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Abstract

We propose a sieve bootstrap framework to conduct pointwise and simultaneous inference for
time-varying coefficient regression models based on a nonparametric local linear estimator. The
asymptotic validity of the sieve bootstrap in the presence of autocorrelation is established. We
find that it automatically produces a consistent estimation of nuisance parameters, both at the
interior and boundary points. In addition, we develop a bootstrap test for parameter constancy
and show that it is asymptotically correctly sized. An extensive simulation study supports our
findings. The proposed methods are applied to assess the price development of CO2 certificates
in the European Emissions Trading System (EU ETS). We find evidence of time variation in the
relationship between allowance prices and their fundamental price drivers.

JEL classifications: C14, C22, Q48, Q56.
Keywords: sieve bootstrap, nonparametric estimation, simultaneous confidence bands, energy eco-
nomics, emission trading.
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1 Introduction

Many climatological and economic series, and their interrelations, are subject to time variation. At-
tention has been drawn to nonparametric and semiparametric methods in applied studies, mainly
due to their flexibility and robustness to model misspecification (e.g. Chang et al., 2016). A com-
mon way to capture time-varying behaviors, among many others, is to allow coefficients in linear
regression models to evolve deterministically and smoothly over time.1 There is a considerable
amount of papers that develop econometric methodology for these models in various contexts, see
e.g. Phillips et al. (2017) and Li et al. (2020) for nonlinear cointegration, Hu et al. (2019) for locally
stationary processes, Yousuf and Ng (2021) for high-dimensional predictive regressions. More work
in this field includes Cai (2007), Li et al. (2011), Kristensen (2012), Liang and Li (2012), Zhang
and Wu (2012, 2015), Chen (2015). Notwithstanding this body of work, little attention has been
paid to constructing simultaneous confidence bands around coefficient curves. To our knowledge,
there are only two papers investigating this issue. Zhou and Wu (2010) and Karmakar et al. (2021)
provide asymptotic simultaneous bands based on novel Gaussian approximations. Our paper adds
to the growing literature by proposing a new bootstrap framework for this purpose.

In fact, bootstrap methods have recently been applied in the context of time-varying coefficient
models although the theoretical justification has, to the best of our knowledge, been missing from
the literature (see e.g. Cai et al., 2018; Li and Zhao, 2019; Churchill et al., 2020; Liddle et al., 2020;
Uddin et al., 2020). This underlines the importance of bootstrap methods for empirical work in this
direction. At the same time, it emphasizes the need for a thorough investigation of the performance
of bootstrap methods in this context. The current paper fills this gap. We establish the asymptotic
validity of a sieve bootstrap procedure for time-varying coefficient models. We show in an extensive
simulation study that the proposed method performs well in finite samples. A similar bootstrap
approach has been adopted by Bühlmann (1998) and Friedrich et al. (2020) for nonparametric trend
estimation using local constant kernel smoothing. Our procedure extends this line of research by
allowing for random regressors and by considering the local linear kernel smoother which shows
superior performance at the boundaries (Cai, 2007). Additionally, we develop a bootstrap test for
parameter constancy. This test can be used as an initial step in modeling.

Compared to the existing asymptotic constructions of confidence bands by Zhou and Wu (2010)
and Karmakar et al. (2021), we see two main advantages of our method. First, while asymptotic
methods require the consistent estimation of nuisance parameters such as the asymptotic bias and
long-run variance (LRV), the bootstrap correctly reflects these terms without any extra estimation
steps. The second-order bias term is not simple to estimate and often requires a careful bandwidth
selection (Neumann and Polzehl, 1998). It is also well acknowledged that inference based on con-
sistent LRV estimators can perform very poorly in finite samples with strong dependence (Müller,
2007). Second, the bootstrap pointwise and simultaneous confidence bands yield accurate coverage
with small sample sizes, as illustrated in our simulation studies. In contrast, a relatively large sam-
ple size is usually required to achieve the theoretical coverage due to the slow convergence rate for

1Alternative methods which can handle changing behavior include, for example, indicator saturation techniques
which focus on structural breaks in various forms (Castle and Hendry, 2019) and smooth transition models (Gonzalés
and Teräsvirta, 2008). These parametric methods have been applied to a wide range of topics in economics and
climate science, see e.g. Pretis et al. (2016), Holt and Teräsvirta (2020), Doornik et al. (2021), and references therein.
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the asymptotic simultaneous confidence bands as discussed in Zhou and Wu (2010) and Karmakar
et al. (2021).

One market in which time variation has become a topic of interest is the European Emissions
Trading System (EU ETS). Specifically, the relationship between the prices of CO2 emission al-
lowances and their fundamental price drivers such as coal and gas prices is suspected to be subject
to change (Lutz et al., 2013). However, to our best knowledge, none of the related papers has applied
a formal, statistical test for parameter constancy. We provide first evidence for time variation with
our proposed test which can potentially explain why the coal price is often found to be insignificant
in linear regressions with constant parameters.

The paper is structured as follows. Section 2 introduces our model and the nonparametric
estimator. In Section 3, we introduce the sieve bootstrap and establish its validity. We also present
the bootstrap-based test for parameter stability. Section 4 discusses practical implementation.
Section 5 presents the simulation study and Section 6 the empirical application. Section 7 concludes.

Finally, a word on notation. For a vector x = (xj) ∈ Rn, its p-norm is denoted by ‖x‖p =
(∑n

j=1 |xj |p)1/p. And ‖A‖p = supx6=0 ‖Ax‖p/‖x‖p stands for the induced p-norm for a matrix A.
We will omit the subscripts whenever p = 2. The Kronecker product is denoted by “⊗”. For
vectors a = (aj) and b = (bj), a ≥ b means aj ≥ bj for all j. The symbols “ p→” and “ d→”
denote convergence in probability and in distribution, respectively. Bootstrap quantities are given a
superscript ∗, expressing that it is conditional on the original sample. For instance, “ d∗→p” bootstrap
weak convergence in probability (cf. Gine and Zinn (1990)). Let CiI, i ∈ N, be the collection of
functions that have ith-order continuous derivatives on the interval I ⊂ R, and f (i)(x) = di

dxi
f(x)

be the i-th derivative with respect to x. The generic constant C can change from line to line.

2 The model and nonparametric estimation

Consider the following linear time-varying coefficient model:

yt = β′txt + zt = β0,t +
d∑

j=1
βj,txj,t + zt, t = 1 . . . , n, (2.1)

where βt = (β0,t, β1,t, . . . , βd,t)′ is a (d + 1) × 1 vector of time-varying coefficients, and xt =
(x0,t, x1,t, . . . , xd,t)′ is a (d+ 1)-dimensional vector of covariates. We observe the data {(yt,xt)}nt=1.
We shall assume that {zt,xt} is a stationary process (Assumption A1) and βt := β (t/n) with
β(·) = (β1(·), . . . , βd(·))′ : [0, 1] → Rd+1 being a vector of functions (Assumption A2). The for-
mulation (2.1) is firstly proposed by Robinson (1989, 1991), Orbe et al. (2005, 2006), and has
been considered by many authors as mentioned. An advantage of this model is that it circum-
vents the curse of dimensionality commonly arising in unrestricted nonparametric regressions while
maintaining the flexibility to capture the observed nonlinearity.

The aim of this paper lies on the inference on the parameter curves βt. One can conduct point-
wise and simultaneous inference using the asymptotic results in Cai (2007) and Zhou and Wu (2010),
respectively. However, asymptotic confidence bands usually require the estimations of nuisance pa-
rameters which are generally not simple (Sections 4.1 and 4.3 of Zhou and Wu (2010)). Zhou and
Wu (2010) and Karmakar et al. (2021) have further shown that the theoretical simultaneous confi-
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dence band has slow logarithmic convergence. Therefore, large sample size is needed to achieve the
desired coverage. To bypass these difficulties, at least partially, we will propose a sieve bootstrap
procedure in Section 3.1.

2.1 The local linear estimator and assumptions

In general, a first-step estimation of βt is needed for (nonparametric) bootstrap. It is well-known
that local linear estimators suffer less from boundary effects and have a smaller bias than Nadaraya-
Watson-type estimators (Fan and Gijbels (1996), Cai (2007)). As such, we will consider the former
approach here. For τ ∈ (0, 1), write βj(t/n) ≈ βj(τ) + β

(1)
j (τ)(t/n− τ), j = 0, . . . , d. The estimator

is based on the following approximation:

yt ≈ β(τ)′xt + β(1)(τ)′xt(t/n− τ) + zt =: θ(τ)′x̃t(τ) + zt, (2.2)

where β(1)(τ) =
(
β

(1)
0 (τ), . . . , β(1)

d (τ)
)′

, θ(τ) =
(
β(τ)′,β(1)(τ)′

)′
, and x̃t(τ) = (x′t,x′t (t/n − τ))′.

The local linear estimator minimizes the following weighted sum of squares:

θ̂(τ) =
(
β̂(τ)
β̂(1)(τ)

)
= argmin

θ

n∑

t=1

(
yt − x̃t(τ)′θ

)2
K

(
t/n− τ

h

)
, (2.3)

where K(·) is a kernel function and h > 0 is a bandwidth. Let τt = t/n. The solution to this
minimization problem has a closed-form expression:

θ̂(τ) =
(
Sn,0(τ) S′n,1(τ)
Sn,1(τ) Sn,2(τ)

)−1(
Tn,0(τ)
Tn,1(τ)

)
=: S−1

n (τ)Tn(τ), τ ∈ (0, 1) , (2.4)

where, for k = 0, 1, 2,

Sn,k(τ) = 1
nh

n∑

t=1
xtx

′
t(τt − τ)kK

(
τt − τ
h

)
,

Tn,k(τ) = 1
nh

n∑

t=1
xt(τt − τ)kK

(
τt − τ
h

)
yt.

(2.5)

Our asymptotic analysis hinges on the following regularity conditions.

Assumptions:

A1 Let δ > 0 be some constant. Suppose {(zt,xt)}t∈Z is a strictly stationary and mixing process
satisfying the following conditions.

(a) {xt}t∈Z is a strictly stationary α-mixing process with the mixing coefficient α(m) =
O(m−ϕ), where ϕ = max{(2 + δ)(1 + δ)/δ, 3(1 + δ)/δ}. Moreover, E‖xt‖2(2+δ) <∞.

(b) Assume zt = ∑∞
j=0 ψjεt−j with ψ0 = 1, where {εt}t∈Z is an i.i.d. sequence of continuous

variables with E(εt) = 0 and E|εt|2(2+δ) <∞.

(c) The density function fε of εt satisfies
∫
x∈R |fε(x+ a)− fε(x)| dx ≤M |a|, M <∞, when-

ever |a| ≤ τ for some τ > 0.
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(d) The lag polynomial function Ψ : z 7→ ∑∞
j=0 ψjz

j, z ∈ C, is bounded away from zero for
|z| ≤ 1. Moreover, for some λ > (5ϕ+ 7)/4, |ψj | � C1j−λ as j →∞, where ϕ is defined
in A1(a).

(e) The following moment conditions hold almost surely: (i) E (zt|xt) = 0; (ii) E (ztzs|xtx′s) =
E (ztzs), s, t ∈ Z.

A2 The coefficient function β(·) ∈ C3[0, 1], namely βj(·) ∈ C3[0, 1], j = 0, 1, . . . , d.

A3 The kernel function K(·) is positive, symmetric, Lipschitz continuous, and has compact support
[−1, 1] with µ0 ≡

∫ 1
−1K(u) du = 1.

A4 The bandwidth h ≡ h(n) satisfies max
{
h, lnn

nh ,
1
nh2 , nh

7, h4 lnn
}
n→∞→ 0.

Assumption A1(a) reflects a tradeoff between the mixing coefficients and the moments. The
condition on the mixing coefficient enables us to apply the well-known uniform convergence results
for strong mixing processes established in Theorem 2 by Hansen (2008). Assumption A1(b) imposes a
linear structure on the error process, which is usually required for the (AR) sieve bootstrap procedure
(e.g. Palm et al. (2008), Smeekes and Taylor (2012)). It is well known that not all linear processes
are strong mixing, see e.g. Bosq (1998, Chapter 1.1). To apply the results of uniform convergence
as mentioned above, some degree of smoothness on the distributions of {εt} is needed as given in
Assumption A1(c). Many common densities fulfill this condition. For instance, if εt ∼ N (0, σ2

ε), by
the mean value theorem, we have

∫
x∈R |fε(x+ a)− fε(x)| dx =

√
2
πσ2

ε
|a|. Similarly, if εt ∼ t(ν), ν >

0, we have
∫
x∈R |fε(x+ a)− fε(x)| dx = 2√

νB(ν/2,1/2) |a|, where B(α, β) =
∫ 1

0 x
α−1(1−x)β−1dx is the

Beta function. The first part of Assumption A1(d) ensures the invertibility of the MA(∞) process.
The condition |φj | � C1j−λ implies that {zt} is a short-memory process with ∑∞j=0 j|ψj | <∞ and
∑∞
j=0 j

∣∣E(ztzt+j)
∣∣ < ∞. Any causal and invertible ARMA(p, q) model with 0 ≤ p, q < ∞ satisfies

this condition. Moreover, by Lemma 2.1 of Bühlmann (1995), {zt} admits an AR(∞) representation

∞∑

j=0
φjzt−j = εt, (2.6)

where φ0 = 1 and ∑∞j=0 j|φj | < ∞. By Theorem 14.9 in Davidson (1994), Assumption A1(b), (c),
and (d) jointly imply that {zt} is a strictly stationary α-mixing process with α(m)� Cm−ϕ, where
ϕ is given in Assumption (a). Therefore, the uniform convergence results can be applied to the
process {(zt,xt)}. Given zt satisfies Assumption A1(b), and using the uniform results in Li et al.
(2012), it is possible to only require {(zt,xt)} to be a strictly stationary Lp-NED process with p > 4
with some high-level assumptions. We do not go in this direction because these assumptions are
generally difficult to verify in practice.

It is worthwhile to mention that our Assumption A1(e)(ii) is stronger than Assumption 3 in
Cai (2007) in two ways. First, we rule out conditional heteroscedasticity of the form E

(
z2
t |xt

)
=

g(xt, t/n), where g(·, ·) is some continuous and bounded function of the stationary regressors and
trends. Although θ̂(τ) retains consistency and asymptotic normality with such heteroscedasticity,
the sieve bootstrap scheme will not work. In this case, it is natural to consider variants of the
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wild bootstrap. For instance, when the model has unconditional heteroscedasticity, i.e. E
(
z2
t |xt

)
=

g(t/n), the sieve wild bootstrap (SWB) may be a solution, see Remark 4. Second, the assumption
requires some “independence” in terms of second-order moments between xt and zt. A similar
condition has been imposed in Kapetanios (2008, Assumption 3) for i.i.d. bootstrap. We will come
back to this point in Remark 2.

Assumption A2 is a common smoothness condition, see e.g. Assumption 6 in Zhou and Wu
(2010). It can be weakened to assume that β(·) is twice continuously differentiable with minor
modification of the proofs. The kernel function K(·) in Assumption A3 is satisfied by many com-
monly used kernels such as the Epanechnikov kernel. Assumption A4 ensures consistency and
asymptotic normality of the local linear estimator. The natural logarithm appeared in lnn

nh
n→∞→ 0

is due to our uniform convergence results. It is not stringent because common bandwidth choices
have the rate n−κ with κ ∈ (0, 1), satisfying this condition.

3 Confidence bands with the sieve bootstrap

We now propose a sieve bootstrap procedure to construct pointwise/simultaneous confidence bands.
A similar method was discussed in Bühlmann (1998) for a deterministic trend model.

3.1 The sieve bootstrap (SB)

Recall that the errors admit an AR(∞) process in (2.6). The focus of the sieve bootstrap lies on
the dependence structure of the error terms. It attempts to approximate the process by AR(p)
models. This means that we first estimate model (2.1). To the residuals from this estimation we fit
an AR(p) model and, again, obtain the residuals from which we draw the bootstrap errors. We can
describe the bootstrap algorithm in six steps:

Step 1 Estimate model (2.1) and form a residual series. This means, calculate

ẑt = yt − x′tβ̃(t/n), t = 1, . . . , n,

where the estimate β̃(t/n) is obtained by bandwidth h̃ > h.

Step 2 To the residuals ẑt, for t = 1, . . . , n, fit an autoregressive model of order p and form the new
series of residuals

ε̂t,p = ẑt −
p∑

j=1
φ̂j ẑt−j , t = p+ 1, ..., n,

Recenter the residuals ε̃t,p = ε̂t,p − 1
n−p

∑n
t=p+1 ε̂t,p.

Step 3 Draw randomly with replacement from {ε̃t,p} to obtain {ε∗t }.

Step 4 Calculate the bootstrap errors z∗t as z∗t = ∑p
j=1 φ̂jz

∗
t−j + ε∗t and generate the bootstrap obser-

vations by

y∗t = x′tβ̃(t/n) + z∗t , t = 1, . . . , n,
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where β̃(t/n) is the same as in the first step.

