 11 days | Upgrade EZB ®

"

Figure 55: Zoho Creator GUI "page’

Panel Configuration [8] Design [Code

ZML editor
1 - <panel>
2 - <pr width='fill' height='fill'>
3 o <pc width='100%">
4 - <pr width='fill' height='5@px'>
5 v <pc bgColor='#FAFAFA' width='100%' hAlign='center' vAlign='middle'>
6~ <text marginLeft='20px' marginRight='20px' color='#2D2D2D' size='16px' uppercase='false' underline='false' bold='false' italic='false' type='Text' value='Active
Students'> </text>
7 </pc>
8 </pr>
9 v <pr width='fill' height='fill'>
10 - <pc padding='20px' bgColor='#FFFFFF' action='OpenReport’ componentLinkName='Active_Students' target='new-window' width='100%' hAlign='center' vAlign='middle'>
1~ <pr width='auto' height='auto'>
12 - <pe>
<pr>
<pe>
<image color='#FFFFFF' bgColor='#117ED2' width='52px' height='52px' type='icon' value='education-hat' size='32px' cornerRadius='26px' iconType='solid' />
</pc>
16 </pr>
<pr>
18 + <pe>
< <text marginTop='5px' color='#117ED2' size='33px' uppercase='false' underline='false' bold='true' italic='false' type='Form Data' displayType='actual'

criteria='Enroll_as == "Student" && Status == "Activedquot;' value='thisapp.Enroll_User.ID.count'> </text>

Save

Active Students

Ct()

Trial expires in 11 days | Upgrade B8 H@ILNH @

ile

Figure 56: Zoho Creator ZML editor

108

Low Code Platforms: Promises, Concepts and Prospects

Table 48: Zoho Creator GUI development summary

User Interaction Perspective

Conceptual representations = Components Architectural Aspects
e GUI models e drag-and-drop GUI Edi- GUI “forms” are a representation of entity
tor types

Focus on Reuse and Adaptability

Reference abstractions Adaptability
e library of general-pur- e GUI elements and templates can be adjusted according to their particu-
pose GUI elements lar style

Further Aspects. Applications are deployed by Zoho and can be accessed via a common web
server or through the Zoho Creator mobile application. It is also possible to define a separate
domain for access by (external) users with restricted views on the application. Data persisted
on the platform can be exported through known formats such as CSV. It is not possible to

export entire applications.

Zoho Creator does not offer any explicit support for collaborative application development.
Collaborative use of the platform is mainly addressed through the definition of roles and per-
missions. Permission types define CRUD-based access rights. Role types shall resemble organ-
izational roles and can be arranged hierarchically. Role types are referenced in “on a business

process” workflow types. A new user is assigned to exactly one role and permission type.

Zoho Creator offers some Al services as “Al fields” available in the “forms” GUI editor (all
five available options are visible in figure 48). For each of the Al fields, the inner-workings are
completely inaccessible. This includes the underlying ML model (Al seems to be understood
synonymously to inductive ML algorithms), the data population used for training, and the
estimated accuracy of a prediction. Figure 57 shows an overview of data entries where the Al
field values are embedded (“Sentiment” and “Object Detection”). The values are hardly con-
vincing. Prediction fields require a definition of one dependent (“target fields”) and multiple
independent (“predictor fields”) dimensions. Apart from this, the calculation process cannot
be accessed - it is even excluded from the respective Deluge script. The integration of external

Al services is not specifically supported.

109

Low Code Platforms: Promises, Concepts and Prospects

& Product Repository =L [/ (F Trial expires in 11 days Upgrade 2 Edit this application @ Help
& Product Pierre Maier .
Product Report Q =

@ Product Name Instance... Price Comments Product Photo Sentiment Object Detection

SmartBoard 4 $2,540.00 Appears to be non-functioning. Outside still flawless. Neutral tv

Article on Modal Logic 2 $24.00 The content is great, but the binding is the worst. Negative book

Used MacBook 1 $257.00 The device is working just fine. Some outside scratches, but doe not affect overall \‘ Neutral bed,laptop

appearance.

USB-C Adapter 3 $1.38 worksas it should ’ Positive glasses

Showing 4 of 4
Figure 57: Zoho Creator Al fields
Table 49: Zoho Creator further aspects summary

Accessibility and Convenience of Use
e no methodical application development support
e fairly convenient and easy-to-use
e access to source code in proprietary programming language for more advanced users
e use of largely inaccessible, proprietary modeling languages
Modes of Use
Platform (i.e., Application Development) Application
e no further support for collaborative appli- e distinction of role and permission types

cation development e role types shall resemble organizational roles and are

used in some workflow types
e permission types specify CRUD rights

Focus on Deployment and Scalability
Target Location Support

e cloud-based platform, accessible via a reg- | no further accessible support mechanisms
ular web browser or Zoho app for mobile
devices

Focus on Artificial Intelligence

e pre-implemented, inaccessible Al “fields” in GUI “forms” that produce ML classifications not convincing

110

Low Code Platforms: Promises, Concepts and Prospects

5.3.3.3 Zoho Creator: Conclusion

Emphasized Areas of Application Development. Most features of the Zoho Creator platform ad-
dress the development of different kinds of GUI pages and workflow types. Data modeling
features are only rudimentary, with no apparent support for integrating external sources or
access to any sophisticated visual representation. Support for collaborative development or
use is limited. It is only possible to define organizational roles and corresponding CRUD-based
roles. Custom functions can be specified in different programming languages. For this pur-
pose, a proprietary markup language (ZML) and programming language (Deluge) is pro-
vided. AI functionalities are also embedded through pre-implemented fields for entity types.
However, the calculated values, alongside the inaccessibility of the AI model’s functionality,

make the incorporated Al features not convincing.

Provision of Abstractions. Zoho Creator fades out implementation-related details. Although the
source code for most generated artefacts can be viewed and edited, some implementation-
related aspects are still inaccessible. An example for this is the internal persistence of data and
the functionality of Al services. Furthermore, numerous domain-specific abstractions in the
form of GUI templates are offered within Zoho Creator. GUI pages are also the only mecha-
nism to define entity types.

Role of IT Professionals. The LCP can be used by lay and professional developers alike. Superfi-
cial use with regards to the definition of entity types, workflow models, and GUI pages does
not require in-depth knowledge of application development. However, this applies only in
cases where the system-defined functionalities are sufficient. Professional developers would
be required to implement additional operations via Java, Node.js, or the proprietary Deluge
language. More advanced concepts associated, e.g., with integration concerns (inclusion of ex-
ternal data sources or API access) are generally not supported by the platform. It seems that

such features demand additional Zoho products.
5.3.4 “Low-Code” Extended, GUI-, and Data-centric IDEs: Conclusion

The three considered LCPs of this prototypical category comprise a broad variety of different
features and focal points. Mendix Studio Pro is a locally deployed IDE, WaveMaker omits any
kind of workflow modeling, and Zoho Creator relies on a proprietary programming language.
At the same time, a few commonalities can be identified which demarcate the LCPs from the

platform of the preceding categories.

All three LCPs promote the use of source code. WaveMaker and Zoho Creator include several
built-in source code editors. Mendix Studio Pro provides mechanisms to integrate external
source code files within the Mendix environment. The high prominence of source code broad-
ens the scope of feasible applications, but also demands developers to familiarize with the

available programming languages, runtime APIs, and platform architecture. In this regard, it

111

Low Code Platforms: Promises, Concepts and Prospects

is noticeable that all of the three platform vendors market their platform to support profes-
sional developers. This marks a conspicuous difference to the LCPs considered previously.
While WaveMaker addresses only professional developers in their marketing statements,
Zoho and Mendix promote productivity increase for professional and lay developers (“citizen
developers”) alike. Therefore, these platforms need to support collaboration of different kinds
of developers. Mendix addresses this requirement explicitly through the provision of two de-
velopment environments with different sets of features. User stories and comments, that are
available in both environments, serve to support collaboration between the two kinds of de-
velopers. In Zoho Creator, a separate “developer tools” section enables access to more ad-
vanced development options. The separation is not as strict as for Mendix, though, and source

code configuration is also part of other features of the platform, e.g., its GUI editor.

To achieve productivity increase, the three platforms provide additional representations be-
yond source code to develop and configure applications. Conceptual models of particular rel-
evance in this regard. Mendix Studio Pro relies almost exclusively on the specification of dif-
ferent kinds of data and workflow models to develop applications. Zoho Creator offers differ-
ent workflow modeling languages, although its proprietary modeling language for static ab-
stractions is rudimentary. Similarly, domain-specific abstractions are addressed to some de-
gree in Mendix and Zoho Creator. Mendix provides a marketplace where domain-specific
add-ons can be acquired. Zoho Creator includes a vast catalog of reference templates for entity

types and GUI pages.

5.4 Multi-Use Platforms for Business Application Configuration, In-

tegration, and Development

The final prototypical category of LCPs includes comprehensive platform solutions that cover
a broad range of different features. The characteristics relevant for the proposed category al-
location is (i) application lifecycle support beyond one-time development and use and (ii) in-

tegration of numerous internal and external service to increase development productivity.
5.4.1 Microsoft Power Apps

Since Microsoft is presumably well-known, there is no need for even a short description of the
company.

5.4.1.1 Microsoft Power Apps: Profile of Vendor

Product Portfolio. Microsoft offers numerous different software products for a broad range of
different purposes. Among others, this includes the so-called Power Platform which includes
four products: Power BI, Power Apps, Power Automate, and Power Virtual Agents. Microsoft
Power Apps is Microsoft’s LCP to build and manage applications. A specific characteristic of

Power Apps is the close integration with other Microsoft products.

112

Low Code Platforms: Promises, Concepts and Prospects

With respect to the focus of our investigation, it is worth noting that Microsoft’s product port-
folio represents a remarkable asset. It comprises a comprehensive stack of software systems
including operating systems, database systems, ERP systems, a wide range of office applica-
tions, and various software development environments. Many functions provided by these

systems can be reused to promote software development productivity.

Product Provenance. Microsoft has offered software development environments (SDE) for long.
The specific strength of these systems was their integration with the Microsoft software eco-
system. In addition, the SDEs cover various programming languages, the integration of which
is supported by a common language specification. While Microsoft is the leading vendor of
office application systems, it has not managed so far to achieve a comparable share of the mar-
ket for business applications. It seems that one cornerstone of Microsoft’s strategy for increas-
ing its base of business customers is to focus on support for software development and con-
venient integration with other products, including those from competitors. According to the
historical presence of Microsoft Power Apps on the web, the platform is advertised at least
since early 2016 (Jan 09, 2016). While the label “low-code” was not used at first, the product
was already promising features which appear characteristic for current LCPs, such as conven-

ient integration with common databases and enterprise systems.

Focus on Marketing The selling proposition of Power Apps is focusing on four main features:
(1) Contribution to organizational agility by “rapidly building low-code apps that modernize
processes and solve tough challenges”.”” Related to the previous: (2) promoting development
productivity by “launching apps right away using prebuilt templates, drag-and-drop simplic-
ity, and quick deployment”.’® (3) Convenient integration with other systems through “con-
nectors”. (4) Support of lay developers: “Empower everyone to build apps. Building apps with
Power Apps helps everyone from business analysts to professional developers work more ef-
ficiently together.”* In this context, Microsoft also uses the term "citizen developer”.®® Further
features that are regularly mentioned comprise portability across different platforms such as

PCs, tablets, and smartphones, deployment in the cloud, and “prebuild AI components”.

The messages sent by Microsoft marketing give the impression that it is a tool which can be

used for the quick development of any kind of (business) application, covering a wide range

57 https://powerapps.microsoft.com/en-us/, accessed 09-08-2021

58 https://powerapps.microsoft.com/en-us/, accessed 09-08-2021

5 https://powerapps.microsoft.com/en-us/build-powerapps/, accessed 09-08-2021

60 https://www.microsoft.com/en-us/insidetrack/citizen-developers-use-microsoft-power-apps-to-

build-an-intelligent-launch-assistant, accessed 09-08-2021

113

Low Code Platforms: Promises, Concepts and Prospects

from small solutions for specific use cases to distributed, process-driven enterprise-level sys-
tems; a tool that is highly effective for professional developers and lay developers as well. It is
also suggested that it is the tool of choice for integrating apps with existing systems. However,
the picture of a universal, “one size fits all” software development environment is misleading.
Otherwise, there would be no need for other SDEs in Microsoft’s portfolio, such as the “Visual
Studio” product line. Therefore, the only way to develop a better understanding of purposes,

Power Apps is especially suited to server, is a closer look at its features.

Table 50: Microsoft Power Apps profile of vendor summary

Product Portfolio

e broad range of development tools
e LCP as part of “Power” suite of business ap-
plication development support tools

Product Provenance

e platform emerged in 2016
e no specific developments can be noted from
its archived web presence

Focus on Marketing

e emphasis on increased speed of develop-
ment, support for lay developers, and inte-
gration with external systems

e target lay and professional developers and
improved collaboration between them

5.4.1.2 Microsoft Power Apps: Analysis of Platform Features

The development environment (“PowerApps Studio”) runs in a web browser. The home
screen presents two principal approaches to developing an app. One can start with data (“Start
from data”), which means to select an existing data source. In contrast, the second principal
approach “Make your own app” comprises three specific approaches. One may start with the
design of a GUI (“canvas app from blank”), the design of models (“model-driven app from
blank”), or “create a website to share data with external and internal users” (“portal from
blank”). Note that we did not check “portal from blank”, because it was not included in the
test version. The home screen allows to choose from the principal development modes, gives
an overview of existing projects and access to tutorials for different use cases and experience

levels (see figure 58).

114

Low Code Platforms: Promises, Concepts and Prospects

Environment
it Power Apps R Search & yniversitit Duisburg-es...

_ Start from data o)
I @ Home
]
® =
Learn -
g 2pes Dataverse SharePoint Excel Online SQL Server Other data
sources
+ Create
Make your own app
® Dataverse 7
o/° Flows
—
6 Chatbots v / {“3
+ e
°<3 Al Builder v
Solitions Canvas app from blank Model-driven app from blank
& Canvas app & Model-driven app

8,

Portal from blank
@ Portal

All templates =

Learning for every level
Get started with Power Author a basic formula to Work with external data in
@ Apps change properties in a... e a Power Apps canvas app
|
Beginner 51 mins Beginner 42 mins Intermediate 43 mins

Manage and share apps in
° Power Apps
Beginner 42 mins

Your apps
F Name Modified Owner Type
;{R Ressourcenplanung 4 mo ago Provision User Model-driven
Bl rroductManager - Tmoago Ulrich Frank Model-driven
m StoreManager1 7 mo ago Ulrich Frank Model-driven

Figure 58: Microsoft Power Apps home screen

Static Perspective. Data are of outstanding importance for using Power Apps. The “start from
data” mode requires existing data sources. Data sources may be provided by services offered
by Microsoft. They comprise SharePoint, Excel Online, SQL server and Dataverse, formerly of-
fered as Common Data Service. Dataverse allows accessing data from various application sys-
tems, including the Microsoft enterprise software Dynamics 365. In addition, other data sources

like Excel files stored on DropBox or OneDrive can be used, too.

115

Low Code Platforms: Promises, Concepts and Prospects

l Overvie

87822.vo.msecnd.net/ Extreme Series 18 in. x 18 in. carpet

Caserta Stone Beige

tiles are a durable and beautiful
$8,10 https://az787822.vo.msecnd.net/ Extreme Series 18 in. x 18 in. carpet
tiles are a durabie and beautifui
$1,98 https://az787822.vo.msecnd.net/ Add some fashion to your floors
with the Shaw Ageiess Beauty
Carpet collection.
$3,79 https://az787822.vo.msecnd.net/ Made with 100% premium nylon
fiber, this textured carpet creates a
$3,79 https://az787822.vo.msecnd.net/ Made with 100% premium nylon

fiber, this textured carpet creates a
Bolivian Rosewood Hardwood $7,39 https://az787822.vo.msecnd.net/ Bolivian Rosewood is an exotic

! ! I ‘wood with beautiful, rosewood like
Hardwood $6,49 https://az787822.vo.msecnd.net/ The understated elegance of Golden

Teak's creamy golden sapwood and
unique dark-streaked heartwood is
breathtaking.

Caserta Sky Grey Carpet

Ageless Beauty Clay Carpet

Lush Il Tundra Carpet

Lush Il Frosty Glade Carpet

Golden Teak

FlooringEstimates O I+ < FlooringEstimates m Z
Suchelemente Category
Carpet

Carpet
Caserta Stone Beige

Extreme Series 18 in. x 18 in. carpet tiles
are a durable and beautiful carpet

N IZ_» Image

mrliinm mmaciallis amminanead fne bark

Carpet
Caserta Sky Grey >

Extreme Series 18 in. x 18 in. carpet tiles
are a durable and beautiful carpet

mrlitinm mmaciallis amminanead fne bark

Caserta Stone Beige
~ Carpet

~ Lush Il Tundra

Made with 100% premium nylon fiber,

" this textured carpet creates a warm,

mariinl atmmmsnbara that imitas s e

Carpet
Lush Il Frosty Glade

Made with 100% premium nylon fiber,
this textured carpet creates a warm,

Fariial abmasnhara that inuitas s b

Overview

Extreme Series 18 in. x 18 in. carpet tiles are
A Adiirabkhla and haantifiil carnat caliibian

a udiawvic diiu wcaudiul \.CII'JCI. AL ANV
specially engineered for both indoor and
outdoor residential installations.

