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Abstract

This paper explores the contagious propagation of jumps among international stock

market indices by exploiting a rich panel of stock and options data. We propose a multi-

variate option pricing model designed to allow for, but not superimpose, time and space

amplification of jumps in option markets. We develop a semi-parametric estimation pro-

cedure employing a continuum of moments conditions in GMM with implied states. We

introduce a partial-information approach to reduce the computational complexity arising

in the multivariate setting, derive the asymptotic properties of our estimators, and analyze

their finite-sample performance. Our empirical results reveal evidence of jump contagion in

option markets, both from the US to Europe and vice versa, with the US leading the UK

and standing on equal footing with Germany. We illustrate the importance of capturing

jump contagion for risk management, option pricing, and scenario analysis.
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1 Introduction

In our increasingly complex and interconnected world, intricate linkages exist between financial

markets. Shocks to financial markets, e.g., due to financial or macro-economic news announce-

ments, tend to propagate rapidly from one market to the next, potentially amplifying the initial

shock via dynamic feedback loops. Such contagious amplification over time (i.e., over days or

weeks) and in space (i.e., across markets), has important implications for risk management,

valuation and hedging, and portfolio choice.

Option markets provide a unique laboratory to analyze time and space amplification. A

panel of option price data embeds this phenomenon along several dimensions: in the time-series

dimension, in the maturity dimension, in the moneyness dimension, and in the cross-sectional

dimension. It thus contains a wealth of information on the persistence, direction, and contagious

nature of the shocks. Figure 1 provides an example of such contagious propagation of shocks

among the US (S&P 500) and UK (FTSE 100) options markets at the peak of the Global

Financial Crisis of 2008. Panel (a) illustrates the interplay between the cascades of declines

in the two underlying stock indices, starting with the initial drop in the US; and Panel (b)

shows the reflection in option-implied volatilities for the two markets. The figures visualize in

particular that the implied volatility slice corresponding to the shortest maturity options on

the UK index catches up with the US implied volatility counterpart by October 8, and even

outruns it in terms of its steepness by the end of what constitutes the worst week in US stock

markets since 1929.

Extracting time and space amplification features from options panels, however, constitutes

a challenging econometric problem. The challenges arise from the latency of the risk drivers—

stochastic volatility and jump intensities—in option pricing, the multitude of dimensions—

time-series, maturity, moneyness, and cross-sectional—that play a role, and the subtlety of the

features—amplification of shocks in time and space, in particular, jump contagion—we wish

to explore. In this paper, we develop an econometric approach that exploits a rich, carefully

synchronized, panel of stock and options data to estimate a multivariate option pricing model

designed to allow for, but not superimpose, time and space amplification of jumps.

2



Figure 1: An example of jump contagion among the US and UK option markets

(a) Underlying stock market indices

(b) Option-implied volatility slices

Note: This figure plots an example of jump contagion among the US and UK option markets during the sample period
from 3 October, 2008, to 10 October, 2008. Panel (a) plots the E-Mini S&P 500 stock market futures index (S&P) and
the FTSE 100 stock market index (FTSE). Both time series are normalized, with the first observation set to 100. The
plots display intra-daily data with a frequency of 5 minutes. Trading times are converted into UTC (coordinated universal
time). For the US futures index, the active trading periods (between 13:30 and 20:15 UTC) are highlighted in gray color,
while the remaining trading times are displayed in light gray. October 4, 2008 (Saturday) has been omitted from the
timeline. Panel (b) plots the Black-Scholes implied volatilities for the E-Mini S&P 500 stock market futures index options
(S&P) and the FTSE 100 stock market index options (FTSE), against the moneyness level (i.e., strike-to-price ratio).
The two shortest time-to-maturity options are displayed for each of the indices. The times to maturity are indicated in
the legends. All options data are collected in the interval between 14:03 and 14:05 UTC time. For more details about the
data selection procedure, we refer to Section 4.
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We formulate our model both under the physical probability measure, used for risk man-

agement, and under the risk-neutral probability measure, used for pricing and hedging. The

risk-neutral specification enables us to infer the unobserved states of our model by implying

the parameter-dependent latent state variables from the panel of option prices. Our estimation

procedure is of a semi-parametric nature. We develop an implied-state GMM approach with

a continuum of moments (C-GMM) to identify the parametric components of our multivariate

semi-martingale model—the drift and jump components. We treat the spot volatility com-

ponents non-parametrically, by equating them to jump-robust spot estimates obtained from

high-frequency data over short periods of time,1 to facilitate robust identification of our rich

model.

An important hurdle in estimating our multivariate model is the computational com-

plexity, which ramifies rapidly with dimension and renders full-blown econometric estimation

computationally practically infeasible already in the bivariate setting. We therefore introduce

a partial-information approach to C-GMM estimation, somewhat in the spirit of the limited-

information estimation in Singleton (2001) for maximum likelihood and standard GMM. This

allows us to considerably reduce the computational complexity while limiting the potential

loss of asymptotic efficiency. We analyze the asymptotic properties of our partial-information

implied-state C-GMM procedure, and derive expressions for asymptotically valid standard er-

rors that take into account the effect of implied-state moments on estimation uncertainty. In

Monte Carlo simulations we demonstrate that our criterion function embodies sufficient infor-

mation to identify the model parameters, yielding a good finite-sample performance.

We estimate our model to a synchronized panel constructed from high-frequency data on

UK (FTSE 100), German (DAX 30) and US (S&P 500) stock (futures) market indices and

their option contracts, during the sample period from January 2006 to August 2015. The

data selection and processing has been challenging and elaborate; it is described in detail in

Section 4. Conventional wisdom suggests that the US plays a “leading role” in international

financial markets, often summarized by the slogan “when the US sneezes, the world catches a

1In a univariate setting, Andersen, Fusari, and Todorov (2017) freeze the volatility of short-dated options to
identify short-term market risks and show that such an approach has negligible errors for pricing options with
short time-to-maturity.
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cold”.2 Our empirical results confirm that in the jump contagion among the US and the UK,

the US market indeed takes a leading role. However, our results reveal that in the interaction

between the US and Germany, the two markets are essentially on equal footing. That is, the

jump contagion from Germany to the US appears to be stronger than conventional wisdom

suggests.3 To our best knowledge, this paper is the first to estimate jump contagion among

stock market indices using multivariate spot index data and option panels.

We finally illustrate the statistical and economic importance of jump contagion in risk

characteristics of log-return distributions, prices of multi-index options, and implied volatility

dynamics for the S&P 500 and FTSE 100. The strongest effects of jump contagion are found

when the initial jump intensity in the US—the leading economy in this pair—is markedly larger

than in the UK, representing a stress scenario that starts in the US.

Our work is related to the literature on international stock and option markets spillovers,

which can be classified into three categories. First, there is a vast literature on asset return

and volatility spillovers in an international context. For instance, Hamao, Masulis, and Ng

(1990), Engle, Ito, and Lin (1990), Karolyi (1995), Koutmos and Booth (1995), Jebran, Chen,

Ullah, and Mirza (2017), to name a few, use multivariate GARCH-type models to study the

international transmission of stock returns and volatility. Diebold and Yilmaz (2009) and

Ehrmann, Fratzscher, and Rigobon (2011) use a different approach based on a VAR framework

and variance error decomposition; see also Alter and Beyer (2014) and Diebold and Yilmaz

(2015) and the references therein.

A much smaller literature studies the international transmission of shocks in the form of

jumps, or, contagion of rare adverse events. Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) and

Aı̈t-Sahalia, Laeven, and Pelizzon (2014) use mutually exciting jump processes to model jump

contagion across stock markets as well as jump clustering in time. Furthermore, Jacod and

Todorov (2009) develop a high-frequency test for common jumps and Dungey, Erdemlioglu,

Matei, and Yang (2018) propose a high-frequency test for mutually exciting jumps in multi-

2This slogan is an adaptation of a historical (1799) phrase that is attributed to the Austrian diplomat Klemens
von Metternich (“When France sneezes, Europe catches a cold.”).

3The German stock market might be viewed as a proxy for continental Europe. In a sense, this finding
is globally in line with Diebold and Yilmaz (2015), who studied trans-Atlantic equity volatility connectedness
between major financial institutions. They argue that the connectedness was directed mainly from the US to
Europe during 2007-2008, but became bidirectional starting in late 2008.
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dimensional asset price processes.

Yet an even smaller literature—most closely related to our work—analyzes jump propaga-

tion through the lens of option markets. Andersen, Fusari, and Todorov (2020), when studying

the pricing of tail risk index options across international equity markets, consider the pricing

of index options separately for each of the markets, and find a large coherence across the mar-

kets with respect to their left tail factor. Bakshi, Carr, and Wu (2008) investigate a genuinely

multi-dimensional stochastic discount factor in international economies using currency options.

They show that investors price differently the global risk factor and the country-specific risk

factor. Kokholm (2016) considers a multivariate option pricing model with a self- and/or cross-

exciting jump component, under a risk-neutral specification. He applies it to sectoral indices

in one market using a calibration technique. Finally, there is also a strand in the literature

that considers derivative pricing with the multivariate Wishart stochastic volatility process

(see, e.g., Gourieroux and Sufana (2010), Da Fonseca, Grasselli, and Tebaldi (2008)). This

literature, however, does not allow for jumps.

Our work is also related to the econometric literature on implied-state GMM; see Pan

(2002) who adapts the standard GMM setting to accommodate option-implied volatility. In

contrast to Pan (2002), we develop an estimation procedure in the GMM setting with implied

states using a continuum of moment conditions (C-GMM). The use of a continuum of mo-

ments was initiated in the interesting work of Carrasco and Florens (2000, 2002) and Carrasco,

Chernov, Florens, and Ghysels (2007), and analyzed by Boswijk, Laeven, and Lalu (2015) with

implied states to study self-excitation features of the S&P 500 stock market index using index

options. C-GMM allows us to exploit more information than standard GMM with a finite

number of moment conditions, and hence obtain more efficient estimators. Different from this

existing literature, our approach is semi-parametric in nature. Furthermore, as the computa-

tional complexity of C-GMM is exponentially increasing with the dimension of the state vector,

we introduce a partial-information approach to handle the multivariate C-GMM setting.

The remainder of this paper is organized as follows. Section 2 describes the multivariate

dynamics of the stock index returns under both the physical and risk-neutral probability mea-

sures, a semi-nonparametric approximation adopted in our model, and the multivariate option
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pricing approach. Section 3 develops the estimation procedure. In Section 4, we describe the

data and in Section 5 we present our empirical analysis. Conclusions are in Section 6. Some

further details concerning the change of measure, asymptotic properties, jump-robust volatility

estimation, and data handling are provided in four appendices.

2 Model Specification

This section presents our multivariate continuous-time option pricing model with contagious

time and space amplification. It embeds the mutually exciting jump process proposed in Aı̈t-

Sahalia et al. (2015) to characterize the stock index dynamics in m economies. Unlike contagion

models of multivariate stock index returns, modeling contagion among option prices requires

extension of the pricing kernel. Therefore, we propose a class of country-level pricing kernel

specifications that jointly accommodate arbitrage-free exchange rate dynamics and stock price

dynamics with mutually exciting jumps.