Step 5 Obtain the bootstrap estimator β̂∗(·) as defined in (2.4) using the bootstrap series {y∗t }, with
the same bandwidth h as used for the original estimate β̂(·).

Step 6 Repeat Steps 3 to 5 B times, and let

q̂j,α(τ) = inf
{
u ∈ R : P∗

(
β̂∗j (τ)− β̃j(τ) ≤ u

)
≥ α

}
(3.1)

denote, for j = 0, . . . , d, the α-quantile of the B centered bootstrap statistics β̂∗j (τ) − β̃j(τ).
These bootstrap quantiles are then used to construct confidence bands as described below.

When generating the bootstrap error process in Step 4 , we start the recursion with an arbitrary
starting value and wait until stationarity is reached. The lag length p in Step 2 should satisfy
Assumption B2 below. How to select it in practice is discussed in Section 4. Note that in Step 1 of the
above algorithm, a different bandwidth is used to perform the nonparametric estimation. Compared
to the original bandwidth h, this bandwidth should be larger to produce an oversmoothed estimate
as starting point for the bootstrap procedure. The reason for this is the presence of the asymptotic
bias whenever local polynomial estimation is applied. The bias contains the second derivatives of
the coefficient functions, which can only be consistently estimated using a larger, oversmoothed
bandwidth h̃ (Assumption B1). Alternatively, one may use an undersmoothing bandwidth which
attempts to eliminate the bias asymptotically, see e.g. Neumann and Polzehl (1998). We follow
Bühlmann (1998) and find the oversmoothing works well in practice. In Remark 3, we provide an
intuition of why oversmoothing can consistently estimate the asymptotic bias. Now we list the extra
assumptions needed for the bootstrap.

Assumptions:

B1 The oversmoothing bandwidth h̃ = h̃(n) satisfies max
{
h̃, nhh̃4, h lnn/h̃

}
→ 0 as n→∞.

B2 The lag order p = p(n)→∞ with pmax
{
h̃,
(
lnn/(nh̃)

)1/4
}
→ 0 as n→∞.

A few more words on the assumptions. We will also consider the asymptotic properties of the
bootstrap estimators at boundary points (Section 3.3) unlike Theorem 3.1 in Bühlmann (1998) and
Theorem 2 in Friedrich et al. (2020). It comes at the cost of requiring a slightly stronger condition
h lnn/h̃ n→∞→ 0, compared to Assumption (K) in Bühlmann (1998) and Assumption 8 in Friedrich
et al. (2020).

Remark 1. Residuals which lie close to the boundary might be problematic as the nonparametric
estimator exhibits edge effects. The quality of estimates for points close to the boundary (τ close to
0 or 1) thus cannot be guaranteed. As a solution, Bühlmann (1998, p. 53) suggests only to resample
residuals for points τ ∈ [δ, 1− δ] for a small δ > 0. Formally, this means that in Step 1, residuals ẑt
are only obtained for t = [nδ] + 1, . . . , [n(1 − δ)]. The remainder of the bootstrap procedure then
proceeds with this smaller set of residuals. However, given that we use a local linear estimator and
not a local constant approach as in Bühlmann (1998), we expect the effect to be small since the
boundary effects are reduced. We investigate the impact of the edge effects in the simulation study.
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3.2 Constructing confidence intervals

To construct pointwise confidence intervals for every βj(·), the quantity β̂∗j (·) − β̃j(·) is needed
for j = 0, . . . , d. It is straightforward to determine pointwise two-sided confidence intervals for a
confidence level of 1 − α. These are exactly the values for every t, between which 1 − α of the
deviations fall. Formally, this can be stated as

I∗j,n,α(τ) =
[
β̂j(τ)− q̂1−α/2(τ), β̂j(τ)− q̂α/2(τ)

]
, (3.2)

where 1− α is the confidence level and

q̂j,α(τ) = inf
{
u ∈ R : P∗

(
β̂∗j (τ)− β̃j(τ) ≤ u

)
≥ α

}
.

The quantiles q̂j,α(τ) are obtained in the last step of one of our bootstrap procedure. From Equation
(3.2), it can be seen that the confidence intervals are only valid for a fixed point τ ∈ (0, 1). In general,
asymptotic pointwise confidence intervals Ij,n,α(τ) for βj(τ) are designed to satisfy

lim inf
n→∞ P

(
βj(τ) ∈ Ij,n,α(τ)

) ≥ 1− α, τ ∈ (0, 1). (3.3)

Many interesting research questions, like whether a coefficient remains zero over the whole period
or whether there was an upward trend over a certain period of time, cannot be answered with
pointwise confidence intervals. Simultaneous confidence bands are thus needed to answer these
questions. That is, for a given set of time points G, we seek for IGj,n,α(·) that satisfies

lim inf
n→∞ P

(
βj(τ) ∈ IGj,n,α(τ), ∀τ ∈ G

)
≥ 1− α. (3.4)

As the bootstrap counterparts, we consider a three-step procedure which is similar to the one
described in Bühlmann (1998) and Friedrich et al. (2020). This procedure provides confidence
bands, which are simultaneous within a finite union of neighborhoods G = ∪mi=1Ui(h), where the
neighborhoods Ui(h) are of the form Ui(h) = [τi − ah, τi + bh], with 0 ≤ a, b < ∞ and m <

∞. Clearly, the length of these neighborhoods depends on the bandwidth used for the original
estimation, and through the bandwidth it depends on the sample size. The first step is to construct
pointwise quantiles from the deviations β̂∗j (·)− β̃j(·):

Step 1 Compute the pointwise quantiles q̂j,αp/2(τ), q̂j,1−αp/2(τ) by varying αp ∈ [1/B, α], for τ ∈ G,
j = 0, . . . , d.

Step 2 Choose αs as

αs = argmin
αp∈[1/B,α]

∣∣∣P∗
(
q̂j,αp/2(τ) ≤ β̂∗j (τ)− β̃j(τ) ≤ q̂j,1−αp/2(τ), ∀τ ∈ G

)
− (1− α)

∣∣∣ .

Step 3 Given αs from Step 2, construct the simultaneous confidence bands as

IG∗j,n,αs(τ) =
[
β̂j(τ)− q̂j,1−αs/2(τ), β̂j(τ)− q̂j,αs/2(τ)

]
, τ ∈ G.

Note that a pointwise error αs is found for which a fraction of approximately (1− α) of all
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centered bootstrap estimates falls within the resulting confidence intervals, for all points of the
set G. As such, the confidence intervals with pointwise coverage (1− αs) become simultaneous
confidence bands with coverage (1− α). Since this model can have more than one explanatory
variable, we have to construct a confidence band for d coefficient curves and the trend function
using the above procedure. It is noted that the confidence bands do not have to have equal width,
a feature which we find valuable, since in finite samples the fluctuations are likely to vary over the
time span.

3.3 Asymptotic theory

An insightful exposition of our results requires further notation.

(a) Quantities associated withK(·): µk =
∫ 1
−1 u

kK(u)du, νk =
∫ 1
−1 u

kK2(u)du; µk,c =
∫ 1
−c u

kK(u)du,
νk,c =

∫ 1
−c u

kK2(u)du, where c ∈ (0, 1). Let µc =
( µ0,c µ1,c
µ1,c µ2,c

)
and νc =

( ν0,c ν1,c
ν1,c ν2,c

)
. Moreover, we

define κ(τ1, τ2) =
∫
Rw(u; τ1, τ2)K(u− τ1)K(u− τ2)du and κ+(τ1, τ2) =

∫
R+ w(u; τ1, τ2)K(u−

τ1)K(u− τ2)du, where w(u; τ1, τ2) =
(

1 u−τ2
u−τ1 (u−τ1)(u−τ2)

)
.

(b) Bias terms: b(τ) = 1
2

(
µ2β(2)(τ)

0

)
, bc(0+) = 1

2µ
−1
c

(
µ2,cβ(2)(0+)
µ3,cβ(2)(0+)

)
, where β(2)(0+) = limτ↓0 β(2)(τ).

(c) Scaling matrix: H = diag (Id+1, hId+1).

(d) Short/long-run covariance matrices: Ω0 = E (xtx′t), Λ = ∑∞
j=−∞ cov

(
xtzt,xt+jzt+j

)
.

The following pointwise results illustrate that the nuisance parameters in asymptotic inference
are consistently estimated by the sieve bootstrap.

Theorem 1
Under Assumptions A1, A2, A3, A4, B1, and B2, we have

(i) for any fixed τ ∈ (0, 1),

√
nhH

(
θ̂∗(τ)− θ̃(τ)− h2b(τ)

)
d∗→p N

(
0,
(
ν0

ν2/µ
2
2

)
⊗
(
Ω−1

0 ΛΩ−1
0

))
, (3.5)

and
√
nhH

(
θ̂(τ)− θ(τ)− h2b(τ)

)
converges in distribution to the same limit;

(ii) for the left endpoint τ = ch, c ∈ (0, 1),

√
nhH

(
θ̂∗(ch)− θ̃(ch)− h2bc(0+)

)
d∗→p N

(
0,
(
µ−1
c νcµ

−1
c

)
⊗
(
Ω−1

0 ΛΩ−1
0

))
, (3.6)

and
√
nhH

(
θ̂(ch)− θ(ch)− h2bc(0+)

)
converges in distribution to the same limit.

Theorem 1 has three implications. First, the theoretical validity in the sense of (3.3) for the
pointwise bootstrap intervals follows directly from the theorem. Second, the sieve bootstrap suc-
cessfully replicates the asymptotic behaviors of the local linear estimators at both interior points
and the left boundary point. Similar results hold for the right endpoint τ = 1 − ch and thus are
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omitted here. Third, the bootstrap consistently estimates the bias terms b(τ)/bc(0+). As men-
tioned, undersmoothing conditions of h̃ aim at making the bias vanish asymptotically. Yet, it is not
necessary here. The bootstrap automatically mimics the second-order bias terms despite they are
negligible or dominate the stochastic variation as also found in Friedrich et al. (2020).

We further investigate the validity of the simultaneous confidence bands as in (3.4) by considering
h-neighborhoods around a fixed time point. When the distance between two points, τ1 and τ2, is of
order h, there is non-negligible correlation between θ̂(τ1) and θ̂(τ2). Theorem 2 below shows that
the sieve bootstrap correctly mimic this neighborhood correlation. This property can be used for
constructing simultaneous confidence intervals over G, that is, a finite union of h-neighborhoods.

Some additional notation is needed. Throughout, let q = 2(d + 1). Denote by C[−1, 1] the
space of real-valued continuous functions on [−1, 1], and by C[−1, 1]q = C[−1, 1]×· · ·×C[−1, 1] the
space of continuous vector functions w = (w1, . . . , wq) : [−1, 1]→ R. That is, C[−1, 1]q is the q-fold
Cartesian product of the space C[−1, 1]. Let dU (x, y) = supτ∈[−1,1] |x(τ)− y(τ)|, x, y ∈ C[−1, 1],
be the uniform metric. The notation “⇒” signifies weak convergence in C[−1, 1]q endowed with
dqU (x,y) = max1≤i≤q {dU (xi, yi)}, where x = (xi),y = (yi) ∈ C[−1, 1]q. Note that dqU (x,y) induces
the product topology that makes C[−1, 1]q complete and separable, like C[−1, 1], see e.g. Theorem
6.16 of Davidson (1994).

Theorem 2
Suppose the assumptions in Theorem 1 hold.

(i) For any fixed τ0 ∈ (0, 1),
{√

nhH
(
θ̂(τ0 + τh)− θ(τ0 + τh)− h2b(τ0)

)}
τ∈[−1,1]

⇒ {W (τ)}τ∈[−1,1] ,
{√

nhH
(
θ̂∗(τ0 + τh)− θ̃(τ0 + τh)− h2b(τ0)

)}
τ∈[−1,1]

⇒ {W (τ)}τ∈[−1,1] in probability,
(3.7)

where {W (τ)}τ∈[−1,1] is a multivariate Gaussian process with EW (τ) = 0 and

cov (W (τ1),W (τ2)) =
[
diag

(
1, µ−1

2
)
κ(τ1, τ2) diag

(
1, µ−1

2
)]⊗

(
Ω−1

0 ΛΩ−1
0

)
.

(ii) Let K ⊂ (0, 1) be a compact set.
{√

nhH
(
θ̂(τh)− θ(τh)− h2bτ (0+)

)}
τ∈K
⇒ {W+(τ)}τ∈K ,

{√
nhH

(
θ̂∗(τh)− θ̃(τh)− h2bτ (0+)

)}
τ∈K
⇒ {W+(τ)}τ∈K in probability,

(3.8)

where {W+(τ)}τ∈K is a multivariate Gaussian process with EW+(τ) = 0 and

cov (W+(τ1),W+(τ2)) =
(
µ−1
τ1 κ+(τ1, τ2)µ−1

τ2

)
⊗
(
Ω−1

0 ΛΩ−1
0

)
.

Theorem 2 shows the uniform validity of the bootstrap within an h-neighborhood for any interior
points as well as the left endpoint. One can similarly consider the right endpoint. Moreover, the
results trivially hold for any interval [τ0 − ah, τ0 + bh] with a, b > 0. The interval [τ0 − h, τ0 + h]
is simply chosen out of convenience. As shown in Corollary 3.3 in Bühlmann (1998), the uniform
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validity of the bootstrap over a finite union of h-neighborhoods follow straightforwardly from the
theorem. In finite samples, one can always cover the full sample by taking sufficiently many unions
in G. Nevertheless, this is different from the asymptotic construction which is based on direct
approximations to supτ∈(0,1)

(
θ̂(τ)−θ(τ)

)
, see e.g. Zhou and Wu (2010) and Karmakar et al. (2021).

Although it is theoretically less attractive, our construction may be practically more relevant. By
choosing some representative periods while constructing G, such as the beginning and the end, the
simultaneous bands over these local sets allow one to conclude about, for instance, what are the
most important drivers of yt in these specific periods. Several remarks are now in place.

Remark 2. Recall τt = t/n and E (ztzs|xtx′s) = E (ztzs), s, t ∈ Z, in Assumption A1(e). The reason
for this assumption is given as follows. Our sieve bootstrap (SB) scheme hinges on an i.i.d. bootstrap
of the AR residuals which are considered to be approximations of the i.i.d. errors εt. Intuitively
speaking, the i.i.d. resampling of these residuals destroys the potential higher-order dependence
structure between xt and zt. We find that the next terms mimic the asymptotic normality:

Z∗n,k(τ) = 1√
nh

n∑

t=1
xtz
∗
tw

k
t (τ), k = 0, 1,

where wkt (τ) :=
( τt−τ

h

)k
K
( τt−τ

h

)
, with E∗

(
Z∗n,k(τ)

)
= 0 and the (conditional) variance

Var∗
(
Z∗n,k(τ)

)
= 1
nh

n−1∑

i=−n+1

n−|i|∑

t=1
xtx

′
t+|i|E

∗
(
z∗t z
∗
t+|i|

)
wkt (τ)wkt+|i|(τ). (3.9)

≈
n−1∑

i=−n+1
E
(
z1z1+|i|

)

 1
nh

n−|i|∑

t=1
xtx

′
t+|i|

(
τt − τ
h

)2k
K2

(
τt − τ
h

)


≈
n−1∑

i=−n+1
E
(
z1z1+|i|

)

E
(
x1x

′
1+|i|

) 1
nh

n−|i|∑

t=1

(
τt − τ
h

)2k
K2

(
τt − τ
h

)


≈ ν2k

n−1∑

i=−n+1
E
(
z1z1+|i|

)
E
(
x1x

′
1+|i|

)

for any fixed τ ∈ (0, 1). Observe that ∑n−1
i=−n+1 E

(
z1z1+|i|

)
E
(
x1x

′
1+|i|

)
converges to Λ provided

Assumption A1(e) holds. Therefore, Z∗n,k(τ) may not correctly mimic the asymptotic variance of
θ̂(τ) without this assumption.

Remark 3. Some intuition for the oversmoothing condition h lnn/h̃ n→∞→ 0 is provided as follows.
For τ ∈ [0, 1], we can write

√
nhH

(
θ̂∗(τ)− θ̃(τ)− h2b(τ)

)

=
√
nhH

[
θ̂∗(τ)− E∗

(
θ̂∗(τ)

)]
+
√
nhH

[
E∗
(
θ̂∗(τ)

)− θ̃(τ)− h2b(τ)
]
.

