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Abstract

We assess the stability of the unemployment gap parameter using linear

dynamic Phillips curve models for the United States. In this study, we

allow the unemployment gap parameter to be time-varying such that we

can monitor the importance of the Phillips curve over time. We consider

different specifications and different measures for inflation. Furthermore,

we include stochastic volatility for the observation errors. Our estimation

results are based on practical Bayesian state space methods which include

feasible testing and diagnostic checking procedures. A key finding is that

the Phillips curve for U.S. headline inflation has remained empirically

relevant over the years.
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1 Introduction

The relevance and stability of the Phillips curve in explaining and predicting

inflation dynamics have been debated for decades. More than once, the statistical

significance of this equation, which links inflation dynamics to real activity or

‘slack’, has been dismissed, only to be revived later on; see, for example, the

discussions in Gordon (2013) and Hall (2013)). This debate has been rekindled

in the aftermath of the Great Recession, when inflation in the United States and

in euro area countries fell by less than what traditional Phillips curves would

have predicted, giving rise to the “missing disinflation” puzzle. In more recent

years, as the economies of these countries recovered, a twin-puzzle has emerged:

inflation has increased by less than expected given the economic conditions. This

gave rise to the notion that the relationship between real activity and inflation is

unstable, and has faded over time. In the past two decades, the literature on the

Phillips curve has been enriched by research that show this, but a more or less

equal number of papers have appeared that rebut this claim.

To empirically assess the stability of the Phillips curve, we adopt Bayesian

state space methods to estimate the time-varying coefficients in a linear dynamic

model with stochastic volatility. Empirical studies employing a similar approach

have found that the coefficient has declined over time; see, for example, Ball

and Mazumder (2011) and Matheson and Stavrev (2013) whose approach was

adopted by Blanchard, Cerutti, and Summers (2015), Blanchard (2016) and the

IMF (2013) in their analysis of the Phillips curve in the World Economic Out-

look of April 2013. While these studies differ in their choice of data, variables,

model specification and estimation method, they all conclude that the slope of the

Phillips curve has been declining over the past few decades in the United States.

Blanchard, Cerutti, and Summers (2015) find similar evidence for other OECD

countries. The literature has put forward a number of explanations for this. One

is Bernanke’s (2007) “anchored expectations” hypothesis, which states that the

slope of the Phillips curve has become less strong because inflation expectations

have become less informed by transitory shocks and recent past inflation, and more

anchored to a fixed inflation rate or “target” set by a country’s central bank. Ball

and Mazumder (2011, 2019) and Blanchard (2016) provide some evidence for this.
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The measurement of inflation expectations has implications for the Phillips

curve. Economic expectations play a central role in macroeconomic theory, as the

perception about future economic conditions affects current economic decision-

making. The Phillips curve theoretically models the decisions and hence expecta-

tions of firms. The measurement of expectations could therefore affect empirical

outcomes in macroeconometric analyses of the Phillips curve. For most countries,

there is no or very little data available on firm inflation expectations. Therefore,

the literature resorts to proxies. While the earlier studies listed above simply

use the lags of inflation (so-called ‘backward-looking’ expectations), surveys such

as Survey of Professional Forecasters obtain long-term professional expectations.

Coibion and Gorodnichenko (2015) show that the surveys measuring short-term

household expectations may be a better proxy for the actual inflation expectations

of firms. Their measure, obtained from the Michigan Survey of Consumers, ac-

counts for the lack of disinflation during the Great Recession: household inflation

expectations actually increased substantially in the crisis period, whereas profes-

sional expectations hovered around 2%. The authors find that including survey

expectations yield a strong and stable negative relationship between inflation and

unemployment.

Our aim is to make three contributions. First, we analyse the slope of the

Phillips curve in a linear dynamic model that incorporates survey information

on both professional and household inflation expectations for different expecta-

tion horizons. This systematic comparison of empirical results for these different

expectation measures using unobserved components models with time-varying pa-

rameters is a novel contribution. Second, we propose a practical alternative to

regular Bayesian model diagnostics, which is practical and easy to compute. In

this respect, we address a less appealing feature of the Bayesian approach. It is

not necessarily straightforward to obtain regular model diagnostics such as the R2

goodness-of-fit statistic. The Bayesian equivalent would be a Bayes factor, com-

puted by obtaining the marginal likelihoods of different specifications, but our

sampling method makes it tedious and time-consuming to obtain the appropriate

Bayes factor. Instead, we propose model diagnostics which rely on the Kalman

filter and smoother and are conditional on the different moments in the posterior

distributions of the parameters. Third, we follow a well-developed literature on
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the advantages of stochastic volatility by allowing the variance of the innovations

to vary over time. While this has become an increasingly common addition to

unobserved component models for inflation dynamics in general (see e.g. Stock

and Watson (2007), Chan, Koop, and Potter (2013, 2016), Chan, Clark, and Koop

(2018)), it is often absent in more traditional analyses of Phillips curve dynamics,

even in papers that allow for time variation in the slope of the Phillips curve.

As Cogley and Sargent (2005) and Primiceri (2005) point out, leaving out the

stochastic volatility may lead to biased “fictitious” dynamics in the time-varying

coefficients. Since including stochastic volatility renders the model to become non-

linear, we resort to Bayesian Gibbs sampler for estimation. The Gibbs sampler

provides an efficient and practical algorithm to identify time-varying parameters

from shocks in a nonlinear model with multiple unobserved components.

Our main findings are as follows. First, estimates of simple accelerationist

Phillips curves for the U.S support the notion that the slope on the unemploy-

ment gap has declined since 1965. Our conditional Bayesian model diagnostics

point to the importance of including expectations, particularly household expecta-

tions, and supply shock variables. The inclusion of professional expectations does

not materially alter our conclusions based on the accelerationist specification. By

contrast, specifications that also include household expectations point to a nega-

tive but volatile Phillips curve for headline inflation. Based on estimates for core

inflation, we would conclude that the Phillips curve has weakened over time. This

is because household expectations correlate less with core inflation than headline

inflation. Second,we do not find convincing evidence supporting the anchored ex-

pectations hypothesis. While professional expectations have anchored, household

expectations have not. Nevertheless, we find evidence for the notion, espoused

by Coibion and Gorodnichenko (2015) that precisely because household expecta-

tions are not anchored that there was no disinflation after the Financial crisis.

Third, allowing for stochastic volatility reduces the volatility and the width of the

posterior distribution of the time-varying coefficient on the unemployment gap.

The remainder of the paper is organized as follows. In Section 2 we present our

modelling framework. We discuss the data sources and the choices of variables for

inflation, expectations and unemployment in Section 3. We present the empirical

results in Section 4. We provide directions for further research in Section 5.
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2 Methodology

We describe various specifications of our main model in section 2.1, and section

2.2 discusses the Gibbs sampler and our prior strategy. In section 2.4 we introduce

our ‘conditional model diagnostics’, which we we will use to evaluate the fit of the

various nested specifications.

2.1 Phillips curve models with time-varying features

The reduced-form expectations-augmented Phillips curve, first posited by Fried-

man (1968), is given by the model specification

πt = β(ut − u∗
t ) + πe

t + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , T, (1)

where πt denotes an observed measure of inflation, β is the coefficient of interest,

ut − u∗
t represents the unemployment gap with ut denoting the unemployment

rate and u∗
t denoting the natural rate of unemployment or NAIRU (i.e. the rate

corresponding to an economy in a steady state), and πe
t is a measure of expected

inflation in period t of period t + 1. The disturbance term εt is a normally

independently distributed (NID) disturbance term with mean zero and variance

σ2
ε . The time series length is T .

We examine possible time variation in β. For this purpose we allow this

coefficient to vary over time, that is

πt = βt(ut − u∗
t ) + πe

t + εt, (2)

where βt is now treated as a stochastically time-varying process. We typically

assume that the coefficient βt evolves as a random walk process

βt = βt−1 + ηt ηt ∼ NID(0, σ2
η), (3)

where the disturbance term ηt is normally independently distributed with a mean

of zero and variance σ2
η. We assume that the disturbances εt and ηt are mutually

and serially uncorrelated.

To introduce further flexibility in our model, we adopt a stochastic volatility
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(SV) specification for εt with the effect of a time-varying variance, see for example

Cogley and Sargent (2005), Primiceri (2005), Stock and Watson (2007), Berger,

Everaert, and Vierke (2016), Chan, Koop, and Potter (2013, 2016)), Chan, Clark,

and Koop (2018)). A key motivation is the improvement of the estimation of

the time-varying coefficient: allowing for SV reduces the possibility that elements

that belong in the disturbance term are included in our estimate of βt, and SV

reduces the need for ad-hoc dummies capturing one-off events. Since we impose

a linear relationship between the left-hand and right-hand side of our models,

another advantage is that stochastic volatility reduces the potential problem of

misspecification in general.

The heteroskedastic unobservable shocks εt have variances σ2
ε,t. We let ht =

log(σε,t) evolve as a random walk process given by

ht = ht−1 + vt, vt ∼ NID(0, σ2
v), (4)

where the disturbance term vt is normally independently distributed with a mean

of zero and variance σ2
v . Allowing for stochastic volatility in the innovations

renders the model non-linear, and modelling time varying parameters as states

dramatically increases the number of parameters, both of which make the model

more difficult to estimate. Bayesian methods can partially mitigate these prob-

lems, which is why we opt to use a Gibbs sampler for model inference. We discuss

the relative advantages of our approach in section 2.2.