2.1 Index Return Dynamics

We fix a filtered probability space (Ω,F , {Ft}t≥0,P) and consider a model of index return

dynamics for m economies equipped with mutually exciting jump processes. We assume that

each of the markets is characterized by a stock market index denominated in the local currency

with the following dynamics:

dSi,t
Si,t

=
(
ri,t − qi,t + ηiξ

2
i,t + (E[Ji]− EQi [Ji])λi,t

)
dt+ ξi,tdWi,t + Ji,tdNi,t − E[Ji]λi,tdt, (1)

for i = 1, . . . ,m, where ri,t and qi,t are deterministic risk-free rates and dividend yields; Wi,t

are standard Brownian motions, correlated with (possibly time-varying) pairwise instantaneous

correlation coefficients %ij,t; ξi,t are adapted volatility processes; and Ji,tdNi,t are compound

Hawkes jump processes with serially and cross-sectionally independent random variables Ji,t

governing the jump sizes, having generic law FJi and mean E[Ji] (under P). By EQi [Ji] we

denote the expected jump size in market i under the equivalent risk-neutral probability measure
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Qi specific to market i, as defined in the next sub-section.4

The Hawkes (1971) jump process, also known as the mutually exciting jump process, is a

main ingredient of our model, allowing us to capture both jump contagion across markets and

clustering of jumps in time within each market. More specifically, we define the multivariate

Hawkes jump process through m counting processes Ni,t, one for each of the m markets, such

that each counting process is characterized by its conditional jump intensity process λi,t, defined

by

λi,t = lim
s↓0

E [Ni,t+s −Ni,t|Ft−]

s
. (2)

Unlike the Poisson process, the jump intensity of the Hawkes process is stochastic with dynamics

(under exponential decay) given by

dλi,t = κi(λi − λi,t)dt+
m∑
j=1

δijdNj,t, i = 1, . . . ,m. (3)

In this specification, a jump event in equity index j causes the intensity λi,t to increase by

δij ≥ 0, followed by an exponential decay towards λi > 0 at a rate κi > 0. The parameters δij

dictate the self-excitation (for i = j) and cross-excitation (for i 6= j) effects, generating two key

features of the model: first, a jump event increases the probability of subsequent jump events

in the same index, leading to jump clustering in time; second, a jump event in one country

increases the probability of jumps in other countries, which entails jump propagation in space.

Note that these time and space amplification features are probabilistic and not superimposed,

i.e., not certain to occur. The paired vectors (N,λ) jointly constitute a Markov process.

In addition to the risk-free interest rate ri,t and dividend yield qi,t in economy i, the drift

term in (1) contains two risk-premium components. The diffusive risk premium ηiξ
2
i,t is akin to

the risk-return trade-off in the CAPM: ηi represents the additional expected return per unit of

diffusive (“Brownian”) variance ξ2
i,t. The jump risk premium (E[Ji]−EQi [Ji])λi,t represents the

additional expected return under the physical measure (relative to the risk-neutral measure),

needed to compensate for bearing jump risk. We discuss the jump risk premium in more detail

in the next sub-section, where we introduce risk-neutral dynamics. The last term in (1) is the

4Throughout, stochastic processes, expectation operators, and parameters without superscript are understood
to be defined with respect to the physical probability measure P.
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compensator for the jump component; the compensated jump component is a local martingale.

As is common in the literature, we assume the relative jump sizes Ji,t, i = 1, . . . ,m to be

independent log-normal random variables. More specifically, conditional upon a jump event

in market i, the equity price jumps from Si,t− to Si,t = Si,t− exp(Zi,t), with Zi,t ∼ N (µi, σ
2
i ).

Under this parametrization, the relative jump size in index i is Ji,t = exp(Zi,t)− 1, with mean

E[Ji,t] = exp(µi + 1
2σ

2
i )− 1. We also assume that the vector of stacked jump sizes Zt, vector of

Brownian motions Wt, and vector of jump processes Nt are mutually independent. The model

for the log-equity dynamics together with the jump intensity processes for all markets can be

summarized as:
d logSi,t =

(
ri,t − qi,t + (ηi − 1

2)ξ2
i,t − EQi [Ji]λi,t

)
dt+ ξi,tdWi,t + Zi,tdNi,t,

dλi,t = κi(λi − λi,t)dt+

m∑
j=1

δijdNj,t, Ji,t = eZi,t − 1, Zi,t ∼ N (µi, σ
2
i ),

(4)

for i = 1, . . . ,m. Importantly, this model admits a generalized affine jump-diffusion represen-

tation as defined in Appendix B of Duffie, Pan, and Singleton (2000) under both the physical

probability measure P and the market-specific equivalent martingale measures Qi, as introduced

in the following sub-section.

2.2 Pricing Kernels and Dynamics under Qi

The sources of uncertainty stemming from the random jumps in the model in Eqn. (4) render

each market i, consisting of the equity index, a finite number of options on that index and a

money market account, incomplete. Therefore, the stochastic discount factor for each of the

markets is not unique. To formulate our risk-neutral pricing model, we focus on candidate

pricing kernels that keep the joint dynamics of the log-equity index and the jump intensity

process for each market i, under the equivalent risk-neutral probability measure Qi, within the

generalized affine jump-diffusion class.

On our filtered probability space, we assume the existence of a stochastic discount factor

process Mi,t that prices all assets in economy i. Suitably extending the univariate specifica-

tion used in Pan (2002), we assume that the candidate pricing kernel Mi,t has the following
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dynamics:

dMi,t

Mi,t
= −ri,tdt− ηiξi,tdWi,t +

m∑
k=1

(
U ik,tdNk,t − E[U ik,t]λk,tdt

)
, (5)

where U ik,t are random jump sizes in market k, specific to pricing kernel i. Hence, in order to

price the jump risk in market i, we allow the pricing kernel Mi,t to jump simultaneously with

the underlying indices of every market. We assume the relative jump sizes U ik,t in the pricing

kernels to follow the same type of distribution as the index jump sizes, i.e., U ik,t = eV
i
k,t − 1 are

independently log-normally distributed with V i,t
k ∼ N (ai,k, b

2
i,k). Note that U ik,t are allowed to

be different from U jk,t for i 6= j, as investors in markets i and j 6= i may perceive jump events

in market k 6= {i, j} differently, leading to different jump sizes in their corresponding pricing

kernels Mi,t and Mj,t. It is assumed that U ik,t is independent of U jn,t for i 6= j and/or k 6= n, and

independent of all Brownian motions, but the kernel jump log-sizes V i
k,t are possibly correlated

with the index jump log-sizes Zk,t, with correlation coefficients ρi,k.

Similar to Pan (2002), we assume the mean relative jump size in the pricing kernel Mi,t

to be zero, i.e., ai,k + 1
2b

2
i,k = 0 for k = 1, . . . ,m. These constraints enable identification of

the jump parameters and also set the jump-timing risk premium to zero. As a result, they

keep the dynamics of the jump intensity processes the same under both probability measures,

i.e., λQik,t ≡ λk,t for k = 1, . . . ,m. In a more general setting, one could allow for different

intensity processes under the physical and risk-neutral measures using an additional non-zero

component in (5), but this would considerably increase the number of parameters to estimate

and consequently weaken parameter identification. We provide further details on the measure

change in Appendix A, formally establishing in particular that the pricing kernels thus specified

rule out arbitrage opportunities within each market as well as internationally, and do not affect

the jump intensity dynamics.

For the purpose of option pricing we define the density processes ψi,t associated with the

pricing kernel (5):

ψi,t = Mi,t exp

(∫ t

0
ri,sds

)
, i = 1, . . . ,m. (6)
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These are local martingales (which can be shown by applying Itô’s formula), and hence each

density process ψi,t uniquely defines an equivalent martingale measure Qi in market i. Applying

Girsanov’s theorem using the density process ψi,t, the index i follows, under Qi,
5

dSQi
i,t

SQi
i,t

= (ri,t − qi,t)dt+ ξi,tdW
Qi
i,t + Ji,tdNi,t − EQi [Ji]λi,tdt, (7)

where the random jump sizes Ji,t have mean EQi [Ji] under Qi, and WQi
i,t is a standard Brownian

motion under Qi, given by

WQi
i,t = Wi,t +

∫ t

0
ηiξi,sds. (8)

The distribution of the jump size random variables Ji,t = eZi,t−1 is of the same translated

log-normal type under Qi as under P, but with possibly different parameters. We assume that

only the mean parameters are different under the physical and risk-neutral specifications, i.e.,

σQii ≡ σi, as in the univariate model of Pan (2002). The assumption of equal jump size

variances under both measures is needed for the identification of the jump size parameters.

As a consequence, the jump risk premium (E[Ji] − EQi [Ji])λi,t is generated by the difference

between µi and µQii . The jump risk premium is expected to be positive if the index price jumps

are more negative on average under Qi than under the physical measure. Note that the jump

risk premium is proportional to the intensity λi,t, and hence increases following a jump event

in market i as well in other markets j if δij 6= 0. Under the equivalent martingale measure Qi

in market i defined by (6), the model for log-index dynamics is given by


d logSQi

i,t =
(
ri,t − qi,t − 1

2ξ
2
i,t − EQi [Ji]λi,t

)
dt+ ξi,tdW

Qi
i,t + Zi,tdNi,t,

dλi,t = κi(λi − λi,t)dt+
m∑
j=1

δijdNj,t, Ji,t = eZi,t − 1, Zi,t
Qi∼ N (µQii , σ

2
i ),

(9)

for i = 1, . . . ,m. The counting processes Nj,t for j = 1, . . . ,m are not affected by the change

of measure in market i, as the jump intensity processes λj,t have the same dynamics under Qi

5In the sequel, only random objects that, upon the measure change, differ path-wise (i.e., as functions of
ω ∈ Ω) are indexed by a superscript Qi.

11



as under the physical measure.

2.3 Semi-Nonparametric Approximate Index Return Dynamics

In the formulation of the model, the diffusive volatility processes ξi,t have not yet been specified.

In principle, they could be modelled using, e.g., a Heston-type stochastic volatility specification.

Alternatively, following Andersen et al. (2017), we adopt a semi-nonparametric approximation

for the index return dynamics using nonparametric estimates of the spot volatilities ξi,t. Such

an approximation leads to robust pricing of close-to-maturity options, allowing inference to be

focused on the latent jump intensity dynamics and jump sizes. Moreover, a fully parametric

version of the model, including a stochastic volatility specification, is prone to model misspecifi-

cation and identification problems, especially in a multivariate setting; the semi-nonparametric

approach considerably reduces these complications. That is, given close-to-maturity options

in the empirical application and consistent estimates for the spot volatility, inference based on

the semi-nonparametric model is more robust.

Similar to the univariate setting of Andersen et al. (2017), we use an approximate repre-

sentation of the stock index process with constant spot volatility as well as a constant dividend

yield and interest rate. Under the corresponding equivalent martingale measures Qi, we define

the approximate processes S̃i,s, i = 1, . . . ,m for s ∈ [t, T ] (the time period between pricing and

expiration of the option) as follows:


dS̃Qi

i,s

S̃Qi
i,s

= (ri,t − qi,t)ds+ vi,sdW
Qi
i,s + Ji,sdNi,s − EQi [Ji]λi,sds, s ∈ [t, T ],

vi,s = ξi,t1{t≤s≤T}, S̃Qi
i,t = Si,t.

(10)

In other words, the spot volatility is vi,s is taken to be constant and equal to ξi,t (the true spot

volatility at time t) over the interval s ∈ [t, T ], and the approximate process S̃Qi
i,s is initialized

at the true index price Si,t at time t. We also refer to Medvedev and Scaillet (2007, 2010), who

consider a small time-to-maturity asymptotic approximation of the implied volatility function

for stochastic volatility jump-diffusions.

This approximation is reasonable for pricing short-dated options because under the risk-
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neutral measures, the stochastic volatility process usually exhibits slow mean reversion. For

example, Pan (2002) finds the mean-reversion parameter in the volatility process to be 0.013

under Q, expressed in daily terms, corresponding to a one-day autocorrelation coefficient in

volatility equal to 0.987. Moreover, as close-to-maturity European-style option prices are more

sensitive to the specification of the jump intensity dynamics and of the jump size distribution,

pricing these options using the approximated process S̃i,t instead of Si,t leads to negligible

approximation errors. Unlike Andersen et al. (2017) we do not “freeze” the jump intensity to

its value at time t, because in our setting it can vary considerably, even over the short period,

due to the self-excitation and contagion effects discussed in Section 2.1.