Price
8,1

Hardwood
Bolivian Rosewood >

Bolivian Rosewood is an exotic wood
with beautiful, rosewood like wood with

Carpet

Ageless Beauty Clay >

Add some fashion to your floors with the N
Shaw Ageless Beauty Carpet collection. ame

Figure 59: Microsoft Power Apps mapping of table to screens of app

“Start from data” is based on the idea to map a table to smartphone or tablet screens. The initial
mapping is done automatically and includes already generic navigation capabilities. This al-
lows for creating apps considerably fast. As soon as Power Apps is connected to the table, the
app is executable. It consists of three screens. A “browse” screen shows a list of all items in the
table. Every entry to the list corresponds to one row. A “detail screen” serves a more compre-

hensive representation of the elements of a tuple. Finally, an “edit screen” allows editing the

116

Low Code Platforms: Promises, Concepts and Prospects

elements. The example shown in figure 59 illustrates the mapping from a table to a default
“browse” screen and its connection to a default “detail” screen. The mapping includes some
“magic”. First, there are rules that define the layout of screens. They seem to define the place-
ment and size of an image. However, the details of such a rule remain unclear. If, e.g., a second
column of images is added to the table, it is displayed smaller. Second, there is (almost) no
need to specify data types. That corresponds to Excel. Numbers are interpreted as such based
on their representations as strings. Only images have to be defined as such by adding the key-

word “Image” in brackets to the name of the corresponding column.

Such rapid success is not very impressive on closer inspection, however. This approach to
creating an app is restricted to sources that include one table only. Furthermore, any formulas
that might be defined with the table in Excel are lost. Hence, the functionality of an app gen-
erated from a table is limited and would be better supported by Excel. However, the generated
app is a starting point only for further customization. That may include changing the layout
of the GUI or adding functions.

The “canvas app from blank” entry starts with an empty canvas that can be filled with multiple
widgets from the GUI builder (see GUI Development). On closer inspection it is very similar to
“start with data”, because it also requires connecting to an existing data source. If the mapping
is done at the beginning, and the “catalogue” mode is selected, it results in an automatically
created GUI that corresponds to that of the previous approach. The mode “form” requires a
little more effort, but gives greater freedom of design. At first, one selects the elements of the
columns from the previously connected table that should be displayed on the screen. Power
Apps creates widgets and distributes them on the screen, where the layout can be rearranged

at will.

The “model-driven” mode supports different approaches to designing an app. One can start
with designing a GUI. Different from the previous approaches, these are not restricted to
smartphones or tablets. Subsequently, data sources can be added. A more powerful approach
is based on a predefined structure of application elements. It comprises data (“entity view”)
and, as an option, business processes (“process flow view”). The effectiveness of this approach
depends on reusing existing apps or existing tables. The trial version that was at our disposal
comprises various, in part rather specific apps and a considerable number of tables from a

general business domain.

The term “model-driven” is used in a rather idiosyncratic way. First, there is hardly any graph-
ical representations of models available — with the exception of process models. Second, the
terminology suggested by Microsoft hardly fits the idea of conceptual modeling. Instead, it
rather corresponds to database design, e.g., by referring to database keys. It also goes beyond
data modeling by referring to technical aspects of the system to be developed. For example, to

further specify the predefined entity type “Address”, one may select features like “mail

117

Low Code Platforms: Promises, Concepts and Prospects

merge” or “queue” (without being provided with an idea of what that is supposed to mean).

This is surprising with respect to the claim of providing a tool for lay developers.

The model of an app is presented in the structure shown in figure 60. Note that changing the
language to English did not apply to every screen. Every row represents an entity type, the
name of which is shown on the left side of the row, printed in white on blue. In addition to the
data view (“entity view”), forms can be created to define a user interface. Diagrams serve the
graphical representation of data. Dashboards are used to provide collections of information at

real-time. To “model” data, one adds an entity type (“Adresse” in the example).

App-Designer Zuletzt gespeichert am:12.09.2021 17:55 *Entwurf
Enterprise * Speichern Speichern und schlie...
aF o) ?
Hinzu... Canvas durch... Hilfe
Komponenten Eigenschaften
) Entitdten >

Modellieren und ver...

Dashboards
Bietet einen informat...

Geschéftsprozessflow
3a U >
Leaen Sie eine Reihe...

W Entitatsansicht (1)

¥ ENTITATSRESSOURCEN

Adresse IEN Formulare Alle =l Ansichten Alle F'l Diagramme Alle (<) Forrnvulare‘ . >
Definieren Sie, wie Be...

Ansichten >
Erstellen Sie eine List...
Diagramme >
Zeigt Daten in einer |...
Dashboards >

Bietet einen informat...

Figure 60: Microsoft Power Apps app designer in "model-driven" mode

Subsequently, an editor opens that allows to specify the properties of the entity type. To this
end, the user is presented with a rather technical view that might be appropriate for a system

administrator, but hardly for a novice user (see figure 61).

118

Low Code Platforms: Promises, Concepts and Prospects

Ansicht: Alle v

Weitere Aktionen ~

O | Name | Schemaname 4 | Anzeigename..| Typ | Feldtyp | zustand | Fel O
addressnumber AddressNumber Adressnummer Ganze Zahl Einfach Verwaltet Ung 8
addresstypecode AddressTypeCode Adresstyp Optionssatz Einfach Verwaltet Ungt
city City Ort Einzelne Textz... Einfach Verwaltet Ungi
composite Composite Adresse Mehrere Text... Einfach Verwaltet Ungt
country Country Land/Region Einzelne Textz... Einfach Verwaltet Ungt
county County Verwaltungsb... Einzelne Textz... Einfach Verwaltet Ungt
createdby CreatedBy Erstellt von Suche Einfach Verwaltet Ungt
createdon CreatedOn Erstellt am Datum und U... Einfach Verwaltet Ungt
createdonbehalfby CreatedOnBehalfBy Erstellt von (S... Suche Einfach Verwaltet Ungt
customeraddressid CustomerAddressld Adresse Primarschlissel Einfach Verwaltet Ungt
exchangerate ExchangeRate Wechselkurs Dezimalzahl Einfach Verwaltet Ungl v

>
1- 43 von 43 (0 ausgewahlt) M4 Seitel)

Figure 61: Microsoft Power Apps specification of entity type

Furthermore, views may be available that address specific use cases such as searching for ele-
ments. Predefined diagrams serve to graphically illustrate the available data. Finally, dash-

boards allow for the online visualization of selected data.

119

Low Code Platforms: Promises, Concepts and Prospects

Table 51: Microsoft Power Apps static perspective summary

Focus on Representations

Conceptual representations = Languages Components
e data types e Even though the plat- e data definition component
e data “model” repre- form offers a “data
sented by tables and modeling” function, no
GUlIs data modeling language
is included.

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e generic abstractions e entity types, tables e DBMS

e domain-specific ab- e various other Microsoft products
stractions like “Ad-
dress”

Focus on Integration

Common static abstractions = various applications may share abstractions defined with other Microsoft sys-
across a range of applica- tems, e.g., a database schema.
tions

Access to common datare- = supported by using data stores provided by other Microsoft software sys-

positories across a range of | tems such as SharePoint, Excel Online, SQL server and Dataverse
applications

Functional Perspective. It seems that PowerApps does not directly allow coding. Instead, it pro-
vides reusable functions. First, there are functions for the implementation of GUISs, e.g., the
navigation between the screens of an app. They are convenient to (re-) use, but hardly allow
for modifications. Second, and much more powerful, are reusable artefacts that can be selected
in the “model-driven” mode. They comprise components to create diagrams and dashboards.
Furthermore, it is possible to integrate functions (or components) of other Microsoft systems
such as the ERP system Dynamics 365. The reuse of these artefacts will usually imply reusing
corresponding data structures, and, in order to avoid data redundancy, common data stores
like Dataverse. While the reuse of complex artefacts is suited to boost the productivity of de-
veloping an app, that does not mean that this kind of composition is convenient. Instead, it is

rather cumbersome and requires some knowledge of software architectures.

120

Low Code Platforms: Promises, Concepts and Prospects

Table 52: Microsoft Power Apps functional perspective summary

Focus on Representations

Conceptual representations Languages Components
e no specific representa- e no specific language e GUI editor
tion e code

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e multiple functions that e Functions provided by various Mi-
can be added to GUIs crosoft products can be reused.

e specification through
code

Dynamic Perspective. The design and execution of business processes (or workflows respec-
tively) is supported in the “model-driven” mode. It allows the design of business processes
with a proprietary modeling language (see figure 63). In order to prepare a process model for
execution, it is necessary to define the data and/or components required by each activity. Fur-
thermore, one needs to specify conditions that control alternative threads of execution. Both
seems to be possible but is far from intuitive. The GUI designer should allow for the specifica-
tion of GUIs used within each activity of a process. But we did not find a corresponding feature
either. This lack of “user experience”, the importance of which Microsoft repeatedly empha-
sizes, may be contributed to the fact that the process designer is not an inherent part of Power
Apps. Instead, it is part of Dynamics 365, which gives rise to the assumption that the effective

use of the process designer requires knowledge of Dynamics 365.

121

Low Code Platforms: Promises, Concepts and Prospects

| Power Apps

Order Management v

+ X

Hinzuftigen Ausschnei.

0}]

Léschen Momenta.

D o

Kopieren Einfiigen

Firma
Check Order

Zo Details 8=t

Status: Inaktiv

Firma
Confirm Order

Speichern

Firma
Dispatch Order

(o Details 2 8= Jo

Uberpriifen) Speichern unter @ Axtivieren A sicherheitsrollen be. ? Hilfe

Komponenten Eigenschaften

aQl & @

A Flow

Firma
Check Account

E E Phase
Details 81 2o Details v

4 Anordnung

Bedingung

Workflow

B

Aktionsschritt

Flow-Schritt
(Vorschauversion)

7.3 Globaler Workflow(0)

Figure 62: Microsoft Power Apps process designer

Table 53: Microsoft Power Apps dynamic perspective summary

Focus on Representations
Conceptual representations

business process mod-
els

Languages

e proprietary process

modeling language

Focus on Reuse and Adaptability

Reference abstractions

reference process mod-
els

Language concepts

e process, activity

(“phase”), branching

Comment: It seems that the
language lacks a concept to
describe events.

Components

e model editor

Access to external sources and to implemen-
tation level documents

e code (various programming languages

supported by Microsoft)

GUI Development. Support for the design of user interfaces seems to be of particular relevance.

PowerApps includes various GUI designers. The “catalogue” mode (figure 59) is based on a

default mapping of a table to three screens of a phone (or a tablet). The GUI can be modified,

but it is restricted to a given size. The “forms” mode allows for a more versatile approach. It is

intended for the definitions of GUISs that are displayed in web browsers (see figure 63). It com-

122

Low Code Platforms: Promises, Concepts and Prospects

prises the common range of widgets such as text boxes, list boxes, buttons, etc. It is also possi-
ble to add diagrams (similar to Excel) and to include components from other applications

(more precisely: the visualization implemented with these components).

& Zuruck | Datei Home Einfiigen Ansicht Aktion Einstellungen TestGUI ‘ Qs ‘ 2 ¢ > K ?
3 Neuer Bildschirm v | &4 Bezeichnung W | Textv %5 Eingabe~ B Medienv $% Symbole v o AlBuiderv @& Mixed Reality v WV
Fil v = fxv uhite v
A
= BILDSCHRM (D >
Screenl
e Eigensch.. Erweitert
Year Text Revenues —
Products 3 Ausfillen
4
; 2
8 Hintergrundbild
3 % Keine v
h oIS o A D v
| Bildposition
B Anpassen v

@ nea

< >

[Screent — O + 0%

Figure 63: Microsoft Power Apps “Forms” mode GUI designer

The GUI designers for both, the “forms” and the “catalogue” mode, feature an execution
mode. As soon as the GUI is connected to a data source, the app can be executed. This happens

very conveniently by pressing a button or a key.

A further GUI builder is provided with the “model-driven” approach (see figure 65). It is based
on the entity view and is intended to define forms for accessing fields of a table. It has fewer

features than the “forms” GUI designer.

123

Low Code Platforms: Promises, Concepts and Prospects

Environment

Power Apps | Form Universitat Duisburg-es...

X ~ il -+ Formfield -+ Component [Form settings Switch to classic save | v [Ppublish

= Adressname >
Adresse erstellen Single-line text
Adresse

=5 Properties Events
Allgemein R

~ Display options

Adressname = Bundesland/Kanton

Table column
StraBe 1 Postleitzah
Adressname ©

Strae 2 Land/Region

S
g Label *

StraBe 3 Adresstyp ‘ Adressname

Ort -—
D Hide label
\:' Hide on phone ©
Telefonnummern [Hide ©
Telefon 1 - Fax
D Lock ©
D Read-only

' Formatting

Telefon 2

Zusétzliche Informationen v
< >

—— = v Components
3 Desktop (1920 x 1080) Show Hidden (@) Off =0 + 75% & P 3

Figure 64: Microsoft Power Apps GUI designer in model-based approach

Table 54: Microsoft Power Apps GUI development summary

User Interaction Perspective

Conceptual representations = Components Architectural Aspects
e GUI models e GUI Editor The architecture is widely hidden. It seems to
e generic GUI frame- o drag-and-drop implement the MVC pattern.
works based on screens o WYSIWYG
and forms o platform-independ-
ent style

Focus on Reuse and Adaptability
Reference abstractions Adaptability

o library of general-pur- e customization of reference GUIs
pose GUI elements

e example applications
with reusable GUIs

Further Aspects. Power Apps supports two principal modes of producing and deploying apps.
An app can be created for running in a web browser, hence, on a wide range of platforms. The
main platforms Power Apps targets are smartphones or tablets. To provide specific support
for these platforms, runtime environments are available for Windows, iOS, and Android. As
soon as an app created for this runtime environment is deployed to the cloud, it can be ac-
cessed and executed by mobile devices where the runtime environment is installed. Access is
limited to authorized users, e.g., members of a certain project or employees of a company or

organizational unit. In any case, an app and all the resources required to run it, are stored in a

124

Low Code Platforms: Promises, Concepts and Prospects

Microsoft cloud. There is no indication that apps that are developed with Power Apps can be
maintained with other SDEs, or executed in other runtime environments (with the exception
of those that run in web browsers). There seems to be no version control. Collaborative editing
of documents is apparently not supported. During run time, the potential for collaboration
depends chiefly on the data sources used for the implementation of an app.

Microsoft Power Apps includes an “Al Builder” module to create and configure several ML
models. An overview is provided in figure 65. As can be seen, the platform currently offers
eleven pretrained ML models which can be used in applications and flows. The use of these
models does not seem to demand any particular knowledge of ML algorithms. The model
(hyper-)parameters are inaccessible as well as the underlying data used for training. Although
this omits any decisive assessment of the model’s capabilities, it is possible to test model pre-
dictions based on custom inputs with the respective degree of confidence calculated. The def-
inition of ML models is thereby guided by a specific list of “best practices” that shall support
reflecting upon reasonable use cases. For example, the “Text Recognition” pretrained ML
model states that only images should be used with one column of text. The custom specifica-
tion of ML models also avoids source code editing. Rather, one of five use-case specific ML
models can be refined (the underlying ML model details are inaccessible) and stepwise con-
figured in a user-friendly way (see figure 66). The impact of these configurations on the per-

formance of an ML model remain unclear.

i1 Power Apps | Al Builder £ search a8
= @ You have 30 days and 100% capacity left in your free trial. You worit b able to use your models after your trial ends. Learn more Get Al Builder

@ Home

Enhance your business with Al
Learn
Add intelligence to your business. Create tailored Al models to automate processes and find insights. Learn more

P Apps

ta Refine a model for your business needs
reate

Dataverse ~

) &8

+ + +

B
e

Choices

Entity Extraction Form Processin Object Detection Prediction
Dataflows v 9)

out you Read and save information from stant cognize and count things in image Predict wh mething will ha
document

Azure Synapse Link

Connections
Get straight to productivity
Custom Connectors

Business Card Reader Category Classification Entity Extraction Identity Document Invoice Processing Key Phrase Extraction

(preview) aract entit their ty Reader ad ave informat D
: - e - B

o Flows e e o

Gateways

?ﬁ’
)

© Chatbots A
Language Detection Receipt Processing Sentiment Analysis Text Recognition Text Translation

e @) s @

Create

i

S
3
v

List
o@ Al Builder N

| euid Learning for every level Sce

Models

Get started with Al Builder Manage models in Al Get started with form

Beginner 2 Beginner

Figure 65: Microsoft Power Apps Al Builder

125

Low Code Platforms: Promises, Concepts and Prospects

i Power Apps | Al Builder

 ObjectDetection1 | @ Save and close
@ Select domain

7 Quickti
. . ips
Select your model’'s domain
Choose objects
When models focus on specific types of objects, they can be more accurate. If you don't see the right option, select Common objects. Learn more

Get help or send feedback
Get the answers you need, or tell us

[e] vty operece

Tag images ‘ Objects on retail shelves ‘ &7 Get help

‘ Brand logos ‘

Mode! summary

Figure 66: Microsoft Power Apps object detection model builder

Table 55: Microsoft Power Apps further aspects summary
Accessibility and Convenience of Use

e guidance

o no specific development method

o modest guidance through different modes of use
e LCP user interface

o based on proprietary widgets and general GUI framework
e offered modeling languages

o proprietary process modeling language

Modes of Use
Platform (i.e., Application Development) Application

e definition and management of access rights = e definition and management of access rights
e conjoint use with other Microsoft IDEs e use in distributed environments
e usein heterogeneous environments possible by run-
ning Power Apps on different platforms for which it is

available.
Focus on Deployment and Scalability
Target Location Support
e development environment runs in web e runtime systems available for Windows, Android and
browser i0S

Focus on Artificial Intelligence

e various pre-trained ML solutions, such as text recognition, are available with the platform

126

Low Code Platforms: Promises, Concepts and Prospects

5.4.1.3 Microsoft Power Apps: Conclusion

Emphasized Areas of Application Development. The feasible use cases for Microsoft Power Apps
reflect the dual perspective on different kind of developers. On the one hand, it seems to focus
on occasional developers with a very restrictive scope of adjustments, on the other hand, it
tries to support the development of large application systems, which require not only substan-
tial knowledge of software architecture, but also recommend programming skills. It is there-
fore unclear to us how Power Apps relates to other, professional SDEs offered by Microsoft.
Nonetheless, in contrasts to other LCPs analyzed, Microsoft offers several mechanisms to sup-
port reusability of application artefacts and, to some degree, also support the integration with
external data sources. This can contribute to a higher degree of integration, although this
largely depends on the developer skills. Key features like data diagrams are missing and the
offered domain-specific abstractions are hardly sufficient for comprehensive application de-
velopment. Power Apps can thus be used to develop extensive application solutions with Al
capabilities. The platform puts a clear emphasis on GUI configuration. For this purpose, three
supplementing types of GUI editors are offered, serving different needs for various develop-
ers. Additionally, data and static features generally mark a core of Microsoft Power Apps.
Although visual data modeling capabilities are not included, Power Apps tries to increase
productivity by providing numerous reference entity types as well as support for various ex-
ternal data sources. While the tight integration with other Microsoft products creates a clear
advantage with respect to productivity, it is likely to increase the dependency from the Mi-
crosoft ecosystem and, hence, to compromise protection of investment. PowerApps provides
a few features to enable “quick wins” even for laypersons, like the automatic creation of simple
apps from tables together with convenient ways to modify these apps. The exhaustive internal

and user-friendly features to specify and configure ML models should also be highlighted.