The first part appears to mimic the stochastic variation and capture the asymptotic normality of
the bootstrap estimators. As shown in the proof of Lemma 6, the term E∗

(
θ̂∗(τ)

)− θ̃(τ)− h2b(τ)
converges to zero but at the rate no faster than

√
lnn/(nh̃). When multiplying by

√
nh, the second

part can only vanish asymptotically provided h lnn/h̃ n→∞→ 0. This is possible by oversmoothing.
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Remark 4. The SB method, while correctly mimicking the dependence structure, is not valid
when the errors are heteroskedastic, for instance, zt = σtut with ut satisfying Assumption A1
and σt = σ (t/n) is a deterministic function. In Step 3 of the SB algorithm, we draw randomly with
replacement from the AR(p) residuals. It leads to bootstrap errors that do not display the same
variance pattern as the original residuals in the presence of heteroskedasticity. To overcome this,
one may add a wild component to the SB. That is, generate ε∗t as ε∗t = ξ∗t ε̂t,p with ξ∗t

iid∼ N (0, 1)
instead of the original Step 3. The other steps remain. This bootstrap is called sieve wild bootstrap
(SWB). It is suggested in Cavaliere and Taylor (2008, 2009) and Smeekes and Taylor (2012) for unit
root testing. Since the residuals are not resampled like in Step 3 of the SB, the boundary residuals
stay at the boundary and edge effects, if present, are not a problem in this method (Remark 1).
The SWB is a natural solution when there is unconditional heteroskedasticity. Interestingly, as also
reported in Friedrich et al. (2020), we find in our simulations that SWB has poor coverage and
is even outperformed by SB in the presence of unconditional/conditional heteroskedasticity. The
issues merit further research.

3.4 Testing for parameter stability

A large body of research has adopted linear regression models (with constant parameters) in related
climatic applications. This gives the necessity to test the hypothesis that β(·) does not evolve with
time. That is, we test the following hypothesis:

H0 : β(·) = c, for some unknown c ∈ Rd+1, (3.10)

against the alternative hypothesis that β(·) satisfies Assumption A2 but β(·) 6= c for any c ∈
Rd+1. Under the null hypothesis, a consistent estimator of c can be obtained by OLS, i.e. ĉ =
(ĉj , j = 0, . . . , d) := (X ′X)−1X ′y, where X = (x1, . . . ,xn)′ and y = (y1, . . . , yn)′. In light of
Theorem 1, for a fixed τ ∈ (0, 1), an infeasible Wald-type of test statistic can be constructed as
follows:

Wn(τ) =
(
β̂(τ)− h2b(τ)− ĉ

)′ (
ν0Ω

−1
0 ΛΩ−1

0

)−1 (
β̂(τ)− h2b(τ)− ĉ

)
.

Under the null, the parametric estimator ĉ has faster convergence rate than β̂(τ) (
√
n-consistent),

nhWn(τ) is therefore pointwise asymptotically χ2
d+1-distributed by Theorem 1. Although the test

is asymptotically pivotal, consistent estimators of the LRV and bias are needed to implement this
test. We will further exploit the advantages of the sieve bootstrap. Similar idea has been ex-
plored by Kapetanios (2008) using i.i.d. bootstrap. Since bootstrap automatically takes care of the
standardization, we consider the following test statistic

Ŵn(τ) =
(
Ŵn,0(τ), . . . , Ŵn,d(τ)

)′
:=
((
β̂0(τ)− ĉ0

)2
, . . . ,

(
β̂d(τ)− ĉd

)2
)′

(3.11)

without studentizing (and correcting bias), where β̂(τ) for τ ∈ G, and G = ∪mi=1Ui(h) is given
below (3.4). The bootstrap procedure is given as follows. Note that the first step will be identical
to Steps 1 through 4 in the previous bootstrap algorithm.
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Step 1 Perform Steps 1 through 4 of the SB procedure in Section 3.1 to obtain sieve bootstrap
observations y∗t for t = 1, . . . , n.

Step 2 Obtain the bootstrap estimators β̂∗(τ), τ ∈ G, using the same h as in Step 1. Construct

Ŵ∗n(τ) =
(
Ŵ∗n,0(τ), . . . , Ŵ∗n,d(τ)

)′
:=
((
β̂∗0(τ)− β̃0(τ)

)2
, . . . ,

(
β̂∗d(τ)− β̃d(τ)

)2
)′
.

Step 3 Repeat Steps 3 and 4 B times. Compute the (d+ 1)-dimensional vector of pointwise quantiles
q̂αp(τ) =

(
q̂0,αp(τ), . . . , q̂d,αp(τ)

)′
, τ ∈ G, where

q̂j,αp(τ) = inf
{
u : P∗

(
Ŵ∗n,j(τ) ≤ u

)
≥ αp

}
.

From these pointwise quantiles, we obtain critical values for a significance level of α using a similar
procedure as we introduced in Section 3.1 to construct simultaneous confidence bands. Vary the
pointwise error αp until

P∗
(
Ŵ∗n(τ) ≥ q̂1−αp(τ), ∀τ ∈ G

)
≈ α.

This means that the ratio of Ŵ∗n,j(τ) ≥ q̂j,1−αp(τ) for all τ ∈ G and j ∈ {0, . . . , d} is approximately
α. Denote this αp by αs (simultaneous error). Reject the null if Ŵn(τ) ≥ q̂1−αs(τ) for some τ ∈ G.

Note that we generate the bootstrap observations from the nonparametric fit rather than the
parametric fit. This is because β̃(τ) is consistent under both the null and alternative hypotheses.
Therefore, the dynamics of {yt} can be replicated in the bootstrap world even when H0 is not true.
Moreover, we construct the bootstrap test statistics Ŵ∗n(τ) using

((
β̂∗j (τ)− β̃j(τ)

)2
, 0 ≤ j ≤ d

)′
in

Step 2, instead of the natural construction
((
β̂∗j (τ)− ĉ∗j

)2
, 0 ≤ j ≤ d

)′
, where ĉ∗j are the bootstrap

counterparts of ĉj . Our approach ensures that nhŴ∗n(τ) is bounded in probability under the alter-
native, leading to a nontrivial power. Finally, since we do not possess prior information about which
coefficients are time-varying in our empirical study, we focus on jointly testing if βj(·), j = 0, . . . d,
are constants. It would be interesting to additionally test whether coefficients are partially time-
invariant. In this case, one may construct a test statistic based on profile least squares estimators
with local linear fitting in the first stage, see e.g. Li et al. (2011) and Gao et al. (2021). We leave
this problem to future research. The following results shed some light on the asymptotic properties
which are obtained based on Theorems 1 and 2.

Proposition 1
Suppose Assumptions A1, A3, A4, B1, and B2, hold.

(i) For any fixed τ0 ∈ (0, 1), under the null hypothesis H0 in (3.10),
{
nhŴn(τ0 + τh)

}
τ∈[−1,1]

weakly converges, and
{
nhŴ∗n(τ0 + τh)

}
τ∈[−1,1]

weakly converges in probability, to the same
limiting distribution.

(ii) Consider the alternative hypothesis H1 : β(·) 6= c for any c ∈ Rd+1. Under H1 and Assumption
A2, for some τ0 ∈ (0, 1), there exists a neighborhood Uδ(τ0) = (τ0− δ, τ0 + δ), δ > 0, such that
nhŴn(τ) p→∞ for every τ ∈ Uδ(τ0).
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Proposition 1(i) demonstrates that Ŵ∗n(·) asymptotically reflects the distributions of Ŵn(·) on
the finite union G of h-neighborhoods using the arguments of Corollary 3.3 in Bühlmann (1998),
as also discussed below Theorem 2. Under the null, we can imply β(·) = c over G ⊂ [0, 1]. Hence,
our test has correct size asymptotically. Nevertheless, we may have lower power compared to tests
such as supτ∈[0,1] Ŵn(τ), depending on the actual shape of β(·). More specifically, we note that
nhŴ∗n(τ) = O∗p(1) uniformly over G under H1 by Theorem 2. Proposition 1(ii) shows that the test
has a non-trivial power whenever G 3 τ0. If by chance β(·) is relatively flat over G, the null may
be rejected by supτ∈[0,1] Ŵn(τ) but not our test. Hence, the former may have a better power. From
a practical point of view, one can always choose multiple h-neighborhoods centered around some
representative time points to form the set G, such as {1/5, . . . , 4/5}. It is generally informative
enough to tell if β(·) is time-varying in practice.

4 Practical implementation

We discuss some issues which arise during implementation: selecting (i) the bandwidth h; (ii) the
oversmoothing parameter h̃ and lag orders p in the bootstrap.

4.1 Bandwidth selection

Although Assumption A4 gives some guidance on choosing h, it does not provide a practical choice.
We next discuss some potential ways to select bandwidths in practice. Although a theoretically
optimal bandwidth can be obtained, it often depends on unobservable quantities that are hard to
estimate (e.g. the second derivative of β(·)). We refer the interested reader to Fan and Gijbels
(1996) for more details. We focus on the practical aspect here.

The first approach is based on the leave-one-out cross validation (CV). The first step is to
construct the leave-one-out estimator for every time point by leaving out the observation t that
receives the highest weight in the local estimation given an h, denoted by β̂h,−t(·). The second step
in the least-squares CV approach is to look at the weighted average of the leave-one-out squared
residuals

CV (h) = 1
n

n∑

t=1

[
yt − x′tβ̂h,−t(t/n)

]2
(4.1)

and minimize this criterion with respect to h.
Cross validation was originally designed for independent data and can therefore cause problems

in time series applications. Chu and Marron (1991) propose a modified cross validation (MCV) and
show that it works well for time series data. It follows the same general principle as CV, but it is
based on a leave-(2l+ 1)-out estimator. That is, Sn,k(τ) and Tn,k(τ) in equation (2.4) are replaced
by the following leave-(2l + 1)-out counterparts

Sl,hn,k(τ) = 1
(n− 2l − 1)h

∑

t:|t−τn|>l
xtx

′
t(τt − τ)kK

(
τt − τ
h

)
,

T l,hn,k(τ) = 1
(n− 2l − 1)h

∑

t:|t−τn|>l
xt(τt − τ)kK

(
τt − τ
h

)
yt,
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for k = 0, 1, 2. For l = 0, the original cross validation leave-one-out estimator is obtained.
In addition to cross validation methods, we also consider two additional bandwidth selection

approaches based on the Akaike information criterion (AIC, Cai (2007)) and the generalized cross
validation (GCV, Craven and Wahba (1978)) in our simulation study and application. Both ap-
proaches use the n × n hat-matrix Qh which gives ŷ = Qhy, where ŷ = (ŷ1, . . . , ŷn)′. Then, the
AIC criterion and GCV are defined as

AIC(h) = log σ̂2 + 2 tr (Qh) + 1
n− tr (Qh)− 2 , GCV (h) = n−1 ‖y − ŷ‖2

[1− tr (Qh) /n]2
, (4.2)

where σ̂2 = n−1∑n
t=1(yt − ŷt)2.

4.2 Bootstrap implementation

In Step 1 of the sieve bootstrap algorithms (Sections 3.1 and 3.4), a larger bandwidth is used to
perform the nonparametric estimation. We follow Bühlmann (1998) and suggest using h̃ = Ch5/9

for C = 0.5, 1, 2. Compared to the original bandwidth h, this bandwidth is larger and produces
an oversmoothed estimate. We investigate the sensitivity to the oversmoothing parameter C in the
simulation study. Furthermore, we use the AIC to select the lag length in Step 2. The selection
should be done in such a way that the range of possible lag lengths increases with n. In practice,
we recommend, as in Bühlmann (1998), to select p from a range of possible values in [0, pmax], for
example let pmax = 10 log10(n).

5 Simulation study

In this section, we investigate the properties of the proposed bootstrap methods with the help of
an extensive Monte Carlo study. First, we describe the data generating process (DGP). Second, we
present results for a sample size of n = 100. Third, we increase the sample size to n = 300. Fourth,
we investigate the performance of our proposed test for parameter stability.

5.1 The data generating process

In the empirical application in Section 6 we look at the price development of allowance prices in the
European Emissions Trading Scheme (EU ETS). In particular, the relationship between allowance
prices and their two main drivers is of interest. As explained in Section 6, in theory, one factor
should have a negative effect on allowance prices and the other should have a positive effect. In
line with the previous literature, we find, however, that the factor with the negative impact is
not significant when using linear regression. This is because the effect is insignificant for the first
part of our sample and becomes significant after the first few years. Additionally, the positive
price determinant displays a two-peak shape in our dataset. We try to mimic both shapes in our
simulation study by generating data from the following model:

yt = β1(t/n)x1,t + β2(t/n)x2,t + ut, (5.1)
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Figure 1: Plot of the coefficient curves β1 and β2 used in the simulation study

where the two coefficient functions are given by

β1(t) = 1.5 exp(−10(t− 0.2)2) + 1.6 exp(−8(t− 0.8)2) (5.2)

β2(t) = −0.5t− 0.5 exp(−5(t− 0.8)2). (5.3)

Figure 1 plots the two coefficient curves which are given by (5.2) and (5.3). It shows that β1(·)
has two peaks and β2(·) starts at zero and then turns negative. As mentioned above, their shape is
inspired by the coefficient estimates of the gas and coal price series of the empirical application in
Section 6. For the error term {ut} we consider an ARMA(1,1) process as given by

ut = φut−1 + εt + ψεt−1, εt
iid∼ N

(
0, 1− φ2

2(1 + ψ2 + 2φψ)

)
, (5.4)

where the variance of εt is such that the signal to noise ratio does not change when we vary φ and ψ.
We allow for a dynamic specifications between the regressors x1,t and x2,t. Consider the following
VAR(1) model:

(
x1,t

x2,t

)
=
(

0.3 0.1
0.1 0.2

)(
x1,t−1

x2,t−1

)
+
(
ξ1,t

ξ2,t

)
,

where (ξ1,t, ξ2,t)′ are bivariate standard normal. The dynamics between {x1,t} and {x2,t} are inspired
by the empirical study as the coefficients are obtained by estimating a bivariate VAR(1) from coal
and gas prices in first differences.

To obtain the results presented in the next sections, we use 1000 Monte Carlo simulations.
The sample size is n ∈ {100, 300}. We report 95% confidence intervals using B = 999 boot-
strap replications. We apply the local linear estimator with the Epanechnikov kernel K(x) =
3
4(1 − x2)1{|x|≤1}. We also report the average median length of the confidence intervals in paren-
thesis underneath the respective coverage. Next to pointwise confidence intervals, we also look
at simultaneous confidence bands. For simultaneous coverage to be a success, we count the num-
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ber of successes which means that the trend curve has to lie within the confidence bands for all
points of the considered set G. We study the performance of the method for the two sets Gsub
and G considered by Bühlmann (1998), where Gsub = U1(h) ∪ U4(h) and G = ⋃4

i=1 Ui(h), with
Ui(h) = {(i/5)− h+ j/100, j = 0, . . . , [200h]}. We additionally investigate simultaneous coverage
over the whole sample.

5.2 Results for n = 100

The first set of results are presented in Tables 1 through 4. They are obtained with an oversmoothing
parameter choice of C = 2 and three different bandwidths h = 0.04, 0.06, 0.08. Table 1 gives coverage
probabilities as well as the average median length for pointwise confidence intervals. The pointwise
coverage represents the fraction of the data points for which the corresponding point on the true
parameter curve lies within the confidence bands. Tables 2, 3 and 4 look at the three settings
for simultaneous confidence bands: G, Gsub and the whole sample, respectively. In this case, the
coverage probability counts the number of times that the true parameter curve lies entirely within
the confidence bands (for every point of the considered set). The left column of each table shows
which AR and MA coefficient was used while the top row refers to the bandwidth. For each
bandwidth, we present results for β1 and β2.