Finally, as the change of measure does not affect the diffusion term of the price dynamics,

we can also adopt the approximate dynamics for the processes under P:


dS̃i,s

S̃i,s
= (ri,t − qi,t + ηiξ

2
i,t)ds+ vi,sdWi,s + Ji,sdNi,s − EQi [Ji]λi,sds, s ∈ [t, T ],

vi,s = ξi,t1{t≤s≤T}, S̃i,t = Si,t,

(11)

for i = 1, . . . ,m. The specifications (10)–(11) will serve as a basis for the estimation procedure

developed in the next section, but with T = t+ 1; i.e., the spot volatility is assumed constant

over the period of a single day.

To obtain estimates of the spot volatility values vi,t, we use a jump-robust spot volatility

estimator based on high-frequency returns observed before time t. Appendix C provides details

about this estimator. These estimators have been shown to be consistent under a typical in-fill

asymptotic scheme, and to be robust in applications and in simulations.

2.4 The Bivariate Specification and Conditional Characteristic Function

In the empirical analysis, we focus on the bivariate specification, i.e., m = 2. In this sub-

section, we provide its explicit form and the corresponding conditional characteristic function

needed for option pricing.

We reformulate the bivariate model in terms of log-forward prices, log F̃i,t. Given the

piece-wise constant volatility processes vi,t, their dynamics under the physical measure P are
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given by



d log F̃1,t =
(

(η1 − 1
2)v2

1,t − EQ1 [J1]λ1,t

)
dt+ v1,tdW1,t + Z1,tdN1,t,

d log F̃2,t =
(

(η2 − 1
2)v2

2,t − EQ2 [J2]λ2,t

)
dt+ v2,tdW2,t + Z2,tdN2,t,

dλ1,t = κ1(λ1 − λ1,t)dt+ δ11dN1,t + δ12dN2,t,

dλ2,t = κ2(λ2 − λ2,t)dt+ δ21dN1,t + δ22dN2,t.

(12)

Replacing the spot volatilities by their non-parametric estimates, the state vector governing

the bivariate option price dynamics is given by Xt = (log F̃1,t, log F̃2,t, λ1,t, λ2,t)
′.

Given the market-specific pricing kernels Mi,t, index options are priced separately un-

der the risk-neutral measures Q1 and Q2 for the first and second market, respectively. The

dynamics of the bivariate model under Q1 or Q2 can be written as a special case of the mul-

tivariate setting (9), following the discussion in Section 2.2 and Appendix A, and are semi-

nonparametrically approximated following Section 2.3.

Importantly, the model specification under both risk-neutral probability measures stays

within the affine jump-diffusion class in the general setting developed in Appendix B of Duffie

et al. (2000). The conditional characteristic function (CCF) of the state vector can therefore

be obtained in closed form up to the solution of a system of ordinary differential equations.

This allows to efficiently price options in each market using numerical integration methods,

employing the marginal CCF of the corresponding log-forward price.6

For example, the marginal CCF of the first log-forward price under the corresponding

risk-neutral measure Q1 is given in closed form by (see Proposition 1 below for a general

result):

φQ1(u1, Xt, T − t; vt, θ) = eα(T−t)+β1(T−t) logF1,t+β3(T−t)λ1,t+β4(T−t)λ2,t , (13)

where u1 ∈ R is the argument of the CCF, θ is the vector of parameters, and α(T − t) and

6In our empirical analysis, we use the COS method for this purpose, proposed by Fang and Oosterlee (2008),
to price European options.
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β(T − t) are the solutions to the following system of ODEs:



β̇1(s) = 0,

β̇3(s) = −(exp(µQ1 +
1

2
σ2

1)− 1)β1 − κ1β3 + exp(µQ1 β1 +
1

2
σ2

1β
2
1 + δ11β3 + δ21β4)− 1,

β̇4(s) = −κ2β4 + exp(δ12β3 + δ22β4)− 1,

α̇(s) = −1

2
v2

1,tβ1 + κ1λ̄1β3 + κ2λ̄2β4 +
1

2
v2

1,tβ
2
1 ,

(14)

0 ≤ s ≤ T − t, with initial conditions β1(0) = iu1, β3(0) = 0, β4(0) = 0 and α(0) = 0;

for notational convenience, the time dependence in β(s) has been omitted from the right-hand

side expressions in (14). Note that this ODE system does not involve the Brownian price of risk

coefficients, the instantaneous correlation coefficient, or the jump size parameters of the second

index. An explicit analytic solution of (14) is not possible due to the non-linear components

involved in the ODE for β3(s) and β4(s). Therefore, we solve this system numerically. Recall

that due to the adopted approximation, v1,t is fixed to its value at time t when we price an

option expiring at time T . The marginal CCF for the second index, needed to price options on

the second index, can be obtained in a similar way.

The full bivariate specification involves 16 parameters, i.e., 8 parameters for each market.

Although highly non-linear and complex, the option pricing relation is a key ingredient, allowing

us to exploit information in option price panels about the latent jump intensity process, needed

to estimate the model parameters. The next section discusses this in detail.

3 Estimation Procedure

In this section, we develop the estimation procedure we follow, exploiting rich synchronized

datasets of stock market indices and corresponding option panels. The jump-robust spot

volatility estimator, which we use to semi-nonparametrically approximate index dynamics,

is described in Appendix C. Given the spot volatility estimates, parameter estimation involves

optimization of a GMM-type criterion function, the evaluation of which consists of two stages.

In the first stage, we back out the parameter-dependent jump intensities—the unobserved

part of the state vector—using the option-pricing relation: as option prices are functions of
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the state variables, we can exploit this functional form to recover the latent states from the

market observables, given a set of model parameter values. In the second stage, we evaluate the

criterion function given this set of parameter values and the state vector consisting of observed

index prices and implied jump intensities. The general method of using implied variables in

a GMM-type estimation procedure was coined implied-state GMM by Pan (2002), who used

standard GMM based on univariate option-implied volatilities.

In contrast to Pan (2002), we base our estimation procedure on GMM with a continuum

of moment conditions (C-GMM), originally developed in Carrasco and Florens (2000) and

Carrasco and Florens (2002) in a setting without latent states. The use of a continuum of

moments allows us to exploit more information than standard GMM with a finite number of

moment conditions, which should result in more efficient and reliable estimates. Unfortunately,

the computational burden of C-GMM is exponentially increasing with the dimension of the state

vector. Therefore, in Section 3.3, we introduce a partial-information version of multivariate

implied-state C-GMM applied to the bivariate model, and establish its asymptotic properties.

Throughout this section, we assume that for each of the markets i = 1, . . . ,m, and

at regular-interval observation times t = 0, 1, . . . , T , we observe a vector of (maturity- and

moneyness-dependent) market-traded option prices pi,t, the forward price on the index Fi,t,

and the spot volatility estimate v̂i,t.

3.1 Implying the Latent States

The first stage in our estimation procedure consists of backing out the latent jump intensities

from the option prices given a parameter vector θ. Let us define the option pricing relation

determining a stacked vector of option prices pt = (p′1,t, . . . , p
′
m,t)

′, with τt = (τ ′1,t, . . . , τ
′
m,t)

′ the

corresponding time to maturity and kt = (k′1,t, . . . , k
′
m,t)

′ the moneyness level, given the global

state vector Xt, model parameters θ, and volatility estimates v̂t, as follows:

pt = P(Ft, λt, θ, v̂t, τt, kt), (15)
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with P : Rm+ ×Λ×Θ×Rm+ ×Rmnτ+ ×Rmnk+ → Rmnτnk+ . Here Λ ⊆ Rm+ is the domain of the jump

intensities and Θ is a compact parameter space, such that the stationarity condition of the

multivariate Hawkes process is satisfied.7 Note that we use several option prices with different

characteristics at any time t and within any market i, i.e., τi,t ∈ Rnτ+ and ki,t ∈ Rnk+ , where nτ

and nk represent the number of different maturities and moneyness levels, respectively.

We exploit the option-pricing relation (15) to imply the latent jump intensities. In fact,

under the assumption of correct model specification and if the true model parameters θ0 and

volatility processes ξt were known, we could recover the true jump intensities from this equation

using the market observed forward prices Ft and option prices pt. However, for any other pa-

rameter vector θ ∈ Θ, we can also back out a parameter-dependent proxy λθt for the unobserved

jump intensities λt, by solving (15) for λθt .

Formally, let us define the domain of invertibility of the option-pricing relation Σ ⊂

Rmnτnk+ ×Θ×Rm+ ×Rmnτ+ ×Rmnk+ , such that it is a maximal set for which a mapping f : Σ→ Λ

is uniquely defined by

pt = P(Ft, f(pt, Ft, θ, v̂t, τt, kt), θ, v̂t, τt, kt). (16)

Therefore, assuming that the inversion is well-defined, the option-implied jump intensities are

defined by:

λθt = f(pt, Ft, θ, v̂t, τt, kt), (17)

where we use the superscript θ to emphasize the dependence of the implied intensity on the

parameter vector θ ∈ Θ, keeping in mind its dependence on the volatility estimates v̂t. Im-

portantly, the vector of true intensities λt is retrieved based on the market-observables when

evaluating the mapping (17) at the true model parameters θ0 and using the true volatility

process ξt (still assuming correct model specification).

In practice, the latent jump intensities are backed out by minimizing the difference between

7This requires the spectral radius of the matrix consisting of the entries (δij/κi), i, j = 1, 2, to be less than
unity.
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the market-observed and model-implied option prices due to (16) at every time point. Because

the Black-Scholes implied volatility function is a monotonic transformation, it is common in

the literature to minimize the difference between market-observed and model-implied option

prices expressed in Black-Scholes volatility terms as a form of standardization of option prices.

Formally:

λθt = arg min
λ

m∑
i=1

ni,t∑
j=1

(
IV(Xi,t, θ, v̂i,t, τ

j
i,t, k

j
i,t)− BSIV(Fi,t, τ

j
i,t, k

j
i,t)
)2
, (18)

where ni,t is the number of cross-sectional option prices observed at every time point in one

market and where we use a superscript j for option characteristics (τ ji,t, k
j
i,t) to index different

options within a single market. Here, we minimize squared differences of the market-observed

and model-implied Black-Scholes implied volatilities, BSIV(·) and IV(·), respectively, for a

given set of parameters θ, jointly for all m economies. The model prices are obtained using the

numerical option pricing method of Fang and Oosterlee (2008) given the marginal characteristic

function of the log index price. Note that we solve the minimization problem (18) at every

time point, independently of previous or later points, i.e., we do not impose or exploit the

dynamic relationship in the implied intensities {λθt}Tt=1 as generated by mutually exciting jump

processes. As part of the estimation procedure, we back out the latent intensities for every

update in the set of parameters until a suitably chosen criterion function is minimized.

It is worth emphasizing again that the backing-out procedure can only be applied to

short-dated options, due to the use of spot volatility estimates in (17) and the corresponding

approximated index return dynamics; see Section 2.3. For longer-dated options, the resulting

approximation errors would start to play a larger role, and therefore, one has to take into

account the dynamics of the volatility process over time. Treating the volatility process as

constant has a minor effect on short-dated options, as the volatility is expected to mean-revert

at a slow rate.