Provision of Abstractions. Implementation-related details are largely faded out for the devel-
oper. Source code cannot be accessed nor edited. The provided abstractions, e.g., to define
entity types are hardly sufficient for lay persons either. Noteworthy here is Microsoft’s explicit
use of the term “model-driven development”, which is rather confusing when compared to
the remarks from chapter 2. The approach followed by Microsoft Power Apps appears to fol-
low the idea to rely on prebuilt application components. For this purpose, several domain-
specific abstractions are offered. Entity types can be defined across Microsoft products and are
shared with Microsoft’s Dataverse, several are already provided by Microsoft. Additionally,
numerous templates and example applications shall serve as a reference point for further ap-
plication development. While the LCP does offer a variety of reusable artefacts of this kind, it
is not too impressive and hardly sufficient for the development of many applications. How-

ever, it is not clear to us whether this is a restriction that applies to the test version only.

Role of IT professionals. Certain quick and simple applications can conveniently be developed

by laypersons. This is exemplified in the “start from data” applications. This, however, marks

127

Low Code Platforms: Promises, Concepts and Prospects

only a rather restricted scope of applications not feasible for most use cases: it relies on a single,
independent entity type that can follow a predefined GUI structure. The role of professional
developers is then to enhance these simple solutions to realize more extensive business needs
and integrate the application with the system landscape. Effective use of the platform’s fea-
tures generally appears to demand professional developers. This contradicts the marketing

statements from Microsoft itself, where extensive use by “citizen developers” is advertised.
5.4.2 Appian

Appian, the vendor of the platform with the same name, is a North American software com-
pany that has its headquarters in Virginia. It has about twenty offices in all continents except

for Africa.

5.4.2.1 Appian: Profile of Vendor
Product Portfolio. The low-code platform is the only product of Appian in the company’s prod-

uct portfolio.

Product Provenance. The earliest archived web entry from the software company Appian (and
not Appian Graphics which occupied the domain appian.com previously) dates back to Oct
25, 2005. Appian’s platform is denoted as Appian Enterprise Business Process Management Suite
which “simplifies the development, execution, and maintenance of business processes” (Oct
26, 2005).* Later marketing messages put emphasis on enterprise integration with the devel-
opment and deployment of “composite applications” (Nov 02, 2006).2 The Appian platform
is to increase ease-of-use (Feb 27, 2008) and development speed (Jan 28, 2010). On Apr 10, 2011,
support for the development of “dynamic and interactive web forms through a drag-and-drop
interface” is advertised. Later, marketing of the Appian platform is centered around the notion
of “worksocial”, which is used to combine a “no coding process design” and “simple no-train-
ing interaction” (Aug 04, 2012). This shall support joint development of business and IT (Feb
27, 2018).%° The platform is relabeled as a low-code platform at least since Jul 06, 2017 with no

apparent change in the offered features.

Focus on Marketing. Appian’s marketing messages focus on four promises: increased develop-
ment speed, improved data integration capabilities, multi-experience development (shall be
similar to multi-channel development only that “user experience” can be adjusted to different

user channels), and simplified scalability.** Robotic process automation (RPA), BPM, case

61 http://www.appian.com/AppianEnt/AE/appianEnt.html (archived)

62 http://www.appian.com/AppianEnt/AE/appianEnt.html (archived)

63 http://www.appian.com/product.jsp (archived)

64 https://appian.com/platform/low-code-development/low-code-application-development.html, ac-
cessed 09-07-2021

128

Low Code Platforms: Promises, Concepts and Prospects

management, and Al are also advertised as core components of the platform.® Appian does
not specifically address a particular kind of developer. It does, however, suggest four proto-
typical roles for developers using their platform® — neither of which corresponds to lay devel-

opers.

Table 56: Appian profile of vendor summary
Product Portfolio

e LCP as the only product of Appian

Product Provenance

o early focus on BPM and quick development
of “composite applications”

e everyone should be enabled to develop ap-
plications, emphasis on collaboration be-
tween different organizational departments

e relabeled as LCP since 2017

Focus on Marketing

e |ow-code development in Appian shall serve
to support data integration and multi-expe-
rience development, among others

e RPA and Al advertised as central features

e no exclusive focus on any kind of developer

5.4.2.2 Appian: Analysis of Platform Features

The home screen of the Appian Designer is displayed in figure 67. The Appian Designer is the
main module of the Appian platform and is also the focal point of the subsequent analysis.
The other modules (Cloud Database, Appian RPA, Quick Apps Designer, and Tempo) provide
some additional features. Each application consists of a customizable set of “design objects”.
Figure 68 presents an overview of design objects for an example application. Design objects
exist independently of an application. They can thus be accessed across applications. The nu-
merous design object types are categorized into eight groups®”: data objects, process objects,
user objects, rule objects, integration objects, group objects, content-management objects, and
notification objects. Design objects can be traded on the Appian AppMarket, where private de-
velopers as well as consulting firms like KPMG or PWC publish application artefacts.

65 https://appian.com/platform/overview.html, accessed 09-07-2021

66 https://appian.com/customer-success/education.html, accessed 12-20-2021

67 https://docs.appian.com/suite/help/21.3/design-objects.html, accessed 09-08-2021

129

Low Code Platforms: Promises, Concepts and Prospects

A Appian Designer

22 APPLICATIONS

iZ OBJECTS & USERS

@ MONITORING

<4 DEPLOYMENTS

(@ EE

Name or description

PACKAGES

Applications with Packages

LAST MODIFIED BY

Select one or more users

LAST MODIFIED ON

From

dadlyyyy
To

mm/da/lyyyy

Q

NEW APPLICATION

H B B A

B B

2B Valo Order Fulfillment

i= OBJECTS @ MONITORING

IMPORT &

Name

VM Vehicle Maintenance
TestScratch

SpaceX Launch Tracker

Example Vehicle Fleet Management

Valo Order Fulfillment

Document Retrieval and Data Entry (RPA)

Intelligent Document Processing (IDP)
Customer Management

Customer Management (Solution)
Human Resources

Appian Al Building Blocks

Description

Supports "Build a Form/Interface" and "Build a Record" Tutorials!

This is the solution for the Vehicle Fleet Management application created usi...

Application responsible for the order fulfillment lifecycle, analyst interaction...

Supports "Appian RPA" course Hands-On Activity in Lessons #4 and #5.

Appian IDP is free to customers of Appian 20.1+. Try it out by completing th...

Add and edit customers in this application for the Appian World 2021 hands...
End application created for the Appian World 2021 hands-on lab. View detail...
Supports the "Build a Process Model" tutorial. This application container hol...

Provides a Connected Systems, Integrations and other objects to add Vision,...

Figure 67: Appian Designer applications overview

< DEPLOYMENTS

IMPORT PACKAGE PACKAGES COMPARE AND DEPLOY

Last Modified 1
9/8/2021 11:38 AM by Pierre Maier
9/8/2021 10:16 AM by Pierre Maier
9/8/2021 9:09 AM by Pierre Maier
6/9/2021 4:24 PM by trial admin
6/1/2021 2:40 AM by trial admin
5/14/2021 7:21 PM by trial admin
5/14/2021 7:21 PM by trial admin
5/14/2021 7:17 PM by trial admin
5/13/2021 1:40 PM by trial admin
8/6/2020 5:18 PM by trial admin
8/6/2020 3:33 PM by trial admin

11 items

@ appian

ALLOBJECTS | # PLUGIINS O UNREFERENCED OBJECTS

Name or description

OBJECT TYPE
Connected System
Constant
Data Store
Data Type
Decision
Document
Expression Rule
Feed
Folder
Group
Integration
Interface
Process Model
Query Rule
Record Type
Report
Site
Web API

LAST MODIFIED BY

Select one or more users

LAST MODIFIED ON

Q

NEW ~

B2 EE A a

E B 8 8 8 F 0 @

i

Figure 68: Appian example application overview of design objects

ADD EXISTING ~ [s4

Name
VOF_TEST_DATA_REFRESH_DATE
VOF_INITIAL_DATA_REFRESH_CHECK
VOF Order Fulfillment
VOF_ExecutiveApprovalForm
VOF_OrderRequestGrid

VOF Refresh Test Data

VOF Reconcile Document

VOF Appian RPA

VOF SalesForce

Order Fulfillment

DU_returnDataStoreEntityForChoicelndex

VOF_GetTrendsDashboardKPIData

VOF_GetOrderManagementDashboardK...

VOF_UpdateOrderForm_FormContents

VOF_OrderManagementDashboard

Description

Last date of test data refresh

Constant that stores a value indicating whether the initial data refresh has ...
Process to facilitate the full order lifecycle from request to completion
Approval form for executive review of high value orders.

Grid of order requests, supporting the order management dashboard.
Process model to refresh test data for the Valo Order Fulfillment application
Extracts data from an order document, and prepares for reconciliation
Connected system to Appian RPA

Connected system to Salesforce

Site for interfacing with the Valo Order Fulfillment application

Retrieves the data to populate order KPIs on the trends dashboard

Retrieves the data to populate order KPIs on the order management dashb...

Form contents for the update order form

Main dashboard for the order management application

Last Modified !

All Application Objects

9/7/2021 7:36 PM by trial admin
9/7/2021 7:36 PM by trial admin
6/10/2021 2:42 PM by trial admin
6/10/2021 2:42 PM by trial admin
6/10/2021 2:41 PM by trial admin
6/1/2021 2:41 AM by trial admin
6/1/2021 2:40 AM by trial admin
6/1/2021 2:40 AM by trial admin
6/1/2021 2:40 AM by trial admin
6/1/2021 2:40 AM by trial admin
6/1/2021 2:40 AM by trial admin
6/1/2021 2:40 AM by trial admin
6/1/2021 2:40 AM by trial admin
6/1/2021 2:40 AM by trial admin

6/1/2021 2:40 AM by trial admin

Static Perspective. Three data design object types are available on the Appian platform: “Data

Type”, “Data Store”, and “Record Type”. A “Data Type” serves the specification of the attrib-

utes of an entity type. Data types like Integer or String are available. In addition, common

database constructs like primary and foreign keys can be defined here (see figure 69). “Data

130

Low Code Platforms: Promises, Concepts and Prospects

Type” design objects are required to define a “Data Store” design object. A “Data Store” is a
collection of user-defined entity types, i.e., “Data Type” design objects. Within a “Data Store”
developers can choose to persist the data on the Appian platform or access some external da-
tabase system. For external database systems an explicit mapping of the entity types must be
specified by the user. For internally persisted data, the Appian platform auto-generates a cor-
responding SQL script, which can be adjusted by the users. The created database tables can be
accessed through phpMyAdmin in the Cloud Database module of the platform. “Record Type”
design objects must be defined to connect a GUI page and persisted data (see GUI Develop-
ment). A “Record Type” can access multiple data sources as either defined through a “Data
Store” design object or through API calls that send data in JSON format (integrations of exter-
nal sources are elaborated in Dynamic Perspective). These data sources may be adjusted for a
single “Record Type” design object. For example, it is possible for users to specify filters (only
include data that where condition X is met) or to select only a number of database fields. The
resulting data model is also displayed graphically (see figure 70). The modeling language is
proprietary and only includes a very limited set of language concepts: data sources are pre-
sented as nodes and associations as directed edges. The diagram cannot be edited by the user.

Reference data models are not available.

BT product ESAVECHANGES | - & i O appian

vProperties

Namespace Description

urn:com:appian:types

Name

Product

Source

Data Type Designer

Hide this data type from auto-complete and pickers
vFields (6)
@ Learn more about data design

Name Type Length © Array Key
product_id [5] Number (Integer) x ¥ X
product_name [Text x 255 + § X
price |Z] Number (Decimal) % 1+ 3 X
quantity_available 1= Number (Integer) x +t 3 X
added_on |Z Dateand Time x + 3 X
product_category [& ProductCategory x a + X

© New Field

Figure 69: Appian Data Type example

131

Low Code Platforms: Promises, Concepts and Prospects

% = () appian

SDATA

Data Model

Default Filters Data Structure

Data Sync

CONFIGURE FIELDS

(21USER INTERFACES
Tempo Field Name
List flight_number
User Filters rocket
Views
date_utc
Related Actions
success
@ MONITORING
name

Performance
details
id

successLabel

Focus on Representations
Conceptual representations

e “Data Type”, “Data
Store”, and “Record
Type” design objects

Data Model

Data Preview

NEW CUSTOM RECORD FIELD

Type

Number (Integer) S o
Text s o
Date and Time s o
Boolean & o
Text s o
Text S o
Text S o
Text s o

8items

SOURCE -

Type Other Web Service

Expression SPX_GetAllLaunches_r

ecordDataSource

Sync Schedule 3:00 AM - (UTC)

Greenwich Mean
Time (GMT) (Every
Day)

RELATIONSHIPS
ADD RELATIONSHIP

 rocketLaunched o

G

Rocket

Figure 70: Appian Record Type example

Table 57: Appian static perspective summary

Languages

e proprietary

Focus on Reuse and Adaptability

Reference abstractions

e generic data types like
string and integer are
provided

e reference data models
are not available

Focus on Integration

Common static abstractions
across a range of applica-
tions

Access to common data re-
positories across a range of
applications

Language concepts

e distinction between ex-
ternally and internally
persisted data

e relationship and cardi-
nality

Components

e diagram viewer as part of “Record Store”
design object

Access to external sources and to implemen-
tation level documents

e all data sources (internal and external)
must comply to a user-specified mapping

e internal database can be accessed via
phpMyAdmin

e generated DDL scripts can be adjusted

Since design objects are generally available in all Appian applications, the use

of shared static abstractions is supported.

It is possible to access a common data repository across applications.

Whether this is actually done, depends on the application developer.

132

Low Code Platforms: Promises, Concepts and Prospects

Functional Perspective. Custom functions can be specified via “smart services” that are part of
workflow models (see Dynamic Perspective), “Decision” design objects, and “Expression Rules”
design objects. Smart services represent system-defined functions for generic business opera-
tions or platform configuration, e.g., to create an Excel report or adjust existing file structures.
“Decision” design objects serve to specify multi-criteria conditions resulting in a variety of
different potential responses (see figure 71). They basically represent common switch-case
statements. More elaborate functions beyond conditional statements can be implemented via
“expressions”. Expressions are small scripts written in a proprietary programming language.
Such expressions can be embedded in workflow models and GUI pages. “Expression Rule”
design objects serve to define shared expressions to avoid functional redundancy (see figure
72). Appian provides numerous reference functions to embed in these expressions, ranging

from functions to manipulate data structures to arithmetic calculations and platform-specific

adjustments (e.g., to retrieve a list of active users).

E VM_DetermineVehicleModelList SAVE CHANGES

b s Test Inputs
1= ~ Ford ©~ Fusion, Escape, F-150 o~ ® ¥ X vehicleMake

2 = ~ Mazda ©~ (X5 Mazda5 Mazda6 o~ B+ 3 X -
3 ||= v Infiniti O~ QX30,QX50, QX80 o~ B+ & X
4 = v Mercedes o~ C-Class, S-Class, E-Class o~ o) 1+ X

ELSE v

© Add New Row

Figure 71: Appian "Decision" design object example

133

Low Code Platforms: Promises, Concepts and Prospects

= () appian

3'} VM_GetVehicleByID SAVE CHANGES L34

foil

7 T = = RULE INPUTS
7 e s © ' @ AdHocTest i= Test Cases (V] .
i CLE_DSE_PO. , Name Type Array
g CLE_DSE_POINTER, vTest Inputs
4 on: a'querylogicalExpression(d & Numb.._ % x
5 Rule Input .
6 Name Expression Value
7
a 13
9 id (Number 3
10 (Integer))
11 pJ
12 1
13 ignoreFiltersWithEmptyValues: true Save as Test Case
14) TEST RULE

15+v (J:tgmql’vw'(‘: a!pagingInfo(

16 startIndex: 1,
b4 ¢ : vTest Output
v

19 Time 17 ms (View Performance) Type List of

;? Variant

22 Value @ Formatted Raw Expression

23] 4 List of Dictionary - 1 item

gg N ‘;;i;h otalCount: false 4 Dictionary

N category 1 (Number (Integer))
vin "820WK29401NR3K319" (Text)
availability true (Boolean)
alquery selection, aggregation, logicalExpression, filter, paginginfo nextMaintenance 6/16/2021 (Date)

color "Black" (Text)

year 2020 (Number (Integer))
model "Panamera" (Text)
make "Porsche" (Text)

Creates a Query configuration for use with queryrecord(). See the documentation for guidance
about when to use different querying methods.

selection (Selection): Array of fields to retrieve created with alquerySelection().

aggregation (Aggregation): Aggregation configuration for data retrieval created with id 3 (Number (Integer))
alqueryAggregation().