Table 1: Pointwise coverage probabilities

h = 0.04 h = 0.06 h = 0.08
(φ,ψ) β1 β2 β1 β2 β1 β2

(0,0) 0.957 0.964 0.941 0.963 0.898 0.960
(0.307) (0.310) (0.247) (0.250) (0.214) (0.216)

(0.3,0) 0.958 0.963 0.938 0.962 0.890 0.958
(0.302) (0.301) (0.246) (0.244) (0.214) (0.212)

(0.5,0) 0.959 0.966 0.938 0.964 0.887 0.961
(0.288) (0.282) (0.236) (0.232) (0.206) (0.202)

(-0.3,0) 0.964 0.967 0.946 0.967 0.891 0.963
(0.284) (0.292) (0.228) (0.233) (0.196) (0.201)

(0.0.3) 0.956 0.965 0.940 0.964 0.898 0.960
(0.306) (0.303) (0.249) (0.247) (0.217) (0.215)

(0.3,0.3) 0.950 0.956 0.935 0.955 0.901 0.951
(0.367) (0.361) (0.300) (0.296) (0.262) (0.258)
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Table 2: Coverage probabilities for Gsub

h = 0.04 h = 0.06 h = 0.08
(φ,ψ) β1 β2 β1 β2 β1 β2

(0,0) 0.947 0.953 0.897 0.947 0.763 0.943
(0.401) (0.404) (0.324) (0.328) (0.283) (0.286)

(0.3,0) 0.946 0.955 0.876 0.959 0.753 0.951
(0.394) (0.393) (0.322) (0.321) (0.282) (0.280)

(0.5,0) 0.947 0.968 0.872 0.960 0.737 0.940
(0.376) (0.369) (0.309) (0.305) (0.272) (0.268)

(-0.3,0) 0.956 0.969 0.902 0.965 0.737 0.970
(0.372) (0.381) (0.299) (0.307) (0.260) (0.266)

(0.0.3) 0.947 0.950 0.895 0.949 0.740 0.944
(0.399) (0.396) (0.326) (0.324) (0.286) (0.284)

(0.3,0.3) 0.946 0.944 0.878 0.941 0.774 0.938
(0.479) (0.472) (0.394) (0.388) (0.346) (0.340)

Table 3: Coverage probabilities for G

h = 0.04 h = 0.06 h = 0.08
(φ,ψ) β1 β2 β1 β2 β1 β2

(0,0) 0.946 0.954 0.892 0.951 0.772 0.947
(0.434) (0.437) (0.350) (0.354) (0.302) (0.304)

(0.3,0) 0.950 0.955 0.888 0.957 0.747 0.956
(0.427) (0.425) (0.348) (0.347) (0.301) (0.299)

(0.5,0) 0.941 0.955 0.880 0.953 0.743 0.937
(0.407) (0.400) (0.335) (0.329) (0.290) (0.285)

(-0.3,0) 0.943 0.960 0.903 0.963 0.752 0.961
(0.403) (0.413) (0.323) (0.331) (0.277) (0.284)

(0.0.3) 0.949 0.952 0.891 0.953 0.755 0.944
(0.433) (0.429) (0.352) (0.350) (0.305) (0.302)

(0.3,0.3) 0.931 0.934 0.880 0.936 0.776 0.941
(0.519) (0.511) (0.425) (0.419) (0.368) (0.363)

The coverage of the pointwise confidence intervals (Table 1) obtained by the sieve bootstrap
is close to the nominal level of 95% in almost all cases, independent of the chosen bandwidth and
the degree of autocorrelation. This holds for both coefficient functions. In Tables 2 and 3 we
observe that this is still true for β2 when we move to simultaneous coverage over the sets G and
Gsub. Looking at the same values for β1, the coverage drops as the bandwidth gets larger. The
coverage drops to 74% for Gsub and G in the case of AR(1) errors with φ = 0.5 for the largest
considered bandwidth. For the smallest bandwidth, the coverage for β1 is close to the nominal
level. This sensitivity with respect to the bandwidth observed for β1 is not unexpected given the
more complex shape of the parameter curve compared to β2. In Table 4, the same pattern arises
when we consider simultaneity over the whole sample, while the confidence intervals become slightly
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wider compared to the previous tables to account for the substantially larger set of values considered
for the simultaneity.

Table 4: Coverage probabilities for the whole sample

h = 0.04 h = 0.06 h = 0.08
(φ,ψ) β1 β2 β1 β2 β1 β2

(0,0) 0.925 0.931 0.896 0.948 0.798 0.944
(0.461) (0.464) (0.367) (0.371) (0.312) (0.315)

(0.3,0) 0.917 0.940 0.882 0.946 0.771 0.955
(0.453) (0.451) (0.365) (0.363) (0.311) (0.309)

(0.5,0) 0.905 0.937 0.880 0.941 0.757 0.938
(0.432) (0.425) (0.350) (0.345) (0.300) (0.295)

(-0.3,0) 0.936 0.932 0.907 0.949 0.780 0.952
(0.427) (0.438) (0.338) (0.347) (0.286) (0.293)

(0.0.3) 0.919 0.947 0.902 0.951 0.779 0.943
(0.459) (0.455) (0.369) (0.366) (0.315) (0.312)

(0.3,0.3) 0.894 0.896 0.873 0.933 0.787 0.936
(0.551) (0.542) (0.446) (0.439) (0.382) (0.375)

The next set of results investigates the role of the oversmoothing parameter C. Here, we only
consider a limited number of AR and MA specifications ((0, 0), (0.3, 0), (0, 0.3)) and we restrict
ourselves to one bandwidth (h = 0.04). The results are presented in Table 5. The top part shows
pointwise coverage and the bottom part simultaneous coverage over Gsub for an increasing value of
C = 0.5, 1, 2 (Bühlmann, 1998). For ease of comparison, the final two columns repeat the values
from Tables 1 and 2, respectively. With increasing C the confidence intervals become wider and
thus, the coverage increases. Values of 1 and 2 both produce accurate coverage when it comes to
pointwise confidence intervals. In the case of simultaneous confidence bands, the method works best
with an oversmoothing parameter of C = 2.

We additionally investigated a setting that allowed for conditional heteroskedasticity by letting
the errors follow a GARCH(1,1) specification. In this scenario, the sieve bootstrap becomes invalid
and we use a sieve wild extension as well as an autoregressive wild bootstrap. The results are
presented in Tables 9 to 11 in Appendix B. The wild bootstrap methods produced confidence bands
with surprisingly low coverage. This might be a small sample problem because the performance
improved when considering n = 300. To further investigate this is a promising avenue for future
research.

5.3 Increasing the sample size

In Table 6 we see how the coverage and length of the confidence intervals change when we increase
the sample size from 100 to 300. We consider pointwise and simultaneous inference for G, Gsub
and the whole sample. We restrict ourselves to three error specifications from Table 5 and one
bandwidth (h = 0.04). The method performs well in almost all cases. Coverage probabilities are
even slightly too high in some cases. Merely the simultaneity over the whole sample remains at a
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Pointwise coverage
C = 0.5 C = 1 C = 2

(φ,ψ) β1 β2 β1 β2 β1 β2

(0,0) 0.909 0.918 0.942 0.950 0.957 0.964
(0.262) (0.265) (0.287) (0.290) (0.307) (0.310)

(0.3,0) 0.90977 0.91164 0.944 0.947 0.958 0.963
(0.258) (0.259) (0.283) (0.282) (0.302) (0.301)

(0,0.3) 0.90579 0.9161 0.941 0.950 0.956 0.965
(0.259) (0.257) (0.285) (0.283) (0.306) (0.303)

Simultaneous coverage (Gsub)

(0,0) 0.846 0.849 0.920 0.926 0.947 0.953
(0.343) (0.347) (0.375) (0.379) (0.401) (0.404)

(0.3,0) 0.869 0.875 0.929 0.939 0.947 0.955
(0.337) (0.339) (0.369) (0.368) (0.394) (0.393)

(0,0.3) 0.836 0.861 0.919 0.929 0.947 0.950
(0.338) (0.336) (0.372) (0.370) (0.399) (0.396)

Table 5: Coverage probabilities for varying C, h = 0.04

small loss of coverage compared to the nominal level. The most observable change is that for the
increased sample size, the intervals become more narrow while the coverage remains similar.

pointwise Gsub G whole sample
(φ,ψ) n = 100 n = 300 n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

β1

(0,0) 0.957 0.962 0.947 0.932 0.946 0.951 0.925 0.936
(0.307) (0.169) (0.401) (0.222) (0.434) (0.241) (0.461) (0.258)

(0.3,0) 0.958 0.963 0.946 0.953 0.950 0.963 0.917 0.942
(0.302) (0.172) (0.394) (0.227) (0.427) (0.245) (0.453) (0.263)

(0,0.3) 0.956 0.961 0.947 0.937 0.949 0.941 0.919 0.929
(0.306) (0.171) (0.399) (0.225) (0.433) (0.244) (0.459) (0.262)

β2

(0,0) 0.964 0.970 0.953 0.970 0.954 0.971 0.931 0.957
(0.310) (0.171) (0.404) (0.225) (0.437) (0.244) (0.464) (0.262)

(0.3,0) 0.963 0.972 0.955 0.979 0.955 0.971 0.940 0.960
(0.301) (0.171) (0.393) (0.225) (0.425) (0.244) (0.451) (0.262)

(0,0.3) 0.965 0.968 0.950 0.971 0.952 0.959 0.947 0.946
(0.303) (0.171) (0.396) (0.224) (0.429) (0.243) (0.455) (0.261)

Table 6: Coverage probabilities for n = 300, h = 0.04

5.4 Parameter stability test

The empirical size and power of the bootstrap test for parameter stability are reported in Table 7.
Overall, the test has the best performance in terms of both empirical size and power when h = 0.08.
We further make three observations. First, a larger h, and therefore a larger h̃, yields a better size
control due to our construction of the bootstrap test. More specifically, we use

(
β̂∗j (τ)− β̃j(τ)

)2 to
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h̃ = 2h5/9 n = 100 n = 300
h = 0.04 h = 0.06 h = 0.08 h = 0.04 h = 0.06 h = 0.08

Size
(0, 0) 9.6 9.0 7.1 5.1 5.7 4.7
(0.3, 0) 7.3 7.5 7.3 6.2 4.5 4.0
(0.5, 0) 9.4 8.4 6.7 5.6 4.5 4.1
(−0.3, 0) 7.6 6.9 6.4 6.0 6.6 4.3
(0, 0.3) 10.8 9.7 5.2 7.5 4.8 3.9
(0.3, 0.3) 9.5 7.3 7.5 5.9 4.5 4.3
Power
(0, 0) 27.9 42.4 54.5 72.2 92.5 97.2
(0.3, 0) 29.1 41.7 53.4 67.3 88.0 96.3
(0.5, 0) 29.0 44.0 57.3 70.3 87.4 95.4
(−0.3, 0) 30.9 48.3 55.6 76.4 95.7 98.2
(0, 0.3) 28.7 41.2 53.7 71.4 89.6 97.4
(0.3, 0.3) 31.1 45.4 55.0 68.3 87.7 96.2

Table 7: The empirical size and power (in %) of bootstrap tests for parameter stability.

gain approximations to the test statistics
(
β̂j(τ) − ĉj

)2, j = 0, 1, . . . , d. The first-step smoothers
β̃j(τ) fluctuate less with a larger h̃, mimicking the data better under the null hypothesis. Second,
the test is mildly oversized when n = 100. It yields a more accurate empirical size as n increases to
300. Finally, the empirical power also increases with the sample size in line with Proposition 1(ii).
Since a false negative may result in model misspecifications, a nontrivial empirical power is crucial
in applications.2

6 The EU Emissions Trading System

6.1 Background and related literature

The EU ETS – which is short for European Emissions Trading System – is the largest and oldest
cap-and-trade program. Regulated firms and other participants can buy and sell permits that can
be used to match emissions of one metric ton of CO2 or CO2 equivalent. These permits are called
emission allowances (EUAs). The EU ETS covers around 45% of all greenhouse gas emissions of
the EU. The main sector which is regulated by the scheme is the power sector. Energy intensive
industries and the aviation sector are also part of the current version of the scheme. Since its
implementation in 2005, the EU ETS went through three compliance phases and is currently in
its fourth phase which began in 2021 (ICAP, 2020). An interesting area of research within the
EU ETS is to study the impact of fundamental price drivers on the allowance price. Economic
theory identifies clear price drivers among which the most important ones are the coal and the gas
price. The power sector is the main sector in the EU ETS and therefore, it is responsible for the
identification of the main price determinants. In this sector, firms can switch from coal to gas for

2A false positive may suffer less from this issue because one would instead use a more flexible semi-parametric
model.
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electricity generation. In theory, due to the fuel switching relationship, the coal price is expected
to have a negative effect on allowances prices. In contrast, gas should have a positive effect. Using
coal in electricity generation produces much more emissions than using gas. Thus, an increase in
the price of coal, ceteris paribus, leads to a switch from coal to gas which reduces emissions and
simultaneously, it decreases the demand for allowances (Christiansen et al., 2005). Other price
driving factors are e.g. economic activity which should have a positive effect on allowance prices.
Electricity consumption and therefore emissions will increase with an increase in economic activity.
In contrast, electricity generation from renewable sources should have a negative effect due to cleaner
technologies, resulting in less demand for allowances. The effect of temperature on allowance prices
is expected to be mainly due to increased use of heating during winter and therefore, theory predicts
a negative effect.

We plot the allowance price together with the coal and gas price in Figure 2. Panel (a) plots
the EUA price (black) and the coal price (red). We indeed see some opposite movements in the two
time series. We observe that the two series indeed move in opposing directions most of the time
while there is some joint increase visible towards the end of the sample. In Panel (b), the EUA
price is jointly plotted with the gas price (blue). The two time series move together over quite some
periods of our sample, but they also diverge at the end of 2011 and the beginning of 2014. This
gives a first indication of a potentially unstable relation over time.

Although market fundamentals should have a major effect on allowance prices, a study of the
related literature shows that empirical evidence is mixed. There seems to be a contradiction be-
tween theory and empirical applications. This is confirmed by a simple linear regression exercises
performed on our data. Table 8 displays the results. The two significant factors are the gas and the
oil price. The coal price, as an important driver, does not show a significant effect on the allowance
price in these initial linear regressions. The results are robust regarding the choice of indicator of
economic activity; the estimates are very similar, if we include the alternative stock index, or if we
include the oil price.3 This does not come as a surprise given the results of previous studies.

The effect of the coal price on allowance prices causes disagreement in findings. Rickels et al.
(2014) find a positive effect of the coal price on the allowance price. Aatola et al. (2013) find a
negative coefficient of coal while Hintermann (2010) and Koch et al. (2014) find it to be insignificant.
In the latter study, the explicitly calculated fuel switching price is found to have a significant effect.
It is obtained from gas and coal prices as well as the efficiency and emission rates of coal and gas
plants in the EU ETS. The significant effect could be due to the gas price rather than the coal
price since there is no ambiguity in the empirical literature regarding the effect of gas prices. All
studies find a positive and significant coefficient of the gas price independent of which approach
is used. In particular, in Hintermann (2010) it is the only explanatory variable with a significant
effect throughout all considered specifications.

These findings raise the question of whether it might be more appropriate to account for potential
time-variation when modeling the relationship between allowance prices. This has been discussed
in Friedrich et al. (2019) and Lutz et al. (2013). The latter paper considers potential non-linearities
using a regime-switching model. They distinguish two different pricing regimes - one applies during

3Inclusion of the stock indices in addition the oil price left the other coefficients nearly unchanged and the index’s
coefficient is not significant. The results can be obtained on request.
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OLS regression results
(a) (b) (c)

β seNW p-value β seNW p-value β seNW p-value
Intercept 0.000 0.003 0.774 0.000 0.003 0.928 0.000 0.003 0.769
Coal -0.119 0.094 0.206 -0.061 0.097 0.528 -0.07 0.097 0.425
Gas 0.190 0.075 0.012 0.198 0.074 0.007 0.198 0.074 0.008
Oil 0.214 0.069 0.002 – – – – – –
Temp -0.001 0.001 0.572 -0.001 0.001 0.450 -0.001 0.001 0.451
Stoxx 50 – – – 0.139 0.103 0.031 – – –
Stoxx 600 – – – – – – 0.296 0.110 0.007
Rejection Rate 77% 64% 63%

Table 8: Linear regression results from a regression of the allowance price on different sets of
explanatory variables: (a) includes the oil price (b) the stock index STOXX 50 and (c) the index
STOXX 600. The estimated coefficients (β) as well as Newey-West standard errors seNW and
the corresponding p-values are reported. The row labeled “Rejection Rate” indicates the ratio of
rejecting the null of parameter constancy, given (α, h) = (10%, 0.08) and h̃ = 2h5/9, by repeating
the testing procedure 100 times developed in Section 3.4.
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Figure 2: Joint plot of (a) EUA and coal prices and (b) EUA and gas prices.

periods of high volatility and the other during periods of low volatility. By construction, the impact
of explanatory variables on the allowance price can differ among the two regimes. In both regimes,
they find the same set of relevant price drivers. Coal and gas prices, oil prices and the stock index are
statistically significant determinants of the EUA price. In Regime 2, which is characterized by low
and constant volatility, all significant price drivers show the anticipated sign. Regime 1, however,
shows a positive impact of the coal price. This goes against economic considerations that predict,
as in the second regime, a negative effect of the coal price on allowance prices. These results gives
further evidence that the relationship between the allowance price and its fundamentals might not
be constant over time but be subject to (structural) changes. Such observation is also supported by
our parameter stability test given in Section 3.4. Since, for each simulation, our testing procedure
gives a binary outcome (reject or not reject) for a significance level α, say α = 10%, we repeat 100
simulations to obtain the rejection rates (Table 8). The results show that there is a more than 60%
chance of rejecting parameter constancy. Together with the former studies, a more robust model
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specification shall be adopted.

6.2 The data and empirical results

We consider weekly data for the period from January 2008 to October 2018 resulting in T = 538
observations. We use EUA December futures contract traded on the European Energy Exchange
(EEX). Most related papers rely on the December futures prices (Aatola et al., 2013; Lutz et al.,
2013; Koch et al., 2014) since they are frequently traded price series. As our main set of explanatory
variables, we include natural gas, coal and oil prices as month-ahead futures. We further use two
stock indices as supplementary indicators of current and expected economic activity. As a final
explanatory variable we use European average temperature data.