After having implied the jump intensities we can construct a series of observations for

the global state vector Xθ
t = (logF1,t, . . . , logFm,t, λ

θ
1,t, . . . , λ

θ
m,t)

′, which we then use in the

criterion function evaluation, discussed in the following sub-section.
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3.2 Parameter Estimation in a Full-Information Setting

As discussed in the previous section, the model admits a generalized affine jump-diffusion

representation under the physical and risk-neutral probability measures. One of the great ad-

vantages of the class of affine jump-diffusions is that the CCF of the state vector XT conditional

on information available at time t is known in a closed form (up to the solution of an ODE

system) as an exponentially affine function of Xt.

This CCF allows us to obtain the model-implied conditional density function of the state

vector based on Fourier inversion, and thus, in principle, to employ classical maximum likeli-

hood, which provides asymptotically efficient estimators (see, e.g., Singleton (2001)). However,

Fourier inversion requires multivariate numerical integration at every time point, which is

computationally highly expensive in an optimization routine. Alternatively, Singleton (2001)

proposed to use method-of-moment estimators directly in the “frequency domain” using the

CCF of a state vector. Such an estimator based on the CCF and its empirical counterpart

avoids the need for Fourier inversion, thus it is computationally more appealing. Furthermore,

Carrasco and Florens (2002) show that exploiting a continuum of moment conditions based

on the CCF yields the asymptotic efficiency of maximum likelihood. We follow this route and

develop a C-GMM estimator extended to allow for implied state variables.

Because C-GMM requires a stationary Markovian state, we consider a state process Yt =

(y1,t, . . . , ym,t, λ1,t, . . . , λm,t)
′, which consists of daily returns yi,t = logFi,t−logFi,t−1 and latent

jump intensities λi,t for each of the markets. The CCF of the stationary state vector Yt+1 given

the information at time t can be obtained from the CCF of the non-stationary state vector

Xt+1:

φ(s, Yt,∆; v̂t, θ) = E
[
eis·Yt+1 |Ft

]
= E

[
eis·Xt+1 |Ft

]
e−

∑m
j=1 isj logFj,t ,

with ∆ the sampling frequency of a single day.

We consider the moment conditions based on the CCF of the state vector and its empirical
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counterpart. This involves combining the “raw” moment functions

u(s, Yt, Yt+1; v̂t, θ) := eis·Yt+1 − φ(s, Yt,∆; v̂t, θ) (19)

with an instrument function m(r, Yt), to obtain the moment function

h(r, s, Yt, Yt+1; v̂t, θ) := m(r, Yt) · u(s, Yt, Yt+1; v̂t, θ)

= m(r, Yt)
(
eis·Yt+1 − φ(s, Yt,∆; v̂t, θ)

)
, (20)

and hence the moment conditions

E[h(r, s, Yt, Yt+1; v̂t, θ0)] = 0, for all r, s ∈ R2m. (21)

The idea of GMM with a continuum of moments, developed in Carrasco and Florens

(2000), Carrasco and Florens (2002) and Carrasco et al. (2007), is to use not a discrete finite

set of vectors s as arguments for the moment conditions (21), but rather to employ a continuum

of values of s. Furthermore, these authors show that also using a continuum of instruments of

the form m(r, Yt) = eir·Yt with r ∈ R2m leads to a considerable efficiency gain in estimation.

We will adopt both elements in our estimation approach.

Unlike the regular C-GMM set-up, not all components of the state vector Yt are observed

in our model. However, we can exploit the option-pricing relation (15) and imply the jump

intensities from the market observables as discussed in the previous sub-section. Under some

additional assumptions, formally stated later, we can use the moment conditions (21) based on

the state vector with implied intensities Y θ
t = (y1,t, . . . , ym,t, λ

θ
1,t, . . . , λ

θ
m,t)

′.

Let us denote the sample analogue of the moment conditions (21) based on the state

vector with implied intensities as

hT (τ ; v̂, θ) :=
1

T − 1

T−1∑
t=1

h(τ, Y θ
t , Y

θ
t+1; v̂t, θ), (22)

with τ = (r, s)′ ∈ R4m. In order to employ a continuum of moment conditions, we define a
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Hilbert space with the following inner product for two complex-valued functions f and g:

〈f, g〉 =

∫
f(τ)g(τ)π(τ)dτ, (23)

implying the norm ‖f‖ = 〈f, f〉
1
2 , where g(τ) indicates the complex conjugate of g(τ), and π(τ)

is a continuous probability density function typically selected to be Gaussian. The objective

function of the (first-step) GMM estimator based on a continuum of values for τ is given by

QT (θ) = ‖hT (τ ; v̂, θ)‖2 =

∫
hT (τ ; v̂, θ)hT (τ ; v̂, θ)π(τ)dτ. (24)

This is similar to minimizing the Euclidean norm in the case of GMM with a finite number of

moments. Carrasco and Florens (2000) and Carrasco et al. (2007) prove the consistency of the

GMM estimator based on the integral norm under some regularity conditions and Boswijk et

al. (2015) show the consistency results when the implied state is employed in the estimation of

univariate models.

Note that minimizing (24) defines a first-step C-GMM estimator; a second step, leading to

full efficiency, was further developed in Carrasco et al. (2007). However, the use of the implied

state variable Y θ
t would lead the covariance operator in the second step (akin to the optimal

weighting matrix in regular GMM settings) to implicitly depend upon the parameter vector,

which limits the efficiency gains from a second step. Pan (2002) ignores the dependence of

the implied volatility on the parameter vector when constructing an optimal weighting matrix,

thereby sacrificing part of the efficiency gains. Given that our use of spot volatility estimates in

the option-pricing relation already implies approximations that will make it hard to formally

establish efficiency gains from a second step, we focus on first-step implied-state C-GMM

estimation. We will establish the corresponding asymptotic distributional properties, which

account for the effect of implied-state moments on estimation uncertainty.

In practice the criterion function (24) has to be evaluated numerically using quadra-

ture methods. Carrasco et al. (2007) show that introducing optimal instruments of the form

m(r, Yt) = eir·Yt does not increase the computational complexity, because all elements associ-

ated with the index r have an analytical form. Therefore, the numerical integration of (24) is
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of the same dimension as the state vector.8

For a univariate version of the model, the estimation procedure would require succes-

sive numerical integration over the two-dimensional space, which can be done at reasonable

computational costs. However, with the increase in dimensionality of the state vector, the

computational burden increases exponentially. Even four-dimensional efficient integration, re-

quired in the bivariate setting, becomes prohibitively costly. To overcome this practical issue

we consider a partial-information version of the criterion function (24) for the bivariate model,

which we detail in the following sub-section.

3.3 Parameter Estimation in a Partial-Information Setting

Singleton (2001) notes that although full ML estimation based on Fourier inversion of the CCF

(ML-CCF) is computationally expensive in a multivariate setting, one could base estimation on

the marginal conditional density functions f(yi,t+1|Yt; θ) of the single state variable yi,t+1 con-

ditional on the entire state vector Yt. This limited-information (LML-CCF) approach requires

at most N one-dimensional integrations for Fourier inversion instead of one N -dimensional

integral evaluation. Therefore, a potential loss in asymptotic efficiency is traded off against the

computational simplicity relative to the full ML-CCF approach.

Fortunately, a similar idea can be developed for the CCF-based C-GMM estimator, which

allows us to considerably decrease the computational costs when focusing on the marginal CCF

of a single economy. Therefore, instead of constructing the criterion function from one 2m-

dimensional integral as in (24), we exploit a partial-information estimator based on the sum of

m 2-dimensional integrals. Although this approach can be described in the general multivariate

setting, here we apply it directly to the bivariate model introduced in Section 2.4.

We start by providing the closed-form CCF for the bivariate model under P.

Proposition 1 The conditional characteristic function of the state vector Yt = (y1,t, y2,t, λ1,t,

8In other words, the instruments can be integrated out from the criterion function using a property of Fourier
transforms. See the appendix in Carrasco et al. (2007) or the online appendix in Boswijk et al. (2015).
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λ2,t)
′ under P is given by

φ(s, Yt,∆; v̂t, θ) = eα(∆)+β3(∆)λ1,t+β4(∆)λ2,t ,

where s ∈ R4 and α(∆) and β(∆) are the solutions to the following system of ODEs:



β̇1(u) = 0

β̇2(u) = 0

β̇3(u) = −(exp(µQ1
1 +

1

2
σ2

1)− 1)β1 − κ1β3 + exp(µ1β1 +
1

2
σ2

1β
2
1 + δ11β3 + δ21β4)− 1

β̇4(u) = −(exp(µQ2
2 +

1

2
σ2

2)− 1)β2 − κ2β4 + exp(µ2β2 +
1

2
σ2

2β
2
2 + δ12β3 + δ22β4)− 1

α̇(u) = (η1 −
1

2
)v̂2

1,tβ1 +
1

2
v̂2

1,tβ
2
1 + κ1λ̄1β3 + (η2 −

1

2
)v̂2

2,tβ2 +
1

2
v̂2

2,tβ
2
2 + κ2λ̄2β4

+ %tv̂1tv̂2tβ1β2

(25)

with initial conditions β(0) = is and α(0) = 0.

The proof of this proposition follows from the application of the results in Appendix B of

Duffie et al. (2000) to the state vector Xt = (logF1,t, logF2,t, λ1,t, λ2,t)
′, from which the CCF

for Yt can be obtained. Note that the first two ODE equations have trivial solutions β1(u) = is1

and β2(u) = is2, respectively, for any u ∈ [0,∆], while fully analytic solutions for the ODEs

involving β̇3 and β̇4 are not available due to the non-linear terms. In the empirical analysis,

we solve the system of ODEs using numerical methods, in particular, the explicit Runge-Kutta

method.

Let us further denote by Y
(1)
t = (y1,t, λ1,t) and Y

(2)
t = (y2,t, λ2,t) the marginal market

states of the first and second economy, respectively, and Y
(3)
t = (y1,t, λ2,t) and Y

(4)
t = (y2,t, λ1,t)

the marginal cross-market states. Clearly, the marginal CCFs of the marginal states can be

obtained from the joint CCF evaluated at the argument vectors s(1) := (s1, 0, s3, 0)′, s(2) :=

(0, s2, 0, s4)′, s(3) := (s1, 0, 0, s4)′ and s(4) := (0, s2, s3, 0)′, that is,

φ(i) (v, Yt,∆; v̂t, θ) := φ
(
s(i), Yt,∆; v̂t, θ

)
= eα

(i)(∆)+β
(i)
3 (∆)λ1,t+β

(i)
4 (∆)λ2,t , (26)

where α(i)(∆), β
(i)
3 (∆), β

(i)
4 (∆) are the solutions to the ODE system (25) solved with the initial
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values s(i) for i = 1, 2, 3, 4.

Similar to the general setting based on the joint CCF, we exploit the marginal CCFs to

obtain the moment conditions. In the bivariate case, instead of the moment condition described

in (21) we can consider four sets of “marginal” moment conditions stacked in a vector form,

that is:

E[h(τ, t; θ0)] = E





h(1)(τ ; v̂t, θ0)

h(2)(τ ; v̂t, θ0)

h(3)(τ ; v̂t, θ0)

h(4)(τ ; v̂t, θ0)




=



0

0

0

0


, (27)

with

h(i)(τ ; v̂t, θ) = m(r, Y
(i)
t )

(
eis·Y (i)

t − φ(i)(s, Yt+1; v̂t, θ)
)
,

where i = 1, 2, 3, 4, τ = (r, s)′ and r, s ∈ R2.

Therefore, we can define the objective function of the C-GMM estimator for the bivariate

set-up as follows:

QT (θ) =

∫
hT(τ ; v̂, θ)′hT(τ ; v̂, θ)π(τ)dτ =

4∑
i=1

∫
h

(i)
T (τ ; v̂, θ)h

(i)
T (τ ; v̂, θ)π(τ)dτ, (28)

where by h
(i)
T (τ ; v̂, θ) we denote the sample counterpart of the ith component of the moment

condition (27).