"): Logical Exp filters to apply to queried data before
grouping or aggregation, created with alqueryLogicalExpression().

filter (QueryFilter): A single condition to apply to the queried data before any grouping or
aggregation, created with alqueryFilter().

paginginfo (PagingInfo): The paging and sorting configurations to apply when retrieving the

Figure 72: Appian "Expression Rule" design object example

Table 58: Appian functional perspective summary

Focus on Representations
Conceptual representations Languages Components

e no conceptual represen- e inaccessible e built-in source code editor
tation beyond “Decision”
and “Expression Rule” de-
sign objects

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implementa-
tion level documents

e generic reference func- e composition e source code of expressions can be ac-
tions for simple arithme- cessed
tic and conditional func-
tions are provided”

Dynamic Perspective. Appian provides a separate workflow modeling component through
“Process Model” design objects (see figure 73). The modeling language is based on BPMN but
provides some additional task types — the so-called “smart services” which are explained in
the Functional Perspective analysis category. Integrations with external systems are supported
through the design objects “Connected System”, “Integration”, and “Web API”. A “Connected
System” is closely intertwined with an “Integration”. A “Connected System” design object

134

Low Code Platforms: Promises, Concepts and Prospects

serves to specify connection information to an external source either through HTTP or Open-

API calls. Some connections to access external database systems and Al services are pre-im-

plemented by Appian (see Further Aspects). An “Integration” design object specifies the inter-

action with a “Connected System” (e.g., send a JSON request or access some file on the con-

nected system). “Web API” design objects serve to define access to web services.

It is also possible to define, manage, and execute RPA bots in the separate Appian RPA module.

RPA bots mimic simple user actions and can be designed based on several available templates.

The execution of RPA bots requires a local machine. The sequence of actions can be arranged

graphically (see figure 74). The respective Java code is generated automatically through the

recording of user actions either via Appian or other plug-ins.

5u9 Appian Process Modeler appian

DESIGNER VIEW

File Edit View Tools Lanes

HR Assessment v10.0 x

@ Recommendations

4" Send E-Mail

[Delete from Data Store Entitie:

[7] User Input Task
& Standard Nodes
® Activities
= Events
' Gateways
=1 Appian Smart Services
® Analytics
® - Communication
o) Document Generation
B Document Management
® Identity Management
B Process Management
= Task Services
B Rule Management
= Social
= Integration Services
B Connectivity Services
Data Services
Document Services
£ Deprecated Services
' Communication
Document Management

B Forum Management

Font X
Avrial s
BZU
] c—>| (X Yes — WY
y
N Start Node Assess Candidate ~ Recommend for Create Gandidate End Node
g Onsite? Folder
i
- B
Wite Assessment
@ ode Auser input task display name is not dynamic. Consider using an expression to define a unique display name per user input task. Having unique display names makes it

Process Model

easier for users to differentiate between their tasks in Tempo and task reports. Nodes: Assess Candidate.
The process model has been published.

Figure 73: Appian Process Modeler

135

Dismiss

Low Code Platforms: Promises, Concepts and Prospects

Appian RPA o appian

Dashboard

o©
. : Index > Robotic processes > TestBot »EI[_‘D-‘GW
X Robotic processes

L Resources

Task General Information Advanced Configuration
Schedule >
Monitoring > Robotic process variables
¥ Statistics > Add variable
? Help>

@ New Setup Section. Define your setup steps in the new section found in the sections dropdown list. This section is useful when you want to skip setup and cleanup %
when processing consecutive executions. View documentation

- +

EONOONELLLAEA Qi TTHE

NN Open Navigate
°

Figure 74: Appian RPA "browser" template

Table 59: Appian dynamic perspective summary

Focus on Representations

Conceptual representations = Languages Components
e business process mod- e BPMN e model editor
els e proprietary (for RPA

. e for RPA bots: Java code generator
e generic process models bots)

(for RPA bots)
Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e generic business pro- e Language concepts of e Java source code can be accessed for RPA
cess elements as part BPMN bots

of BPMN specification .
e Implementation-level documents for

e “smart services” con- workflows cannot be accessed
vey pre-implemented

functions for workflows

GUI Development. To develop GUISs, four design objects are offered within the Appian plat-
form: “Report”, “Process Report”, “Interface”, and “Site”. “Report” design objects can serve
to display persisted data as specified in “Record Type” design objects. “Process Report” design

objects display data from running workflow instances. Such reports are not inherently part of

136

Low Code Platforms: Promises, Concepts and Prospects

the GUI of a developed application, but can be accessed in the separate Tempo module. “Inter-
face” design objects are used to specify a mapping between user-defined entity types to GUI
elements. Interfaces are designed through a drag-and-drop editor with several generic system-
defined GUI elements (see figure 75). The GUI is synchronized with a proprietary “expres-
sions” code that can be accessed in the “Expression Mode” of an “Interface” design object. A
“Site” design object comprises a GUI environment for deployed applications. Each user can be
provided with a different “Site”. These “Site” objects consist of a navigation bar and different
GUI pages, whereby each GUI page is, directly or indirectly, constituted through an “Inter-
face” design object. GUIs can also be generated automatically based on a data model as defined
in a “Record Type” design object or through Appian’s Quick App Designer module, where the

required design objects for an application are automatically created based on the specification

of a single entity type (see figure 76).

[E NewMaintenanceRequest I¥ DESIGN MODE </> EXPRESSION MODE O appian
(2 EDIT | @ PREVIEW @ PERFORMANCE

COMPONENTS | PATTERNS.

Q Search Cc

Select a template
¥ TOP LEVEL LAYOUTS

(#] rorm FORMS
B9 carD HEADER
— = — ——
Oumorse 00 o3 I
¥ LAYOUTS 0 = 8 = 0 = a0 e =N}
{773 secTion
PAGES
D coLumns
000 SIDE BY SIDE —1 a
® o U og
B a0 Drag and drop from palette
& susowo 3 C1 =
~INPUTS > aooo 0ood
‘ * > 0ood 0ooo
Abe TEXT
a1 earacrarH EXAMPLES
123 INTEGER
=
456 DECIMAL a ® 8 a]
REQUEST SALES FACULTY LANDING LANDING
£ oare FORM DASHBOARD RECORD PAGE | PAGE Il
1O DATE & TIME
s 00g i
& ENCRYPTED TEXT -a. oo8 - li M
Iy LANDING L CASE TREND OVER YEAR OVER
wss FILE UPLOAD PAGE Ill PIPELINE DASHBOARD TIMEREPORT YEAR REPORT
03 SIGNATURE
110l sarcobe - - & =

- CALLTO ORDERS EMPLOYEE ADMISSIONS
SELECTION ACTION DASHBOARD 'ONBOARDING DASHBOARD

(3] oropoowN

Figure 75: Appian "Interface" design object example

137

Low Code Platforms: Promises, Concepts and Prospects

Create Quick App

Name Form Access Finished

Welcome to the Quick App creation wizard. Each Quick App helps your users capture and manage information on a single topic, like support tickets or resource requests. That
information will be represented by entries within your Quick App.

Let's start by naming your Quick App and the entries each user will create. Don't worry, everything you enter in this wizard can be updated later.
App Name * Singular Entry Name *

E.g., Support Ticket Management E.g, Support Ticket
Description Plural Entry Name *

E.g. Please enter questions and requests for technical support, and attach any relevant E.g, Support Tickets

files
4

This will be posted when your Quick App is created, to explain the app to your users

CANCEL CONTINUE

Figure 76: Appian Quick Apps Designer module

Table 60: Appian GUI development summary

User Interaction Perspective
Conceptual representations =~ Components Architectural Aspects

e GUI models (mostly in e drag-and-drop GUI Edi- | Implementation of MVC pattern
“Interface” design ob- tor
jects)

Focus on Reuse and Adaptability

Reference abstractions Adaptability

e library of general-pur- e GUI elements can be adjusted accordingly
pose GUI elements

e no further domain-spe-
cific reference abstrac-
tions

Further Aspects. Applications are deployed on an Appian web server and can be accessed via
a regular web browser. A list of all executed deployments can be viewed in a separate tab for
each application. Entire applications can also be exported as a set of XML. The exported files

do not directly support any deployment independent of Appian.

Appian does not offer any methodical application development support. “Notification” de-
sign objects can be defined which are used within workflow models to display certain mes-

sages for Appian users. The use of applications is guided by a definition of user groups

138

Low Code Platforms: Promises, Concepts and Prospects

through a respective design object. Users can be assigned to multiple groups. Every design
object within Appian needs to be provided with CRUD rights for selected groups. Groups can
also be arranged in group types, although these do not include any inheritance of rights.

The only Al capability provided directly within Appian is the “next best action” of the work-
flow modeler. This feature is also displayed in figure 73, where a list of “recommendations”
can be seen in the top left corner. The feature might be based on an inductive ML model. How-
ever, neither the model type nor its data foundation is accessible. The lack of explanation
makes the use of the predictions hardly assessable. The self-designated “Appian AI” compo-
nent of the platform emphasizes and supports the integration of external Al services as pro-
vided by the Google Cloud Platform. To access these feature user credentials for a Google

Cloud Platform domain must be provided.

Table 61: Appian further aspects summary

Accessibility and Convenience of Use

e no methodical development support
e the vast number of available design objects and confusing terminology present a burden to the initial use
of the platform
o the “Quick Apps Designer” module is insufficient to overcome this limitation, since its features are too
restricted
o Appian is thus hardly adaptable to a diverse set of user groups and demands some experience in ap-
plication development
e data modeling language lacks expressiveness

Modes of Use
Platform (i.e., Application Development) Application

e users of Appian must be assigned to some e different users can be provided with different GUI

user group screens

e each design object must specify the re- e noinherent support for collaborative use of an Ap-
quired CRUD rights for all user groups pian application

e user notifications can be embedded in
workflows

e methodical application development sup-
port is not provided
Focus on Deployment and Scalability

Target Location Support

e cloud-based platform, accessible viaareg- | e support to deploy Appian applications in Dockers
ular web browser containers

Focus on Atrtificial Intelligence

e “next-best action” in workflow models not convincing
e support for integration of Al services as offered by Google Cloud Platform

139

Low Code Platforms: Promises, Concepts and Prospects

5.4.2.3 Appian: Conclusion

Emphasized Areas of Application Development. The Appian platform does exclusively focus single
areas of application development. Dynamic and functional aspects as well as the configuration
of GUI pages are most sophisticated features of the LCP. This includes the workflow modeling
component and the design objects for functional specification. Static features are to some de-
gree limited in that visual data modeling is not supported. Increase of development produc-
tivity is mainly realized through the provision of design objects. These design objects are ap-

plication-independent, which can support reuse and integration.

Provision of Abstractions. The comprehensive set of features of the platform attempt to fade out
implementation-related details. However, no higher-level abstractions are presented for this
purpose and any specification of the available design objects demand some familiarity with
the respective area of application development. Configuration of the internal database through
phpMyAdmin can serve as a particularly illustrative example here. The provided representa-
tions are hardly accessible by lay developers. Domain-specific abstractions, beyond solutions
that are available on the Appian AppMarket, are not available. Features to support collaborative

development between lay and professional developers could not be identified either.

Role of IT Professionals. The use of the platform is generally demanding and strongly focusses
a modular approach in software development. The Appian platform relies on a vast number
of interrelated design objects. Except for the Quick Apps Designer module, lay developers are
likely to be overburdened by this complexity. However, applications developed with the Quick
Apps Designer do not include any workflows or custom function and rely on one entity type
only. Such applications are thus not sufficient for most use cases without further adjustments

by professional developers.
5.4.3 Pega Platform

The Pega Platform is offered by Pega, a software company that has existed for around 40 years.
It is based in Cambridge, MA, and runs about 40 offices on all continents except for Africa.

5.4.3.1 Pega Platform: Profile of Vendor
Product Portfolio. Pegasystems (regularly abbreviated as Pega) offers a portfolio of different,

interacting products jointly referred to as Pega Infinity.®® The products represent pre-imple-
mented software solutions tailored for specific needs, e.g., customer service or sales automa-

tion. Its low-code product is the Pega Platform.

68 https://www.pega.com/infinity, accessed 09-17-2021

140

Low Code Platforms: Promises, Concepts and Prospects

Product Provenance. The company Pegasystems emerged in 1983.% The earliest archived web
entry of pegasystems.com can be identified on Nov 13, 1996, where aspects such as “workflow
solutions” and “automation” are marketed. The Pega Platform is said to empower businesses
through “smart business process management” (Sep 26, 2004). Business process management
remains a primary focus of marketing in the following years. The term low-code is mentioned
since Oct 02, 2018, and the Pega Platform is referred to as a low-code platform at least since
Sep 30, 2019.

Focus on Marketing. Low-code development through the Pega Platform is advertised to “em-
power those without tech backgrounds” through “visual tools and drag-and-drop functional-
ities.”? Lay developers and professional developers are addressed. Further concepts like BPM,

Al, application testing, and UX design are also part of their current marketing message.

Table 62: Pega Platform profile of vendor summary
Product Portfolio

e wide variety of software products that ad-
dress specific needs

e the Pega LCP serves as the main application
development product

Product Provenance

e company emerged in 1983

e early focus on workflows and business pro-
cess management

e focus shifted towards application develop-
ment

e |abeled LCP since late 2019

Focus on Marketing

e |ow-code to support lay developers

e both kinds of developers are explicitly ad-
dressed

e wide variety of features are advertised

5.4.3.2 Pega Platform: Analysis of Platform Features

The Pega Platform is divided in four workspaces. These are denoted as App Studio, Dev Studio,
Prediction Studio, and Admin Studio. Only the former two serve directly to develop user-facing

applications. App Studio is the more user-friendly development environment oriented towards

6 https://www.pega.com/system/files/resources/2021-03/pega-corporate-factsheet-1-30-2020.pdf, ac-
cessed 09-17-2021

70 https://[www.pega.com/products/platform/low-code-app-development, accessed 09-17-2021

141

Low Code Platforms: Promises, Concepts and Prospects

business users. Dev Studio provides access to a more extensive set of features to develop appli-
cations. Prediction Studio is used to create and manage ML models. Admin Studio is not included
in the trial version and is thus not considered in the subsequent analysis. The App Studio home
screen, which provides the overview of an example application is displayed in figure 77. The
navigation pane on the left highlights the six components included in App Studio: “Overview”,
“Case Types”, “Data”, “Channels”, “Users”, and “Settings”. Unless otherwise noted, the sub-

sequent analysis refers to features provided in App Studio.

APP STUDIO ~ Application : MyTown 311 Preview ® 0O

£ DEVELOPMENT

Overview

MyTown 311 e

[T https://kvleoOhm. pegacea.net/p pp/MyTown311/
MyTown 311

Read more

Pega Infinity

), What's new in 8.6.1? b
Version: Pega platform 8.6.1 Application documents Application profile

About Export Manage
Application layers

Personas Manage (2)

h Manager H user
Generated by New Application API Generated by New Application API / ‘
Channels Manage (3) N /““‘
User Portal User Mobile App Pega API "
Default employee-facing portal for Cosm... g Application APIs are a sel ‘
Case types Manage (1)
Service Request
Create MyTown 311
01.01.0
CE Base
ﬁ 01.01.01
Data objects Manage View data model o§
No data objects] Cosmos Rules
03.0 A

Figure 77: Pega Platform App Studio example application overview

Static Perspective. The definition of entity types is different for the two development environ-
ments. In App Studio, entity types are specified through “data objects”. Through data objects,
users can define the attributes of an entity type and additional validation rules. General data
types like “text” or some business-generic data types like “phone” are offered for this purpose.
Data objects also contain “views” (no GUI element, but a selection of table fields — similar to a
database view) and “pages”. Data pages are used to define operations on the underlying data.
The definition of a data object in App Studio is guided by auto-generated data pages for stand-
ard read and write operations. Further implementation-related details, like the definition of
database keys or inheritance relations, is only possibly in Dev Studio. SQL queries cannot be
accessed by the user in neither environment. Data can be persisted on the Pega platform (the
exact database technology is not accessible) or some connected external source. Mappings be-

tween entity types can be defined through “data transforms” in App Studio, which is relevant

142

Low Code Platforms: Promises, Concepts and Prospects

for any transient-persistent as well as external-internal source mapping. Two different repre-
sentations of the underlying data model are available: a “Visual Data Model” and an “Integra-
tion Map”. The Visual Data Model uses a proprietary modeling language to merely display
case types and their use of data objects (see figure 78). These diagrams can be accessed in App
Studio and Dev Studio. “Integration Maps” are only available in App Studio. These highlight
the sources of user-defined entity types (see figure 79). Reference data models are not availa-
ble. The Pega Marketplace”, however, allows to download components or entire applications at

a certain fee.