The gas price is the settlement price of month-ahead Dutch TTF futures, denoted in EUR/MWh.
TTF stands for Title Transfer Facility and is a virtual trading point for natural gas in the Nether-
lands. Similarly, we consider the settlement price of month-ahead coal futures based on the API2
index of the ARA region (Amsterdam-Rotterdam-Antwerp). The contract size is 1000 metric tonnes
of thermal coal.4 Both are obtained from the EEX. For oil we rely on the historical futures prices
(continuous contract) of Brent crude oil based on raw data from the Intercontinental Exchange
(ICE), retrieved from Quandl. The contract size is 1,000 barrels. The coal and the oil prices need
to be converted into EUR, as they are denoted in USD. This is done using the daily USD/EUR
exchange rate data from Tullett Prebon. The first stock index is the STOXX Europe 50. As
an alternative, we use data on a comparable index, which is sometimes used in this context, the
STOXX Europe 600 index. We use temperature data constructed as an average over seven Euro-
pean cities from the European Climate Assessment & Dataset (ECA&D) which provides surface
air temperature for 199 measurement stations in Europe. It is provided by The Royal Netherlands
Meteorological Institute (KNMI). We refer to Klein Tank et al. (2002) for more details on the
temperature series and measurement stations. We aggregate the data to weekly means in order to
match our sample frequency. In addition, we remove seasonality by fitting a Fourier regression and
subsequently, working with the residual series from this regression (see Appendix C for details).5

Figure 2 plots the various data series. All price and index series experienced a sharp drop at the
beginning of our sample owing to the global financial crisis. Additionally, panels (d) and (e) show
that the two stock indices show an almost identical development over our sample period. A unit
root test performed on the data shows that all series except for the temperature data contain a
unit root and we work with log returns. The results for the test are shown in the Supplementary
Appendix.

We first check for outliers in allowance price returns as our method is not designed to explain
sudden jumps in the dependent variable. We apply the impulse indicator saturation (IIS) approach
proposed in Santos et al. (2008). This approach retains 7 outliers which we detail in Appendix
C. The results we present here are the results after outliers have been removed.6 We apply the

4To convert the coal price data into EUR/MWh, one simply has to divide the series by the conversion factor of
8.14. Since the conversion factor is constant and we consider first differences, this would not change our results.

5We considered data on hydro power in Norway from the Norwegian Water Resources and Energy Directorate
as well as wind and solar production data for Germany obtained from the database of the European Network of
Transmission System Operators for Electricity (ENTSO-E). However, none of the time series showed a significant
effect in our regression analysis.

6In the Supplementary Appendix we repeat the analysis using the original data and there are no major differences.
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local linear estimator with the Epanechnikov kernel and a sieve bootstrap procedure with B = 999
to generate 95% confidence bands which are simultaneous over the whole sample. To determine a
suitable bandwidth, we perform data-driven bandwidth selection with the methods introduced in
Section 4.1. We use h = 0.09 which is the rounded average of the selected values.7
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Figure 3: Nonparametrically estimated coefficient curves and 95% confidence intervals

Figure 3 plots the results. We see significant time variation. In Panel (a), the nonparametric
trend fluctuates around zero for most of the considered time span. However, at the end of the
sample, it turns significantly positive. This shows that the drastic price increase, visible in Figure
2, seems to be picked up by the trend component. Panel (b) shows that the coal price has a

7Given our simulation results, we repeat the analysis with a smaller value (h = 0.05) for robustness and observe
that the main conclusions stay unchanged. The results can be obtained from the authors upon request.
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significant negative effect for two periods: one ranging from 2010 to mid 2011 and one from 2013
to mid 2015. Subsequently, the coefficient becomes positive and significant for a short period in
2016/2017. This is a very interesting finding given that its coefficient was found to be insignificant
in the linear regression analysis suggesting that time variation might have caused this result. In
Panel (c), we see that the gas coefficient has the expected positive sign and is significant over long
periods. The coefficient of the oil price, as displayed in Panel (d) is positive over two periods – until
2009 and from 2015 onward. Finally, in Panel (e) we see that the temperature series shows only
two very short periods of significance and the magnitude of the coefficient estimate is small.

7 Conclusion

In this paper, we have considered trending time-varying coefficient models that allow for serial
dependence. These models can capture common relationships that gradually vary over time. Recent
empirical studies have frequently applied bootstrap methods to construct simultaneous confidence
bands in these models due to the easy implementation and good performance in small samples.
However, a theoretical justification is currently unavailable.

We fill this gap by proposing a sieve bootstrap framework to conduct inference. We find that
it can consistently estimate nuisance parameters in one go, both at the interior and boundary
points. Therefore, pointwise and simultaneous confidence bands are simple to obtain. An extensive
simulation study shows that our confidence bands provide accurate coverage in small samples, in
line with the theoretical results. Moreover, since current related climatic analyses often adopt linear
models with constant parameters, we then suggest a bootstrap-based test for parameter stability.
We show that the test has asymptotically correct size and performs well in simulations.

In the empirical application, we study the price development of allowances in the largest cap
and trade market for CO2 emissions – the European Emissions Trading System. We provide first
evidence of time variation in the relationship between allowance prices in the EU ETS and their
abatement-related fundamental price drivers using our test for parameter stability. It supports
previous research which has concluded that the relationship might be unstable. The time variation
offers a potential explanation for insignificant coefficients found with linear regression techniques
used in some of the previous work.
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Appendix A Technical results

In Section A.1, we first list some auxiliary results that will be needed in the proofs of our main
results in Section A.2. The proofs can be found in the Supplementary Appendix. Let wkt (τ) =
( τt−τ

h

)k
K
( τt−τ

h

)
for convenience.

A.1 Auxiliary lemmas

The first three lemmas do not require {zt} to have an autoregressive structure.

Assumption:

C1 {(zt,xt), t ≥ 1} is a strictly α-mixing stationary process with the mixing coefficient α(m) =
O(m−ϕ), where ϕ = max{(2 + δ)(1 + δ)/δ, 3(1 + δ)/δ} for some δ > 0. Further, we assume
the moment conditions: (i) E (zt|xt) = 0; (ii) E

(
z2
t |xt

)
= σ2

z ; (iii) E‖xt‖2(2+δ) < ∞; (iv)
E ‖ztxt‖2+δ <∞.
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Lemma 1
For k = 0, 1, 2, 3 and ` = 1, 2, consider averages of the form

Ψ̂n,k(τ) = 1
nh

n∑

t=1
Yt

(
τt − τ
h

)k
K`

(
τt − τ
h

)
, (A.1)

where Yt ∈ R is a strictly α-mixing stationary process with the mixing coefficient α(m) = O(m−β)
and E|Y0|s < ∞, where β = ϕ with ϕ given in Assumption C1 and s = 2 + δ for some δ > 0. The
kernel function K(·) and the bandwidth h satisfy Assumptions A3 and A4, respectively. Then

sup
τ∈[0,1]

∣∣∣Ψ̂n,k(τ)− E
[
Ψ̂n,k(τ)

]∣∣∣ = Op



√

lnn
nh


 . (A.2)

Lemma 2
Under Assumptions C1, A2, A3, and max

{
h, lnn

nh ,
1
nh2

}
n→∞→ 0, we have

sup
τ∈[0,1]

∥∥∥H
(
θ̂(τ)− θ(τ)

)∥∥∥ = Op


h2 +

√
lnn
nh


 . (A.3)

Lemma 3
Under Assumption C1, ∑∞j=−∞

∥∥cov
(
xtzt,xt+jzt+j

)∥∥ <∞ so that Λ exists.

Lemma 4
Suppose max

{
h, lnn

nh ,
1
nh2

}
n→∞→ 0, and Assumptions A1, A2, A3, B1, B2 hold. It is then possible

to represent

z∗t =
∞∑

j=0
ψ̂j,n ε

∗
t−j (A.4)

where Ψ̂(z) = ∑∞
j=0 ψ̂j,nz

j = Φ̂(z)−1 (for a large n) with ψ̂0,n = 1 and Φ̂(z) = ∑p
j=0 φ̂j,nz

j, see
Lemmas 6.1 and 6.2 of Bühlmann (1998), or similarly Equation (31) of Park (2002). We have the
following results.

(i) supn≥n1

∑∞
j=0 j

∣∣∣ψ̂j,n
∣∣∣ <∞ in probability, where n1 is a random variable.

(ii) supj∈N
∣∣∣ψ̂j,n − ψj

∣∣∣ = Op

(√
lnn
n

)
+Op

(
p−1)+Op

(
h̃2 +

√
lnn
nh̃

)
.

(iii) For r ∈ {1, 2}, E∗|ε∗t |2r = E|εt|2r + op(1).

(iv) For j ≥ 0, E∗
(
z∗t z
∗
t+j

)
= E

(
ztzt+j

)
+ op(1).

(v) ∑∞j=0 j
∣∣∣E∗

(
z∗t z
∗
t+j

)∣∣∣ = Op(1).

(vi) Let Z∗n,k(τ) = 1√
nh

∑n
t=1 xtz

∗
t

( τt−τ
h

)k
K
( τt−τ

h

)
, k = 0, 1. Take k1, k2 ∈ {0, 1}. (i) For any

fixed τ ∈ (0, 1), cov∗
(
Z∗n,k1

(τ),Z∗n,k2
(τ)
)

= νk1+k2Λ+op(1). (ii) For the left endpoint τ = ch,
c ∈ (0, 1), cov∗

(
Z∗n,k1

(τ),Z∗n,k2
(τ)
)

= νk1+k2,cΛ+ op(1).
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Lemma 5
Recall wkt (τ) =

(
τt−τ
h

)k
K
(
τt−τ
h

)
, k = 0, 1. Suppose Assumptions A1, A3, and h + 1

nh
n→∞→ 0 hold.

Let C be uniform over τ1, τ2 and i = 0, 1, . . . , d.

(i) For any fixed τ0 ∈ (0, 1), τ1, τ2 ∈ [−1, 1],

E
∣∣∣∣∣

1√
nh

n∑

t=1
xi,tzt

(
wkt (τ0 + τ1h)− wkt (τ0 + τ2h)

)∣∣∣∣∣

2

≤ C|τ1 − τ2|2, (A.5)

E∗
∣∣∣∣∣

1√
nh

n∑

t=1
xi,tz

∗
t

(
wkt (τ0 + τ1h)− wkt (τ0 + τ2h)

)∣∣∣∣∣

2

≤ Op(1)|τ1 − τ2|2. (A.6)

(ii) Let K ⊂ (0, 1) be a compact set. For τ1, τ2 ∈ K,

E
∣∣∣∣∣

1√
nh

n∑

t=1
xi,tzt

(
wkt (τ1h)− wkt (τ2h)

)∣∣∣∣∣

2

≤ C|τ1 − τ2|2, (A.7)

E∗
∣∣∣∣∣

1√
nh

n∑

t=1
xi,tz

∗
t

(
wkt (τ1h)− wkt (τ2h)

)∣∣∣∣∣

2

≤ Op(1)|τ1 − τ2|2. (A.8)

The Op(1) terms in (A.6) and (A.8) are uniformly over τ1, τ2.

A.2 Proofs of main results

Lemma 6
Let Z∗n(τ) =

(
Z∗n,0(τ)′,Z∗n,1(τ)′

)′
, where Z∗n,k(τ) = 1√

nh

∑n
t=1 xtz

∗
t

( τt−τ
h

)k
K
( τt−τ

h

)
, k = 0, 1, as

defined in Lemma 4. Suppose the assumptions in Lemma 4 hold.

(i) For any fixed τ ∈ (0, 1), we have

√
nhH

(
θ̂∗(τ)− θ̃(τ)− h2b(τ)

)
= S−1Z∗n(τ) +R∗n(τ), (A.9)

where S = diag
(
Ω0, µ2Ω0

)
, Var∗ (Z∗n(τ)) = diag

(
ν0Λ, ν2Λ

)
+ op(1).

(ii) For the left endpoint τ = ch, c ∈ (0, 1), we have

√
nhH

(
θ̂∗(ch)− θ̃(ch)− h2bc(0+)

)
= S−1

c Z∗n(ch) +R∗n(τ), (A.10)

where Sc = µc ⊗Ω0, Var∗ (Z∗n(ch)) = νc ⊗Λ+ op(1).

For both cases, the remainder term R∗n(τ) is bounded by

sup
τ∈[0,1]

‖R∗n(τ)‖ = O∗p

(
h2 +

√
lnn/(nh) +

√
nhh̃4 +

√
h lnn/h̃

)
.

Proof of Lemma 6 For any τ ∈ [0, 1], write
√
nhH

(
θ̂∗(τ)− θ̃(τ)− h2b(τ)

)
= M∗

n(τ) + R∗n(τ),
where

M∗
n(τ) =

√
nhH

[
θ̂∗(τ)− E∗

(
θ̂∗(τ)

)]
, R̃∗n(τ) =

√
nhH

[
E∗
(
θ̂∗(τ)

)− θ̃(τ)− h2b(τ)
]
.
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For later convenience, we first look at the properties of H−1Sn(τ)H−1 and Z∗n(τ), respectively.
Firstly, H−1Sn(τ)H−1 contains the blocks that can be approximated by Ω0

∫ (1−τ)/h
−τ/h ukK(u)du

according to (S.4). Since K(·) has a compact support [−1, 1], for any τL, τU ∈ (0, 1), we have
∫ (1−τ)/h
−τ/h ukK(u)du = µk1{τ∈[τL,τU ]} + µk,c1{τ=ch} whenever h is sufficiently small. Therefore, by

(S.4), we have

H−1Sn(τ)H−1 = S1{τ∈[τL,τU ]} + Sc1{τ=ch} +Op

(
h2 +

√
lnn
nh

)
, (A.11)

where the Op-terms are uniform in τ ∈ [0, 1]. Secondly, by Lemma 4(vi), it is immediate to have,
∀τL, τU ∈ (0, 1),

Var∗ (Z∗n(τ)) = ( ν0
ν2 )⊗Λ1{τ∈[τL,τU ]} +

( ν0,c ν1,c
ν1,c ν2,c

)⊗Λ1{τ=ch} + op(1). (A.12)

Now we show Part (i). For M∗
n(τ), because Z∗n(τ) = O∗p(1) uniformly in τ by (A.12),

M∗
n(τ) =

(
H−1Sn(τ)H−1

)−1
Z∗n(τ) = S−1Z∗n(τ) +O∗p

(
h2 +

√
lnn
nh

)
. (A.13)

For R̃∗n(τ), we note that, if |τt − τ | ≤ h,

β̃(τt) = β̃(τ) + β̃(1)(τ)(τt − τ) + β̃(τt)− β̃(τ)− β̃(1)(τ)(τt − τ)

= β̃(τ) + β̃(1)(τ)(τt − τ) + β(τt)− β(τ)− β(1)(τ)(τt − τ) +Op

(
h̃2 +

√
lnn
nh̃

)

= β̃(τ) + β̃(1)(τ)(τt − τ) +
(
β(2)(τ) +O(h)

) (τt − τ)2

2 +Op

(
h̃2 +

√
lnn
nh̃

)
, (A.14)

where the final equality is due to (S.1), and the Op-terms are uniform in τ ∈ [0, 1] by Lemma 2.
Using (S.4), (A.11) and (A.14), we have

H
[
E∗
(
θ̂∗(τ)

)− θ̃(τ)
]

=
(
H−1Sn(τ)H−1

)−1
{
h2

2

(
h−2Sn,2(τ)

(
β(2)(τ) +O(h)

)

h−3Sn,3(τ)
(
β(2)(τ) +O(h)

)
)

+Op

(
h̃2 +

√
lnn
nh̃

)}

=
(
S−1 + op(1)

){
h2

2

(
µ2Ω0β

(2)(τ)
0

)
+ op(h2) +Op

(
h̃2 +

√
lnn
nh̃

)}

= h2b(τ) + op(h2) +Op

(
h̃2 +

√
lnn
nh̃

)
,

where the Op-terms are uniform in τ ∈ [0, 1]. Finally, we arrive at

sup
τ∈[0,1]

∥∥R̃∗n(τ)
∥∥ = op

(√
nh5

)
+Op

(√
nhh̃4 +

√
h lnn/h̃

)
= Op

(√
nhh̃4 +

√
h lnn/h̃

)
. (A.15)

Putting R̃∗n(τ) together with the O∗p-term in (A.13), denoted by R∗n(τ), we have the property of
R∗n(τ) as given in the lemma. Part (ii) is similar. �

Proof of Theorem 1 We first consider the bootstrap quantities. By virtue of Lemma 6, we only
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have to establish the asymptotic normality of Z∗n(τ). As such, we use the Cramér-Wold device. For
convenience, we define Qt(τ) = a′

(
x′t,x

′
t

(
τt−τ
h

))′
K
(
τt−τ
h

)
, where a ∈ R2(d+1) be any unit vector,

and the truncated bootstrap errors z∗t,Mn
= ∑Mn

j=0 ψ̂j,n ε
∗
t−j with Mn

n→∞→ ∞. For τ ∈ [0, 1], then we
can write

a′Z∗n(τ) = 1√
nh

n∑

t=1
Qt(τ)z∗t,Mn

+ 1√
nh

n∑

t=1
Qt(τ)