A baseline specification of equation (2) is the so-called accelerationist Phillips

curve, where inflation only depends on the unemployment gap and backward-

looking expectations, which are set equal to one or more lags of inflation or to
1
4

∑4
i=1 πt−i (as in Ball and Mazumder (2011), Blanchard, Cerutti, and Summers

(2015) and Blanchard (2016)). This equation hence relates the unemployment

gap to the change in inflation rather than the level of inflation, that is

πt −
1

4

4∑
i=1

πt−i = βt(ut − u∗
t ) + εt. (5)

In our empirical section, we will compare the accelerationist specification (5) with

our main model of interest, equation (6). This model nests equation (5) and
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a number of other specifications that have appeared in the literature, particu-

larly Ball and Mazumder (2011, 2019), Matheson and Stavrev (2013), Blanchard,

Cerutti, and Summers (2015), Blanchard (2016), Coibion and Gorodnichenko

(2015) and Coibion, Gorodnichenko, and Kamdar (2018). The specification is

given by

πt = βt(ut − u∗
t ) + θtπ

e,P
t + ϕtπ

e,H
t + (1− θt − ϕt)π

e,B
t + γt

′Ct + εt, (6)

where πt denotes annualized quarterly inflation and ut − u∗
t denotes the unem-

ployment gap.

We include three types of expectations: survey expectations of professionals

such as economists and professional forecasters, denoted by πe,P
t , household in-

flation expectations πe,H
t obtained from household surveys, and purely backward-

looking expectations πe,B
t , which again we set equal to 1

4

∑4
i=1 πt−i. The literature

actually distinguishes two types of expectations: ‘backward-looking’ or ‘adaptive’

expectations and purely ‘forward-looking expectations’. A Phillips curve that

only depends on backward-looking expectations πe,B
t takes the form of equation

(5). In line with New-Keynesian theory, many empirical macroeconomic papers

use a measure of forward-looking expectations instead. Forward-looking expecta-

tion measures are supposed to capture all information relevant to future inflation

that in theory is not sensitive to recent shocks in past inflation or supply shocks.

However, given the persistence of inflation, this specification is usually rejected

by the data. Therefore, a now common approach is to assume that both forward-

and backward-looking behavior play a role in the formation of expectations, re-

sulting in a ‘hybrid’ or ‘expectations-augmented’ New-Keynesian Phillips curve

as in equation (6).

Forward-looking expectations can be measured in several ways. In this study

we follow the papers mentioned above and opt for measures derived from surveys

of professionals (πe,P
t ) and households (πe,H

t ). A number of studies, summarized

in Coibion, Gorodnichenko, and Kamdar (2018), find that including survey-based

inflation expectations improves model fit, increases parameter precision and sta-

bility, reduces the need for ad-hoc lags and decreases forecast error.

Since the New-Keynesian Phillips curve is derived from the firm’s optimization
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problem, a drawback of both household and professional expectation measures is

that neither provides a direct measure of the expectations of firms. Data on the

inflation expectations of firms is sparse, and there are currently no time series

on firm expectations available for the countries in our sample1. Nevertheless, as

Coibion and Gorodnichenko (2015) and Coibion, Gorodnichenko, and Kamdar

(2018) concluded for the United States, survey expectations may serve as a proxy

for the expectations of firms. We expect that, depending on the size and type

of activities of firms, their expectations are in between those of professionals and

households. We discuss the survey data in greater detail in section 3.3. We

discuss the disadvantages of alternative measures, such as market-based measures

or endogenized expectations in Appendix B.1.1.

The vector Ct contains supply shock control variables. Since Gordon (1982)

pointed to the importance of supply shocks in the Phillips curve in his ‘triangle

model’ of inflation, it is common to include these as controls. Following the

literature (see e.g. Blanchard, Cerutti, and Summers (2015), Blanchard (2016),

Gordon (2013), Coibion and Gorodnichenko (2015)), we include relative import

price inflation2 and oil price inflation3. Supply shocks can shift the level of inflation

for a given unit of real activity, which leads to the spurious conclusion that the

Phillips curve has flattened if these shocks are not included as control variables.

A common alternative is to filter supply shocks out of the dependent variable by

using measures for core inflation, usually by inflation excluding food and energy,

or by computing the median4 inflation rate. However, since a shock in for example

oil prices could still affect, either directly or indirectly, the components that make

up common measures of core inflation, neither of these measures may not be

completely inoculated against the effect of supply shocks5.

1The Federal Reserve Bank of Atlanta administers a survey of firm expectations, but only
since 2011 and only for its own district. This survey is therefore of limited use to this paper.

2Relative import inflation is measured as the the annualized quarter-on-quarter change of
the import price index divided by the GDP deflator index, as in Matheson and Stavrev (2013),
Blanchard, Cerutti, and Summers (2015) and Gordon (2013).

3We use the West Texas Intermediate oil price.
4The Federal Reserve Bank of Cleveland developed a ‘median’ CPI inflation index, a measure

of which Ball and Mazumder (2011, 2019) suggest it is a better measure of core inflation, because
it is less affected by volatile transitory components. We also estimated our models for this
measure. The results are in the Appendix.

5For example, Coibion and Gorodnichenko (2015) find that most of the differences in inflation
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2.2 The Gibbs sampler

Inference with the Bayesian Gibbs sampler, and Bayesian MCMC samplers in

general, have a number of advantages compared to frequentist methods. First,

for the non-stationary unobserved processes included in the model, such as equa-

tion (3), the Maximum Likelihood point estimate of the standard deviation of

the innovation is biased towards 0, a phenomenon the literature refers to as the

pile-up problem; see, for example, Sargan and Bhargava (1983), Stock and Watson

(1998) and Shephard and Harvey (1990). Second, allowing for stochastic volatil-

ity renders the model non-linear, which makes the likelihood of the model more

difficult to maximize. It is not unlikely that such a model has a likelihood with

multiple peaks. If these peaks are very wide, the parameters become difficult to

identify (the ‘flat likelihood’ phenomenon). Conversely, if these peaks are very

narrow, the likelihood may attain a maximum value in an unreasonable region of

the parameter space. This is especially a risk for models with multiple unobserved

components. A Bayesian MCMC method such as the Gibbs sampler splits the

original estimation problem into multiple steps of smaller and less complex esti-

mation problems, by drawing from conditional posteriors with a lower dimension

than the joint posterior of the whole parameter set. Therefore the Gibbs sam-

pler can deal with issues related to non-linearity and high dimensionality in an

efficient manner. Moreover, the prior in a Bayesian approach can be utilized to

ensure that the posterior distribution of a parameter does not attain values from

an unreasonable region of the parameter space.

The Gibbs sampler algorithm used to evaluate the posterior distributions of

the states and hyperparameters is based on the approach of Primiceri (2005) and

Del Negro and Primiceri (2015). The results reported below are based on 60,000

Gibbs sampler iterations, of which we discarded the first 10,000 draws and stored

every 5th of the remaining 50,000 iterations, resulting in 10,000 draws used for the

evaluation of the posterior distributions of the states and hyperparameters. As

shown in Table 3 in the Appendix, the convergence checks are satisfactory as the

sample autocorrelations decay fast.

expectations between households and professionals can be explained by oil price changes. Hence,
oil prices are not only important to include because of direct effects on inflation, but also because
of its role in the formation of inflation expectations.
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To calibrate the prior distributions of B0 = [β0, θ0, ϕ0, γ0], h0, Ση and σ2
v ,

we use Maximum Likelihood (ML) and Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) estimates of equation (7) below based on the first

10 years of data (40 observations, dating from 1955Q1 to 1964Q4). Our approach

builds on the prior settings of Cogley and Sargent (2005) and Primiceri (2005).

They use OLS estimates of a time invariant model of the first 40 observations

of his sample, thereby making assumptions about the order of magnitude of the

scale parameters of the prior Inverse Wishart distributions of the disturbance

variances. They also assume a scaled identity matrix for the scale parameter of

the Inverse Wishart prior distribution for σ2
v . In this paper we attempt to avoid

these assumptions, and instead rely on ML and subsequently GARCH estimates

of a model with time-varying parameters to inform the priors. To our knowledge,

ours is the first paper to employ this strategy.

We use the same prior for the different specifications. The main reason for

this is that using different priors for different specifications adds one extra source

of potential variation between estimation results, which muddles our analysis.

To obtain our prior information, we estimate equation (7), which is a special

case of equation (6), where ϕt is set to 0 and Ct only contains import price

inflation, that is

πt = βt(ut − u∗
t ) + θtπ

e,P
t + (1− θt)π

e,B
t + γtπ

M
t + εt. (7)

where πt denotes headline CPI inflation, ut − u∗
t is the CBO estimate of the

unemployment gap, πe,P
t is a combination of the Livingston Survey and the Survey

of Professional Forecasters of one-year-ahead inflation expectations, πe,B
t is defined

as described below equation (6), and the control variable πM
t is relative import

inflation. For convenience it is assumed that εt ∼ NID(0, σ2
ε), i.e. we assume

that there is no stochastic volatility. After all, allowing for stochastic volatility

results in a non-linear model, which is one of the reasons why we opted for a

Bayesian approach. However, as we will elaborate on below and in Appendix A.2,

we consider a GARCH model for the residuals of this model, as denoted by ε̂t, to

inform the prior for σ2
v .