Intuitively, we decompose the joint criterion function (24) into the sum of the four criterion

functions based on the marginals.9 As in the LML-CCF suggested by Singleton (2001), there

is some potential loss of efficiency with this approach. However, we significantly gain in terms

of computational power as the estimation problem in (28) requires four numerical evaluations

9Alternatively, one could see the criterion function (28) as a specific choice of the probability density function
π(τ) in (24). More specifically, given τ = (r, s) with r, s ∈ R4, we can define the probability density function
π(s) = f(s1, s3)1{s2=0,s4=0} + f(s2, s4)1{s1=0,s3=0} + f(s1, s4)1{s2=0,s3=0} + f(s2, s3)1{s1=0,s4=0}, where f(·) is
the bivariate Gaussian density. In other words, the density function π(s) puts all mass on points (s1, 0, s3, 0),
(0, s2, 0, s4), (s1, 0, 0, s4) or (0, s2, s3, 0). Defining in a similar way π(r), one can show that the criterion function
(24) with this choice of density functions results in the decomposed criterion function (28).
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of 2-dimensional integrals, rather than the numerical integration over 4-dimensional space as

in (24).

Furthermore, there is sufficient information in the decomposed criterion function (28)

that allows us to identify all parameters in the bivariate model. Indeed, if the cross-excitation

parameters δ12 and δ21 were zero, and the Brownian motions (W1,t,W2,t) were uncorrelated,

then we could split the estimation into two separate problems without any loss of efficiency,

as the first two marginal processes Y
(1)
t and Y

(2)
t , each associated with one economy, would be

independent. Moreover, having the cross-market marginals Y
(3)
t and Y

(4)
t provides additional

identification power if the cross-excitation parameters are non-zero. Importantly, all marginal

states are conditioned on the full state vector Yt. Therefore, the marginal CCFs exploit the

information about the feedback within and between markets through the conditional moments

of each Y
(i)
t+1, i.e., through E[(Y

(i)
t+1)k|Yt], which allows us to identify the excitation parameters

based on (28). We support this discussion with the simulation analysis detailed in the next

sub-section.

Overall, unlike a regular GMM estimation procedure, GMM with a continuum of moments

allows reaching asymptotic efficiency as in ML estimation. However, the computational burden

of C-GMM exponentially increases with the increase of dimensionality in the state vector.

Therefore, we consider the C-GMM setting based on partial information. Moreover, the use

of a continuum of moments allows us to effectively exploit all information from the marginal

CCFs, which in turn potentially embodies a substantial amount of information about the full

state vector. Therefore, the loss in asymptotic efficiency in the partial-information setting

relative to the full C-GMM criterion function is likely to be small compared to the gains in

terms of computational simplicity.

The full estimation procedure is then as follows. First, we calculate the jump-robust

volatility estimates from high-frequency equity index prices. Then, starting with an initial

parameter set θ, we back-out the latent jump intensity processes λθt from the joint dynamics

of option prices and equity indices. Next, we evaluate the C-GMM criterion function, which

is based on the state vector with implied intensities as if the full state vector was observable.

After updating the parameter set θ, we repeat the last two stages, iterating until the criterion
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function is minimized.

We discuss in detail the asymptotic properties of the estimation procedure and the calcu-

lation of the standard errors in Appendix B (see, in particular, Proposition 2), and we provide

Monte Carlo simulation results in the next sub-section.

3.4 Simulation Results

We analyze the finite-sample performance of the partial-information estimation procedure de-

scribed in the previous sub-section in a Monte Carlo simulation study for the bivariate model

described in Section 2.4.

Our estimation procedure is designed for the semi-nonparametric specification, in which

spot volatilities ξi,s are “freezed” to their values at time t for some short time interval. In other

words, we approximate the stochastic volatilities by the processes vi,s = ξi,t for s ∈ [t, T ]. As

has been discussed in Section 2.3, this approximation has negligible errors when pricing options

with short expiration time. However, in order to take this approximation into account in our

Monte Carlo analysis, we simulate state vector series jointly with the stochastic volatility

processes ξi,t from a fully parametric specification. In particular, we use the Heston (1993)

volatility process:

dξ2
i,t = νi(ξ2

i − ξ
2
i,t)dt+ σξ,iξi,t

(
ρξ,idWi,t +

√
1− ρ2

ξ,idW
ξ
i,t

)
, (29)

where the drift term allows for mean-reversion in the volatility process and W ξ
i,t is a stan-

dard Brownian motion uncorrelated with the Brownian motions W ξ
j,t, for j 6= i, and Wi,t in

the corresponding index dynamics. Therefore, the Brownian component in (29) and in the

corresponding index are correlated with constant coefficient ρξ,i, which captures the leverage

effect. Note that although W ξ
1,t and W ξ

2,t are independent, the Brownian part in one stochastic

volatility process is not independent of the Brownian component in the other volatility due to

the contemporaneous correlation between W1,t and W2,t in the index dynamics, which in turn

we fix to % = 0.6 in our simulation study. Finally, when estimating the semi-nonparametric

model, we use the true process vi,s = ξi,t for s ∈ [t, T ].
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We simulate the state vector series from the bivariate model specification coupled with

the stochastic volatility processes (29) for each market using the Euler discretization technique

with an additional truncation scheme for stochastic volatility. Then we price options using the

characteristic function of the state vector including the stochastic volatility processes based on

the COS method of Fang and Oosterlee (2008). For each sample, we simulate dynamics of 8

options per index, covering the most traded levels of moneyness (with strike-to-price ratios from

0.8 to 1.15) with a time to maturity of 0.1. Given the time discretization ∆ = 1/365 between

two time points, we simulate 1500 time observations. The stock indices and synchronized

option panels are used as inputs for the estimation routine.

We note that the marginal characteristic functions of the log-prices and jump intensities

have different oscillatory frequencies due to their different levels. In particular, the frequency

of the marginal characteristic function for log-prices is much lower, which leads to only small

changes in the CCF around the origin given the standard Gaussian choice of the probability

density function π(τ). This, in turn, leads to a potential loss of probabilistic information,

which could deteriorate the parameter estimation. To overcome this issue, we re-scale the

log-prices in the criterion function evaluation. That is, we use the CCF of c · yt with c > 0

to construct the moment conditions. The parameters of the log-price dynamics are then also

re-scaled accordingly. Based on preliminary simulation exercises, and aiming for a comparable

magnitude in the levels and oscillatory frequencies of the states, we choose the scaling parameter

to be c = 50.

Although the computational burden is significantly reduced when we employ the partial-

information setting, the estimation routine is still computationally demanding: at every it-

eration, first, we have to back out the implied intensity by solving at every time point the

non-linear least-squares problem (18) (which, in turn, involves numerical option pricing, and

hence solving an ODE system), and next numerically evaluate four 2-dimensional integrals for

the criterion function (28). Therefore, we run the Monte Carlo simulation with 100 replica-

tions, to obtain an (admittedly somewhat crude) indication of the finite-sample performance

of the estimators.

The simulation results are provided in Table 1. We report the true parameter values
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Table 1: Simulation results for the bivariate model

µQ1
1 σ1 κ1 λ̄1 δ11 δ12 µ1 η1

true -0.130 0.030 6.000 1.000 3.000 1.000 -0.040 2.000
mean -0.129 0.032 5.816 1.005 2.909 1.035 -0.038 1.966
std 0.010 0.008 0.464 0.193 0.335 0.186 0.007 1.972
25% -0.133 0.027 5.520 0.924 2.685 0.925 -0.042 1.560
50% -0.129 0.031 5.872 1.043 2.901 1.050 -0.038 2.467
75% -0.125 0.034 6.116 1.086 3.070 1.131 -0.035 2.957

µQ2
2 σ2 κ2 λ̄2 δ22 δ21 µ2 η2

true -0.130 0.030 5.000 1.000 2.000 3.000 -0.040 2.000
mean -0.128 0.030 4.895 1.071 2.010 3.052 -0.039 1.676
std 0.008 0.006 0.281 0.243 0.244 0.410 0.008 2.240
25% -0.132 0.028 4.729 0.945 1.835 2.803 -0.043 1.333
50% -0.127 0.030 4.925 1.083 2.002 3.074 -0.039 2.237
75% -0.123 0.033 5.073 1.175 2.135 3.323 -0.036 2.667

This table provides Monte Carlo results for the bivariate model using the partial-
information criterion function. Each iteration consists of 1500 time points including
simulated stock prices and 8 option prices for each time observation. True parameters
and Monte Carlo sample means, standard deviations and 25%, 50%, 90% quantiles are
presented on separate rows. The following parameters are used to simulate the stochastic
volatility processes: ν1 = ν2 = 4.8, ξ21 = ξ22 = 0.015, σξ,1 = σξ,2 = 0.22, ρξ,1 = ρξ,2 =
−0.6.

used in the simulations and the corresponding Monte Carlo means, standard deviations and

quantiles of the estimates. Overall, the results indicate a good finite-sample performance of our

partial-information estimation procedure for the bivariate model. In particular, the self- and

cross-excitation parameters, which are of central interest, are estimated with good precision.

As is usual, estimates of the Brownian prices of risk, η1 and η2, are less precise, due to the fact

that their identification is based solely on the return dynamics.

The Monte Carlo simulations were also used to investigate the reliability of the asymptotic

standard errors, as derived in Appendix B. In practice, these standard errors appear to be

sensitive to the step size used in the calculation of numerical gradients. Therefore, we report,

in the empirical results in Section 5, standard errors based on a step size chosen such that the

Monte Carlo standard deviations were in line with the (average) asymptotic standard errors in

the simulations.
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4 Data

The data collection process for this paper has been challenging and elaborate. Estimation is

based on a rich panel of daily observations, which have, in turn, been constructed from tick-

by-tick spot, futures and option price data for the FTSE 100, DAX 30 and S&P 500 stock

market indices, spanning the period 1 January 2006 to 13 August 2015. In particular, we

exploit a very large sample of intra-day tick-by-tick observations in the underlying data-set to

obtain daily synchronized panels of options data for the three markets in the different time

zones, as well as jump-robust spot volatility estimates constructed from intra-day returns in a

time interval preceding the observation time of the options. The synchronicity of cross-market

observations in our estimation sample is essential for capturing jump contagion among stock

market indices. We use the rich panel of daily data to estimate bivariate as well as univariate

versions of the model. Although procedures required for obtaining such homogeneous panels of

daily data are perhaps not typically discussed in a dedicated section, we find that the sampling

of tick-by-tick data underlying the option panel observations is a non-trivial and potentially

novel exercise, which warrants some additional description. Therefore, the remainder of this

section is concerned with the data collection process.

The data-set was obtained from the Thomson Reuters Tick History database, containing

time-stamped tick-by-tick data from electronic exchanges for several major stock market indices

and corresponding exchange-listed derivative contract prices. Data samples contain bid-ask

quotes and transaction prices with time-stamps in the exchange’s local time zone which denote

the time at which the price data was received by the Thomson Reuters from the exchange’s

servers. As the use of official exchange-determined “close” prices would not be possible because

the options are traded in different time zones, we use the synchronization procedure outlined

in the next paragraphs.