∞∑

j=Mn+1
ψ̂j,n ε

∗
t−j




= 1√
nh

n∑

t=1
Qt(τ)z∗t,Mn

+O∗p
(
M−1
n

)
,

where the O∗p-term is uniform over τ ∈ [0, 1]. We obtain it by, for k ≥ 0,
∣∣∣
∑∞
j=Mn+1 ψ̂j,nψ̂j+k,n

∣∣∣ ≤
(∑∞

j=Mn+1

∣∣∣ψ̂j,n
∣∣∣
)2

= Op
(
M−2
n

)
and (nh)−1E∗

[∑n

t=1 Qt(τ)
(∑∞

j=Mn+1 ψ̂j,n ε
∗
t−j

)]2
= Op

(
M−2
n

)
by sim-

ilar arguments in (S.9) and (S.13), together with the Markov’s inequality.
It remains to consider (nh)−1/2∑n

t=1Qt(τ)z∗t,Mn
. We now use the common blocking technique

to partition {1, . . . , n} = ∪knj=1Bj , where Bj =
{
bj + 1, . . . , bj + `n

} ∪ {bj + `n + 1, . . . , bj+1
}
,

kn = dn/(`n + sn)e, bj = (j − 1)(`n + sn). We truncate the final block Bkn to have n observations
in total. It is noted that kn ∼ n/`n. We further require 1/`n + `n/(nh) + Mn/`n → 0 and
1/sn + sn/`n + Mn/sn as n → ∞. For instance, one can take `n =

⌊
nh2⌋, sn =

⌊
(nh2)1/2⌋, and

Mn =
⌊
(nh2)1/4⌋. Clearly, each block Bj is further separated into two subsets, with either of the

relatively large (`n) and small (sn) lengths. We have

1√
nh

n∑

t=1
Qt(τ)z∗t,Mn

=
kn∑

j=1
V ∗n,j(τ) +

kn∑

j=1
W ∗n,j(τ),

where V ∗n,j(τ) = (nh)−1/2∑bj+`n
t=bj+1Qt(τ)z∗t,Mn

and W ∗n,j(τ) = (nh)−1/2∑bj+1
t=bj+`n+1Qt(τ)z∗t,Mn

We first show that the small blocks W ∗n,j(τ) are negligible asymptotically. Recall wkt (τ) =
( τt−τ

h

)k
K
(
τt−τ
h

)
. Note that z∗t,Mn

are Mn-dependent with respect to the bootstrap probability P∗

conditional on the realization of the original sample. Therefore,
{
W ∗n,j(τ)

}kn
j=1 are conditionally

independent for a sufficiently large n. By the identity
(∑U

t=L qt
)2

= ∑U−L
i=−(U−L)

∑U−|i|
t=L qtqt+|i|,

Var∗



kn∑

j=1
W ∗n,j(τ)


 = 1

nh

kn∑

j=1

sn−1∑

i=−sn+1

bj+1−|i|∑

t=bj+`n+1
Qt(τ)Qt+|i|(τ)E∗

(
z∗t,Mn

z∗t+|i|,Mn

)

≤ Op(1) 1
nh

sn−1∑

i=−sn+1

∣∣∣E∗
(
z∗t,Mn

z∗t+|i|,Mn

)∣∣∣
kn∑

j=1

bj+1−|i|∑

t=bj+`n+1

∥∥∥∥
(
w0

t (τ)w0
t+|i|(τ) w0

t (τ)w1
t+|i|(τ)

w1
t (τ)w0

t+|i|(τ) w1
t (τ)w1

t+|i|(τ)

)∥∥∥∥

≤ Op(1)knsnh
nh

sn−1∑

i=−sn+1

∣∣∣E∗
(
z∗t,Mn

z∗t+|i|,Mn

)∣∣∣ = Op

(
sn
`n

)
= op(1),

where we use that ∑∞j=0 j
∣∣∣E∗

(
z∗t,Mn

z∗t+|i|,Mn

)∣∣∣ = Op(1) by modifying the proof of Lemma 4(v),

‖A⊗B‖ = ‖A‖ ‖B‖ for any matrices A, B, and ∑kn
j=1

∑bj+1−|i|
t=bj+`n+1

∣∣wk1
t (τ)wk2

t+|i|(τ)
∣∣ ≤ Cknsnh, for

|i| ≤ sn and k1, k2 ∈ {0, 1}, using the Lipschitz continuity of x 7→ xk2K(x) and the Riemann sum
approximation (S.6) (replacing n by sn). Since E∗

(∑kn
j=1Wn,j(τ)

)
= 0, we have ∑kn

j=1Wn,j(τ) =
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o∗p(1).
Now we establish the asymptotic normality of ∑kn

j=1 V
∗
n,j(τ) using the Lindeberg central limit

theorem (CLT), see e.g. Theorem 23.6 in Davidson (1994). Again E∗
(∑kn

j=1 V
∗
n,j(τ)

)
= 0, and by

the conditional independence of
{
V ∗n,j(τ)

}kn
j=1, we have Var∗

(∑kn
j=1 V

∗
n,j(τ)

)
= A∗V,n(τ) + B∗V,n(τ),

where

A∗V,n(τ) = 1
nh

kn∑

j=1

`n−1∑

i=−`n+1

bj+`n−|i|∑

t=bj+1
E
(
Qt(τ)Qt+|i|(τ)

)
E∗
(
z∗t,Mn

z∗t+|i|,Mn

)
,

B∗V,n(τ) = 1
nh

kn∑

j=1

`n−1∑

i=−`n+1

bj+`n−|i|∑

t=bj+1

[
Qt(τ)Qt+|i|(τ)− E

(
Qt(τ)Qt+|i|(τ)

)]
E∗
(
z∗t,Mn

z∗t+|i|,Mn

)
.

Using ∑bj+`n−|i|
t=bj+1 = ∑bj+1

t=bj+1−
∑bj+1
t=bj+`n−|i|+1, E∗

(
z∗t,Mn

z∗t+|i|,Mn

)
=
(∑Mn

k=0 ψ̂k,nψ̂k+|i|,n
)
E∗|ε∗t |2 =

E
(
ztzt+|i|

)
+ op(1), and by an adaption the proof of (vi) (taking Hn = sn instead), we have

A∗V,n(τ) = a′
{

1
nh

n∑

t=1

(
w0
t (τ)w0

t (τ) w0
t (τ)w1

t (τ)
w1
t (τ)w0

t (τ) w1
t (τ)w1

t (τ)

)
⊗

`n−1∑

i=−`n+1

E
(
xtx

′
t+|i|

)
E∗
(
z∗t,Mn

z∗t+|i|,Mn

)
}
a

+Op

(
knsnh

nh

)
+ op(1) +Op

( 1
nh

)

p→ a′
{

diag
(
ν0, ν2

)⊗Λ1{τ∈[τL,τU ]} + νc ⊗Λ1{τ=ch}
}
a. (A.16)

Moreover, by defining a deterministic sequence qi,t = 1{bj+1≤t≤bj+`n−|i|, 1≤j≤kn} and then applying

Lemma 1, we have
∥∥∥B∗V,n(τ)

∥∥∥ ≤ B∗V,n,1(τ) +Op

(
`n
nh

√
lnn
nh

)
, where

B∗V,n,1(τ) =
`n−1∑

i=−`n+1

∣∣∣E∗
(
z∗t,Mn

z∗t+|i|,Mn

)∣∣∣

×
∥∥∥∥∥

1
nh

n−|i|∑

t=1

qi,t

(
w0
t (τ)w0

t (τ) w0
t (τ)w1

t (τ)
w1
t (τ)w0

t (τ) w1
t (τ)w1

t (τ)

)
⊗
[
xtx

′
t+|i| − E

(
xtx

′
t+|i|

)]
∥∥∥∥∥ = Op



√

lnn
nh


 .

Summing up, we obtain plimn→∞Var∗
(∑kn

j=1 V
∗
n,j(τ)

)
as given in (A.16). The final step is to verify

the Lindeberg condition. That is, for every κ > 0, we shall show

kn∑

j=1
E∗



V ∗2n,j(τ)
ω∗2n

1{∣∣∣∣
V ∗
n,j

(τ)

ω∗n

∣∣∣∣>κ
}


 = op(1), (A.17)

where ω∗2n = Var∗
(∑kn

j=1 V
∗
n,j(τ)

)
. Note that Qt(τ)z∗t,Mn

is an L4-mixingale (provided Lemma 4(i),
a straightforward extension of Lemma 4(iii) together with E|εt|2r <∞, r > 2, in Assumption A1)
conditionally on the original data. Using Lemma 2 in Hansen (1991) (taking ci ≤ C |Qi(τ)|) and
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the cr-inequality, the LHS in (A.17) is bounded by

1
κ2

1
ω∗4n

kn∑

j=1
E∗
[
V ∗n,j(τ)

]4
≤ C 1

κ2
1
ω∗4n

1
(nh)2

kn∑

j=1




bj+`n∑

t=bj+1
Q2
t (τ)




2

≤ C 1
κ2

1
ω∗4n

`n
(nh)2

kn∑

j=1

bj+`n∑

t=bj+1
Q4
t (τ)

≤ C 1
κ2

1
ω∗4n

`n
(nh)2

n∑

t=1

∥∥∥∥∥

(
w0
t (τ)w0

t (τ) w0
t (τ)w1

t (τ)
w1
t (τ)w0

t (τ) w1
t (τ)w1

t (τ)

)∥∥∥∥∥

2

‖xt‖4

= Op

(
`n
nh

)
,

where we use that ω∗2n = Op(1), and the Op-term is uniform in τ ∈ [0, 1]. We then obtain (A.17)
and thus Equations (3.5) and (3.6) follow given the assumption `n/(nh)→ 0.

We just online the proofs for θ̂(τ) because they are similar with the bootstrap counterparts. By
(S.2), we have

√
nhH

(
θ̂(τ)− θ(τ)− h2b(τ)

)
= S−1Zn(τ) +Rn(τ), ∀τ ∈ [0, 1], (A.18)

where Zn(τ) = (Zn,0(τ)′,Zn,1(τ)′)′ with Zn,k(τ) = 1√
nh

∑n
t=1 xtzt

( τt−τ
h

)k
K
( τt−τ

h

)
, k = 0, 1,

and supτ∈[0,1] ‖Rn(τ)‖ = Op
(√

nh7
)

+ Op
(
h2√lnn

)
+ op(1). Replace z∗t by zt in the proof

above and define similarly the corresponding quantities with respect to zt similarly, one can find
a′Zn(τ) = 1√

nh

∑n
t=1Qt(τ)zt,Mn + Op

(
M−1
n

)
= ∑kn

j=1 Vn,j(τ) + ∑kn
j=1Wn,j(τ) + Op

(
M−1
n

)
, where

Var
(∑kn

j=1Wn,j(τ)
)

= Op
(
knsnh
nh

)
= op(1) and

Var




kn∑

j=1
Vn,j(τ)


 = 1

nh

kn∑

j=1

`n−1∑

i=−`n+1

bj+`n−|i|∑

t=bj+1
E
(
Qt(τ)Qt+|i|(τ)zt,Mnzt+|i|,Mn

)

= a′
{

1
nh

n∑

t=1

(
w0
t (τ)w0

t (τ) w0
t (τ)w1

t (τ)
w1
t (τ)w0

t (τ) w1
t (τ)w1

t (τ)

)
⊗

`n−1∑

i=−`n+1

E
(
xtx

′
t+|i|zt,Mnzt+|i|,Mn

)
}
a+ op(1)

p→ a′
{

diag
(
ν0, ν2

)⊗Λ1{τ∈[τL,τU ]} + νc ⊗Λ1{τ=ch}
}
a,

where we use that ∑∞j=−∞
∥∥∥E
(
xtx

′
t+|j|zt,Mnzt+|j|,Mn

)∥∥∥ ≤ C. The Lindeberg condition holds simi-
larly by noting that Qt(τ)zt,Mn is Lp-mixingale with p = 2 + δ, where δ is given in Assumption A1,
and subsequently applying Lemma 2 in Hansen (1991). �

Proof of Theorem 2 Consider Part (i) first. By (A.18) and the Lipschitz property of β(2)(·) (As-
sumption A2), we have

sup
τ∈[−1,1]

∥∥∥
√
nhH

(
θ̂(τ0 + τh)− θ(τ0 + τh)− h2b(τ0)

)
− S−1Zn(τ0 + τh)

∥∥∥

≤ sup
τ∈[−1,1]

‖Rn(τ0 + τh)‖+ sup
τ∈[−1,1]

∥∥∥
√
nh5 (b(τ0 + τh)− b(τ0))

∥∥∥ = op(1).
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Similarly, supτ∈[−1,1]

∥∥∥
√
nhH

(
θ̂∗(τ0 + τh)− θ̃(τ0 + τh)− h2b(τ0)

)
− S−1Z∗n(τ0 + τh)

∥∥∥ = o∗p(1) fol-
lows from (A.9) in Lemma 6. Therefore, we only have to consider S−1Zn(τ0 + τh) and S−1Z∗n(τ0 +
τh) in the following. It suffices to show the weak convergence of the Rq-valued processesWτ0,n(τ) :=
Zn(τ0 + τh) and W ∗

τ0,n(τ) := Z∗n(τ0 + τh) in C[−1, 1]q, respectively. The proof involves the same
steps as for univariate cases, namely convergence of the finite-dimensional distributions and tight-
ness, see e.g. Theorem 2.1 of Phillips and Durlauf (1986), Chapter 27.7 and Theorem 29.16 of
Davidson (1994).

We first establish the asymptotic covariance matrices. For any sequences of vectors {at} and
{bt}, we have the identity (∑n

t=1 at) (∑n
t=1 b

′
t) = ∑n

t=1 atb
′
t +∑n−1

i=1
∑n−i
t=1

(
atb
′
t+i + at+ib′t

)
. By this

identity and E (Wτ0,n(τ)) = 0, τ ∈ [−1, 1], one can write

cov (Wτ0,n(τ1),Wτ0,n(τ2)) =: Γ0,n(τ1, τ2; τ0) + Γ1,n(τ1, τ2; τ0) + Γ2,n(τ1, τ2; τ0), (A.19)

where Γ0,n(τ1, τ2; τ0) = (nh)−1∑n
t=1Qt,t(τ1, τ2; τ0)⊗ E

(
xtx

′
tz

2
t

)
,

Γ1,n(τ1, τ2; τ0) = 1
nh

n−1∑

i=1

n−i∑

t=1
Qt,t+i(τ1, τ2; τ0)⊗ E

(
xtx

′
t+iztzt+i

)
,

and Γ2,n(τ1, τ2; τ0) = (nh)−1∑n−1
i=1

∑n−i
t=1 Qt+i,t(τ1, τ2; τ0)⊗ E

(
xt+ix

′
tzt+izt

)
, with

Qs,t(τ1, τ2; τ0) =
(
w0
s(τ0 + τ1h)w0

t (τ0 + τ2h) w0
s(τ0 + τ1h)w1

t (τ0 + τ2h)
w1
s(τ0 + τ1h)w0

t (τ0 + τ2h) w1
s(τ0 + τ1h)w1

t (τ0 + τ2h)

)
. (A.20)

Consider Γ0,n(τ1, τ2; τ0) first. For k1, k2 ∈ {0, 1}, by the Lipschitz property of x 7→ (x+κ0)k1xk2K(x+
κ0)K(x) on [−1, 1], where κ0 is a constant, and the Riemann sum approximation (S.6) and a change
of variables with u = (z − τ0)/h,

1
nh

n∑

t=1
wk1
t (τ0 + τ1h)wk2

t (τ0 + τ2h) =
∫ (1−τ0)/h

−τ0/h
(u− τ1)k1(u− τ2)k2K(u− τ1)K(u− τ2)du+O

( 1
nh2

)

=
∫

R
(u− τ1)k1(u− τ2)k2K(u− τ1)K(u− τ2)du+O

( 1
nh2

)
,

(A.21)

when n is sufficiently large. Using (A.21), we obtain limn→∞ Γ0,n(τ1, τ2; τ0) = κ(τ1, τ2)⊗Var (xtzt).
For Γi,n(τ1, τ2; τ0), i = 1, 2, we use the splitting technique as in the proof for Lemma 4(vi). That
is, we split the summation ∑n−1

i=1 = ∑Hn−1
i=1 +∑n−1

i=Hn , where 1
Hn

+ Hn
nh → 0 as n→∞, and obtain

Γ1,n(τ1, τ2; τ0) = 1
nh

n∑

t=1
Qt,t(τ1, τ2; τ0)⊗

Hn−1∑

i=1
E
(
xtx

′
t+iztzt+i

)

+ O

(
Hn

nh

)
+ o(1) + O

( 1
nh2

)
→ κ(τ1, τ2)⊗

∞∑

i=1
cov (xtzt,xt+izt+i) . (A.22)

Similarly, limn→∞ Γ2,n(τ1, τ2; τ0) = κ(τ1, τ2)⊗∑−1
i=−∞ cov (xtzt,xt+izt+i). Overall,

lim
n→∞ cov (Zn(τ0 + τ1h),Zn(τ0 + τ2h)) = κ(τ1, τ2)⊗Λ. (A.23)
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By the Lipschitz property of x 7→ xkK(x), k ∈ {0, 1}, Lemma 1, Lemma 4(v), and Assumption
A1(e), one can similarly obtain

cov∗
(
W ∗

τ0,n(τ1),W ∗
τ0,n(τ2)

)

= κ(τ1, τ2)⊗
∞∑

i=−∞
E
(
xtx

′
t+i
)
E (ztzt+i) + op(1) = κ(τ1, τ2)⊗Λ+ op(1). (A.24)

For finite k ∈ N, fix τ1, . . . , τk ∈ [−1, 1]. Finite-dimensional distributions of the kq-dimensional
vectors (Wτ0,n(τ1)′, . . . ,Wτ0,n(τk)′)′ weakly converges, and

(
W ∗

τ0,n(τ1)′, . . . ,W ∗
τ0,n(τk)′

)′ weakly con-
verges in probability, to the same multivariate normal limiting distribution as in the proof of The-
orem 1 using the Cramér-Wold device, (A.23) and (A.24). It remains to consider tightness. It is
well-known that probability measures on a product space are tight iff all the marginal probability
measures are tight, see e.g. Lemma A.3 in Phillips and Durlauf (1986) and Theorem 26.23 in David-
son (1994). By Lemma 5(i) and the Markov’s inequality, the components of Wτ0,n(·) and W ∗

τ0,n(·)
fulfill the moment condition of the tightness criterion in Theorem 12.3 by Billingsley (1968). We
have therefore shown the tightness and Part (i) is proved by noting that S−1 = diag

(
1, µ−1

2
)⊗Ω−1

0 .
For Part (ii), by (A.10) in Lemma 6 and an adaption of (A.18), we have

sup
τ∈K

∥∥∥
√
nhH

(
θ̂∗(τh)− θ̃(τh)− h2bτ (0+)

)
− S−1

τ Z∗n(τh)
∥∥∥ = o∗p(1),

sup
τ∈K

∥∥∥
√
nhH

(
θ̂(τh)− θ(τh)− h2bτ (0+)

)
− S−1

τ Zn(τh)
∥∥∥ = op(1).