Equation (7) is based on the models of Matheson and Stavrev (2013) and
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Blanchard, Cerutti, and Summers (2015). We chose this specification, because it

is relatively concise compared to the general equation (6), but still contains at

least one variable from the different possibilities for πe
t and Ct. For models that

include more than one expectation or control variable, we set the prior distribution

of the parameters on these variables equal to the prior distributions we obtain for

comparable variables in equation (7). For example, the prior for ϕ0 is set equal

to the prior for θ0, and the prior of the time-varying parameter on oil prices is set

equal to the prior for that parameter on relative import prices.

Define BML,t = [βt, θt, γt]′ and ỹt = [π1, π2, . . . , πt]
′. Then, the elements in B0

have a Normal conjugate prior for which we set the mean and variance equal to

E(BML,40|ỹ39) = b40 and Var(BML,40|ỹ39) = P40, respectively. We derive the under-

lying scale parameters of Ση,ML = diag(σ2
η,ML,1, σ

2
η,ML,2, σ

2
η,ML,3) and use these to

inform the prior, instead of using the ML estimates directly as input for the priors

of Ση (as is done in e.g. Primiceri (2005)). Ση has an inverse-Wishart conjugate

prior distribution for which the degrees of freedom T0 are set to 2 + the dimension

of the matrix, and a diagonal scale matrix Θ derived from the ML point estimates

σ̂2
η,ML,i. The derivation is described in detail in Appendix A.2.2. For the prior for

h0 we use the smoothed disturbances ε̂ML,t = σε̂,tϵt, ϵt ∼ NID(0, 1) to estimate

a GARCH(1,1) model. We use the estimated parameters to compute E(σ2
ε̂,t) =

E(ε̂2ML,t) and Var(σ2
ε̂,t) to compute a prior for h0. Recall that ht = ln(σε,t). Hence,

using the Delta method we derive h0 ∼ N(ln(
√

E(σ̂2
ε̂,t)), V̂ar(σ̂

2
ε̂,t) · 1

2E(σ̂2
ε̂,t)

), see

Appendix A.2.3.

Estimating the GARCH(1,1) model results in an estimated series of σ̂2
ε̂,t, see

Appendix A.2.4. To compute a prior for σ2
v , analogous to the specification for ht,

we assume the logarithm of this series is generated by a random walk which we

estimate with maximum likelihood. From this exercise we obtain σ̂2
v and compute

the the prior according to the procedure used to obtain priors for Ση, assuming an

inverse-Gamma distribution for σ2
v with degrees of freedom T0 and scale parameter

ϑv. In sum, the priors are specified as follows:

• B0 ∼ N(b40, P40), Ση ∼ IW (T0,Θ), σ2
v ∼ IG(T0

2
, ϑ

v

2
)

• h0 ∼ N(ln(
√

E(σ̂2
ε̂,t)), V̂ar(σ̂

2
ε̂,t) · 1

2E(σ̂2
ε̂,t)

)
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Our robustness checks revealed that the posterior distributions of the state pa-

rameters β0, θ0, ϕ0 and h0 are not very sensitive to the prior distribution: different

starting values have different but temporary effects on the posterior distributions,

only visible in the first to five years of the sample, after which the distribution

converges to the same values.

The values of the priors for Ση and σ2
v do have an effect on the volatility of

these state parameters, although not on the trend. As is commonly known in

the literature, these values affect the signal-to-noise ratio’s, and depending on the

value of these ratio’s the posterior distributions of the state parameters are more

or less smooth. Given the non-linearity of the model, and the relatively short time

series for some countries, we do not find this surprising. As we explained above,

our decision to opt for a Bayesian approach was informed by this sensitivity.

2.3 Interpreting the width of βt posterior distribution

In general the posterior distribution of βt is wider than fixed parameter esti-

mates of our model. Since the time-varying coefficients are estimated as locally

weighted averages, the number of observations used for these averages can be

small. For frequentist approaches, this implies increased uncertainty around the

point estimates, and in the Bayesian context In the Bayesian context the posterior

distributions become wider compared to fixed parameter estimates. This problem

is not unique to our method: rolling regressions suffer from the same issue if the

subsamples are chosen too small6. This problem is exacerbated as the number of

time-varying parameters increases. Therefore, we limited the number of variables

with time varying parameters in our specification to a maximum of five.

Since we know that the potentially wide posterior distribution of βt is partially

the result of a small local sample, we cannot evaluate the significance of the

posterior values as is done in frequentist analyses without committing a Type

II error. Therefore, when the majority of the posterior distribution βt is below

0, throughout this paper we consider this to be evidence in favor of a negative

Phillips curve slope.

6Also, state space specifications mitigate this issue somewhat by imposing more structure on
the estimates for βt by specifying a functional form for the data generating process, which is
chosen to be a random walk in this paper.
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2.4 Conditional model diagnostics

In this paper we present a simple method to help us asses to what extent the

variables in equation (6) additional to those in equation (5) improve the fit of the

model. We can also use this method to check standard model assumptions, such

as serial correlation, skewness and kurtosis. Our method provides a quick and

efficient, yet insightful alternative to computing the marginal likelihoods for our

models (as is done in e.g. Chan, Clark, and Koop (2018)). Note that our method

can only be used to evaluate the fit of nested models. We cannot reliably use our

method to evaluate the empirical fit of short-term versus long-term expectation

horizon variables.

Our method can be used to obtain conditional model diagnostics: we em-

ploy the Kalman filter-smoother to compute βt and the one-step ahead prediction

errors7 vt conditional on the posterior mean of the (hyper)parameters of equa-

tion (6). We can also use the conditional values of vt to check standard model

assumptions, such as serial correlation, skewness and kurtosis.

To gauge the gain in model fit from each variable additional to those in the

accelerationist specification (5), we compute the Bayesian Information Criterion

(BIC) based on the conditional likelihood from nested versions of the posterior

values of equation (6). The likelihood, and therefore the BIC are functions of the

prediction errors. The model with the lowest BIC is preferred.

We first compute the conditional likelihood of equation (6) with all time vary-

ing parameters except for βt restricted to 0, conditional on the posterior mean8

of σ2
t and σ2

η1
of equation (6). Next we relax the restriction on θt and compute

the filtered and smoothed βt and BIC with the restriction ϕt = γt1, t = γ2,t = 0

conditional on the posterior means of σ2
t , σ

2
η1

and θt. In the next iteration we only

restrict γt1, t = γ2,t = 0 and condition on the posterior moments of ϕt, σ
2
t , σ

2
η1

and θt. The following iteration only restricts γ2,t = 0 and condition on the means

of γ1,t together with aforementioned variables. In the final iteration we condition

on the posterior moments of all time varying parameters except for βt.

7The one-step-ahead prediction error is defined as E(πt − π̂t|Yt), where π̂t is the filtered
estimate of πt conditional on the data Yt = ((ut − u∗

t ), π
B
t , πP

t , π
C
t ,Ct).

8We also computed these diagnostics conditional on the median and mode. The differences
in the resulting statistics are negligible.
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For each iteration, the conditional smoothed βt is virtually identical to the un-

conditional posterior mean obtained with the Gibbs sampler. Therefore, we are

sufficiently confident that our conclusions based on the conditional diagnostics

can be generalized to the unconditional posterior distributions described in the

previous section. For the one-step ahead prediction errors we also compute con-

ditional skewness, kurtosis, Jarque-Bera and Ljung-Box statistics for the general

model (6).

3 Data

We provide the details of our data set for the United States (U.S.) and used in

the empirical study to measure inflation, the unemployment gap and inflation

expectations. We motivate our choices of variables in relation to earlier studies.

3.1 Inflation

We measure inflation as the quarter-on-quarter annualized change of the three-

month average price index. Our sample includes both headline and core CPI and

PCE inflation. Overall, CPI inflation in the United States decreased less than

expected during the downturn and did not increase as much during the upturn,

hence the “puzzle” of missing (dis)inflation, see Figure B.1 in the Appendix. While

the CPI is the oldest measure of inflation, the target of the Federal Reserve Bank

is actually 2% core PCE inflation. Ball and Mazumder (2011, 2019) explain how

this implies a CPI inflation target of approximately 2.5%. Quarter-on-quarter

annualized CPI headline and core inflation have decreased significantly since the

1980s and has been hovering around the target levels of 2-2.5% since the mid-

1990s. The same trends are visible in PCE inflation.

3.2 The unemployment gap

Following Ball and Mazumder (2011, 2019), we measure the unemployment gap

by subtracting estimates of the NAIRU from the unemployment rate. Here we

rely on widely acknowledged exogenous measures. We take the NAIRU estimate

of the Congressional Budget Office, see Figures B.2 and B.3 in the Appendix.
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Naturally, since this is an unobserved entity, these estimates are never perfect.