71 https://community.pega.com/marketplace/search, accessed 10-13-2021

143

Low Code Platforms: Promises, Concepts and Prospects

APP STUDIO ~ | Application : My Auto Application

Preview @ [J) 4 £ | TRAL
& Data model
Search Q
< Auto Loan Open +
Fields (20)
Active Channel Text (single line)
Address Embedded data Vehicle nt
fehicle info
Applicant Embedded data
Case ID Text (single line)
Auto Loan
Commit DateTime Date & time
. Vehicle
Settings Contact Embedded data
Address
Create Date/Time Date & time _
Income
Create Operator Name Text (single line)
Applicant
Income Embedded data
Label Text (single line)
Loan amount Currency
Native Social Channel Text (single line) Contact
Notes Text (paragraph)
Purchase Price Currency
Save DateTime Date & time
Update Date/Time Date & time 0
Update Operator Name Text (single line) \—/A

Figure 78: Pega Platform App Studio Visual Data Model example

APP STUDIO ~ Application : GoGoRoad

Preview

= Integration map

’ Customer s

\
) /) a o
Data , Payment information *

! ' Y
=0 !
Channels

Service address

Service provider

GoGoRoad o
i [No source system
s Services offered [Y]
Pega o .
Vehicle information "

\

\ '
\ '

\ . '
\ Vehicle makes 1
\ .
\ .
\ .
\ o g
'\ Vehicle models ’
\ .
\ ’,
\ /
. .,
. .
N .
N .
< .
. .
N .
N .
N .
N L
S &°

Figure 79: Pega Platform App Studio Integration Map example

144

Low Code Platforms: Promises, Concepts and Prospects

Table 63: Pega Platform static perspective summary

Focus on Representations

Conceptual representations = Languages Components
e “Integration Map” e both representations e diagram editor
e “Visual Data Model” follow a proprietary lan-

guage

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e some generic data e inheritance (in Dev Stu- | e implementation-level documents are not
types like text and inte- dio) available
ger as well as some e data source (in Integra-
composite data types tion Map)

like phone and location
are offered

e no further reference
data models are of-
fered

Focus on Integration

Common static abstractions = Applications developed within Pega can access the same static abstractions.
across a range of applica-
tions

Access to common datare- | Itis possible to persist all data in an internal Pega database.
positories across a range of
applications

Functional Perspective. The specification of entity types in App Studio can include attributes,
whose values are calculated based on some user-defined function. For this purpose, users can
define either a decision table (multi-conditional statements), a function (common pre-written
iterative functions like sum, average, or max), or an expression (spreadsheet-like arithmetic or
conditional statements). Other than this and the execution of workflows, the Pega Platform
includes an extensive catalog of “rule” types that can be accessed in Dev Studio. Each rule type
provides a user with web forms to support either the specification of particular functions or
configure certain properties of an application. Rule types are categorized in 15 different groups
(e.g., “Integration-Mapping”, “Process”, “Technical”, or “Security”) with up to 31 rule types

each.

Every user- or system-define rule is assigned to a “context” and a “ruleset”. Rulesets are a
collection of rules. Contexts are arranged hierarchically and allow to assign a layer to a ruleset

for reusability. Rulesets that are assigned to a higher-level context are inherited to all lower-

145

Low Code Platforms: Promises, Concepts and Prospects

level contexts. Upon creation, every Pega application must be assigned to a context. The con-

text, then, determines which set of pre-implemented rules can be used within an application.

Examples for rule types to specify custom functions are “decision tree”, “decision table”, and
“function”. Decision tables are multi-conditional return operations arranged in tabular form
(see figure 80). Completeness and consistency are validated automatically. Decision trees de-
fine if-else statements based on different attributes. “Function” rules are specified through a

built-in Java source code editor. Rules can be embedded in the execution of workflows (see

Dynamic Perspective).

DEV STUDIO ation: Loans ~ Configure “~ Launchportal ~ Create DEVELOPMENT
@ Recents Home [Loan Request New

s Search recents Edit Decision Table: Borrower Risk Adjustment Table [Available] G v X
OR7EAZ-Loans-Work-LoanRequest ~ BorrowerRiskAdjustmentTable Loans:01-01-01

Borrower Risk Adjustme... DECISION Table Results Parameters Pages &Classes Specifications History
OR7EAZ-Loans-Work-LoanRequest * Bo...

Loan Request * B
Instance List

Show conflicts H Show completeness H Export H Import
Conditions Actions
Credit Score > = Loan Amount > Return
if 800 50000 , 0225
else if 800 0 , 0200
else if 700 50000 , 0325
else if 700 0 , 0275
else if 200 50000 , 045
else if 200 0 , 0425
»

otherwise 0.7

Figure 80: Pega Platform Dev Studio decision table

Table 64: Pega Platform functional perspective summary

Focus on Representations

Conceptual representations Languages Components

e no diagram representa- = not accessible e various GUI screens that demand pre-de-
tion of functions fined user input in Dev Studio

e “decision tables” e Java source code editor

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implementa-
tion level documents

e library of reference func- | e depends on rule type e Javasource code
tions provided by Pega

146

Low Code Platforms: Promises, Concepts and Prospects

Dynamic Perspective. Workflow types are referred to as “case types” within the Pega Platform.
An example case type in App Studio is illustrated in figure 81. Each case type consists of differ-
ent “stages”, at least one start and one end stage underlined green and red respectively. Each
stage contains a set of “processes”, whereby each process serves to group some number of
“steps”. “Processes” within the Pega Platform only allow for a sequential definition of steps.
No further differentiation of flows or gateways is included. Steps are used to execute a diverse
set of functions. Three kinds of steps can be embedded in case types: “processes”, “user ac-
tions”, and “automations”. Largely self-explanatory, “processes” refer to some predefined
process, itself a collection of further steps (e.g., “Resolve Issue” in figure 81 would be a process
that can be referenced in further case types), “user actions” correspond to manual tasks requir-
ing user input, and “automations” are automatically executed tasks that require no additional
user input like “generate PDF” or “persist case”. App Studio does not allow for adding user-
defined functions. For stages, processes, and steps a “service-level agreement” (SLA) can be
added. Every stage, process, and step has a system-defined “urgency” attribute with an integer
value. SLAs can be defined to update this urgency attribute based on a user-specified run du-
ration. Data, “Personas” (see Further Aspects), and “Channels” (see GUI Development) can be
associated to stages. Stages are generally displayed from left to right. Alternative case paths,
or cases that do not fit on a single line, are continued underneath. More extensive features to
configure case types are available in Dev Studio. Here, it is also possible to access and edit
process diagrams, i.e., the collection of steps as defined in App Studio (see figure 82). This al-
lows, inter alia, to define custom “flow” actions, which are executed before or after a step. The
auto-generated Java and XML code can also be accessed. Only in the process editor in Dev
Studio, additional “utility” tasks can be added which are not available in App Studio. Utility

tasks can execute “rules” (see Functional Perspective).

147

Low Code Platforms: Promises, Concepts and Prospects

L APP STUDIO ~ Application : MyTown 311 @ J 4 £ | DEVELOPMENT

< Case type: Service Request Save

Workflow Data model Views Settings

Case life cycle
View: Steps, Personas, Data, Releases (All) ~

TG

LjD Create Review Submission Resolve Issue

Channels
m Report problem m Schedule Repair E Perform Repair
E Identify location + STEP Review Repair

E Request updates Send Repair Confirmation

Settings. -+ FORM STEP + STEP

Personas & Channels

0 Resident o Services Coordinator A user
User Portal [mLp1] User Portal [mLp1] User Portal mLP1]
E User Mobile A.. ETTED E User Mobile A.. (ITED E User Mobile A.. ETTED
~+ CHANNEL ~+ CHANNEL + CHANNEL
+ PERSONA + PERSONA A Manager

User Portal { mLP1]
Q E User Mobile A.. ETTED

-+ CHANNEL

Figure 81: Pega Platform App Studio case type example

DEV STUDIO A My Auto Application ~ Configure “~ Launchportal ~ Create TRIAL
Case types Home Auto Loan Check loan ap... Collect_Flow

—+Add a case type Flow: Customer information [Available]
BFS-MyAuto-Work-AutoLoan Collect_Flow

MyAuto:01-01-10

Auto Loan

» Diagram Parameters Pages & Classes Design Process Specifications ~ Requirements Test cases History
EEos Check loan application status o N —
- ° L2l

) & Collect_Flow

Applicant Info- Income Info

, Termsand
[conditions

Vehicle Info

Q

Loan Info

Figure 82: Pega Platform Dev Studio process diagram

148

Low Code Platforms: Promises, Concepts and Prospects

Table 65: Pega Platform dynamic perspective summary

Focus on Representations

Conceptual representations = Languages Components
e generic process models e proprietary e diagram editor for processes
e XML and Java code generator for process
diagrams

Focus on Reuse and Adaptability

Reference abstractions Language concepts Access to external sources and to implemen-
tation level documents

e reference abstractions e composition e workflow schema in XML for processes
are only available as e “process”, “automa- e Java source code for processes
part of entire applica- tion”, “user action” task
tions types

e ‘“case type” models are
disseminated into dis-
tinct stages

GUI Development. Uls of applications developed with the Pega Platform are specified through
“channels”. Channels can be messaging services (e.g., send email to execute workflow in-

i

stance) or common GUIs. Three kind of GUI channels are distinguished: “mobile”, “web
mashup”, and “portal”. “Mobile” channels are used to configure native mobile apps that can
be deployed on iOS and Android devices. Mashup channels generate HTML frames that can
be embedded in some external web site. Portal channels are responsive web GUIs, where the
GUI elements adjust to the respective display size. Each GUI consists of two kinds of GUI
pages — user-generated (“landing page”) and system-generated (“custom page”). Custom
pages include, among others, a “Home”, “Reports”, and “Explore Data” GUI page as well as
pages to create workflow instances. The configuration of the arrangement of GUI pages is dis-
played in figure 83. Landing pages can be developed in a drag-and-drop editor (see figure 84).
Each GUI page consists of “sections”, i.e., layout schemas, and “widgets”, that are placed
within a respective section. Pega offers several general templates for sections and widgets.
Separate, domain-specific reference GUIs are not available. By default, the Pega Platform gen-
erates one portal and mobile channel automatically. In Dev Studio, user-defined templates can

be designed either per drag-and-drop or via the specification of HTML code.

149

Low Code Platforms: Promises, Concepts and Prospects

APP STUDIO Application : Lecture Management Preview @ 5o B STAGING

< Portal: User Portal Save

Content Configuration

Preview
Navigation
Navigation
ase Landing pages Lecture Management
Navigation menu
Data
Custom pages > o o
Q Q The first item in the list will be your start page Create
Channels
& Home]
Home
@ Dashboard W
= Spaces i Dashboard
il Reports W H Spaces
B Configuration Tl
- Reports
@_ Explore Data o

Configuration
+ Add item + Add separator

Explore Data
"Create" menu

Attend Lecture W
Lecture Participation O}

+ Add case type

Figure 83: Pega Platform App Studio GUI portal configuration

APP STUDIO Application : GoGoRoad Userportal v] D [| @ ovesign Extpreview = @ [J 4 DEVELOPMENT

Edit dashboard

Publish | ~
Create team

My team (primary team) Current template

Cases entered by me

Q Search ini
Managed by Administrator

& Group (3) ¢ Fields * Density - Two column

Switch template
C Refresh
Widgets
D Description 1 Status

settings Case volume = slot 1
No results

Cases entered by me

i Case status

—+ Add widget(s)
Cases by status [¢

No data to display Slot 2
Show stages for

Assistance Request i Teams

i Report widget
-+ Add widget(s)

No data to display

Figure 84: Pega Platform App Studio GUI designer

150

Low Code Platforms: Promises, Concepts and Prospects

Table 66: Pega Platform GUI development summary

User Interaction Perspective

Conceptual representations = Components Architectural Aspects
e GUI model e drag-and-drop GUI Edi- = implementation of MVC pattern
tor

Focus on Reuse and Adaptability
Reference abstractions Adaptability

e library of general-pur- e widgets can be adjusted according to their size, position, and style
pose GUI elements

o reference GUIs are not
available beyond the
Pega marketplace

Further Aspects. Pega applications are deployed on a web server and can be accessed through
aregular web browser. The Pega platform also uses a version control system. Applications can
also be designed for native mobile OS support and deployed on the respective devices. Pega
applications can also be accessed externally through system-defined APIs. It appears that ap-
plications developed with Pega cannot be exported to and executed in other environments. It
is merely possible to export an “overview document”, which lists all artefacts specified in App

Studio (e.g., entity and workflow types).

Three aspects provide explicit support for collaborative development in Pega: the version con-
trol system, the “agile workbench”, and the “developer collaboration”. The agile workbench
comprises a list of user stories, bugs, and feedbacks (see figure 85). Corresponding items in-
clude common elements like name, description, associated feature (from the application), at-
tachments, and some priority ranking. The “developer collaboration” panel does not offer any
specific structure and can simply be used to enter comments visible to all or some specified
subset of users. While the “developer collaboration” panel is only visible in App Studio, the
agile workbench can also be accessed in Prediction Studio. A separate “collaboration center””?
offers a Pega-specific forum for further discussions. End users of the application are assigned
“personas”. A persona represents a prototypical user category which is assigned to a portal
(see GUI development), mobile GUI, and a set of CRUD rights for interaction with the various
parts of an application (i.e., single GUI pages, entity types, and cases). More detailed configu-

ration options, also to specify developer access, are offered in Dev Studio.

72 https://collaborate.pega.com, accessed 10-13-2021

151

Low Code Platforms: Promises, Concepts and Prospects

APP STUDIO ~ Application : Lecture Management User Portal ™ [Design

a0
Lecture Management

Pulse
Welcome to Lecture
Management

We've launched a brand new experience to
accelerate your workflow.

@ Post -~

@ Start a conversation

Check out the guides to help you get the most of
Cosmos.

Discover Cosmos

@ My worklist 0

+
No work found.

c &

Items | follow o

Q Search & Group @ Fields * Density

Priority Status Actions

o
Be the first to post!)
No results.

Figure 85: Pega Platform App Studio Agile Workbench

Exitpreview = @ [%
X Agile Workbench

Stories

List by feature: All~

Grading

Seats Distribution

Us-2 |2

o+ STAGING

+

Al services are part of the Prediction Studio workspace. Four different kinds of AI models can

be specified: “adaptive model”, “predictive model”, “text extraction”, and “text categoriza-

tion”. Some generic, pre-trained models for text categorization and text extraction are offered

by Pega (see figure 86). Predictive models based on Pega ML demand some template for spec-

ification, none of which is part of the trial version used for our analysis. Adaptive models

demand the specification of dependent (“outcomes”) and independent (“predictors”) varia-

bles — the exact model underneath is inaccessible though. Text models can be deductive (rule-

based or keyword compliance) or inductive (pattern based on provided data as derived from

inaccessible ML model). External access to Google Al and Amazon SageMaker is supported.

152

Low Code Platforms: Promises, Concepts and Prospects

PREDICTION STUDIO ~ Application: Lecture Management

& Models

\ (D) # | smcinG

Type All 5

Unit Entities System Entities

Text extraction Text extraction

Completed 7/23/21 5:42 AM Completed 7/23/21 5:42 AM

Updated by = Anyone B

Sortby | Last updated 4| search 'Search Q

pattern auto-tagging

eyword Extraction ke
alysis rule entity au
Email

Text extraction

Completed 6/25/21 8:10 AM

Languages

Languages

02 04 06 08
F-score

Email Parser Small Talk
Text extraction Text categorization - Topic model
Completed 3/1/21 5:37 PM Completed 1/31/21 9229 PM

02 04 06 08
F-score

Sentiment Models
Text categorization - Sentiment
model

Completed 1/31/21 8:03 AM

pattern auto-tagging
bdel Text analysis rul
eyword Extraction ke
alysis rule entity au

ovvrnsd

Date
Text extraction

Completed 6/25/21 8:10 AM

pattern auto-tagging

eyword Extraction ke
alysis rule entity au

o o
NER

Text extraction

Completed 1/28/21 1:46 PM
I

25 models

Actions v New

pattern auto-tagging
bdel Text analysis rul
eyword Extraction ke
alysis rule entity au

o oveund
Address
Text extraction

Completed 6/25/21 8:10 AM

pattern auto-tagging
del Text analysis ru
eyword Extraction ke
alysis rule entity au
Salutation

Text extraction

Completed 7/1/20 12:27 PM

e |

Figure 86: Pega Platform Prediction Studio pretrained machine learning models

Table 67: Pega Platform further aspects summary
Accessibility and Convenience of Use

o user-friendly App Studio is intuitive and convenient to use
e Dev Studio is more demanding and requires some training first
e use of proprietary modeling languages

Modes of Use
Platform (i.e., Application Development) Application
e version control system, “agile workbench”, = e different application users can be assigned different

GUl screens
end users are assigned a “persona” that specifies
CRUD-based rights

“developer workbench” shall support col-
laborative development °
e allows shared access to user stories, com-
ments, identified bugs, and feedback
e detailed specification of different devel-
oper roles and rights in Dev Studio

Focus on Deployment and Scalability
Target Location Support

e cloud-based platform, accessible viaareg- | e
ular web browser .

possibility to define custom branches
support for Docker deployment

Focus on Artificial Intelligence

e provision of some generic pre-trained ML models
e support to integrate Google Al and SageMaker services

153

Low Code Platforms: Promises, Concepts and Prospects

5.4.3.3 Pega Platform: Conclusion

Emphasized Areas of Application Development. The Pega Platform with its four integrated work-
spaces (App Studio, Dev Studio, Admin Studio, Prediction Studio) is a comprehensive LCP with
no single point-of-focus. The extensive catalog of rule types in Dev Studio supplies users with
predefined structures to specify functions. Several concepts to define and manage data are
included (e.g., data transforms and data pages) along two different representations of the user-
defined data model (the “Visual Data Model” and “Integration Map”). Workflow types can be
specified through stages and steps, for the latter various functions are pre-implemented. Dia-
grams for “processes” (which are a part of workflows in Pega) and more advanced configura-
tion options can be accessed in Dev Studio. Collaborative development is supported through
integrated communication channels where user stories, bugs, and general comments can be
exchanged. Multiple types of GUIs (mobile, mashup, portal) can be developed via drag-and-
drop and source code editors. A separate workspace (Prediction Studio) offers support for the
definition of Al models and access to external Al services. Application development with the
Pega Platform also faces some shortcomings. The proprietary data modeling languages do not
allow to visually adjust the data models. Common modeling concepts like relationships and
inheritance (which are technically supported by Pega) are not included at all. Extensive work-
flow types are hardly legible with the chosen representation. Diagram-based representations

are only accessible in Dev Studio.