We create daily option panels using tick-by-tick data subsets selected from a particular

time interval during market trading hours, which we refer to as reference interval. We choose

reference intervals for market pairs such that for each corresponding pair the trade recordings

are as “synchronized” as possible to the right point of the reference interval, which we refer to
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as reference point. For example, throughout the sample we fix the reference interval for FTSE

100 options to 15:03–15:05 and for DAX 30 options to 16:03–16:05 (local exchange times). The

reference interval for the S&P 500 options is obtained by translating the UK (and Germany)

reference interval to US local exchange times using IANA Time Zone Database conventions,

meaning option data for the US is usually sampled between 9:03–9:05 CST, with periodical

exceptions driven by daylight saving time adjustments used in the US and in Europe.

We impose several rules and filters in the data selection routine such that the collected

data are: (i) similar to the end-of-day option price determination done by trading venues,

(ii) as close as possible to the reference point to achieve synchronicity between observations

from different markets, and (iii) provide reliable information. For specific details we refer

the interested reader to Appendix D which further outlines the selection procedure. Table 2

provides the descriptive statistics for the filtered option sample for each of the three markets.

In addition to the filtered option data, we use short-term interbank lending interest rates

for each relevant currency,10 which we interpolate to match option time-to-maturity. Circum-

venting the need to specify and calibrate dividend yield dynamics, we follow Aı̈t-Sahalia and

Lo (1998) and back out forward prices from put-call parity pairs and estimate our model using

log-forward returns. The details on forward price calculations are also provided in Appendix D.

Further data processing was carried out to construct a (homogeneous) panel of Black-

Scholes implied volatilities for a dense grid of option maturities and strike prices. Using an

implied volatility option panel as input for the estimation procedure has two advantages. First,

it ensures a homogeneous information set is used at each sample observation time-point to imply

latent jump intensities from option prices as the grid of (relative) moneyness levels and option

maturities is fixed.11 Second, it reduces computational costs as obtaining model-implied option

prices for a fixed set of maturities is computationally less-demanding.

To construct the homogeneous option panel, the sample implied volatility points for each

10We use LIBOR-US, LIBOR-GBP and EURIBOR short-term interest rates for options on S&P 500 futures,
and the FTSE 100 and DAX 30 indices, respectively.

11The number of near-ATM price quotes is typically larger than the number of OTM option price quotes.
Absent any standardization, the set of quotes used to imply latent jump intensities would over-weigh information
from ATM options. Using a fixed moneyness and maturity grid therefore improves the likelihood that information
about tail events is extracted from options.
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Table 2: Descriptive statistics for the option implied volatility data

FTSE 100 DAX 30 S&P 500

5 < τ ≤ 40 40 < τ ≤ 75 5 < τ ≤ 40 40 < τ ≤ 75 5 < τ ≤ 40 40 < τ ≤ 75

Panel A: Number of option contracts

0.75 < k ≤ 0.85 1 375 2 968 9 505 16 000 23 413 33 499
0.85 < k ≤ 0.92 6 646 8 914 18 139 21 831 36 986 41 122
0.92 < k ≤ 0.98 18 743 16 670 20 637 20 843 40 197 40 236
0.98 < k ≤ 1.03 23 127 18 285 17 300 17 332 34 234 34 250
1.03 < k ≤ 1.10 10 911 13 052 17 838 21 861 28 560 37 994
1.10 < k ≤ 1.20 1 258 2 721 4 764 9 875 6 782 15 024
Total 62 060 62 610 88 183 107 742 170 172 202 125

Panel B: Sample mean of implied volatility (%)

0.75 < k ≤ 0.85 38.7 35.3 36.6 33.1 39.3 32.7
0.85 < k ≤ 0.92 31.2 27.2 30.4 27.2 29.0 25.5
0.92 < k ≤ 0.98 22.0 20.8 24.1 23.1 21.8 20.8
0.98 < k ≤ 1.03 17.2 16.9 20.0 20.1 16.7 17.0
1.03 < k ≤ 1.10 18.8 17.1 19.2 18.2 16.7 15.4
1.10 < k ≤ 1.20 31.0 24.6 26.0 21.1 26.7 20.2
Total 21.2 20.6 25.1 23.8 24.1 22.0

Panel C: Sample standard deviation of implied volatility (%)

0.75 < k ≤ 0.85 9.8 10.6 7.0 7.4 10.6 8.6
0.85 < k ≤ 0.92 10.9 8.9 8.4 7.3 9.0 7.7
0.92 < k ≤ 0.98 8.7 7.6 7.9 7.1 8.5 7.6
0.98 < k ≤ 1.03 7.9 6.9 7.9 7.0 8.5 7.6
1.03 < k ≤ 1.10 9.2 7.6 7.8 6.7 8.8 7.6
1.10 < k ≤ 1.20 11.6 9.9 9.8 7.9 11.4 8.8
Total 10.3 9.3 9.9 8.7 11.9 9.8

This table provides descriptive statistics for filtered option data on FTSE 100, DAX 30 and S&P 500 futures.
The sample contains daily option data from 1 January 2006 to 13 August 2015. The filters employed in the
data selection procedure are detailed in Appendix D. Observations are bucketed into two categories for time-
to-maturity, τ , and into six categories with respect to the moneyness level, defined as strike-to-forward ratio
k = K/F .

index option were interpolated over a fixed set of moneyness and option maturities.12 Having

experimented with different techniques (among which cubic splines, polynomial fit and kernel

smoothing), we have decided to use an industry-standard SVI parametrization to interpolate in

the moneyness dimension and then proportionally interpolated volatility slices in the maturity

dimension. The SVI parametrization, proposed by Gatheral (2011), has several appealing

features, which are important in our application. Popular among practitioners, the SVI model

12Interpolating implied volatilities is a common procedure. See, for instance, Broadie, Chernov, and Johannes
(2007) and Bardgett, Gourier, and Leippold (2019). For each sample observation point we have first interpolated
volatility slices in the moneyness dimension and then linearly in total variance to a fixed expiration time τ ,
which we set equal to 40 days for all three markets. For the estimation procedure, we sample from the resulting
interpolated volatility fit up to 13 option implied volatilities with fixed (relative) moneyness levels evenly spaced
between 85% and 109%. SVI interpolation procedure details are provided in Appendix D.
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typically produces close fits for volatility quotes and, thus, can be reliably used for interpolation.

Furthermore, it can also be used in cases when volatility quotes are sparse, as opposed to, for

instance, kernel smoothing which we found can perform poorly in such cases. We note that our

application only relies on SVI as an interpolation method akin to polynomial fit used in, for

instance, Broadie et al. (2007). Its dynamics and parametrization are not in any way related

to our model specification.

For the non-parametric spot volatility estimates, which constitute another input in our

estimation procedure, we exploit high-frequency index return data. More specifically, to obtain

spot volatility estimates, we use one-minute index return series13 from the beginning of each

trading day until, but not including, the reference interval for each pair. Thus, the time periods

used to obtain non-parametric volatility estimates do not overlap with the option recordings’

time intervals, which allows us to use the model approximation proposed in Section 2.3.

5 Empirical Analysis

In this section, we first describe our estimation results for the three pairs of stock market

indices and next we consider several applications drawing from these estimates. To gauge

the effect of jump contagion featured in the bivariate model specification, we also report in

Section 5.1 estimation results for the (nested) univariate model specification where the cross-

excitation channel is absent. The applications in Section 5.2 further highlight the statistical

and economic importance of the jump cross-excitation effect.

5.1 Model Estimation Results

Parameter estimates for the bivariate models are provided in Table 3. Each bivariate model

is estimated using the partial-information implied-state C-GMM procedure developed in Sec-

tion 3.3. For each index pair, we use synchronized daily data for the corresponding stock

market indices and their options panels, following Section 4, where the synchronicity between

13Non-parametric volatility estimates based on one-minute returns are not systemically higher than the ones
based on two- and five-minutes returns. Also, one-minute return series exhibit insignificant positive autocorre-
lation. All of these features suggest that microstructure noise is not strongly present in the series of returns.

32



Table 3: Bivariate model estimation results for FTSE 100, DAX 30 and S&P 500

µQ σ κ λ̄ δs δc µ η

FTSE -0.126 0.020 4.063 0.353 1.638 2.506 -0.038 2.186
(0.003) (0.015) (0.308) (0.008) (0.087) (0.063) (0.012) (4.652)

DAX -0.131 0.027 3.482 0.418 2.190 1.244 -0.025 2.680
(0.002) (0.011) (0.14) (0.039) (0.125) (0.059) (0.016) (3.459)

S&P -0.148 0.036 3.320 0.296 2.501 0.517 -0.039 2.173
(0.002) (0.003) (0.013) (0.002) (0.008) (0.004) (0.032) (4.028)

FTSE -0.131 0.033 3.216 0.283 1.709 2.119 -0.041 2.051
(0.001) (0.004) (0.016) (0.002) (0.011) (0.006) (0.024) (4.731)

S&P -0.135 0.036 3.781 0.261 2.257 1.788 -0.037 1.977
(0.004) (0.012) (0.214) (0.032) (0.142) (0.122) (0.032) (4.049)

DAX -0.138 0.039 4.235 0.394 2.287 1.658 -0.035 2.119
(0.004) (0.015) (0.212) (0.038) (0.107) (0.062) (0.032) (3.21)

This table reports bivariate model parameter estimates for three pairs of stock market indices: FTSE
100-DAX 30, S&P 500-FTSE 100, and S&P 500-DAX 30. The δs parameters capture self-excitation
for each index based on pairwise estimation (i.e., δsi = δii, i = 1, 2), while the δc parameters capture
cross-excitation for each pair (i.e., δci = δij , i, j = 1, 2, i 6= j). Standard errors are reported in
parentheses.

markets is crucial for the identification of jump contagion in space.

The estimation results provide statistically significant evidence of both self- and cross-

excitation in jumps for all three markets. According to our estimates, a single jump event leads

to an increase in the corresponding own jump intensity equal to δs which ranges from 1.6 to

2.5 in the markets considered, given base rates λ̄ ranging from 0.3 to 0.4. This self-excitation

of jumps induces jump clustering in time.14 Estimates of the cross-excitation parameter δc

range from 0.5 to 2.5. From our cross-excitation estimates, we deduce that the UK market

is about four times as much exposed to shocks in the US market than vice versa. In other

words, we observe a large asymmetry in the jump contagion among FTSE and S&P stock

market indices, in line with conventional wisdom that the US market plays a leading role in

international financial markets. On the other hand, cross-excitation in jumps between the US

and German stock market indices is largely symmetric; in particular, the cross-excitation effect

from Germany (perhaps as a proxy for continental Europe) to the US is stronger than suggested

by conventional wisdom. The cross-excitation effect from DAX to FTSE has the largest cross-

14The self-excitation of jumps is broadly in line with the findings in Boswijk et al. (2015) and Du and Luo
(2019), who studied univariate self-excitation models with parametric volatility dynamics in the US market
index using weekly data.
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excitation parameter estimate. The reverse effect from FTSE to DAX is estimated to be twice

as small. We find that the Wald tests for each pair of indices reject the null hypothesis that

the cross-excitation parameters are equal to zero. To the best of our knowledge, this is the

first study that documents the presence of jump contagion across major stock market indices

using spot index time-series data jointly with option data panels.

Using the model parameter estimates in Table 3, we imply the latent jump intensities for

each index from the corresponding sets of option prices. Figure 2 shows plots of the implied

jump intensities, along with the index log-forward returns for reference purposes. To back out

the jump intensity for the UK stock market index we use the parameter estimates for the pair

S&P-FTSE, while for the US and German markets we use the S&P-DAX pair estimates. We

note that the jump intensity time series implied using parameter estimates from other pairs

exhibit very similar dynamics with only minor differences in level.