It suffices to consider the weak convergence of S−1
τ Zn(τh) and S−1

τ Z∗n(τh) (in probability). We
only show their asymptotic covariance matrices here. The convergence of the finite-dimensional
distributions and tightness follow similarly from the proof of Part (i) by using Lemma 5(ii) and
the Markov’s inequality. For τ1, τ2 ∈ K, one can similarly write cov

(
S−1
τ1 Zn(τ1h),S−1

τ2 Zn(τ2h)
)

=
S−1
τ1 (cov (Zn(τ1h),Zn(τ2h)))S−1

τ2 with cov (Zn(τ1h),Zn(τ2h)) = ∑2
k=0 Γk,n(τ1, τ2; τ0 = 0), where

Γk,n(τ1, τ2; τ0) are defined between (A.19) and (A.20) by plugging τ0 = 0. Using

1
nh

n∑

t=1
wk1
t (τ1h)wk2

t (τ2h) =
∫

R+
(u− τ1)k1(u− τ2)k2K(u− τ1)K(u− τ2)du+O

( 1
nh2

)
, (A.25)

it is not hard to find limn→∞ cov (Zn(τ1h),Zn(τ2h)) = κ+(τ1, τ2) ⊗ Λ. Similarly, we have the
bootstrap counterpart cov∗

(
Z∗n(τ1h),Z∗n(τ2h)

)
= κ+(τ1, τ2)⊗Λ+ op(1). Using S−1

τ = µ−1
τ ⊗Ω−1

0 ,
we obtain Part (ii). �

Proof of Proposition 1 Under H0, we note that
√
n (ĉ− β(τ0 + τh)) =

√
n (ĉ− c) = Op(1), uni-

formly over τ ∈ [−1, 1], by a CLT for strictly stationary α-mixing processes, see e.g. Corollary 5.1
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in Hall and Heyde (1980). Then by Theorem 2, we have
{√

nh

(
β̂(τ0 + τh)− ĉ− h2

2 µ2β
(2)(τ0)

)}

τ∈[−1,1]
⇒ {Wβ(τ)}τ∈[−1,1] ,

{√
nh

(
β̂∗(τ0 + τh)− β̃(τ0 + τh)− h2

2 µ2β
(2)(τ0)

)}

τ∈[−1,1]
⇒ {Wβ(τ)}τ∈[−1,1] in probability,

where Wβ(·) contains the first d+1 components of W (·) corresponding to β(·), and W (·) is defined
in Theorem 2. Then Part (i) follows immediately from the continuous mapping theorem for a
functional (Theorem A.3, Hall and Heyde (1980)).

Under H1, for any c ∈ Rd+1, there exists a τ0 ∈ (0, 1) such that β(τ0) 6= c. Therefore, for any
c ∈ Rd+1 and ε > 0, by the continuity of β(·), there exists a δ = δ(ε) > 0 such that ‖β(τ)− c‖ ≥ ε,
∀τ ∈ Uδ(τ0). As a result,

√
nh (β(τ)− ĉ) p→∞ and thus, by Theorem 1,

√
nh
(
β̂(τ)− ĉ

)
=
√
nh (β(τ)− ĉ) +Op(1) p→∞, ∀τ ∈ Uδ(τ0).

The proof is completed. �

Appendix B Additional simulation results

B.1 The GARCH(1,1) specification

In order to introduce conditional heteroskedasticity, we consider GARCH(1,1) errors.

ut = σtεt (B.1)

σ2
t = ω + α1u

2
t−1 + α2σ

2
t−1, (B.2)

where εt iid∼ N (0, 1). We let ω = 1−α1−α2 and consider three different (α1,α2) combinations inspired
by the simulation study in Ling et al. (2003): (0.2,0.7), (0.3,0.6) and (0.4,0.5). We additionally
compare the sieve and the sieve wild bootstrap with the autoregressive wild bootstrap (AWB) as
proposed by Friedrich et al. (2020) with an AR parameter of γ = 0.2. We see in Tables 9 through
11 that the performance of the SB is similar to that of the ARMA specification. In general, the
sieve bootstrap outperforms the sieve wild version (SWB) for all considered specifications. It also
outperforms the AWB when it comes to simultaneous coverage. The AWB outperforms the sieve
wild. We observe that coverage of the wild bootstrap methods, in particular the sieve wild, is
surprisingly low for simultaneous confidence bands. The sieve bootstrap intervals are always wider
than their wild bootstrap counterparts offering a potential explanation for the lower coverage. The
AWB intervals are comparable in length to the SB intervals. In all considered cases, we see only
minor differences between the three chosen GARCH parameter specifications in both length and
coverage. The lower performance of the SB in this specification compared to the previous one is
an expected result given that the method is not designed for heteroskedastic data. The fact that
it nevertheless outperforms its wild extension is surprising. The confidence intervals constructed
with the latter method are too narrow resulting in coverage probabilities that are too far below the
nominal level. To further investigate the validity of the sieve wild and dependent wild bootstrap
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h = 0.04 h = 0.06 h = 0.08
(α1,α2) SB SWB AWB SB SWB AWB SB SWB AWB

β1

(0.2,0.7) 0.954 0.895 0.936 0.938 0.883 0.927 0.890 0.838 0.887
(0.302) (0.273) (0.298) (0.244) (0.229) (0.253) (0.211) (0.204) (0.225)

(0.3,0.6) 0.952 0.897 0.939 0.937 0.883 0.931 0.885 0.836 0.888
(0.296) (0.261) (0.286) (0.239) (0.220) (0.246) (0.207) (0.196) (0.219)

(0.4,0.5) 0.952 0.900 0.932 0.937 0.885 0.933 0.882 0.834 0.888
(0.288) (0.249) (0.310) (0.233) (0.211) (0.237) (0.203) (0.189) (0.227)

β2

(0.2,0.7) 0.953 0.899 0.946 0.953 0.902 0.946 0.951 0.900 0.942
(0.302) (0.251) (0.271) (0.243) (0.210) (0.228) (0.210) (0.186) (0.201)

(0.3,0.6) 0.951 0.900 0.949 0.952 0.902 0.950 0.950 0.900 0.946
(0.295) (0.238) (0.256) (0.238) (0.200) (0.219) (0.206) (0.178) (0.194)

(0.4,0.5) 0.951 0.904 0.941 0.953 0.907 0.954 0.951 0.903 0.941
(0.289) (0.226) (0.287) (0.233) (0.190) (0.209) (0.202) (0.169) (0.204)

Table 9: Pointwise coverage probabilities, GARCH(1,1)

methods is beyond the scope of this paper but will be left as a promising topic for future research.

B.2 Bandwidth selection methods

Given that the previous results show a dependence of the bootstrap’s performance on the bandwidth,
we look at the data-driven bandwidth selection methods. We generate 1000 samples from each of the
following four error specifications: white noise, AR(1) with φ = 0.3 and φ = −0.3. For each draw,
we select the optimal bandwidth chosen by the four different methods. We apply Leave-(2l + 1)-
out Cross Validation with l = 2, 4, 6. The set of possible bandwidths to select from in each case
ranges from 0.02 to 0.12 in steps of 0.001. The average selected bandwidths as well as the standard
deviations are reported in Table 12. The chosen bandwidths often lie close to the largest value
we considered in our simulation study. For β2 this value resulted in accurate coverage. For β1 a
smaller bandwidth parameter produced better coverage. Although a bandwidth matrix consisting of
different bandwidths for each parameter curve is sometimes considered in the theoretical literature,
in practice, a data driven bandwidth selection method to determine such a matrix is computationally
cumbersome. Combining these results suggests to use a smaller bandwidth in practice than the one
selected by the data-driven methods. While a smaller bandwidth might not produce an optimal
approximation to coefficient curves with low variations, it nevertheless led to good coverage for such
cases in our simulation study. For more difficult to estimate coefficient curves, a small bandwidth
is preferable and it produced superior results when looking at coverage. This shows that blindly
relying on data-driven bandwidth selection methods can be problematic in practice. We recommend,
in addition to such selection methods, to perform a robustness analysis of the main results using
different bandwidths.
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h = 0.04 h = 0.06 h = 0.08
(α1,α2) SB SWB AWB SB SWB AWB SB SWB AWB

β1

(0.2,0.7) 0.912 0.790 0.849 0.882 0.740 0.809 0.745 0.636 0.720
(0.397) (0.354) (0.384) (0.321) (0.299) (0.330) (0.280) (0.267) (0.296)

(0.3,0.6) 0.901 0.787 0.860 0.871 0.747 0.822 0.733 0.624 0.726
(0.390) (0.338) (0.372) (0.316) (0.286) (0.309) (0.275) (0.257) (0.289)

(0.4,0.5) 0.895 0.801 0.826 0.871 0.756 0.821 0.713 0.613 0.736
(0.383) (0.323) (0.402) (0.310) (0.275) (0.295) (0.270) (0.247) (0.299)

β2

(0.2,0.7) 0.912 0.829 0.917 0.909 0.818 0.900 0.901 0.787 0.896
(0.396) (0.327) (0.387) (0.320) (0.274) (0.298) (0.279) (0.245) (0.265)

(0.3,0.6) 0.911 0.829 0.929 0.904 0.804 0.909 0.895 0.778 0.902
(0.390) (0.310) (0.333) (0.315) (0.261) (0.321) (0.274) (0.234) (0.256)

(0.4,0.5) 0.903 0.842 0.908 0.904 0.811 0.918 0.894 0.785 0.893
(0.383) (0.294) (0.374) (0.310) (0.248) (0.309) (0.269) (0.223) (0.269)

Table 10: Coverage probabilities for Gsub, GARCH(1,1)

h = 0.04 h = 0.06 h = 0.08
(α1,α2) SB SWB AWB SB SWB AWB SB SWB AWB

β1

(0.2,0.7) 0.827 0.376 0.692 0.848 0.462 0.736 0.739 0.435 0.677
(0.457) (0.409) (0.448) (0.364) (0.339) (0.374) (0.309) (0.295) (0.325)

(0.3,0.6) 0.805 0.387 0.706 0.825 0.464 0.756 0.732 0.426 0.674
(0.450) (0.391) (0.430) (0.359) (0.326) (0.363) (0.304) (0.284) (0.317)

(0.4,0.5) 0.795 0.376 0.655 0.799 0.462 0.769 0.703 0.416 0.692
(0.442) (0.373) (0.466) (0.353) (0.312) (0.350) (0.299) (0.273) (0.325)

β2

(0.2,0.7) 0.841 0.441 0.797 0.875 0.500 0.842 0.876 0.573 0.857
(0.457) (0.377) (0.408) (0.363) (0.312) (0.337) (0.308) (0.270) (0.291)

(0.3,0.6) 0.811 0.445 0.811 0.864 0.512 0.850 0.870 0.573 0.870
(0.450) (0.358) (0.385) (0.358) (0.297) (0.324) (0.303) (0.258) (0.281)

(0.4,0.5) 0.806 0.440 0.790 0.863 0.512 0.870 0.865 0.575 0.863
(0.442) (0.339) (0.432) (0.352) (0.282) (0.308) (0.297) (0.246) (0.296)

Table 11: Coverage probabilities for the whole sample, GARCH(1,1)
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Bandwidth selection
(φ, ψ) = (0, 0) φ = 0.3 φ = −0.3

Method µ (σ) µ (σ) µ (σ)
CV 0.085 (0.024) 0.083 (0.023) 0.084 (0.022)
GCV 0.076 (0.028) 0.074 (0.028) 0.076 (0.027)
AIC 0.095 (0.018) 0.093 (0.017) 0.094 (0.017)
L2O 0.092 (0.021) 0.090 (0.022) 0.091 (0.020)
L4O 0.099 (0.019) 0.096 (0.020) 0.096 (0.019)
L6O 0.103 (0.017) 0.101 (0.018) 0.101 (0.017)

Table 12: Mean (µ) and stand deviation (σ) of selected bandwidths
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S1 Additional Proofs

Proof of Lemma 1 The lemma is a special case of the well-known uniform result established by
Hansen (2008), see Theorem 2. We shall check Assumptions 1-3 of Hansen (2008). We note
that K̄ : x 7→ xkK`(x) is Lipschitz continuous on [−1, 1] and has a bounded support, satisfying
Assumptions 1 and 3. With the fact that β > 2s−2

s−2 , and using similar arguments of Kristensen
(2009) (p. 1444, Proof of Theorem 2), Assumption 2 is fulfilled. Finally, one can justify Equations
(10) and (12) of Hansen (2008) by some straightforward calculations.1 Overall, we obtain (A.2). �

Proof of Lemma 2 By Taylor’s expansion and Assumption A2,

β(τt) = β(τ) + β(1)(τ)(τt − τ) +
(
β(2)(τ) +O(h)

)
(τt − τ)2/2, |τt − τ | ≤ h. (S.1)

Since K has support [−1, 1], by (S.1), one can write

(
H−1Sn(τ)H−1

) [
H
(
θ̂(τ)− θ(τ)

)]

= h2

2

(
h−2Sn,2(τ)

(
β(2)(τ) +O(h)

)

h−3Sn,3(τ)
(
β(2)(τ) +O(h)

)
)

+
(

(nh)−1∑n
t=1 xtztK

( τt−τ
h

)

(nh)−1∑n
t=1 xtzt

( τt−τ
h

)
K
( τt−τ

h

)
)
. (S.2)

We first claim that (proofs given below)

sup
τ∈[0,1]

∥∥∥∥∥
1
nh

n∑

t=1
xtztw

k
t (τ)

∥∥∥∥∥ = Op



√

lnn
nh


 , (S.3)

sup
τ∈[0,1]

∥∥∥∥∥h
−kSn,k(τ)−Ω0

∫ (1−τ)/h

−τ/h
ukK(u)du

∥∥∥∥∥ = Op



√

lnn
nh


+O

( 1
nh2

)
, (S.4)

1Take q = ∞ and d = 1 in the equations in Hansen (2008). Then Equation (10) in Hansen (2008) reduces to
β > 2s−1

s−2 = 2δ+3
δ

. It is satisfied by our Assumption C1. Moreover, Equation (11) in Hansen (2008) reduces to
θ = β−2−(1+β)/(s−1)

β+2−(1+β)/(s−1) = 1 − 4
β+2−(1+β)/(s−1) . Using β ≥ 3(1 + δ)/δ (Assumption C1) and the strict monotonicity of

β 7→ β + 2− (1 + β)/(s− 1), we have β + 2− 1+β
s−1 > 4 and thus θ > 0. Therefore Equation (12) of Hansen (2008) is

fulfilled.
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where k = 0, 1, 2, 3. By (S.2) - (S.4), it is immediate to obtain (A.3) because, for any τ ∈ [0, 1],∣∣∣
∫ (1−τ)/h
−τ/h ukK(u)du

∣∣∣ ≤
∫ 1
−1
∣∣ukK(u)

∣∣du ≤ C.
It remains to show (S.3) and (S.4). By Lemma 1 with Yt = xi,tzt, i = 0, 1, . . . , d, it is immediate

to have (S.3) by the norm equivalence. Moreover, by triangle inequality

∥∥∥∥∥h
−kSn,k(τ)−Ω0

∫ (1−τ)/h

−τ/h
ukK(u)du

∥∥∥∥∥

≤
∥∥∥h−kSn,k(τ)− E

(
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)∥∥∥+
∥∥∥∥∥E
(
h−kSn,k(τ)

)−Ω0

∫ (1−τ)/h

−τ/h
ukK(u)du

∥∥∥∥∥ .