Also, since unemployment is an imperfect measure of real activity, we expect that

estimates of the slope on the unemployment gap are biased. This provides us

with another reason to employ Bayesian methods, so that we can use the prior to

mitigate this problem.

Additionally, we test the robustness of our estimates to an alternative measure

of the unemployment gap using the short-term instead of the total unemployment

rate, as is done by Ball and Mazumder (2019). The short-term unemployment

rate is the percentage of the labor force unemployed for less than 27 weeks, see

Figure B.3 in the Appendix9. Ball and Mazumder follow Krueger, Cramer, and

Cho (2014) in arguing that those unemployed for a longer period of time are

are no longer appealing to potential employers or may stop searching for work.

Consequentially, they no are longer part of the share of unemployed that form

an excess supply of labor and hence no longer put downward pressure on wage

growth and inflation during downturns. Figure B.2 in the Appendix shows that

the level of slack in the economy during the Great Recession appears much less

severe when measured by short-term unemployment, which could explain the lack

of disinflation during this period.

We decided against endogenizing the unemployment gap, as is done in Math-

eson and Stavrev (2013), Blanchard, Cerutti, and Summers (2015), and Chan,

Koop, and Potter (2016) mainly because it is difficult to identify βt from u∗
t with-

out any additional information in the state equations. Moreover, allowing for

stochastic volatility in the innovations exacerbates this problem. This issue can

be mitigated by imposing more structure on the equation for the unemployment

gap10. However, since our focus is on comparing different Phillips curve specifi-

cations, we seek to keep the model parsimonious in other dimensions, and leave

this extension for future research.

9There is no direct measure of short-term unemployment available in the database of the
Bureau of Labor Statistics. Therefore, we follow Ball and Mazumder who compute the short-
term unemployment rate by taking the number of people unemployed for more than 27 weeks
and subtracting this number from the total number of unemployed. This number is then divided
by the labor force.

10(This can be done by modelling it as an AR(2) or as an IS equation, relating it to a Taylor
rule, yielding a small macroeconometric model of the economy, as is done in varying degrees by
e.g. Chan, Koop, and Potter (2016) and Berger, Everaert, and Vierke (2016)).

15



Another way to mitigate measurement uncertainty is by evaluating the impact

of alternative measures of real activity. These include the output gap, survey-

based measures such as the capacity utilization rate, or measures of marginal

costs. However, we focus on the unemployment rate and leave the analysis of

other measures to future research. Our reasons for this are as follows: first, the

unemployment rate is the classic measure (see Phillips (1958)) and also the most

commonly used measure of real activity in the Phillips curve literature, which

makes it easier to compare our results with other empirical studies. Second, given

the Federal Reserve Bank’s dual mandate of stable prices and maximum stable

employment, specifically estimating the relationship between the unemployment

gap and inflation is in itself a valuable analysis. Third, alternative measures also

suffer from measurement problems: measures of marginal costs, such as labor’s

share of income or unit labor costs turned out to be poor proxies (see Coibion

and Gorodnichenko (2015) for a summary of the literature on this). The output

gap, as is the case for the unemployment gap, is not directly measured but must

be estimated. Also, survey-based measures such as the capacity utilization rate

are relatively short time series, making analyses of the long-term evolution of the

Phillips curve impossible.

3.3 Professional and household expectations

Table 1 summarizes the expectations data11 used in our study. The main em-

pirical results in this paper are based on the average or median survey response,

depending on the series.

3.3.1 Professional expectations

We primarily rely on the Survey of Professional Forecasters (SPF) for our mea-

sures of short- and long-term expectations of professionals. The SPF is the old-

est quarterly survey of inflation forecasts. It was administered by the American

Statistical Association and the National Bureau of Economic Research before the

11Note that this list not exhaustive: it does not include the household survey of the Federal
Reserve Bank of New York. Since this survey was first administered in 2013, it cannot be used
in this paper. Also, we do not use Federal Reserve Bank Greenbook forecasts, since forecasts of
recent years are not yet disclosed.
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Federal Reserve Bank of Philadelphia took over in 1990. The survey first recorded

1-year ahead (seasonally adjusted) CPI inflation expectations in 1981Q3.

To replicate the results of the papers mentioned above which start in the 1960s,

we follow their approach and combine the SPF with a biannual series on 1-year

ahead CPI inflation provided by the Livingston Survey. The Livingston survey

(LS) was first administered in 1946 and contains the longest series on biannual CPI

inflation expectations from economists from industry, government, banking and

academia. Since 1990, the survey has been administered by the Federal Reserve

Bank of Philadelphia12. We transform the biannual series into a quarterly series

through simple interpolation by means of a piecewise cubic hermite interpolating

polynomial (PCHIP).13

To measure long-term inflation expectations, we use the SPF and the LS,

which have 10-years-ahead inflation forecasts from 1991Q4 and 1990Q2 onward,

respectively. The 10-years-ahead inflation forecasts measure the annual average

rate of headline CPI inflation over the next 10 years expected by economists and

forecasters. To extend these series, the Federal Reserve Bank of Philadelphia

refers to the biannual series of the Blue Chip Economic Indicators (BCEI). This

survey is administered to business economists and starts in 1979Q4. Neither the

SPF nor the LS has sufficiently long series on other measures of inflation, such as

the PCE or measures of core inflation14. Therefore, we use the CPI expectation

variable to approximate expectations for alternative measures of inflation.

An alternative to the SPF, LS and BCEI survey is the Consensus Forecast

(CF) survey from Consensus Economics. These series are much shorter, as the

data set starts in 1990. The CF was a biannual survey until 2014, when the survey

was administered three times. From 2015 onward the survey is administered on

a quarterly basis. The forecast window in this survey differs from the SPF, LS

and BCEI in that respondents are asked to give a forecast of inflation for next

year instead of in the next four consecutive quarters. Particularly for short-term

forecasts this difference could make a difference to estimates and interpretations

of the Phillips curve.

12Before, the survey was managed by J. Livingston, a columnist for the Philadelphia Inquirer.
13We use the Piecewise Cubic Hermite Interpolating Polynomial function from MATLAB.
14Expectations of these measures are available only from 2007 onward.
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3.3.2 Household expectations

We measure household short- and long-term inflation expectations with The Uni-

versity of Michigan Surveys of households (MSC). Since January 1978 its monthly

questionnaire includes expectations of 1-year ahead inflation, see Appendix B.1

for more detail. Since 1979 the MSC also collects inflation expectations for the

“next 5 to 10 years”, first on an annual basis, and since 1990 as a monthly series.

Note here that households are not asked to give a forecast of the CPI or another

index, but rather indicate the direction of household prices in general. These

qualitative judgments are then converted into a forecast.

3.3.3 Comparing professional and household expectations

Since approximately 2000, professional one-year ahead expectations have closely

tracked average core inflation in the United States, but household expectations,

have not: since the early 2000s, household expectations as measured by the MSC

have been higher than core inflation and professional expectations, and well above

2 and 2.5% for most of the sample. MSC expectations also appear to be more

volatile, and appear to closer track headline inflation, suggesting their expecta-

tions of future inflation are mostly informed by current inflation. This divergence

has been discussed extensively by Coibion and Gorodnichenko (2015). In their

study, diverging household expectations is the main explanation for the missing

disinflation.

4 Empirical results

We first report the empirical results for the ‘accelerationist’ Phillips curve of equa-

tion (5) in Section 4.1. We discuss the effect of adding expectations and supply

shock variables on the posterior distribution of βt in section 4.2. In section 4.3 we

review the fit of the model with the conditional model diagnostics introduced in

section 2.4. We discuss the evidence regarding the anchoring of inflation expecta-

tions in the United States in section 4.4.
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Table 1: Expectations data for the United States

Survey Respondent Measure Forecast Starting F
horizon

Survey of Profess. Professionals CPI 1-year 1981Q3 Q
Forecasters GDP/GNP 1-year 1970Q2 Q

CPI 10-years 1991Q4 Q

Livingston Survey Professionals CPI 1-year 1946M12, B
10-years 1990M06 B

Blue Chip Economic Professionals CPI 10-years 1979M12 B
Indicators
Michigan Surveys of HH HH prices 1-year 1978M01 M
Households (HH) 5-years 1979M0215 Mix1

Consensus Forecasts Professionals CPI next year, 1990 Mix2
next 7 years

F - Frequency: Q - Quarterly; B - Biannual; M - Monthly.
Mix1 - Frequency Michigan Surveys is mixed: Annual (1979 - 1980), B (1980-1985), Q (1986-
1987), M (1990-present).
Mix2 - Frequency Consensus Forecasts is mixed: B (until 2013), Triannual (2014), Q (2015-
present).

4.1 Results for accelerationist Phillips curve specifications

Figure 4.1a and 4.1b show the posterior median, mean, 5th, 16th, 84th and 95th

percentile of βt for headline and core CPI inflation without stochastic volatility,

which is equal to equation (5), or (6) with θt, ϕt and γt set to 0. Figures 4.1c

and 4.1d display the same posterior moments for equation (5) with stochastic

volatility. The volatilities are shown in Figure 4.1e and 4.1f. The results for

median CPI and PCE inflation are comparable to those of headline and core CPI

and are shown in Appendix C.2.