The jump intensities for all three markets follow a similar pattern: in our data sample, the

time series of latent jump intensities backed out from option prices start at values close to the

corresponding base rate intensities, spike in the fall of 2008 during the global financial crisis,

increase during the European sovereign debt crisis, gradually decay towards the base rates after

each of these events, and exhibit relatively stable dynamics afterwards. It may be emphasized

once more that by treating the diffusive volatility non-parametrically, the estimation results,

and hence the fitted jump intensities, are robust to volatility misspecification.

In our model set-up, the jump risk premia are driven by the difference in means between

the jump sizes under the physical and risk-neutral probability measures, i.e., they are specified

as (E[J ] − EQ[J ])λt per unit of time. The estimated jump risk premium coefficients, E[J ] −

EQ[J ], for the bivariate models are around 8.0%, 9.0% and 9.5% for the UK, German and US

stock market indices, respectively. We note that these coefficients are commensurate with the

instantaneous level of the corresponding jump intensity process. Thus, the dynamics of the

jump risk premia are time-varying and are increasing during turbulent periods together with

the intensity processes.

To gauge the effect of cross-excitation in the jump components across markets, we also

provide estimation results for the univariate model specification. The univariate model can be
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Figure 2: Time-series of the option-implied jump intensities
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(a) FTSE 100
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(b) DAX 30

2007 2008 2009 2010 2011 2012 2013 2014 2015
0

5

10

15

20

25

30

35

-10%

-5%

0%

5%

10%

Im
pl

ie
d 

in
te

ns
ity

D
ai

ly
 r

et
ur

ns

(c) S&P 500

Note: This figure plots the time-series of option-implied jump intensities for FTSE 100, DAX 30 and S&P 500 stock
market indices along with corresponding log-forward returns (secondary, right-hand axis in each subplot). The parameter
estimates from the S&P-FTSE pair are used to imply the latent jump intensities for FTSE 100, while the estimates for
the S&P-DAX pair are used to back out the jump intensities for DAX 30 and S&P 500.
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Table 4: Univariate model estimation results for FTSE 100, DAX 30 and S&P 500

µQ σ κ λ̄ δ µ η

FTSE -0.127 0.030 2.132 0.318 1.798 -0.030 2.379
(0.001) (0.005) (0.005) (0.002) (0.003) (0.023) (4.716)

DAX -0.137 0.032 3.207 0.486 2.132 -0.029 2.109
(0.003) (0.013) (0.086) (0.012) (0.08) (0.026) (3.436)

S&P -0.161 0.043 2.445 0.305 2.176 -0.038 2.216
(0.002) (0.008) (0.02) (0.002) (0.025) (0.057) (4.342)

This table reports parameter estimates for the univariate model for FTSE 100, DAX 30
and S&P 500 stock market indices. Standard errors are in parentheses.

seen as a nested version of the bivariate specification, where the cross-excitation parameters are

turned off. We note that for the estimation of the univariate model we use the same procedure:

implied-state GMM with a continuum of moments as discussed in Section 3.2. The estimation

results of the univariate models for the FTSE 100, DAX 30 and S&P 500 stock market indices

are provided in Table 4, and will be used for gauging purposes in the next subsection.

Turning off the cross-excitation channel in the jump component is likely compensated for

by the other parameters of the model. For this reason we observe that, while the estimates for

the remaining parameters are of the same magnitude, some differences should and do appear

when comparing estimates between the univariate and bivariate models.

5.2 Model Applications

We illustrate the statistical and economic implications of jump contagion in three applications.

5.2.1 Distribution of index returns

First, we consider the effect of jump contagion on the (conditional) distribution of index returns,

under the physical probability measure P used for risk management. For this purpose, we

simulate forward prices for a pair of indices using the parameter estimates of the bivariate and

univariate models from Tables 3 and 4, respectively. From the set of bivariate estimates, we

use the S&P 500 and FTSE 100 parameter estimates; this pair exhibits the most pronounced

jump contagion asymmetry according to our model estimates.

Since the simulated distribution of log-returns is conditional on the (initial) jump intensity
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Table 5: Descriptive statistics for the conditional log-return distribution (simulated using
model parameter estimates, horizon h = 10 days)

0.1% 1% 5% 25% 50% 75% 95% S K E[Nt|λ0]

(a) Base Case: λ1,0 = λ̄1, λ2,0 = λ̄2

Bivariate - FTSE -7.47 -3.17 -2.10 -0.79 0.11 1.00 2.27 -0.52 6.27 0.0073
Univariate - FTSE -6.34 -3.14 -2.10 -0.77 0.12 1.00 2.28 -0.28 4.46 0.0079
Bivariate - S&P -7.90 -3.14 -2.08 -0.77 0.12 1.01 2.27 -0.59 7.17 0.0073
Univariate - S&P -8.34 -3.13 -2.09 -0.76 0.13 1.02 2.30 -0.72 9.00 0.0079

(b) Euro Debt Crisis: λ1,0 = λ2,0 = 5

Bivariate - FTSE -12.98 -7.69 -3.09 0.32 1.36 2.33 3.68 -2.11 11.34 0.1249
Univariate - FTSE -10.80 -6.26 -2.18 0.31 1.33 2.29 3.64 -1.72 10.03 0.1238
Bivariate - S&P -13.29 -7.69 -2.71 0.50 1.53 2.49 3.84 -2.23 12.80 0.1242
Univariate - S&P -14.27 -8.41 -2.50 0.67 1.68 2.64 4.02 -2.38 14.18 0.1206

(c) S&P Shock: λ1,0 = 20, λ2,0 = λ̄2

Bivariate - FTSE -9.56 -3.76 -2.07 -0.68 0.23 1.14 2.45 -1.00 9.04 0.0186
Univariate - FTSE -6.66 -3.12 -2.10 -0.78 0.11 1.00 2.28 -0.39 5.85 0.0081
Bivariate - S&P -15.88 -8.54 -2.99 3.79 5.89 7.10 8.76 -1.75 7.40 0.4872
Univariate - S&P -16.63 -8.84 -3.01 4.54 6.57 7.78 9.65 -1.74 7.87 0.4872

(d) FTSE Shock: λ1,0 = λ̄1, λ2,0 = 20

Bivariate - FTSE -16.00 -9.14 -3.77 2.78 5.13 6.35 7.92 -1.73 7.08 0.4835
Univariate - FTSE -12.29 -6.37 -2.10 3.33 5.15 6.34 7.97 -1.54 6.87 0.4924
Bivariate - S&P -8.59 -3.22 -2.06 -0.74 0.15 1.05 2.33 -0.76 8.15 0.0104
Univariate - S&P -7.83 -3.14 -2.07 -0.76 0.13 1.01 2.31 -0.58 8.19 0.0074

(e) 2008 Global Financial Crisis: λ1,0 = 20, λ2,0 = 15

Bivariate - FTSE -15.36 -8.89 -4.03 2.28 4.00 5.15 6.68 -1.83 7.72 0.3756
Univariate - FTSE -11.83 -6.61 -2.55 2.45 3.89 4.99 6.53 -1.66 7.61 0.3693
Bivariate - S&P -15.88 -8.54 -2.99 3.81 5.92 7.13 8.79 -1.75 7.38 0.4893
Univariate - S&P -16.63 -8.85 -3.01 4.54 6.57 7.78 9.65 -1.74 7.87 0.4870

This table displays the empirical quantiles, skewness (S), kurtosis (K), and expected number of jumps implied
by the conditional distribution of simulated log-returns for S&P 500 (“index 1”) and FTSE 100 (“index 2”).
The stock index price paths are simulated using bivariate and univariate model parameter estimates, conditional
upon different values (“scenarios”) of the latent jump intensities. The return horizon is h = 10 days. Volatilities
are assumed to be constant throughout the horizon and are set to vi,s = 8.36% for both indices, and the
instantaneous correlation between Brownian increments is set to be 0.6.
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values, we consider five different scenarios to illustrate the effect of jump contagion. Under the

base scenario (a), the initial values of the intensities are given by the corresponding estimates

of the base rates λ̄1 and λ̄2, while in scenarios (b)–(e) we assume the initial values to be similar

to levels implied from our model during the 2008 Global Financial Crisis and the Euro Debt

Crisis. Table 5 displays the empirical quantiles, skewness and kurtosis statistics as well as

the expected number of jumps for the simulated log-return distributions under the bivariate

and univariate models. The results are based on 100 000 random paths over a 10-day horizon

simulated using an Euler scheme.

It is clearly apparent from the table that the distribution of simulated log-returns is wider

(i.e., more spread out) in the bivariate model than in the univariate model for the FTSE series

under all scenarios, while this is generally not the case for the S&P series, with the exception

of scenario (d). A natural explanation for this is that in the bivariate model the spillover of

jumps from the S&P 500 index to FTSE 100 is much more pronounced than vice versa, while

the jump size parameters imply on average more negative jump sizes under the univariate

specification than under the bivariate model. Scenario (d) assumes a large asymmetry in the

level of intensities, with the intensity for S&P set to the base rate, showing that although the

cross-excitation from FTSE to S&P is four times smaller than the reverse cross-excitation, its

effect becomes important in this scenario. Wider distributions imply larger values of standard

risk measures used for risk capital calculations such as Value-at-Risk (VaR) and Expected

Shortfall (ES).

We also notice that the distribution of the simulated S&P 500 returns is wider than that of

the FTSE 100 in all scenarios except for scenario (d), due in part to the strong self-excitation of

jumps in S&P. Furthermore, the median returns on the S&P 500 are substantially larger than

on the FTSE 100 in the asymmetric scenarios except for scenario (d), although the expected

number of jumps in the S&P 500 is larger. This result is likely to be driven by the jump risk

premia embedded in the expected returns under the physical measure. In other words, there

are more jumps expected for the S&P 500, for which investors demand a larger premium to

bearing this jump risk.

Next to Table 5, we provide the contour plots for scenario (c)—S&P Shock—in Figure 3.
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Figure 3: Contour plots for scenario (c), S&P Shock, with λ1,0 = 20, λ2,0 = λ̄2, h = 10

(a) Bivariate estimates (b) Univariate estimates

Note: Contour plots overlayed on top of scatter plots of log-return data simulated using parameter estimates for the
bivariate model (panel (a)) and the two univariate models (panel (b)). Return horizon set to h = 10 days. Initial jump
intensities set to λ1,0 = 20 for S&P 500 and λ2,0 = λ̄2 for FTSE 100. Volatilities are assumed to be constant throughout
the horizon and are set to vi,s = 8.36% for both indices, and the instantaneous correlation between Brownian increments
is set to be 0.6.

Under this scenario, we observe that the presence of cross-excitation in the bivariate model

substantially increases the joint probability of large negative returns in both indices, compared

to the situation where cross-excitation is absent (and hence the dependence is driven by the

Brownian correlation only). Note that the effect of jump cross-excitation on return depen-

dence cannot be fully captured in such contour plots, because jump clustering in our model

specification is not confined to be contemporaneous in space.

5.2.2 Two-index options

As a second application, we investigate the economic value of cross-excitation by pricing dif-

ferent types of multi-index options, the prices of which are typically sensitive to assumptions

about dependence between the indices. As before, we restrict attention to the bivariate and

univariate model estimates for the S&P 500 and FTSE 100 pair.

The following two-index option payoff types are considered:

• Correlation option: (K1 − F1,T )+ · (K2 − F2,T )+;
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• Put option on the maximum between two indices: (K −max{F1,T , F2,T })+;

• Basket option with fixed weights w1 and w2: (K − (w1F2,T + w2F1,T ))+.

We focus on these put-type options with OTM strikes because they are sensitive to the joint

occurrence of left tail events, i.e., to both indices substantially decreasing in value (this holds in

particular for the first two payoff types). Among the various available option pricing approaches

that have been proposed for pricing these types of multi-asset options, we opt for a Monte Carlo

pricing approach using 100 000 simulations based on an Euler scheme, and we consider several

initial jump intensity levels for illustration purposes. As we want to focus on the impact of cross-

excitation, we make the additional simplifying assumption that these options are priced under

a single arbitrage-free risk-neutral measure, disregarding any pricing contributions coming from

foreign-exchange rate dynamics.