Provision of Abstractions. Implementation-related details are largely faded out. Development
and configuration in Dev Studio is more extensive than in App Studio. For example, it is possible
to add custom scripts, specify object-relational mappings, and define database keys. Presum-
ably, Dev Studio is thus largely inaccessible to lay developers. The focus lies on supporting
developers in performing repetitive tasks and providing an architecture that fosters reuse
across multiple applications. The “application layer” term central for this purpose is also pre-
sent in App Studio, where higher level abstractions from the technical particularities shall sup-
port lay developers. The platform does not offer any domain-specific abstractions to guide the
definition of entity types, GUIs, and case types. Lay developers, who use App Studio exclu-
sively, do not have the possibility to configure different application layers and rulesets. This
leaves the definition of domain-specific abstractions and functionalities with a varying degree

of specificity to professional developers that use Dev Studio.

Role of IT Professionals. It seems that the two application development workspaces are tailored
towards the distinction between lay and professional developers. Both kinds of developers are
explicitly addressed in Pega’s marketing. The role of IT professionals would thus correspond
to the effective use of Dev Studio. This encompasses, among others, the following aspects: de-
tailed configuration that is not supported through App Studio, specification of further (script-
based) functionalities, and clarification of technological details (e.g., database keys) to improve

154

Low Code Platforms: Promises, Concepts and Prospects

efficiency and minimize integrity threats. Productivity increase as realized through comple-
menting “application layers” pose an additional challenge and opportunity for professional
developers: they need to define powerful artefacts that can be applied to a broad range of
applications. More generally, App Studio developers can implement basic, use case-specific
functionalities that meet certain requirements, while Dev Studio developers manage applica-

tion landscapes and define artefacts suitable for reuse.

544 “Low-Code” Multi-Use Platforms for Business Application Configuration, Integra-

tion, and Development: Conclusion

All three platforms encompass some support for data modeling, workflow modeling, collabo-
rative application development, GUI configuration, and Al services. The scope and quality of
this support varies among the three vendors. While Microsoft and Pega offer several reference
Al models with a user-friendly interface to specify, train, and deploy these models, Appian
merely assists in the integration of external Al services. None of the three LCPs is free of short-
comings. These include the lack of basic data modeling concepts in Appian and Pega as well

as the restricted modification options for reference functions in Microsoft Power Apps.

Given the general breadth of the platform’s features, the choice of a platform is less concerned
with the scope of feasible applications, but rather with other requirements that are tailored
towards the specific use cases aimed to be implemented. All three LCPs emphasize the im-
portance of reusing application artefacts to increase development productivity. Microsoft ad-
dresses this concern through their catalog of reference entity types, Appian relies on so-called
“design objects” that exist application-independent, and Pega implements “application lay-
ers” that encompass reusable artefacts on multiple user-specified levels. While the platforms
provide mechanisms to define reusable artefacts, they also lack domain-specific reference
models to support developers in this regard. Appian and Pega implement hardly any domain-

specific abstractions and outsource this concern to their respective marketplaces.

An assessment of the reusability of artefacts needs to consider both their respective scope and
effectiveness. Therefore, this concern combines aspects from a business-oriented perspective
(e.g., domain-specific concepts and requirements) and a more technology-oriented perspective
(e.g., integration concerns). It is thus not surprising that the three low-code vendors in this
prototypical category address lay and professional developers in their marketing. Microsoft
Power Apps enables the specification of different app types with access to various editors tai-
lored towards differently trained developers. Pega provides two integrated development en-
vironments in App Studio and Dev Studio, which are tailored towards lay and professional de-
velopers respectively. Appian’s approach of implementing “design objects” fails to provide
lay developers with support. Its Quick Apps Designer covers a scope of functionality too re-

stricted as to be considered a reasonable alternative. Nonetheless, the considered LCPs fail to

155

Low Code Platforms: Promises, Concepts and Prospects

provide convincing solutions to cope with a diverse set of differently trained and experienced

developers.

156

Low Code Platforms: Promises, Concepts and Prospects

6 Discussion

The subject of this study is unusual for an academic project. An investigation of available prod-
ucts needs to be handled with caution for reasons elucidated in the introduction. At the same
time, however, a new buzzword of considerable scope implies a need for clarification — on the
one hand, to treat it in a sound manner in teaching, on the other hand, to support decision-
makers in practice in developing an appropriate assessment. In addition, a further aspect con-
tributed to our interest in the topic. In recent years, a phenomenon of central importance for
the future of modeling research has been discussed again and again at conferences. While the
central importance of modeling for the analysis and design of complex software systems is
indisputable, conceptual modeling is still not a common practice in software development
processes. Instead, it is even seen by some as a cost-driver with little value only. This some-
what paradox situation leads to the question how the undisputed relevance of conceptual
modeling can be demonstrated more effectively to decision makers in practice. Corresponding

discussions not infrequently led to pronounced perplexity.

Against this background, our research is also aimed at finding clues on how to communicate
basic ideas of conceptual modeling in such a way that they arouse the interest of decision-
makers. In other words: what could academia learn from the marketing professionals of tool
vendors to better communicate the case of conceptual modeling? The investigation of the tools
has also stimulated interest in a fundamental research question. Various vendors do not only
target novice or lay users (“citizen developers”), but also professional software developers.
Accordingly, these providers are not only concerned with supporting the development of
smaller applications, but also of large, enterprise-level systems. Such a claim leads to the ques-

tion how to represent a tool and the artefacts it provides at different levels of abstraction.

Before we summarize our main findings (subchapter 6.1) and look at the limitations of our
study (subchapter 6.2), we would like to stress one aspect that we underestimated at the be-
ginning. With respect to the insights we gained, the effort required to develop an assessment
of the tools was remarkable and has far exceeded our initial estimates. Available trainings and
documentations of LCPs are sometimes strongly intertwined with marketing messages, the
variety of tool vendors rely on different foundational terms, and to explore the details of an
LCP - especially with a critical stance — often required to perform an extensive in-depth inves-
tigation beyond the documented set of features. While our analysis revealed characteristic
commonalities of the platforms, it also showed a considerable, sometimes subtle variety of the

tools.

157

Low Code Platforms: Promises, Concepts and Prospects

6.1 Key Findings

The challenges addressed in the marketing of LCPs are hardly novel and approaches to deal
with them have been presented in academia and business products for long (see chapter 2).
Every single one of the examined LCPs existed before the advent of the low-code notion. The
advertised promises seem similarly consistent over time: empowerment of business users and

decrease of development time are at the center of marketing messages for most vendors.

All platforms share a common base assumption in that (business) organizations depend on
software and on the ability to quickly realize and maintain software systems that satisfy chang-
ing business needs. This is such a fundamental premise that only some few vendors, like
Quickbase and TrackVia, address this aspect explicitly in their marketing. Building upon this,
the vendors of the platforms we investigated advertise two aspects with a varying degree of
emphasis: (1) common source-code based application development is cumbersome, not effi-
cient, and should therefore be avoided where possible. (2) Traditional application develop-
ment can be supported by artefacts, mechanisms, and concepts that increase development
productivity. Vendors like TrackVia address (1) almost exclusively in their marketing, while
vendors like Appian emphasize (2). Yet others, e.g., Zoho or Creatio, advertise both aspects as
central to low-code development. While certain features, like GUI design or the definition of
data structures are characteristic for all LCPs we analyzed, the diversity of particular imple-

mentations is a clear obstacle to their comparison.
6.1.1 Low-Code Development and Source Code Configuration

One aspect that clearly illustrates this heterogeneity is a vendor’s stance towards source code
access and configuration. Some LCP vendors (Quickbase, TrackVia) do not provide for source
code editing or the integration of external source code files. This is closely intertwined with
their respective marketing messages: traditional software development in general, and coding
in particular, are described as a burden that should be overcome to make companies more
agile and competitive. For this purpose, source code is faded out as much as possible and
configuration options typically do not go beyond simple custom arithmetic or conditional
statements that resemble common spreadsheet formulas. The resemblance to spreadsheets is
also explicitly advertised in low-code basic data management platforms. Whether or not this
marketing image of “overcoming IT” reflects a common nerve among frustrated business us-
ers cannot be evaluated in this report. The other considered platforms (Bonita Studio, Creatio
Studio, Mendix, WaveMaker, Zoho Creator, Microsoft Power Apps, Appian, Pega Platform)
allow to access and edit source code to a varying degree. Most include built-in source code
editors (Bonita Studio, Creatio Studio, WaveMaker, Zoho Creator, Appian, Pega Platform) so
that users can define custom scripts. Some allow for the specification of functions that can be
used across applications (WaveMaker, Zoho Creator, Appian, Pega Platform), which helps to
avoid functional redundancy. In general, the more code editing is enabled by an LCP, the more

158

Low Code Platforms: Promises, Concepts and Prospects

demanding is its use.. It is therefore not surprising that most that most vendors of platforms
which allow for extensive coding address professional developers (Bonitasoft, Mendix, Wave-
Maker, Zoho, Microsoft, Pega Platform). Bonita Studio and WaveMaker are even marketed for
use by professional developers only. It is thus clear that application development through
LCPs does not address the so-called “citizen developers” exclusively nor necessarily.

6.1.2 Low-Code Development and the Provision of Abstractions

Increasing the level of abstraction from a technological point-of-view has been a central con-
cern for computer scientists since the emergence of the discipline. This is most notably appar-
ent in the development of programming languages. Other approaches (see chapter 2) attempt
to provide powerful abstractions from implementation-level documents through the provision
of conceptual models. Some form of visual model editor is apparent in every single LCP. Some
platforms provide visual model editors for entity types (WaveMaker) or workflows (Bonita
Studio, Creatio Studio) exclusively, whereby it should be noted that the concept of a “work-
flow” is not used consistently among the platforms. Most LCPs provide multiple model edi-
tors for various kinds of models (Quickbase, TrackVia, Mendix Studio Pro, Zoho Creator, Mi-
crosoft Power Apps, Appian, Pega). The modeling languages are not accessible to the user so
that any adjustment or assessment of them is not possible. Some modeling languages hardly
lead to the known benefits of conceptual models mentioned in chapter 2. Consider for example
the rudimentary data modeling languages in Appian, Zoho Creator, and Pega Platform. Some
vendors advertise that their platforms use common modeling standards, most LCPs rather use
proprietary adaptations of standard modeling languages (e.g., BPMN in Creatio and Appian).
The role and relevance of conceptual models for LCPs also vary. In platforms like Mendix,
Creatio Studio, or Bonita Studio, conceptual models are to some extent the only accessible
mechanisms for users to define database schemata, data mappings, or workflow types. Also,
some platforms use conceptual models merely as an additional representation which cannot
be configured by a user. This is the case for the conceptual models available on Pega Platform
and the data models in Zoho Creator and Creatio Studio. In these cases, application develop-
ment is supported through the provision of predefined web forms. Configuration of applica-
tion artefacts through various representations is scarcely supported — although this, it might
be proposed, is a central aspect to meet the requirements of different kinds of developers. Data
models in WaveMaker and some types of workflow models in Zoho Creator serve as excep-
tions, where conceptual models are synchronized with source code and both representations
can be edited by the user. In how far LCPs can be considered tools for model-based or model-
driven development thus varies with each platform. Therefore, we would not regard low-code
as equivalent to model-driven development as proposed by Cabot (2020), even though they

share obvious commonalities.

159

Low Code Platforms: Promises, Concepts and Prospects

Users are not provided with the possibility to define DSMLs on their own in any of the con-
sidered LCPs. Domain-specific support is generally scarce and not very elaborate. Most plat-
forms offer some pre-implemented data types (e.g., currency) or entity types (e.g., customer)
that correspond to general terms used in business. Beyond this, however, domain-specific sup-
port is only partially addressed through the provision of reference models. Mendix, Appian,
and Pega outsource this concern to platform-specific marketplaces where domain-specific ar-
tefacts can be acquired. Creatio Studio, Zoho Creator, and Microsoft Power Apps provide a

more or less extensive catalog of reference models.

6.2 Limitations

The results of our study is put into perspective by various restrictions, some of which are al-
ready mentioned in passing during the analysis of platform features (see chapter 5) or are
elaborated in the depiction of the analysis method (see chapter 4).

Our analysis framework is not exhaustive and also disregards some aspects of application de-
velopment in general, such as IT security concerns or economies. We do not wish to mitigate
the relevance of such aspects for businesses and academia, but the investigation of such as-
pects — as far as it is feasible at all — does not contribute to our primary research goals. Some
further aspects like performance or scalability were not accounted for because that would re-
quire the prototypical implementation of larger applications, which was clearly beyond the
scope of our current study. For similar reasons, we were not able to account for additional

phases of the application lifecycle, like testing, debugging, or requirements engineering.

Since our study was restricted to freely available LCPs, we were also not granted complete
access to the platforms’” inner-workings. For example, the underlying specification of modeling
languages or data persistence mechanisms were to the most degree not accessible to us. With
respect to this lack of accessibility as well as the complexity of the tools, we cannot exclude
that we might have overlooked or misunderstood some features. Furthermore, the results of
the study may be compromised by the fact that we were dealing with a moving target. There-

fore, it is unclear for what time frame the particular results will stay valid.

160

Low Code Platforms: Promises, Concepts and Prospects

7 Opportunities for Future Research

The relevance of the subject for research in business informatics is obvious. First, methods and
theories that support the construction and adaptation of information systems are at the core
of our discipline. Second, the continuing penetration of the world with software demands for
approaches to empower people (not just the traditional “user”) to understand and adapt the
software that not only shapes their work environment, but more and more their entire lives.
That demands for representations of software and the surroundings it is used in, which corre-
spond to concepts people are familiar with, or that they may have to acquire to cope with “a
world that is being rebuilt as code” (Widdicombe, 2014, p. 56).

The following list of research opportunities is not meant to be extensive. It rather aims at illus-

trating the bandwidth of inspiring research topics related to aspects of the low-code trend.

Criteria and guidelines to support the effective use of LCPs: As our analysis has shown, LCPs offer
features that are suited to substantially improve software development productivity. How-
ever, this is not the case for all kinds of problems and for all kinds of organizations. Therefore,
there is need to analyze preconditions of using certain kinds of LCPs, such as skills of the staff,
available resources and characteristics of problem classes, and expectable economic benefits.
Corresponding studies would not only address inspiring research questions but could also

produce results to support decision makers in practice.

New approaches to support the development and dissemination of reference models: There is hardly
any other research subject that generated as much attention and enthusiasm as reference mod-
els. The idea is indeed very appealing. Reference models are not only suited to reduce devel-
opment costs and to enable a higher quality of information systems at the same time, but they
are also suited to promote (cross-organizational) integration. Despite these undisputed bene-
fits, domain-specific reference models did not become the game changers they were supposed
to be. Approaches to adopt the model of open-source software (Frank & Strecker, 2007) were
of limited success only. While models have not lost their attractiveness, the relevant context
has partially changed. Therefore, research on obstacles of reference models and approaches to

overcome them may reveal new, valuable insights.

New approaches to enable process automation: In recent years, approaches to support non-pro-
grammers with the automation of processes has received growing awareness. This is espe-
cially the case in areas such as “smart home” (M. Clark, Dutta, & Newman, 2016; Stefanidi,
Korozi, Leonidis, & Antona, 2018) or, more general, IoT (e.g., Valsamakis & Savidis, 2020).
Corresponding research opportunities comprise the development of accessible abstractions of

“smart” environments and of concepts that facilitate the construction of simple processes.

Mitigating the conflict between range and productivity of reuse: while reuse is of pivotal relevance

for promoting the productivity of software development, it is confronted with a fundamental

161

Low Code Platforms: Promises, Concepts and Prospects

design conflict. The more specific a reusable artefact is, the better is its contribution to reuse,
but the lower is the range of cases it covers, and, hence, the possible economies of scale (Frank,
2014). Various approaches exist to relax it, such as generalization/specialization or multi-level
language architectures. Nevertheless, there is still need for further research. One promising
approach is the integration of DSML with reference models that allows combining the benefits
of generalization with those of classification (Kinderen & Kaczmarek-Hef3, 2019). Correspond-
ing research would suggest cross-disciplinary collaboration with representatives of program-

ming languages and software engineering communities.