Based on the posterior distributions of βt for the accelerationist Phillips curve

we make four general observations. First, there is a decline in the slope since

the 1970s, regardless of the measure of inflation used. For both headline and

core CPI inflation the posterior median and mean of βt hovered close to a value
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of -0.5 in the late 1960s, then decreased to around -0.7 to -1 in the 1970s and

early 1980s during the ‘Great Inflation’ period when headline and core CPI q-

o-q annualized ratcheted up to around 13-15%. During and after the ‘Volcker’

disinflation period, which started in 1980, inflation decreased rapidly. The Phillips

curve relationship has weakened substantially since then: the slope deteriorates to

the point where the posterior median and mean value of βt are 0 or even slightly

positive in the period after 2010. These results are in line with the main findings

of Ball and Mazumder (2011), who estimate equation (5) without SV for median

CPI inflation.

Second, allowing for stochastic volatility in the irregular component of equa-

tion (5) reduces the volatility and the width of the posterior distribution of βt,

since σ2
ε,t captures increased volatility during the high inflation of the 1970s and

the subsequent Volcker disinflation as well as the Great Recession that followed

the Financial Crisis of 2007-2008. Also, notice how the pattern of the posterior

distribution of σ2
ε,t does not exhibit a peak in the aftermath of the Financial Cri-

sis: increased volatility caused by the Financial Crisis mainly occurred in volatile

markets such as those for food and energy.

Third, we observe that βt exhibits a cyclical pattern, particularly for core

inflation. We find that periods with relatively rising inflation and a declining

output gap, or decreasing inflation and a rising output gap correspond with more

negative posterior values of βt.
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Figure 4.1: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles
(dotted red) and 16th and 84th percentiles (dashed red) of βt without SV (a) and
with SV (b) from equation (5), and σ2

ε,t (c) from equation (4) for headline and
core CPI inflation, 1965Q1 - 2017Q4
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(b) βt, eq. (5) without SV, core CPI
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(c) βt, eq. (5) with SV, headline CPI
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(d) βt, eq. (5) with SV, core CPI
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4.2 Results for expectations-augmented Phillips curve

Next, we investigate whether our conclusions from the previous section are robust

to specifications where in addition to the unemployment gap we include profes-

sional and household expectations and supply shock variables. Again, we allow

for stochastic volatility in all models. Figures 4.2a to 4.2d show the posterior

moments of βt for headline and core CPI for different versions of equation (6).

We compare these results with Figure 4.2e, which shows the posterior βt values

for a more commonly used Phillips curve specification with one-year-ahead profes-

sional expectations but no household expectations, and Figure 4.2f, which shows

the posterior distribution of βt for the complete model for headline inflation with

one-year-ahead expectations and the measure for short-term unemployment dis-

cussed in section 3.2. The priors and a summary of the posterior distribution

of the hyperparameters for the complete model with one-year-ahead expectations

are reported in Table 4 in the Appendix.

Our findings are as follows. First, while adding one-year-ahead professional

inflation expectations to the accelerationist Phillips curve does not alter the main

conclusions drawn in the previous section (see Figure 4.2e), including household

expectations from the Michigan Survey of Consumers reveals a posterior βt that

is more volatile: Figure 4.2a shows that the posterior distribution of βt declines

strongly from the start of the sample until the mid-1990s, when the slope is rel-

atively stable but close to 0, and become more negative again for the period

roughly between 2000 and 2015, and then weaken again afterwards. This corrob-

orates some of the findings of Coibion and Gorodnichenko (2015), who explain the

lack of disinflation in the United States by a rise in household expectations after

2008, coinciding with the rise in unemployment. However, we actually observe

this rise much earlier on in the sample, in approximately 2000.

These fluctuations correspond to the dynamics in household expectations and

ϕt: Figure 4.3a compares the dynamics in inflation, inflation expectations and

their respective parameters βt, θt and ϕt. The figure shows that professional and

household expectations are closely aligned from the late 1980s until early 2000s,

but household expectations deviate afterwards, as they appear to follow headline

q-o-q inflation more closely. The relatively high correlation between inflation and

household expectations results in a high median posterior value of ϕt compared to
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θt until approximately 2008, when it declines again. From around 2011 onward we

also see that household expectations and inflation are less aligned. This coincides

with a slight decline in the posterior median of βt. So, our results for a Phillips

curve with short-term expectations supports the central thesis of Coibion and

Gorodnichenko, but also show that the strength of the Phillips curve slope is still

volatile, implying that the size and direction of the slope is time-dependent16.

Second, if we replace short-term with long-term expectations, the posterior

value of βt becomes somewhat larger, but the decline in βt is also more obvious,

and more similar to the accelerationist Phillips curve. As we will see in the next

section, long-term expectations are much more stable than short-term expecta-

tions, and consequently less strongly correlated with q-o-q inflation. As a result,

the slope of an expectations-augmented Phillips curve with long-term expectations

has more similar dynamics to an accelerationist Phillips curve.

Third, in contrast to headline inflation, for models for core inflation adding

household expectations to the model for core inflation hardly has any effect on

the distribution of βt, which displays a declining trend as in the accelerationist

Phillips curve. For both short-term and long-term expectations, ϕt decreases

throughout the sample period, and the median value, shown in Figures 4.3c and

4.3d even becomes negative. By contrast θt remains relatively stable. The main

explanation for this is that core inflation by definition is much less volatile than

headline inflation. We already established that household expectations co-move

more with headline than core inflation. Therefore, it has less of an effect on the

fit of the model and on βt.

Fourth, adding relative import and oil price inflation has the overall effect

of smoothing the posterior distributions and reducing the previously observed

cyclical dynamics in βt. Including variables that control for supply shocks account

for idiosyncratic shocks not captured by SV that would otherwise result in a

volatile βt. Figures 4.2c and 4.2d show that this is particularly true for core

16We investigated whether the shorter size of the series for household surveys has an impact
on the difference between these two measures of expectations by estimating the model with
professional 1-year-ahead expectations from 1978Q1, the start date of the series for 1-year-
ahead household expectations. We found that the starting date only has a an impact on the
posterior moments during the first three to five years of the sample, but then converges to the
posterior moments generated by the longer sample.
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inflation, providing evidence of the indirect effects of oil price dynamics.

Fifth, we checked whether replacing the unemployment gap with the short-

term unemployment gap, as was suggested by Ball and Mazumder (2019) changes

our results. Figure 4.2f shows that for headline cpi inflation in a model with short-

term expectations, overall the posterior distribution of βt becomes more negative,

but the dynamics in the slope remain the same, albeit more smoothed. The same

is true for core inflation and models with long-term expectations.

For PCE inflation we draw similar conclusions as for CPI inflation, except that

overall βt is weaker. We expected this: since there are no sufficiently long time

series available fro PCE inflation expectations, so we included CPI inflation expec-

tations instead. These are necessarily less closely correlated with PCE inflation,

and hence have a smaller impact on βt, resulting in a smaller difference between

the accelerationist and expectations-augmented Phillips curves. The results are

in Appendix C.2.

4.3 Conditional model diagnostics

The conditional BICs described in section 2.4 are displayed in the first section of

Table 2 below. The conditional BICs for the accelerationist model are in row 1.

Row 5 shows the BICs for the unrestricted model, i.e. equation (6). The unre-

stricted model results in the lowest BIC for all specifications. Note that we cannot

use our method to compare non-nested models. Hence, we cannot draw any con-

clusions on whether short or long-term inflation expectations are more empirically

suitable. As was mentioned above, using short-term horizons is theoretically more

correct, but given the number of papers that use long-term horizons instead, we

also computed our conditional diagnostics for these specifications.
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Figure 4.2: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles
(dotted red) and 16th and 84th percentiles (dashed red) of βt for (restricted versions
of) equation(6) for headline CPI inflation, 1965Q1 - 2017Q4
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(b) Headline CPI, 10-year ahead
expectations
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(c) Core CPI, 1-year ahead expectations
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(d) Core CPI, 10-year ahead
expectations
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(e) Headline CPI, ϕt = 0, πe,P
t is

1-year-ahead L-SPF
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(f) Headline CPI, short-term
unemployment, 1-year ahead

expectations
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Figure 4.3: Posterior median of βt (black), θt (blue), ϕt (red), professional (dashed
blue) and household expectations (dashed red) and inflation (gray) for (restricted
versions of) equation (6) for headline and core CPI inflation, 1965Q1 - 2017Q4
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(b) Headline CPI, 10-year ahead
expectations
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(c) Core CPI, 1-year ahead expectations

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

-1

-0.5

0

0.5

1

1.5

(d) Core CPI, 10-year ahead
expectations
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(e) Headline CPI, ϕt = 0, πe,P
t is

1-year-ahead L-SPF
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(f) Headline CPI, ϕt = 0, πe,P
t is

10-year-ahead L-SPF
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Table 2: Conditional Mean Estimates of the BIC and Other Model Diagnostics
of equation (6)

Conditional BIC

Short-term expectations Long-term expectations

Headline CPI Core CPI Headline CPI Core CPI

1. θt = ϕt = γ1,t = γ2,t = 0 4.525 2.848 4.497 2.831
2. ϕt = γ1,t = γ2,t = 0 4.233 2.800 4.249 2.791
3. γ1,t = γ2,t = 0 3.833 2.781 4.092 2.806
4. γ2,t = 0 3.530 2.724 3.786 2.822
5. unrestricted 2.711 2.472 2.704 2.374
difference row 1 and 5 (%) -40.088 -13.202 -39.871 -16.143

Relative contribution to BIC of unrestricted model

πe,P
t (%) -16.097 -12.766 -13.832 -8.753

πe,H
t (%) -22.051 -5.053 -8.756 3.282

import inflation(%) -16.703 -15.600 -17.066 3.501
oil price inflation (%) -45.149 -67.021 -60.346 -98.031

Conditional model diagnostics

Q(12) 17.384 8.638 21.667∗∗ 10.991
Q(20) 26.178 29.161∗ 29.890∗ 22.464
Skewness 0.214 -1.216 -0.222 -0.674
Kurtosis 4.050 4.654 4.868 4.542
JB 8.519∗∗ 57.324∗∗∗ 23.335∗∗∗ 26.559∗∗∗

Note: ∗, ∗∗ and ∗∗∗ indicate significance at 10, 5 and 1%-level, respectively.