Similarly, by the norm equivalence, it suffices to consider the individual elements of h−kSn,k(τ),
namely (nh)−1∑n

t=1 xi,txk,tw
k
t (τ), where 0 ≤ i, k ≤ d. By Lemma 1 with Yt = xi,txk,t, we have

sup
τ∈[0,1]

∣∣∣∣∣
1
nh

n∑

t=1
xi,txk,tw

k
t (τ)− 1

nh

n∑

t=1
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lnn
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)
(S.5)

It implies supτ∈[0,1]
∥∥h−kSn,k(τ) − E

(
h−kSn,k(τ)

)∥∥ = Op

(√
lnn
nh

)
. Next, it is well-known that, for

instance, see Bühlmann (1998), Equation (6.5),
∣∣∣∣∣n
−1
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t=1
g

(
t

n

)
−
∫ 1

0
g(z) dz
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|g(x)− g(y)| , (S.6)

where g(·) is continuous and Riemann-integrable. Setting g : x 7→ h−1 (x−τ
h

)k
K
(
x−τ
h

)
in (S.6), we

obtain
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τ∈[0,1]

∥∥∥∥∥E
(
h−kSn,k(τ)

)
−Ω0

∫ (1−τ)/h

−τ/h
ukK(u)du

∥∥∥∥∥

≤ C sup
τ∈[0,1]

sup
|x−y|≤n−1

h−1
∣∣∣∣
(
x− τ
h

)k
K
(
x− τ
h

)
−
(
y − τ
h

)k
K
(
y − τ
h

)∣∣∣∣

≤ C sup
τ∈[0,1]

sup
|x−y|≤n−1

h−1 |x− y|
h

≤ C

nh2 , (S.7)

where (S.7) is due to the Lipschitz continuity of x 7→ xkK(x) on a compact set. Equation (S.4) is
now obtained, and thus the lemma follows. �

Proof of Lemma 3 It follows from Corollary A.2 in Hall and Heyde (1980). �

Proof of Lemma 4 Note that Assumption A1 implies Assumption C1. By Lemma 2,

n−1
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. Because 1
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sufficiently large, the condition is clearly satisfied under Assumption B2. Next we consider Part
(iv). By the representation in (A.4), the results in Parts (i), (ii) and (iii) lead to
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z∗t z
∗
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=
∞∑

k=0
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Since E (ztzt+j) = (∑∞k=0 ψj+kψk)E|εt|2, we have shown (iv). Using Parts (i), (iii) and the identity
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and write the covariance matrix in Part (vi) as
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Using Part (iv), Lemma 1 (with k = k1 + k2, ` = 2), the Riemann sum approximation (S.6), and
the Lipschitz continuity of x 7→ xkK2(x), we have
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for any τL, τU ∈ (0, 1). For Γ ∗1,n(τ), note that ∑n−1
t=1
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any vectors at and qt,s ∈ R. Then,
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where the second equality is due to
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the third one is by Parts (iv) and (v), and the final one is by Lemma 1 with the fact that {xtxt+j}
satisfying Assumption C1 for every j ≥ 0. Now we consider the first term in (S.10). As such, we
take Hn that satisfies 1
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where the the O-terms are uniform in j, and thus
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Finally, by Lemma 3 and
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Putting (S.11) (S.12) into (S.10), we find, for any τL, τU ∈ (0, 1),
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in probability. Similarly, one can find Γ ∗2,n(τ) n→∞→ Γ ∗′1,∞(τ). By Assumption A1(e), we have
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we have shown Part (vi). �

Proof of Lemma 5 Consider Part (i) first. Define ∆k
t (τ1, τ2) = wkt (τ0 + τ1h) − wkt (τ0 + τ2h). We

make two observations first: (i) By the Lipschitz continuity of x 7→ xkK(x) on [−1, 1], we have
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t (τ1, τ2)| ≤ C|τ1− τ2|; (ii) Since K(·) has the support [−1, 1], we have wkt (τ0 + τh) = 0 whenever
|τt − (τ0 + τh)| > h for any τ ∈ [−1, 1] and τ0 ∈ (0, 1). Note that {t : |τt − (τ0 + τh)| ≤ h} ⊂
{t : bn(τ0 − 2h)c ≤ t ≤ dn(τ0 + 2h)e} =: In,h,τ0 . Then ∆k
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of (A.5) can be written as

1
nh

n−1∑

`=−n+1

n−|`|∑

t=1
E
(
xi,txi,t+|`|ztzt+|`|

)
∆k
t (τ1, τ2)∆k

t+|`|(τ1, τ2)

≤
n−1∑

`=−n+1

∣∣∣E
(
xi,txi,t+|`|ztzt+|`|

)∣∣∣ 1
nh

∑

t∈In,h,τ0

∣∣∣∆k
t (τ1, τ2)∆k

t+|`|(τ1, τ2)
∣∣∣ ≤ C|τ1 − τ2|2,

where we use that ∑∞`=−∞
∣∣∣E
(
xi,txi,t+|`|ztzt+|`|

)∣∣∣ ≤ C by Lemma 3. Using Lemma 4(iv), (A.6) is
similarly obtained. Part (ii) is similar. �

S2 Additional empirical results

We obtain daily mean temperature series for seven cities, located in seven different countries. They
are spread out over Europe: Berlin, Budapest, De Bilt, Dublin, Lyon, Madrid and Stockholm.
We take the average over all cities as our temperature series. The resulting series is displayed in
Figure 1(a). We remove the seasonal component with the help of sine and cosine functions. More
specifically, we fit the following regression

Tempt = α1 cos(2πt) + α2 sin(2πt) + εt (S.1)
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Figure 1: Temperature data before and after the removal of the seasonal component.

and continue to work with the residuals from this regression which are plotted in Figure 1(b).2

To determine if our data is stationary, we perform the Augmented Dickey-Fuller (ADF) test
(Said and Dickey, 1984) and the tests by Phillips and Perron (1988), Kwiatkowski et al. (1992) and
Leybourne et al. (1998). The latter test is similar to the ADF test, but it considers a smoothly
varying time trend under the alternative hypothesis. The trend can undergo one transition and
the time point as well as speed of the transition is determined endogenously by the test. This
modification allows for much more flexibility under the alternative which is an advantage given our
complex data series. Table S1 gives the test statistics for all series in levels (yt) as well as the log
return data, which is defined as the first difference of the natural logarithm (ryt = ln(yt/yt−1)). The
bottom part of the table shows the critical values for significance levels of 1%, 5% and 10%. Apart
from the KPSS test, all tests are left-sided, and hence, we reject the null hypothesis, if the test

2As the method requires stationary data, removing the seasonality prior to the regression analysis is important to
avoid spurious results. However, in this case part of the link between the temperature series and EUA prices might
be lost. Therefore, it could be worthwhile to investigate ways to explicitly incorporate the seasonal component into
the model or to construct an indicator for extremely cold periods. This is left for future work.

Unit root tests
ADF test PP test LNV test KPSS test

yt ryt yt ryt yt ryt yt ryt

EUA -0.562 -14.132 -0.675 -17.641 -1.011 -14.336 1.306 0.072
Coal -2.236 -12.879 -2.089 -16.488 -2.336 -13.051 0.553 0.056
Gas -1.999 -13.586 -2.108 -18.678 -2.029 13.723 0.574 0.068
Oil -1.780 -13.882 -1.761 -18.593 -2.033 -13.958 1.130 0.084
S50 -3.419 -15.965 -4.339 -19.111 -3.705 -16.210 0.739 0.102
S600 -3.452 -15.901 -4.045 -19.868 -3.495 -16.301 0.452 0.071
Temp -13.054 - -15.026 - -13.147 - 0.070 -

Critical values: (90%, 95%, 99%)
(-3.13, -3.42, -3.98) (-3.13, -3.42, -3.98) (-4.55, -4.83, -5.42) (0.12, 0.14, 0.22)

Table S1: Results from the unit root tests of Said and Dickey (1984), Phillips and Perron (1988),
Leybourne et al. (1998) and Kwiatkowski et al. (1992)
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statistic is smaller than the critical value. According to the ADF test, the unit root null hypothesis
cannot be rejected at a 1% significance level in all cases but the temperature data. This holds
true for the data in levels (yt). The only series for which a unit root would be rejected in favor of
stationarity are the two stock indices at a 5% and 10% level, respectively. The log return series (ryt)
are all stationary. The Phillips-Perron (PP) test results confirm the results from the ADF test with
the exception being that the unit root null hypothesis is now rejected for the two stock indices at the
1% significance level. Results of the more flexible test by Leybourne et al. (1998) (LNV) indicate
that all series but the temperature data contain a unit root. The KPSS test comes to the same
conclusion. Combining the above results with the ADF results, we conclude that allowance prices
as well as all fuel prices and stock indices contain a unit root, the temperature data are stationary.
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Figure 2: Summary of impulse indicator saturation results. Figure produced with R package gets.
Top: EUA returns (blue) and fit of dummy regression (red); middle: standardized residuals after
regression on dummies; bottom: retained dummy variables

Next, we discuss the results from the IIS method. It retains 10 dummy variables corresponding
to 10 outliers located at observations 39, 50, 53, 167, 237, 246, 254, 257, 305 and 444. Corresponding
to time points in October 2008, January and February 2009, June 2011, November 2012, January
2013, March and April 2013, March 2014 and December 2016. If we control for the impact of our
most important explanatory variables – coal, gas, oil prices and temperature data – three of these
outliers can be explained. Figure 2 depicts the results of this IIS application. With this approach
we retain 7 outliers which we delete from the EUA series and subsequently perform our analysis.
In Figure 3 we repeat the nonparametric regression exercise given in the main text without first
removing the outliers from the data. In some cases, the confidence intervals get temporarily wider
compared to Figure 3 of the main paper. This holds in particular for the gas and the oil price
coefficient around 2013/2014. However, the main conclusions drawn in this paper do not change.

S7



2008 2010 2012 2014 2016 2018

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

2008 2010 2012 2014 2016 2018

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

2008 2010 2012 2014 2016 2018

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

2008 2010 2012 2014 2016 2018

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

(a) β̂0(t)

2008 2010 2012 2014 2016 2018

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

2008 2010 2012 2014 2016 2018

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

2008 2010 2012 2014 2016 2018

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

2008 2010 2012 2014 2016 2018

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

(b) β̂coal(t)

2008 2010 2012 2014 2016 2018

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2008 2010 2012 2014 2016 2018

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2008 2010 2012 2014 2016 2018

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2008 2010 2012 2014 2016 2018

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

(c) β̂gas(t)
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(d) β̂oil(t)
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Figure 3: Nonparametrically estimated coefficient curves and 95% confidence intervals before the
removal of outliers

We additional include two explanatory variables to our nonparametric regression: energy supply
from hydro power in Norway as well as data on electricity generation from wind for Germany. Both
variables should have a negative effect on allowance prices. The hydro power data are weekly data
which contain a strong seasonal component which is, as for the temperature data, removed with
the help of Fourier terms. The wind generation data is only available until the end of May 2018
which reduces our sample size which is now 517. Added to the nonparametric regression, both new
regressors have a coefficient estimate which is extremely low in magnitude for the whole sample.
Both estimated coefficient curves are plotted in Figure 4. From Panel (a) we see that hydro power is
significant over a very brief period in 2016. Panel (b) shows a period of significance for wind at the
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beginning of the sample until 2010. Although this period is quite long, given the small magnitude
of the coefficient (in the order of 10−5), we consider this effect as negligible.
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Figure 4: Nonparametrically estimated coefficient curves and 95% confidence intervals for wind and
hydro power generation

S3 Additional simulation results

As noted in Remark 1, the edge effects of the kernel estimator could distort the sieve bootstrap
errors if the boundary residuals are resampled. Therefore, we exclude the boundary residuals and
resample only from center residuals. We choose δ as in Remark 1 to be equal to the bandwidth.
We make this choice because it is the truncation of the kernel estimator which is mainly responsible
for the boundary effects and nh observations get truncated. In Table S2 we report results for a
small number of ARMA specification from our simulation study. Comparing these new results to
the previous results we see at most a small improvement in coverage probabilities. The results
do not seem to be greatly affected. The sieve bootstrap performance lies quite close to nominal
level independent of whether or not we exclude boundary residuals. The sieve wild bootstrap
performance is more problematic. However, as no resampling is involved the boundary residuals
stay at the boundary and we do not have to adapt the bootstrap algorithm. We would nevertheless
like to investigate the effect of potential edge effects. Therefore, we repeat in Table S3 a limited
number of specifications. For the calculations of the coverage probabilities, we simply exclude the
first and last [nh] observations to rule out potential boundary effects – such as truncation of the
kernel estimator – as cause for the poor performance of the sieve wild bootstrap in some cases. We
look at three specifications for a bandwidth of h = 0.04: white noise errors, ARMA errors with
(0.3, 0.3) as well as GARCH errors with (0.2, 0.7). Since the boundary points are excluded in the
calculation of the simultaneous confidence bands over the sets G and Gsub, we only report results
for pointwise coverage and simultaneity over the center part of the sample (i.e. the whole sample
minus the boundary points). Comparing the results for pointwise intervals with the previous values
from Tables 1 and 9, we see a small improvement in coverage probabilities. Including the boundary
regions, the SWB coverage probabilities for β1 and β2 in the white noise case were 90 and 91%,
respectively. Excluding the boundary points they are at 92%. For the ARMA errors they were 85
and 86% and increased to 87 and 88%. A larger improvement can be seen for simultaneous coverage
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which was as low as 40 and 48% for white noise or 24 and 30% for the ARMA errors (see Table 4).
Now, the values are 58 and 66% for white noise as well as 41 and 48% for the ARMA errors. The
SB produced better simultaneous results at 92 and 93% for white noise and 89 and 91% for ARMA.
Excluding the boundary points, there is a small improvement of around 2 percentage points. In the
GARCH case, the results show a similar pattern. Overall, this exercise shows that excluding the
boundary points can lead to some improvements but it is not the single explanation for why the
sieve wild bootstrap performs so poorly, in particular, at simultaneous coverage.

white noise φ = 0.1 ψ = 0.3 (φ, ψ) = (0.3, 0.3)
β1 β2 β1 β2 β1 β2 β1 β2

pointwise 0.956 0.956 0.954 0.957 0.956 0.957 0.951 0.953
(0.307) (0.306) (0.306) (0.305) (0.299) (0.293) (0.360) (0.349)

Gsub
0.951 0.944 0.934 0.937 0.943 0.948 0.934 0.933

(0.401) (0.399) (0.400) (0.2398) (0.390) (0.383) (0.470) (0.456)

G
0.934 0.945 0.938 0.934 0.934 0.943 0.923 0.926

(0.434) (0.432) (0.432) (0.431) (0.421) (0.413) (0.509) (0.493)

whole sample 0.906 0.916 0.898 0.898 0.911 0.926 0.889 0.887
(0.460) (0.459) (0.459) (0.457) (0.448) (0.439) (0.540) (0.523)

Table S2: Excluding the first and last [nh] residuals in Step 1 of the sieve bootstrap, with h = 0.04

β1 β2 β1 β2

SB SWB SB SWB SB SWB SB SWB

white noise 0.960 0.917 0.960 0.921 0.935 0.576 0.921 0.661
(0.306) (0.288) (0.309) (0.272) (0.459) (0.432) (0.463) (0.409)

ARMA 0.951 0.867 0.959 0.879 0.907 0.405 0.930 0.477
(0.356) (0.292) (0.344) (0.277) (0.531) (0.438) (0.515) (0.418)

GARCH 0.948 0.910 0.955 0.922 0.811 0.516 0.839 0.612
(0.285) (0.246) (0.283) (0.223) (0.436) (0.368) (0.432) (0.335)

Table S3: Excluding the first and last [nh] observations when calculating coverage probabilities,
with h = 0.04. We consider white noise, ARMA(1,1) with (0.3, 0.3) and GARCH(1,1) with (0.2,
0.7).
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