Beyond spreadsheets: spreadsheet programs proved to be an effective approach to support non-
programmers with the creation of certain kinds of (small) information systems. However, since
they are based on a generic model, their contribution to productivity as well as their support
of data integrity are limited. Applying the idea of generic spreadsheets to domain-specific
models of data and related processes would enable the creation of more productive tools that
could feature a high level of data integrity, too (Carroll, 2019; Sternberg, 2020).

Cognitive fit of representations: Even though low-code platforms in part address both, profes-
sional software developers and “citizen developers”, it remains unclear what kind of user
models they employ. However, for a representation of software to fit cognitive capabilities and
personal working styles, corresponding models are required. In addition, the suitability of a
representation is likely to depend on peculiarities of the task and contextual factors such as
availability of resources. The investigation of this topic opens a wide range of research ques-
tions involving fields such as cognitive psychology or modeling/programming language de-

sign.

Prospects and limitations of machine learning: Some of the tools we analyzed employ machine
learning algorithms already, but provide a modest level of support, such as "auto-complete"”
functions with model editors that are based on the inductive analysis of previous decisions.
Proponents of machine learning research predict a clearly more ambitious vision: the construc-
tion of programs by machines. There are indeed impressive examples of software created to a
large extent through machine learning, such as speech or image recognition. Nevertheless, that
is hardly sufficient to conclude that conceptual modeling will become obsolete, as Domingos
suggests: "In industry, there’s no sign that knowledge engineering will ever be able to compete

with machine learning outside of a few niche areas."

While such a prediction may be seen as visionary by some, and as offensive by others, it con-
cerns fundamental and extremely challenging research questions, such as "What is the differ-
ence between classification and conceptualization?", "What is the nature of application soft-
ware?", or "Is it possible to inductively create software that supports future, not yet existing

business models, from examples created in the past?" (Domingos, 2017, p. 36).

162

Low Code Platforms: Promises, Concepts and Prospects

Effects on organizational behavior: Approaches to foster end-user computing are suited to blur
traditional boundaries between developers and users. Furthermore, they may contribute to
users develop a more elaborate appreciation of IT. Both aspects are likely to have an effect on
decision processes, patterns of collaboration, and on organizational behavior in general (Am-
oroso, 1988), which calls for empirical research aimed at identifying and explaining such pat-

terns.

In addition to research opportunities directly related to the objectives targeted by low-code
platforms, the emergence of the low-code trend is yet another reason to investigate the role
and impact of so-called market research firms. Among others, that could comprise the follow-

ing questions:

e What is their business model?

e What is their role in creating new trends - and fads?

e What methods do they apply to conduct their studies?

e How accurate were the predictions they made in the past?

e What role do their reports play for product development and for marketing activities?
e What impact do they have on managerial decision making?

163

Low Code Platforms: Promises, Concepts and Prospects

8 Conclusions

The results of our study create an ambivalent picture. On the one hand, we did not find evi-
dence for the assumption that LCPs incorporate any specific innovation that would come close
to the state of the art in research or would even go beyond it. On the other hand, the “low-
code” trend creates an opportunity for research on conceptual modeling since it should raise
the awareness for the importance of representations other than code to developing and main-
taining software systems. In this sense, the trend is suited to inspire numerous opportunities
for research and its dissemination. Nevertheless, we would caution against adopting the sim-

plistic messages and the terminology, which is inaccurate and misleading in parts.

The limitations of our study may have compromised the scientific rigor, we feel committed to.
We are therefore grateful for any information that reveals misconceptions or errors in our anal-

ysis.

164

1. References

Agam Shah (2020). Emptying Offices Prompt Adoption of Low-Code to Build Work Apps.
The Wall Street Journal, May 15th.

Ahmad, Y., Antoniu, T., Goldwater, S., & Krishnamurthi, S. (2003). A type system for stati-
cally detecting spreadsheet errors. In Proceedings / 18th IEEE International Conference on Au-
tomated Software Engineering: Montreal, Quebec, Canada, October 6 to 10, 2003 (pp. 174-183).
Los Alamitos, Calif.: IEEE Computer Society. https://doi.org/10.1109/ASE.2003.1240305

Amoroso, D. L. (1988). Organizational issues of end-user computing. SIGMIS Database, 19(3-
4), 49-58. https://doi.org/10.1145/65766.65773

Becker, J., & Delfmann, P. (Eds.) (2007). Reference modeling: Efficient information systems design
through reuse of information models. Heidelberg: Physica Verlag.

Becker, J., Delfmann, P., & Knackstedt, R. (2007). Adaptive Reference Modeling: Integrating
Configurative and Generic Adaptation Techniques for Information Models. In J. Becker
(Ed.), Reference modeling: Efficient information systems design through reuse of information mod-
els : [9th conference on reference modeling (RefMod 2006) taken place on the Multiconference on
Information Systems (Multi-Konferenz Wirtschaftsinformatik, MKWI 2006) the 20th of February
2006 (pp- 27-58). Heidelberg: Physica-Verl. https://doi.org/10.1007/978-3-7908-1966-3_2

Bock, A. C., & Frank, U. (2021a). In Search of the Essence of Low-Code: An Exploratory
Study of Seven Development Platforms. In Proceedings of the 24th ACM/IEEE International
Conference on Modell Driven Engineering Languages and Systems: Companion Proceedings.
IEEE.

Bock, A. C., & Frank, U. (2021b). Low-Code Platform. Business & Information Systems Engi-
neering, 63(6).

Bohrer, K. A. (1998). Architecture of the San Francisco frameworks. IBM Systems Journal,
37(2), 156-169. https://doi.org/10.1147/sj.372.0156

Brambilla, M., Cabot,]., Wimmer, M., & Baresi, L. (2017). Model-Driven Software Engineering
in Practice: Second Edition. Synthesis Lectures on Software Engineering. San Rafael: Morgan &
Claypool Publishers. Retrieved from https://ebookcentral.proquest.com/lib/gbv/detail.ac-
tion?docID=4837000

Cabot, J. (2020). Positioning of the low-code movement within the field of model-driven en-
gineering. In Proceedings of the 23rd ACM/IEEE International Conference on Modell Driven En-
gineering Languages and Systems: Companion Proceedings (pp. 535-538). IEEE.
https://doi.org/10.1145/3417990.3420210

Carroll, J. (2019). Beyond spreadsheets with R: A beginner’s guide to R and RStudio. Shelter Island,
NY: Manning.

165

Chang Young-Hyun, & Ko Chang-Bae (2017). A Study on the Design of Low-Code and No
Code Platform for Mobile Application Development. International Journal of Advanced
Smart Convergence, 6(4), 50-55. https://doi.org/10.7236/IJASC.2017.6.4.7

Clark, M., Dutta, P., & Newman, M. W. (2016). Towards a natural language programming
interface for smart homes. In P. Lukowicz, A. Kriiger, A. Bulling, Y.-K. Lim, & S. N. Patel
(Eds.), Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct : September 12- 16, 2016, Heidelberg, Germany (pp. 49-52). New York,
NY: ACM. https://doi.org/10.1145/2968219.2971443

Clark, T., Sammut, P., & Willans, J. (2008). Applied Metamodelling: A Foundation for Language
Driven Development (2nd ed.). Ceteva. Retrieved from http://www.eis.mdx.ac.uk/staff-
pages/tonyclark/Papers/Applied %20Metamodelling %20%28Second %20Edition%29.pdf

Codenie, W., Hondt, K. de, Steyaert, P., & Vercammen, A. (1997). From custom applications
to domain-specific frameworks. Commun. ACM, 40(10), 70-77.
https://doi.org/10.1145/262793.262807

Costagliola, G., Deufemia, V., & Polese, G. (2004). A framework for modeling and imple-
menting visual notations with applications to software engineering. ACM Transactions of
Software Engineering Methodologies, 13(4), 431-487. https://doi.org/10.1145/1040291.1040293

Domingos, P. (2017). The Master Algorithm: How the Quest for the Ultimate Learning Machine
Will Remake Our World. London: Penguin Books Ltd.

Dou, W., Cheung, S.-C., & Wei,]. (2014). Is spreadsheet ambiguity harmful? Detecting and
repairing spreadsheet smells due to ambiguous computation. In P. Jalote (Ed.), Proceedings
of the 36th International Conference on Software Engineering: Hyderabad, India, May 31 - June
07, 2014 (pp. 848-858). New York, NY: Assoc. for Computing Machinery.
https://doi.org/10.1145/2568225.2568316

Fayad, M. E., & Johnson, R. E. (Eds.) (2000). Domain-specific application frameworks: Frameworks
experience by industry. New York, NY: Wiley. Retrieved from
http://www loc.gov/catdir/bios/wiley042/99026920.html

Fettke, P., & Loos, P. (Eds.) (2007). Reference Modeling for Business Systems Analysis. Hershey:
Idea Group.

France, R. B., & Rumpe, B. (2007). Model-driven Development of Complex Software: A Re-
search Roadmap. In L. C. Briand & A. L. Wolf (Eds.), Workshop on the Future of Software En-
gineering (FOSE '07) (pp. 37-54). IEEE CS Press. Retrieved from http://sse-tubs.de/publica-
tions/FR_MDDofComplexSoftware_ICSE_07.pdf

Frank, U. (2007). Evaluation of Reference Models. In P. Fettke & P. Loos (Eds.), Reference
Modeling for Business Systems Analysis (pp. 118-140). Hershey: Idea Group.

Frank, U. (2011a). MEMO Organisation Modelling Language (1): Focus on Organisational Struc-
ture (ICB Research Report No. 48).

166

Frank, U. (2011b). Multi-Perspective Enterprise Modelling: Background and Terminological Foun-
dation (ICB Research Report No. 46). Retrieved from ICB University of Duisburg-Essen,
Campus Essen website: http://www.icb.uni-due.de/filead-

min/ICB/research/research_reports/ICB-Report-No46.pdf

Frank, U. (2012). Specialisation in Business Process Modelling: Motivation, Approaches and Limita-
tions (ICB Research Report No. 51). Essen. Retrieved from ICB University of Duisburg-Es-
sen, Campus Essen website: http://www.icb.uni-due.de/filead-

min/ICB/research/research_reports/ICB-Report_No51.pdf
Frank, U. (2014). Multilevel Modeling: Toward a New Paradigm of Conceptual Modeling

and Information Systems Design. Business and Information Systems Engineering, 6(6), 319—
337.

Frank, U. (2016). Designing Models and Systems to Support IT Management: A Case for
Multilevel Modeling. In Proceedings of MULTI 2016 (pp. 3—24). Retrieved from
http://www.wi-inf.uni-due.de/FGFrank/documents/Konferenzbeitraege/ML-ITML-
Multi2016.pdf

Frank, U., & Bock, A. (2020). Conjoint Analysis and Design of Business and IT: The Case for
Multi-Perspective Enterprise Modeling. In V. Kulkarni, S. Reddy, T. Clark, & B. Barn
(Eds.), Advanced Digital Architectures for Model-Driven Adaptive Enterprises (pp. 15-45). IGI
Global.

Frank, U., & Strecker, S. (2007). Open Reference Models — Community-driven Collaboration
to Promote Development and Dissemination of Reference Models. Enterprise Modelling and
Information Systems Architectures, 2(2), 32—41.

Garriga, M., & Flores, A. (2019). Standards-driven metamodel to increase retrievability of
heterogeneous services. In C.-C. Hung & G. A. Papadopoulos (Eds.), Proceedings of the 34th
ACMY/SIGAPP Symposium on Applied Computing (pp. 2507-2514). New York, NY, USA:
ACM. https://doi.org/10.1145/3297280.3297527

Gulden, J., & Frank, U. (2010). MEMOCenterNG — A full-featured modeling environment for
organisation modeling and model-driven software development. In Proceedings of the 2nd
International Workshop on Future Trends of Model-Driven Development (FTMDD 2010), Fun-
chal, Portugal.

Hermans, F., Pinzger, M., & van Deursen, A. (2011). Supporting professional spreadsheet us-
ers by generating leveled dataflow diagrams. In R. N. Taylor, H. Gall, & N. Medvidovic¢
(Eds.), 33rd International Conference on Software Engineering (ICSE), 2011: 21 - 28 May 2011,
Waikiki, Honolulu, HI, USA (pp. 451-460). Piscataway, NJ: IEEE.
https://doi.org/10.1145/1985793.1985855

Ihirwe, F., Di Ruscio, D., Mazzini, S., Pierini, P., & Pierantonio, A. (2020). Low-code engineer-
ing for internet of things. In E. Guerra & L. Iovino (Chairs), MODELS "20: ACM/IEEE 23rd

167

International Conference on Model Driven Engineering Languages and Systems, Virtual Event

Canada.

Ingalls, D., Wallace, S., Chow, Y.-Y., Ludolph, F., & Doyle, K. (1988). Fabrik: A visual pro-
gramming environment. In N. Meyrowitz (Ed.), Conference proceedings on Object-oriented
programming systems, languages and applications (pp. 176-190). New York, NY: ACM.
https://doi.org/10.1145/62083.62100

Karl, H., Kundisch, D., Meyer auf der Heide, Friedhelm, & Wehrheim, H. (2020). A Case for a
New IT Ecosystem: On-The-Fly Computing. Business & Information Systems Engineering,
62(6), 467-481. https://doi.org/10.1007/s12599-019-00627-x

Karng, J., Tolvanen, J.-P., & Kelly, S. (2009). Evaluating the use of domain-specific modeling
in practice. In Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling.

Kelly, S., & Tolvanen, J.-P. (2008). Domain-specific modeling: Enabling full code generation. Hobo-
ken, N.J: Wiley-Interscience; IEEE Computer Society.

Kinderen, S. D., & Kaczmarek-Hef$, M. (2019). Multi-level Modeling as a Language Architec-
ture for Reference Models: On the Example of the Smart Grid Domain. In IEEE (Ed.), [EEE
21st Conference on Business Informatics (CBI) (pp. 174-183). Moscow, Russia.

Lieberman, H., Paterno, F., Klann, M., & Wulf, V. (2006). End-User Development: An Emerg-
ing Paradigm. In H. Lieberman, F. Paterno, & V. Wulf (Eds.), Human-Computer Interaction
Series: Vol. 9. End User Development (Vol. 9, pp. 1-8). Dordrecht: Springer.
https://doi.org/10.1007/1-4020-5386-X_1

Massoni, T., Gheyi, R., & Borba, P. (2011). Synchronizing Model and Program Refactoring. In
J. Davies, L. Silva, & A. Simao (Eds.), Lecture Notes in Computer Science: Vol. 6527. Formal
methods: foundations and applications: 13th Brazilian Symposium on Formal Methods, SBMF
2010, Natal, Brazil, November 8-11, 2010 ; revised selected papers (Vol. 6527, pp. 96-111). Hei-
delberg: Springer. https://doi.org/10.1007/978-3-642-19829-8_7

Mendes, J., Cunha, J., Duarte, F., Engels, G., Saraiva,]., & Sauer, S. (2017). Towards system-
atic spreadsheet construction processes. In 2017 IEEE/ACM 39th International Conference on

Software Engineering companion: Icse-C 2017 : 20-28 May 2017, Buenos Aires, Argentina : Pro-
ceedings (pp. 356-358). Piscataway, NJ: IEEE. https://doi.org/10.1109/ICSE-C.2017.141

Milani, F., Dumas, M., Ahmed, N., & Matulevicius, R. (2016). Modelling families of business
process variants: A decomposition driven method. Information Systems, 56, 55-72.
https://doi.org/10.1016/j.i5.2015.09.003

Moulin, C., & Sbodio, M. (2005). Using Ontological Concepts for Web Service Composition.
In A. Skowron (Ed.), Proceedings / The 2005 IEEE/WIC/ACM International Conference on Web
Intelligence: September 19 - 22, 2005, Compiégne University of Technology, France (pp. 487-
490). Los Alamitos, Calif.: IEEE Computer Society. https://doi.org/10.1109/WI1.2005.156

168

Nardi, B. A. (1995). A small matter of programming: Perspectives on end user computing (2. print-
ing). Cambridge, Mass.: MIT Press.

Naur, P., & Randell, B. (Eds.) (1969). Software engineering: Report on a conference sponsered by
the NATO Science Committee Garmisch, 7th-11th October, 1968. Brussels: NATO, Scientific

Affairs Division.

Paige, R. F., Hartman, A., & Rensink, A. (Eds.) (2009). Lecture Notes in Computer Science: Vol.
5562. Model Driven Architecture - Foundations and Applications: 5th European Conference,
ECMDA-FA 2009, Enschede, The Netherlands, June 23-26, 2009. Proceedings. Berlin, Heidel-
berg: Springer. Retrieved from http://dx.doi.org/10.1007/978-3-642-02674-4

Prieto-Diaz, R. (1991). Implementing faceted classification for software reuse. Commun. ACM,
34(5), 88-97. https://doi.org/10.1145/103167.103176

Razavi, A., Kontogiannis, K., Brealey, C., & Nigul, L. (2009), usulncremental model synchro-
nization in model driven development environments. In P. Martin, A. W. Kark, & D.
Stewart (Eds.), Proceedings of the 2009 Conference of the Center for Advanced Studies on Collab-
orative Research - CASCON 09 (p. 216). New York, New York, USA: ACM Press.
https://doi.org/10.1145/1723028.1723053

Sanchis, R., Garcia-Perales, ()., Fraile, F., & Poler, R. (2020). Low-Code as Enabler of Digital
Transformation in Manufacturing Industry. Applied Sciences, 10(1), 12.
https://doi.org/10.3390/app10010012

Schneider, J.-G. (1999). Components, Scripts, and Glue: A conceptual framework for software com-

position. Dissertation, University of Bern.