The final row of the first section of the table shows the percentage difference

between the conditional BICs of equation (6) and the accelerationist Phillips curve

(5). For the models for headline inflation, the fit is improved by approximately

40%, regardless of whether one uses short- or long-term expectations. For the

models for core inflation the expectation variables and supply shock variables

only result in an improvement of 13 to 16%. These results confirms our earlier

finding that since the variables additional to ut−u∗
t have less of an impact on the

Phillips curve for core inflation, the posterior values of βt of the full model are

more similar to the accelerationist Phillips curve.

To compute the relative contribution of each additional variable to the BIC of

27



this model we take the difference between two subsequent BICs and divide this

by the difference between the BIC of the model row 1 and the model in row 5.

Thus, each row in the second section of the table shows how much, percentage-

wise, each additional variable contributes to the difference between the BIC of the

accelerationist model (5) in row 1 and the largest model (6) in row 5.

In line with our findings in the previous section, for the model for headline

inflation with short-term expectations, both expectation variables improve the fit.

Household expectations have a larger impact than professional expectations. For

a model with long-term expectations, the relative contribution of both expecta-

tion variables is smaller, and the relative contribution of household expectations is

smaller than that of professional expectations. Again confirming our earlier find-

ings, for the models for core inflation both types of professional and household

expectations have a relatively small contribution. For the model with long-term

expectation the difference is even positive, revealing the limited explanatory value

of household expectations in explaining core inflation.

For all specifications, the oil price variable has the largest relative contribution

to the model fit, particularly for core inflation, serving as evidence for the indirect

effect of supply shocks. We saw earlier that the the main effect of adding oil prices

is to smooth the slopes and reduce overall volatility, but adding oil prices has no

substantial effect on the trends in βt.

The assumptions underlying our model are that the disturbances are normally

distributed and serially independent. Under these assumptions the standardized

one-step ahead prediction errors vs,t are also normally distributed and serially

independent. Therefore, for the full model we also compute Ljung-BoxQ-statistics

for autocorrelation for 12 and 20 lags, as well as the skewness, kurtosis and the

Jarque-Bera (JB) test for Normality of the standardized prediction error vs,t.

While there is evidence of kurtosis, the skewness and autocorrelation diagnostics

support our assumptions.

To summarize, based on accelerationist Phillips curves specifications, the slope

βt has declined since 1965. The inclusion of professional expectations does not

materially alter this result. Based on our results for models that also include

household expectations, conclusions about the strength of the Phillips curve are

dependent on whether headline or core inflation is a more suitable dependent
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variable, and to what extent one believes the accuracy of the inflation expectation

measures available, and whether one should use short- or long-term expectation

horizons. On the basis of our conditional diagnostics, we cannot conclude which

expectation horizon results in a better fit. Overall, the posterior distributions

support the notion of a negative but volatile Phillips curve for headline inflation,

that at the end of the sample period declines again for all specifications. If we

interpret core inflation as a measure of ‘true’ inflation free from transitory noise,

we would conclude that the Phillips curve has weakened over time. However,

the main explanation for this is that household expectations are explicitly about

headline inflation household inflation expectations and therefore correlate less

with core inflation. This is confirmed by our conditional diagnostics. We would

therefore not conclude that the Phillips curve is in secular decline.

4.4 Have expectations become more anchored in the U.S.?

The decline in the slope of the Phillips curve is often explained by expectations

which have become anchored (Blanchard 2016, Ball and Mazumder 2011, 2018,

Bernanke (2007)). Here, ‘anchoring’ refers to two coinciding phenomena: first, as

the parameter on the unemployment gap declines, the parameter on expectation

variables and hence the importance of expectations in explaining inflation dy-

namics increases. Second, inflation expectations have over time come to depend

less on their lagged values and supply shock variables such as the oil price, but

instead converged to the target set by the central bank. If one wants to attribute

the decline in βt to increased anchoring of inflation expectations, these two ‘con-

ditions’ need to hold. Blanchard (2016) and Ball and Mazumder (2011, 2019) find

evidence for the first and second condition for a model for headline inflation with

long-term professional expectations, although the results of the latter two authors

are not robust to different measures of inflation.

Regarding the first condition, for models with only professional expectations,

based on Figures 4.3e and 4.3f one would confirm that from the 1990s onward

βt declined while θt increased. Before that, as βt declined, θt was more volatile,

and during the 1980s a decline in the median of θt coincided with a decline in

βt. This suggests the shift to inflation targeting in the 1990s resulted in increased
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anchoring.

However, for models which also include household expectations the opposite

can also be true: Figures 4.3a and 4.3b show that since the late 1970s, as the

parameter on household expectations lost and gained strength throughout the

sample period for the full model, so did the parameter on the unemployment gap.

Hence, while expectations matter, their increased importance does not necessarily

coincide with a decline in βt.

For core inflation, the median of βt has declined the most, but whether this is

due to increased anchoring however, is not obvious from the observed patterns in

the posterior distribution of θt. The trends in θt and βt are much more comparable

to models without household expectations, mainly because household expectations

contribute far less to the fit of the model, resulting in the median of ϕt turning 0

or even negative.

Loosely following Blanchard (2016), we can test for the second condition by

again exploiting the advantages of state space methods. We estimate equation

(8), in which we let inflation expectations depend on a time-varying intercept,

contemporaneous inflation and lagged inflation and oil price changes, that is

πe,i
t = αt + ϕ1,tπt + ϕ2,tπt−1 + γt∆oilt + εt, (8)

where πe,i
t again refers to a measure of inflation expectations i, where i can refer

to either professional or household short- or long-term inflation expectations. The

time-varying intercept αt as well as the other time-varying parameters follow the

stochastic process described in equation (3). Again, the natural logarithm of the

variance of εt is assumed to follow a random walk process as in equation (4). We

used the same priors for the hyperparameters as we did above.

The time-varying intercept αt is a measure of convergence: if αt converges to

2% or 2.5% (as was mentioned above, the target is either 2% or 2.5%, depending

on the measure of inflation) while the posterior values of the other parameters

decrease, one can conclude that that particular measure of inflation expectations

has converged to the inflation target.

Figures 4.4a and 4.4b show the posterior median values of αt, ϕ1,t and ϕ2,t for

professional and household expectations for short- and long-term expectations.
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The posterior median of the parameter on oil price changes hovers around 0,

and is therefore not shown in the figures. Over time, both ϕ1,t and ϕ2,t have

declined towards 0, implying strong anchoring of expectations, captured by the

posterior median of intercept αt. For one-year ahead professional expectations,

this intercept has decreased since the early 1980s and has been hovering around

2% since 2005. For professional ten-year ahead expectations, the intercept is

declining somewhat, but still in between 2 and 2.5%. This would indicate that

professional expectations in the United Sates on average are anchored between

the PCE target of 2% and the implicit CPI target of 2.5%.

Figure 4.4: Posterior median of αt (solid line), ϕ1,t (dashed line) and ϕ2,t (dotted
line) of equation (8), for professional (blue) and household expectations (red),
1965Q1 - 2017Q4
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(b) 10-year-ahead expectations
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This is however not the case for household expectations: one-year ahead expecta-

tions have been trending upward since the beginning of the sample, and at the end

of the sample exceed 2.5%. The posterior median estimate of ten-year ahead ex-

pectations are more stable, but appear to be anchored to a value above 2.5% since

1985. Hence, while the impact of transitory shocks on household expectations has

diminished, they have not converged to the target set by the Federal Reserve Bank.

We saw above that increased household inflation expectations explained some of

the inflation dynamics we observed after the Financial crisis, when both house-

hold inflation expectations and unemployment increased. It hence appears that

there is no disinflation because household expectations are not anchored to the
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target set by the Federal Reserve Bank. This finding echoes Coibion and Gorod-

nichenko’s (2015) conclusions, although we find less of an explanatory role for

oil price changes. Instead, the intercept of household expectations has increased,

suggesting an overall higher level of household inflation expectations, regardless

of temporary shocks.