Smirnov, S., Weidlich, M., & Mendling,]J. (2007). Business Process Model Abstraction Based
on Behavioral Profiles. In B. J. Kramer, K.-J. Lin, & P. Narasimhan (Eds.), Lecture Notes in
Computer Science: Vol. 4749. Service-oriented computing - ICSOC 2007: Fifth international con-
ference, Vienna, Austria, September 17 - 20, 2007 ; proceedings (Vol. 4749, pp. 1-16). Berlin:
Springer. https://doi.org/10.1007/978-3-642-17358-5_1

St. Amant, R., Lieberman, H., Potter, R., & Zettlemoyer, L. (2000). Programming by example:
visual generalization in programming by example. Commun. ACM, 43(3), 107-114.
https://doi.org/10.1145/330534.330549

Stefanidi, E., Korozi, M., Leonidis, A., & Antona, M. (2018). Programming Intelligent Envi-
ronments in Natural Language. In ICPS, Petra 2018: The 11th ACM International Conference
on Pervasive Technologies Related to Assistive Environments : June 26-29, 2018, Corfu, Greece :
Conference proceedings (pp. 50-57). New York, NY, USA: ACM.
https://doi.org/10.1145/3197768.3197776

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2009). EMF: Eclipse Modeling Frame-
work (2nd ed.). Upper Saddle River: Addison-Wesley.

169

Sternberg, J. (2020). Beyond Spreadsheets. Forbes. (March 11th). Retrieved from
https://www .forbes.com/sites/googlecloud/2020/03/11/beyond-spread-
sheets/?sh=d10ecb076¢7f

Tilsner, M., Fiech, A., Zhan, G., & Specht, T. (2011). Patterns for service composition. In B. C.
Desai (Ed.), Proceedings of The Fourth International C* Conference on Computer Science and
Software Engineering (pp. 133-137). New York, NY: ACM.
https://doi.org/10.1145/1992896.1992913

Valsamakis, Y., & Savidis, A. (2020). Smart Automations for Everybody: When IoT Meets
Visual Programming. In P. Davidsson (Ed.), ACM Digital Library, 10th International Confer-

ence on the Internet of Things Companion (pp. 1-4). New York,NY,United States: Association
for Computing Machinery. https://doi.org/10.1145/3423423.3423470

Vincent, P., Natis, Y., & et al. (2020). Magic Quadrant for Enterprise Low-Code Application Plat-
forms. Gartner Report.

Virgilio, R. de, & Bianchini, D. (2010). A metamodel approach to flexible semantic web ser-
vice discovery. In J. Huang (Ed.), Proceedings of the 19th ACM international conference on In-
formation and knowledge management (p. 1309). New York, NY: ACM.
https://doi.org/10.1145/1871437.1871608

Volter, M. (2013). DSL Engineering: Designing, Implementing and Using Domain-Specific Lan-
guages. dslbooks.org.

Waszkowski, R. (2019). Low-code platform for automating business processes in manufac-
turing. IFAC-PapersOnLine, 52(10), 376-381. https://doi.org/10.1016/j.ifacol.2019.10.060
Weber, 1., Paik, H.-Y., & Benatallah, B. (2013). Form-Based Web Service Composition for Do-
main Experts. ACM Transactions on the Web, 8(1), 1-40. https://doi.org/10.1145/2542168

Widdicombe, L. (2014). The Programmer's Price. The New Yorker. (Nov. 24), 54-64.

Wyatt, F. J. (2018). New Development Platforms Emerge For Customer-Facing Applications. Re-
trieved from https://medium.com/business-process-management-software-compari-

sons/new-development-platforms-emerge-for-customer-facing-applications-f5b1f7831a3e

Zloof, M. M. (1975). Query by example. In Unknown (Ed.), Proceedings of the May 19-22, 1975,
national computer conference and exposition on - AFIPS ‘75 (p. 431). New York, New York,
USA: ACM Press. https://doi.org/10.1145/1499949.1500034

170

Previously published ICB - Research Reports

2021

No 69 (June 2021)
Schauer, Carola: “Wirtschaftsinformatik Studienginge an Universititen in Deutschland — Analyse der
Studienanfingerzahlen und Frauenanteile im Vergleich zur Informatik und zu Fachhochschulen.”

2020

No 68 (December 2020)
Schauer, Carola: “Warum entscheiden sich Studienanfinger fiir Wirtschaftsinformatik? — Ergebnisse
einer Umfrage unter Bachelorstudierenden im ersten Fachsemester Wirtschaftsinformatik an der UDE
(Nov. 2018 und Nov. 2019).”

No 67 (November 2020)
Frank, Ulrich; Bock, Alexander: “Organisationsforschung und Wirtschaftsinformatik: Zeit fiir eine An-
niherung?”

2018

No 66 (December 2019)
Frank, Ulrich: “The Flexible Multi-Level Modelling and Execution Language (FMMLx, Version 2.0:
Analysis of Requirements and Technical Terminology.”

2015

No 65 (August 2015)
Schauer, Carola; Schauer, Hanno: “IT- und Medienbildung an Schulen. Ergebnisse einer empirischen
Studie an einem rheinland-pfalzischen Gymnasium.”

No 64 (January 2015)
Faocker, Felix; Houdek, Frank; Daun, Marian; Weyer, Thorsten: “Model-Based Engineering of an Auto-
motive Adaptive Exterior Lighting System — Realistic Example Specifications of

Behavioral Requirements and Functional Design.”

No 63 (January 2015)
Schauer, Carola; Schauer, Hanno: “IT an allgemeinbildenden Schulen: Bildungsgegenstand und -infra-
struktur — Auswertung internationaler empirischer Studien und Literaturanalyse.”

2014

No 62 (October 2014)
Kéninger, Stephan; Hes, Michael: “Ein Software-Werkzeug zur multiperspektivischen Bewertung inno-
vativer Produkte, Projekte und Dienstleistungen: Realisierung im Projekt Hospital Engineering.”

No 61 (August 2014)
Schauer, Carola; Frank, Ulrich: “Wirtschaftsinformatik an Schulen — Status und Desiderata mit Fokus
auf Nordrhein-Westfalen.”

171

No 60 (May 2014)
Hes, Michael: “Multiperspektivische Dokumentation und Informationsbedarfsanalyse kardiologischer
Prozesse sowie Konzeptualisierung ausgewdhlter medizinischer Ressourcentypen im Projekt Hospital
Engineering”

No 59 (May 2014)
Goedicke, Michael; Kurt-Karaoglu, Filiz; Schwinning, Nils; Schypula, Melanie; Striewe, Michael:
“Zuweiter Jahresbericht zum Projekt ‘Bildungsgerechtigkeit im Fokus’ (Teilprojekt 1.2 — ‘Blended Learn-
ing’) an der Fakultit fiir Wirtschaftswissenschaften”

No 58 (March 2014)
Breitschwerdt, Riidiger; Hes, Michael: “Konzeption eines Bezugsrahmens zur Analyse und Entwick-
lung von Geschiftsmodellen mobiler Gesundheitsdienstleistungen — Langfassung”

No 57 (March 2014)
Hes, Michael; Schlieter, Hannes (Hrsg.): “Modellierung im Gesundheitswesen — Tagungsband des
Workshops im Rahmen der “Modellierung 2014””

2013

No 56 (July 2013)
Svensson, Richard Berntsson; Berry, Daniel M.; Daneva, Maya; Doerr, Joerg; Espana, Sergio;
Herrmann, Andrea; Herzwurm, Georg; Hoffmann, Anne; Pena, Raul Mazo; Opdahl, Andreas L.; Pas-
tor, Oscar; Pietsch, Wolfram; Salinesi, Camille; Schneider, Kurt; Seyff, Norbert; van de Weerd, Inge;
Wieringa, Roel; Wnuk, Krzysztof (Eds.): “19" International Working Conference on Requirements En-
gineering: Foundation for Software Quality (REFSQ 2013). Proceedings of the REFSQ 2013 Workshops
CreaRE, IWSPM, and RePriCo, the REFSQ 2013 Empirical Track (Empirical Live Experiment and Em-
pirical Research Fair), the REFSQ 2013 Doctoral Symposium, and the REFSQ 2013 Poster Session””

No 55 (May 2013)
Daun, Marian; Focke, Markus; Holtmann, Jorg; Tenbergen, Bastian “Goal-Scenario-Oriented Require-
ments Engineering for Functional Decomposition with Bidirectional Transformation to Controlled Nat-
ural Language. Case Study “Body Control Module””

No 54 (March 2013)
Fischotter, Melanie; Goedicke, Michael; Kurt-Karaoglu, Filiz; Schwinning, Nils; Striewe, Michael “Ers-
ter Jahresbericht zum Projekt “Bildungsgerechtigkeit im Fokus” (Teilprojekt 1.2 — “Blended Learning”)
an der Fakultdt fiir Wirtschaftswissenschaften”

2012

No 53 (December 2012)
Frank, Ulrich: “Thoughts on Classification / Instantiation and Generalisation / Specialisation”

No 52 (July 2012)
Berntsson-Svensson, Richard; Berry, Daniel; Daneva, Maya; Dorr, Jorg; Fricker, Samuel A; Herrmann,
Andrea; Herzwurm, Georg; Kauppinen, Marjo; Madhavji, Nazim H; Mahaux, Martin; Paech, Barbara;
Penzenstadler, Birgit; Pietsch, Wolfram; Salinesi, Camille; Schneider, Kurt; Seyff, Norbert; van de We-
erd, Inge (Eds.): “18th International Working Conference on Requirements Engineering — Foundation

172

for Software Quality. Proceedings of the Workshops RE4SuSy, REEW, CreaRE, RePriCo, INSPM and
the Conference Related Empirical Study, Empirical Fair and Doctoral Symposium”

No 51 (May 2012)
Frank, Ulrich: “Specialisation in Business Process Modelling — Motivation, Approaches and Limita-
tions”

No 50 (March 2012)
Adelsberger, Heimo; Drechsler, Andreas; Herzig, Eric; Michaelis, Alexander; Schulz, Philipp ; Schiitz,
Stefan; Ulrich, Udo: “Qualitative und quantitative Analyse von SOA-Studien — Eine Metastudie zu
serviceorientierten Architekturen”

2011

No 47 (December 2011)
Frank, Ulrich: “"MEMO Organisation Modelling Language (OrgML): Requirements and Core Diagram
Types”

No 46 (December 2011)
Frank, Ulrich: “Multi-Perspective Enterprise Modelling: Background and Terminological Foundation”

No 45 (November 2011)
Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola: “Leitfaden zur Er-
stellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2010)
Berenbach, Brian; Daneva, Maya; Dérr, Jorg; Frickler, Samuel; Gervasi, Vincenzo; Glinz, Martin;
Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H.; Paech, Barbara; Schockert, Sixten; Seyff,
Norbert (Eds): “17th International Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2011). Proceedings of the REFSQ 2011 Workshops REEW, EPICAL and Re-
PriCo, the REFSQ 2011 Empirical Track (Empirical Live Experiment and Empirical Research Fair), and
the REFSQ 2011 Doctoral Symposium*“

No 43 (February 2011)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture —2nd Edi-
tion”

2010

No 42 (December 2010)
Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Languages”

No 41 (December 2010)
Adelsberger, Heimo; Drechsler, Andreas (Eds): ” Ausgewihlte Aspekte des Cloud-Computing aus einer
IT-Management-Perspektive — Cloud Governance, Cloud Security und Einsatz von Cloud Computing
in jungen Unternehmen”

No 40 (October 2010)
Biirsner, Simone; Dorr, Jorg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;
Merten, Thorsten; Pietsch, Wolfram; Schmid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):

173

“16th International Working Conference on Requirements Engineering: Foundation for Software Qual-
ity. Proceedings oft he Workshops CreaRE, PLREQ, RePriCo and RESC”

No 39 (May 2010)
Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption fiir den Studien-
gang M.Sc. Wirtschaftsinformatik an der Fakultdt fiir Wirtschaftswissenschaften der Universitit Duis-
burg-Essen”

No 38 (February 2010)
Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschitzungen von CIOs und
WI-Professoren”

No 37 (January 2010)
Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on Variabil-
ity Modelling of Software-intensive Systems”

2009

No 36 (December 2009)
Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verstindnis der IT-Governance - An-
regungen zu einer kritischen Reflexion”

No 35 (August 2009)
Riingeler, Irene; Tiixen, Michael; Rathgeb, Erwin P.:”Considerations on Handling Link Errors in
STCP”

No 34 (June 2009)
Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on
Service Monitoring, Adaption and Beyond”

No 33 (May 2009)
Adelsberger,Heimo; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia; Pellin-
ger, Jan; Rosenberger, Marcel; Trepper, Tobias: , Einsatz von Social Software in Unternehmen — Studie
iiber Umfang und Zweck der Nutzung”

No 32 (April 2009)
Barth, Manfred; Gadatsch, Andreas; Kiitz, Martin; Riiding, Otto; Schauer, Hanno; Strecker, Stefan:
. Leitbild IT-Controller/-in — Beitrag der Fachgruppe IT-Controlling der Gesellschaft fiir Informatik
e. V.”

No 31 (April 2009)
Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-
tems — Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)
Schauer, Hanno; Wolff, Frank: , Kriterien guter Wissensarbeit — Ein Vorschlag aus dem Blickwinkel der
Wissenschaftstheorie (Langfassung)”

No 29 (January 2009)
Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-
iability Modelling of Software-intensive Systems”

174

2008

No 28 (December 2008)
Goedicke, Michael; Striewe, Michael; Balz, Moritz: , Computer Aided Assessments and Programming
Exercises with JACK”

No 27 (December 2008)
Schauer, Carola: “Grofle und Ausrichtung der Disziplin Wirtschaftsinformatik an Universititen im
deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)
Milen, Tilev; Bruno Miiller-Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)
Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am
Beispiel der CRC Card-Methode”

No 24 (August 2008)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture — Revised
Version”

No 23 (January 2008)
Sprenger, Jonas; Jung, Jiirgen: “Enterprise Modelling in the Context of Manufacturing — Outline of an
Approach Supporting Production Planning”

No 22 (January 2008)
Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International
Workshop on Variability Modelling of Software-intensive Systems”

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilitit im Geschiftsprozess-management-Kreis-
lauf”

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradiiberwachung von Software”

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ,Relevance
Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der
Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen fiir die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of
Model Curricula”

No 16 (May 2007)
Miiller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe Ca-
pacity Planning”
175

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen fiir IT-Professionals — Analyse
und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden fiir Soft-
warearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter
Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to
Markovian Process Algebras”

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstiitzung der Aufgaben des
IT-Managements — Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einfiihrender Lehrbiicher der
Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: ”Uberlegungen zur Qualifizierung des wissen-
schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag fiir ein Forschungspro-
gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-
search”

No 6 (April 2006)
Frank, Ulrich: “Evaluation von Forschung und Lehre an Universititen — Ein Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jiirgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I11I — Results
Wirtschaftsinformatik Discipline”

2005

176

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part Il — Results Information Sys-
tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I — Research Objectives and
Method”

No 1 (August 2005)
Lange, Carola: , Ein Bezugsrahmen zur Beschreibung von Forschungsgegenstinden und -methoden in
Wirtschaftsinformatik und Information Systems”

177

Research Group

Prof. Dr. F. Ahlemann
Information Systems and Strategic Management

Core Research Topics

Strategic planning of IS, Enterprise Architecture Management,
IT Vendor Management, Project Portfolio Management,
IT Governance, Strategic IT Benchmarking

Prof. Dr. F. Beck
Visualization Research Group

Information visualization, software visualization, visual analy-
tics

Prof. Dr. T. Brinda
Didactics of Informatics

Competence modelling and educational standards in Infor-
matics, Students’ conceptions in Informatics, Education in the
digital world, Vocational education in Informatics

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research, Business Intelli-
gence, Data Warehousing

Prof. Dr.-Ing. L. Davi

Research in Secure Software Systems

Software Security, Security of Smart Contracts, Trusted Com-
puting, Hardware-assisted Security

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. J. Marrén
Networked Embedded Systems

Sensor Networks, Adaptive Systems, System Software for em-
bedded systems, Data Management in mobile environments,
Hoarding / Caching, Ubiquitous/Pervasive Computing, Semi-
structured databases

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. Ing. E. Rathgeb
Computer Network Technology

Computer Network Technology

Prof. Dr. S. Schneegafl

Human Computer Interaction

Mobile, wearable, and ubiquitous computing systems, Implicit
Feedback, Usable Security, Smart Clothing, Interaction in
Virtual and Augmented Worlds, Ubiquitous Interaction

Prof. Dr. R. Schiitte

Business Informatics and Integrated Information Systems

Enterprise Systems, IS-Architectures, Digitalization of organisa-
tions, Information modelling, Scientific theory problems of the
Business Informatics field

Prof. Dr. S. Stieglitz

Professional Communication in Electronic Media / Social

Media

Digital Enterprise / Digital Innovation, Digital Society

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

[] UNIVERSITAT
DEUSI SSI-_BNU RG
D u I I u b I I CO Offen im Denken

universitdts
Ub | bibliothek

Duisburg-Essen Publications online

Dieser Text wird via DUEPublico, dem Dokumenten- und Publikationsserver der Universitét
Duisburg-Essen, zur Verfligung gestellt. Die hier verdffentlichte Version der E-Publikation
kann von einer eventuell ebenfalls verdffentlichten Verlagsversion abweichen.

DOI: 10.17185/duepublico/ 75244
URN: urn:nbn:de:hbz:464-20211228-082939-0

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/75244
https://nbn-resolving.org/urn:nbn:de:hbz:464-20211228-082939-0