5 Conclusions

This paper has employed Bayesian inference on unobserved components models to

assess the dynamics in the slope of the Phillips curve over time. We have combined

several Phillips curve specifications common in the literature, and allowed for

stochastic volatility in the irregular component which reduced the overall width

of the posterior distributions and the volatility of βt. We have also proposed a

simple method to evaluate the contribution of inflation expectations and supply

shock variables, and to evaluate other relevant model diagnostics.

We systematically compared the outcomes for different measures of inflation,

inflation expectations and the unemployment gap. We found that conclusions

about the strength of the Phillips curve depend on which specification and which

variables one includes to measure inflation, inflation expectations and the unem-

ployment gap. The posterior results for Phillips curves for core inflation are in line

with the nowadays common narrative that the slope of the Phillips curve is in de-

cline; a specification with both short-term professional and household inflation ex-

pectations as well as short-term unemployment yielded the overall strongest slope,

but this slope is also volatile. The key difference between these two outcomes is

the inclusion of household expectations: these correlate more with headline in-

flation than core inflation, which explains the main difference in the posterior

distribution of the slope. Our Bayesian model diagnostics support this finding.

Overall, the posterior distributions support the notion of a Phillips curve slope

that is negative throughout the sample but also volatile, declining again for all

specifications at the end of the sample. We have not found convincing evidence

that the decline in the Phillips curve since the 1960s can be attributed to an

increased anchoring of inflation expectations.
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Appendices

A Model summary and Bayesian inference

A.1 Model summary and state space representation

We can summarize the main model as follows. Let Xt = [ut − u∗
t , π

e,P
t , πe,H

t ,Ct] and Bt =

[βt, θt, ϕt,γt
′]′. Then equations (6) simplifies to

πt = XtBt + εt, (1)

where Bt evolves according to a random walk process, that is

Bt = Bt−1 + ηt ηt ∼ NID(0,Ση), (2)

where

Ση =


σ2
η,1 0 · · · 0

0 σ2
η,2 · · · 0

...
...

. . .
...

0 0 · · · σ2
η,k

 , (3)

where k denotes the number of time-varing coefficients in the model. We restrict Ση to be

diagonal. Our robustness check showed that allowing Ση to be estimated freely did not change

our main empirical results. As was mentioned above, we allow for the variance of εt to vary

over time according to equation (4).

To cast equations (1) and (2) into state space form, recall the general linear Gaussian state

space model

yt = Ztαt + εt, εt ∼ NID(0, Ht),

αt = Ttαt−1 + ηt−1, ηt ∼ NID(0, Qt),
(4)

where the first equation, relating the p×1 vector of dependent variable(s) yt to the k×1 vector of

unobservables αt, is generally referred to as the measurement or observation equation, and the

second equation, which describes the dynamics of αt, as the state or transition equation. Let yt

= πt − πe,B
t , Zt = [ut − u∗

t , π
e,P
t − πe,B

t , πe,H
t − πe,B

t ,Ct] and αt = Bt = [βt, θt, ϕt,γt
′]′. Here,

Ht = σ2
ε,t. The matrix Tt = T is an identity matrix of size k, which equals 5 in the complete

model. Qt = Q =Ση.

A.2 Priors

As discussed in section 2.2, we used Maximum Likehelihood to estimate equation (7) on the

first 40 observations of our dataset to inform our priors. Here we discuss in detail how obtain

the the priors for the states B0 and h0, and hyperparameters Ση and σ2
v .
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A.2.1 B0 ∼ N(b40, P40)

Earlier we defined BML,t = [βt, θt, γt]′ and ỹt = [π1, π2, . . . , πt]
′. The elements in B0 have a

Normal conjugate prior for which we set the mean and variance equal to E(BML,40|ỹ39) = b40

and Var(BML,40|ỹ39) = P40, respectively.

A.2.2 Ση ∼ IW (T0,Θ)

We derive the underlying scale parameters of Ση,ML = diag(σ2
η,ML,1, σ

2
η,ML,2, σ

2
η,ML,3) and use

these to inform the prior instead of using the ML estimates directly as input for the priors of

Ση (as is done in e.g. Primiceri (2005)). Ση has an inverse-Wishart conjugate prior distribution

for which the degrees of freedom T0 are set to 2 + the dimension of the matrix, and a diagonal

scale matrix Θ derived from the ML point estimates σ̂2
η,ML,i. We assume that each σ̂2

η,ML,i has

an inverse-Gamma distribution with location parameter T0

2 and scale parameter
ϑη
i

2 , which we

can derive by using that σ2
η,ML,i ∼ IG(T0

2 ,
ϑη
i

2 ) with

σ̂2
η,ML,i = Ê(σ2

η,ML,i) =

ϑη
i

2
T0

2 − 1
,

which implies (T0

2
− 1

)
σ̂2
η,ML,i =

ϑη
i

2
.

We subsequently define Θ = diag(
ϑη
1

2 ,
ϑη
2

2 ,
ϑη
3

2 ).

A.2.3 h0 ∼ N(ln(
√
E(σ̂2

ε̂,t)), V̂ar(σ̂
2
ε̂,t) · 1

2E(σ̂2
ε̂,t)

)

For the prior for h0 we use the smoothed disturbances ε̂ML,t = σε̂,tϵt, ϵt ∼ NID(0, 1) to estimate

a GARCH(1,1) model:

σε̂,t = ω0 + ω1ε̂ML,t−1 + ξσ2
ε̂,t−1.

We use the estimates of of the parameters ω0, ω1 and ξ to compute E(σ2
ε̂,t) = E(ε̂2ML,t) =

ω0

1−ω1−ξ

and Var(σ2
ε̂,t) =

ω2
0 ·2ω

2
1

(1−ω1−ξ)2(1−3ω2
1−2ω1ξ−ξ2)

to compute a prior for h0. Recall that ht = ln(σε,t).

Hence, using the Delta method we derive V̂ar(ĥt) = V̂ar(ln
√

σ̂2
ε̂,t) = Var(σ̂2

ε̂,t) · 1
2σ̂2

ε̂,t
, where we

set σ̂2
ε̂,t equal to E(σ̂2

ε̂,t). We thus obtain h0 ∼ N(ln(
√
E(σ̂2

ε̂,t)), V̂ar(σ̂
2
ε̂,t) · 1

2E(σ̂2
ε̂,t)

)

A.2.4 σ2
v ∼ IG(T0

2 , ϑv

2 )

Estimating the GARCH(1,1) model results in an estimated series of σ̂2
ε̂,t. To compute a prior

for σ2
v , analogous to the specification for ht, we assume the logarithm of this series is generated

by a random walk

ln(
√
σ̂2
ε̂,t) = ln(

√
σ̂2
ε̂,t−1) + vε̂,t, vε̂,t ∼ NID(0, σ2

v),
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which we estimate with maximum likelihood. From this exercise we obtain σ̂2
v and compute the

the prior according to the same procedure as was described above, assuming an inverse-Gamma

distribution for σ2
v with degrees of freedom T0 and scale parameter ϑv.

A.3 The Gibbs sampler algorithm

Define ỹT = [y1, . . . , yT ]
′, Z̃T = [Z1, . . . , ZT ] = α̃T = [α′

1, . . . , α
′
T ]

′ and h̃T = [h1, . . . , hT ]
′. The

Gibbs sampler for the models evaluated in this paper consists of the following steps, which are

repeated for L +M iterations, where first L iterations are discarded and every jth the last M

iterations1 are saved for inference:

1. Initialize h̃
(0)
T and the hyperparameters Σ

(0)
η and σ

2(0)
v .

For i = 1, . . . , L+M :

2. Draw α̃
(i)
T from p(α̃

(i)
T | ỹT , Z̃T , h̃

(i−1)
T ,Σ

(i−1)
η , σ

2(i−1)
v ). We use the algorithm proposed by

Carter and Kohn (1994).

3. Drawing h
(i)
T requires equation (1) to be rewritten such that ht appears on the right-hand

side. For this, define σtϵt = εt and continue as follows:

πt −XtBt = σtϵt, ϵt ∼ NID(0, 1),

log([πt −XtBt]
2) = y∗t = 2ht + log(ϵ2t ),

where the logχ2(1) distribution of log(ϵ2t ) is approximated by a mixture of seven Nor-

mals as in S. Kim, Shephard, and Chib (1998). For each iteration, a vector s̃T =

[s1, . . . , sT ]
′ is drawn, which for each t selects which of the seven components of the

mixture of the Normal approximation is used for log(ϵ2t ). Hence, first s̃
(i)
T is drawn

from p(s̃
(i)
T | ỹT , Z̃T , α̃

(i)
T , h̃

(i−1)
T ,Σ

2(i−1)
η , σ

2(i−1)
v ). Then h̃

(i)
T can be drawn from p(h̃

(i)
T |

ỹT , Z̃T , α̃
(i)
T , s̃

(i)
T ,Σ

(i−1)
η , σ

2(i−1)
v ).

4. Conditional on ỹT , Z̃T , α̃t and h̃T , the variances Ση and σ2
v are independently distributed

and hence Σ
(i)
η and σ

2(i)
v can be drawn from p(Σ

(i)
η , σ

2(i)
v | ỹT , Z̃T , α̃

(i)
T , h̃

(i)
T ) = p(Σ

(i)
η |

ỹT , Z̃T , α̃
(i)
T , h̃

(i)
T ) · p(σ2(i)

v | ỹT , Z̃T , α̃
(i)
T , h̃

(i)
T )

5. Go to step 2.

The algorithm for the model without stochastic volatility simplifies to a procedure where step

3 is skipped and where σ
2(i)
ε,t = σ

2(i)
ε is drawn in step 4 together with Σ

(i)
η .

1In this paper, L = 10,000, M = 50,000 and j = 5.
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B Data

Figure B.1: Annualized q-o-q headline CPI (black) and core CPI inflation (blue), short-term
professional (solid red) and household inflation expectations (dashed red)2
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2The horizontal black lines signify the 2% and 2.5% inflation target.
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Figure B.2: Unemployment rate (solid) and NAIRU estimates (dashed), short-term unemploy-
ment and NAIRU in gray
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Figure B.3: Unemployment gap estimates (dashed line is short-term gap)
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B.1 The University of Michigan Surveys of Consumers

In this survey, respondents are asked how much prices will change both in the short run (one-

year-ahead) and the longer run (5 to 10 years ahead). The exact questions are:

• “During the next 12 months do you think that prices in general will go up, go down, or

stay where they are now?”

• “By about what percent do you expect prices to go (up/down) on the average during the

next 12 months?”

• “What about the outlook for prices over the next 5 to 10 years? Do you think prices will

be higher, about the same, or lower, 5 to 10 years from now?”

• “By about what percent per year do you expect prices to go (up/down) on the average,

during the next 5 to 10 years?”

After correcting for interpretation errors and missing information, the responses are transformed

to percentage changes, of which the median is directly available. See Curtin (1996) for a detailed

description of the procedure.

B.1.1 The disadvantages of alternative expectation measures

An alternative to surveys is to use market-based measures, such as the difference between the

extra yield investors require to hold nominal assets that are exposed to inflation risk and assets

that offer an inflation-adjusted return, such as Treasury inflation protected securities (TIPS).

This difference, also known as ‘inflation compensation’ is often used to measure inflation expec-

tations of investors. The three main objections against using them in this study are as follows.

First, inflation compensation not only encompasses inflation expectations but also inflation risk

premiums and potentially other factors, see e.g. Chen, Engstrom, and Grishchenko (2016).

Identifying inflation expectations from risk premia is not straightforward, making inflation com-

pensation a noisy measure of expectations, see e.g. Chernov and Mueller (2012), Grishchenko

and Huang (2013) and D’Amico, D. H. Kim, and Wei (2018). Second, TIPS only became avail-

able only in 1997, which makes the times series too short for the goals of our analysis. Third,

TIPS are not fully protected against inflation, because their payments are linked to the CPI

three months prior to the date of payment. Inflation swaps suffer from the same disadvantages.

Another alternative is to endogenize expectations by assuming that long-run inflation ex-

pectations are implicitly captured by estimates of trend inflation. In unobserved components

models with a trend-cycle decomposition it is then possible to interpret a time-varying trend,

typically modelled as a random walk, as a measure of long-run inflation expectations. Papers

adopting this approach to investigate the Phillips curve include Stock and Watson (2007, 2010),

Harvey (2011), Chan, Koop, and Potter (2016), Berger, Everaert, and Vierke (2016), and Hin-

drayanto, Samarina, and Stanga (2019). The main advantage of this approach is that one is no
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longer limited by lack of data availability of survey measures. Another argument is that implicit

long-run measures of expectations are not affected by sampling biases in surveys. While we

acknowledge both advantages, we would argue that estimated trend inflation does not necessar-

ily capture long-run inflation expectations either: estimated trend inflation in an unobserved

components model for the Phillips curve can also be interpreted as a time-varying intercept, and

can therefore also include shocks not captured by the rest of the model. Trend inflation is hence

is not only a function of inflation expectations, but other factors as well. Therefore, even if

surveyed inflation expectations and estimated trend inflation are not equal, this does not imply

that there is a bias in the surveyed expectations. The supposed equivalence of trend inflation

and long-run inflation forecasts was examined by Chan, Clark, and Koop (2018). They find

that while long-run surveyed professional inflation expectations cannot be equated with trend

inflation, surveys still have a valuable contribution to model fit and forecasting performance.

Therefore, in this paper, we opt to explore the merits of surveyed expectations.

C Empirical results

C.1 Convergence diagnostics

Table 1: 20thorder sample correlation of the hyperparameter draws of model (6) for headline
CPI inflation with 1-year ahead expectations

σ2
η,β σ2

η,θ σ2
η,ϕ σ2

η,γ1
σ2
η,γ2

σ2
v

0.001 0.030 0.005 -0.002 -0.009 0.004

C.2 Posterior distributions of hyperparameters and βt

Table 2: Priors and posterior distribution of the hyperparameters of model (6) for headline CPI
inflation with 1-year ahead expectations

Prior Value Posterior Distribution (percentiles)

Parameter ϑη T0 5% 16% median 84% 95%

σ2
η,β 0.268 dim(Bt) + 2 0.018 0.023 0.034 0.052 0.069

σ2
η,θ 0.268 dim(Bt) + 2 0.019 0.026 0.040 0.064 0.090

σ2
η,ϕ 0.268 dim(Bt) + 2 0.018 0.023 0.035 0.056 0.076

σ2
η,γ 0.268 dim(Bt) + 2 0.009 0.011 0.014 0.018 0.022

σ2
η,γ 0.268 dim(Bt) + 2 0.003 0.003 0.004 0.004 0.005

σ2
v 0.454 dim(Bt) + 2 0.021 0.025 0.034 0.048 0.060
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Figure C.1: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles (dotted red)
and 16th and 84th percentiles (dashed red) of βt without SV (a) and with SV (b) from equation
(5), and σ2

ε,t (c) from equation (4) for headline PCE inflation, 1965Q1 - 2017Q4
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(b) β̂t from equation (5) with SV
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ε,t from equation (4)
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Figure C.2: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles (dotted red)
and 16th and 84th percentiles (dashed red) of βt without SV (a) and with SV (b) from equation
(5), and σ2

ε,t (c) from equation (4) for PCE inflation excluding food and energy, 1965Q1 - 2017Q4

(a) β̂t from equation (5) without SV
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(b) β̂t from equation (5) with SV
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Figure C.3: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles (dotted red)
and 16th and 84th percentiles (dashed red) of βt without SV (a) and with SV (b) from equation
(5), and σ2

ε,t (c) from equation (4) for median CPI inflation, 1965Q1 - 2017Q4

(a) β̂t from equation (5) without SV
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(b) β̂t from equation (5) with SV
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Figure C.4: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles (dotted red)
and 16th and 84th percentiles (dashed red) of βt for (restricted versions of) equation (6) for
headline PCE inflation, 1965Q1 - 2017Q4
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(b) 10-year ahead L-SPF and MSC
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(c) ϕt = γt = 0, πe,P
t is 1-year-ahead L-SPF
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(d) ϕt = 0, πe,P
t is 1-year-ahead L-SPF
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(e) θt = γt = 0, πe,H
t is 1-year-ahead MSC
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(f) θt = 0, πe,H
t is 1-year-ahead MSC
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Figure C.5: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles (dotted red)
and 16th and 84th percentiles (dashed red) of βt for (restricted versions of) equation (6) for CPI
inflation excluding food and energy, 1965Q1 - 2017Q4
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(b) 10-year ahead L-SPF and MSC
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(c) ϕt = γt = 0, πe,P
t is 1-year-ahead L-SPF
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(d) ϕt = 0, πe,P
t is 1-year-ahead L-SPF
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(e) θt = γt = 0, πe,H
t is 1-year-ahead MSC
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(f) θt = 0, πe,H
t is 1-year-ahead MSC
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Figure C.6: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles (dotted red)
and 16th and 84th percentiles (dashed red) of βt for (restricted versions of) equation (6) for PCE
inflation excluding food and energy, 1965Q1 - 2017Q4
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(b) 10-year ahead L-SPF and MSC
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(c) ϕt = γt = 0, πe,P
t is 1-year-ahead L-SPF
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(d) ϕt = 0, πe,P
t is 1-year-ahead L-SPF
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(e) θt = γt = 0, πe,H
t is 1-year-ahead MSC
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(f) θt = 0, πe,H
t is 1-year-ahead MSC
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Figure C.7: Posterior median (blue), mean (dotted blue), 5th and 95th percentiles (dotted red)
and 16th and 84th percentiles (dashed red) of βt for (restricted versions of) equation (6) for
median CPI inflation, 1965Q1 - 2017Q4
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(b) 10-year ahead L-SPF and MSC
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(c) ϕt = γt = 0, πe,P
t is 1-year-ahead L-SPF
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(d) ϕt = 0, πe,P
t is 1-year-ahead L-SPF
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(e) θt = γt = 0, πe,H
t is 1-year-ahead MSC
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(f) θt = 0, πe,H
t is 1-year-ahead MSC
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