Two-index option price data points are provided in Table 6, together with single-index

vanilla European put prices for reference purposes. We first note that, given different parameter

estimates for the bivariate and univariate models, we cannot isolate a “pure” cross-excitation

effect. To this point, a larger (in absolute terms) jump size mean and standard deviation under

the risk-neutral measure for the S&P series in the univariate model relative to the bivariate

counterpart, results in more expensive European puts on the S&P index under the univariate

specification than under the bivariate model for all scenarios, except scenario (c).

Nevertheless, we clearly observe the effect that jump cross-excitation has on the pricing

of, in particular, correlation and put on max options. The prices of these options are markedly

higher under the bivariate model with non-zero cross-excitation than under the univariate

model. We also observe that under the bivariate model, the prices of single puts in asymmetric

scenarios are larger due to exposure to shocks in the other market. The results for basket

options, which are relatively less sensitive to joint left tail events, depend upon the chosen

weights. For the weights w1 = 0.3 and w2 = 0.7 (as in Table 6), we can see an effect due to

the presence of cross-excitation in the bivariate model, although it is less pronounced than for

the other two two-index option payoff types.

40



Table 6: Two-index options

Single Puts Correlation Put on max Basket

S&P FTSE h=10 h=30 h=10 h=30 h=10 h=30

(a) λ1,0 = λ̄1, λ2,0 = λ̄2

Bivariate 0.214 0.177 0.021 0.188 0.0018 0.0152 0.0042 0.0230
Univariate 0.235 0.182 0.001 0.044 0.0001 0.0050 0.0031 0.0171

(b) λ1,0 = λ2,0 = 5
Bivariate 2.143 1.828 0.835 4.836 0.073 0.313 0.085 0.433
Univariate 2.406 1.699 0.727 4.330 0.061 0.289 0.074 0.382

(c) λ1,0 = 20, λ2,0 = λ̄2

Bivariate 5.115 0.809 0.841 7.983 0.059 0.386 0.047 0.407
Univariate 5.716 0.179 0.168 1.045 0.012 0.056 0.026 0.207

(d) λ1,0 = λ̄1, λ2,0 = 20
Bivariate 0.432 4.326 0.296 3.064 0.022 0.163 0.371 1.333
Univariate 0.237 4.237 0.160 1.109 0.011 0.063 0.350 1.286

(e) λ1,0 = 20, λ2,0 = 15
Bivariate 5.129 3.828 4.521 21.709 0.319 0.945 0.362 1.435
Univariate 5.759 3.503 4.526 20.223 0.316 0.881 0.332 1.305

This table provides option prices for correlation, put on max, and basket options under five scenarios. For
reference, single European put options are also priced for each index. Option prices are obtained using Monte
Carlo simulations of the bivariate model for the pair S&P-FTSE and univariate models for the same indices.
Initial prices are set to 100 for both indices. Correlation option strikes are set to K1 = K2 = 95; put on max
two-index strike is set to K = 95; basket option weights used are w1 = 0.3, w2 = 0.7 with strike set to K = 90.
Two different maturities are priced: h = {10, 30} days. The single-index put option strike is set to K = 95.
Volatilities are assumed to be constant throughout the horizon and are set to vi,s = 8.36% for both indices. The
contemporaneous correlation between Brownian increments is set to 0.6.

5.2.3 Comparative statics

Finally, with Figure 1 in mind, we are interested in the effect of cross-excitation on implied

volatilities. To illustrate implied volatility dynamics, we conduct a comparative statics analysis

and investigate how the implied volatility changes after the assumed occurrence of jumps in

our multivariate option pricing model. This approach helps to exclude any other effects that

potentially impact the implied volatility surface.

In particular, we consider again the parameter estimates from the bivariate model for the

pair S&P-FTSE and mimic a scenario in which jumps occur in the US market. We fix the

volatility levels in both markets to 35% and consider short-dated options with an expiration

period of 15 days.

Figure 4(a) shows changes to implied volatility smiles coming from the different assumed

initial levels of the intensity process λ1 (for fixed λ2). Although this only captures a marginal
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Figure 4: Cross-excitation effects of jumps on implied volatilities

(a) IV2 when varying λ1 (b) IV2 when varying λ1 and λ2

Note: This figure plots option implied volatilities (IV2) for the second index (i.e., FTSE) for different initial jump intensity
levels. In Panel (a), the jump intensity level of the second index is fixed to λ2 = 1, while Panel (b) shows the effect when
both λ1 and λ2 vary. The spot volatilities are fixed to vi,s = 35% in both markets and the time-to-maturity is set to
τ = 15 days.

effect of jumps occurring in the S&P 500 index (since the jump intensity for the FTSE 100

index process is fixed), it illustrates that prices of options written on the second index are

sensitive to the intensity of shocks in the first market. In particular, deep OTM options are

more sensitive to the changes in λ1 than ITM counterparts. Furthermore, we observe changes

in the slopes of the implied volatility curve.

Figure 4(b) plots the implied volatilities when both intensity processes (λ1 and λ2) vary.

This scenario mimics the occurrence of a jump in the US market: after a shock, the jump

intensity λ1 increases with the value of the self-excitation parameter, and λ2 increases with

the value of the cross-excitation parameter. For this analysis, we assume the self- and cross-

excitation parameters to be 2.5 and 2, respectively, rounding the estimates for the S&P-FTSE

pair in Table 3. Due to the simultaneous increase in λ2, we observe more pronounced shifts

in the implied volatility smile than in Figure 4(a), corroborating once again the importance of

jump contagion.
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6 Conclusion

We have explored jump contagion in the laboratory of option markets. We have proposed

a multivariate option pricing model to capture contagious propagation of jumps among in-

ternational stock market indices. We have developed an estimation procedure exploiting the

model’s conditional characteristic function. This characteristic function depends upon latent

stochastic volatilities and jump intensities, and we use it both for backing out stochastic jump

intensities from option prices and for the construction of a GMM criterion function based on a

continuum of moments. To achieve robust identification, we have followed a semi-parametric

approach, replacing spot volatilities with jump-robust realized measures obtained from high-

frequency index returns. In addition, to reduce the computational complexity which increases

rapidly with the dimension of the system, we have introduced a partial-information approach

to implied-state continuum-of-moments GMM estimation, and established its asymptotic prop-

erties. Monte Carlo simulations have been conducted to assess the finite-sample behavior of

the estimators.

We have estimated the bivariate specification of our model to rich, carefully synchronized

option panels from three pairs of major international stock market indices: FTSE 100, DAX

30, and S&P 500. Our empirical results reveal the presence of significant jump contagion in

these option markets. Although these contagion effects are bi-directional in all index pairs,

they are partially asymmetric, with the UK being more affected by the US and Germany than

the other way around, and with the US on par with Germany. Finally, we have illustrated

the importance of jump contagion for risk management, option pricing, and scenario analysis.

Here we find the strongest effects in situations where the cross-excitation is asymmetric, and

the jump intensity in the leading economy is markedly larger than in the other economy.
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Appendices

Appendix A Change of Measure

This appendix provides further details on the candidate pricing kernels and the change of

measure for the model specification discussed in Section 2. In particular, we show that the

choice of the pricing kernel for each of the markets rules out arbitrage opportunities within each

market, as well as internationally. Furthermore, we show that under the risk-neutral measures,

the jump intensity dynamics are unaffected.

Similar to Pan (2002), one can show that the stochastic discount factor Mi,t in Eqn. (5)

ensures that the deflated index processes Sii,t := Mi,tSi,t exp(
∫ t

0 qi,sds) and the deflated money

market account processes Bi,t := Mi,t exp(
∫ t

0 ri,sds) are local martingales. In fact, applying

Itô’s formula, we have:

dBi,t = Bi,t

(
−ηiξi,tdWi,t +

m∑
k=1

U ik,tdNk,t

)
,

with E[U ik,t] = 0 (from the constraint ai,k + 1
2b

2
i,k = 0), and

dSii,t = Sii,t

(1− ηi)ξi,tdWi,t − EQi [Ji,t]λi,tdt+ (exp(V i
i,t + Zi,t)− 1)dNi,t +

∑
k 6=i

U ik,tdNk,t

 ,
where

E[exp(V i
i + Zi)− 1] = exp

(
ai,i + 1

2b
2
i,i + µi + ρi,ibi,iσi + 1

2σ
2
i

)
− 1

= exp
(
µQii + 1

2σ
2
i

)
− 1 = EQi [Ji,t],

with µQii = µi + ρi,ibi,iσi. Therefore, the processes Sii,t and Bi,t are indeed local martingales.

Furthermore, in the international setting, the deflated foreign index processes and for-

eign money market accounts, denominated in the currency of market i, have to be local

martingales as well. In other words, the processes Sij,t := Mi,tEij,tSj,t exp(
∫ t

0 qj,sds) and

Bij,t := Mi,tEij,t exp(
∫ t

0 rj,sds) need to be local martingales, where Eij,t is the exchange rate be-
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tween markets i and j, i.e., the price in currency i of one unit of currency j. This is guaranteed,

and hence arbitrage opportunities across all economies are ruled out, whenever the exchange

rate dynamics Eij,t are such that Mj,t = Mi,tEij,t (see, for example, Brandt and Santa-Clara

(2002), Backus, Foresi, and Telmer (2001)).

Therefore, arbitrage-free exchange rate dynamics can be derived from the ratio of foreign

to domestic pricing kernels:

dEij,t = d

(
Mj,t

Mi,t

)
= Eij,t [(−rj,tdt− ηjξj,tdWj,t)− (−ri,tdt− ηiξi,tdWi,t)]

+ Eij,t

[(
η2
i ξ

2
i,t − ηiξi,tηjξj,t%ij,t

)
dt+

m∑
k=1

(
1 + U jk,t
1 + U ik,t

− 1

)
dNk,t

]
,

where %ij,t is the instantaneous correlation between the Brownian motions Wi,t and Wj,t. Using

the log-normal parametrization for the relative jump sizes in the pricing kernels, that is, U ik,t =

eV
i
k,t − 1 with V i

k ∼ N (ai,k, b
2
i,k), we have

dEij,t
Eij,t

= (ri,t − rj,t + η2
i ξ

2
i,t − ηiξi,tηjξj,t%ij,t)dt+ ηiξi,tdWi,t − ηjξj,tdWj,t

+
m∑
k=1

(
eV

j
k,t−V

i
k,t − 1

)
dNk,t. (A.1)

The resulting exchange rate processes feature both diffusive components with stochastic

volatility and compound jump process components. In our set-up, we allow the exchange

rate processes to jump simultaneously with jumps in any of the markets, and the jump sizes

depend on how these jumps are perceived in the markets i and j. More specifically, due to the

parametrization assumption, the exchange rate Eij,t jumps simultaneously with a jump in a

market k with log-jump size V j
k − V

i
k ∼ N (aj,k − ai,k, b2j,k − b2i,k).

Define the equivalent martingale measure Qi in market i from the Radon-Nikodym density

process ψi,t, satisfying

dψi,t
ψi,t

= −ηiξi,tdWi,t +

m∑
k=1

U ik,tdNk,t. (A.2)
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Under Qi, the processes

WQi
j,t = Wj,t +

∫ t

0
ηiξi,s%ij,sds, j = 1, . . . ,m,

are standard Brownian motions with the same instantaneous correlations as the original Brow-

nian motions under P. Note that %ii,t = 1, so that WQi
i,t = Wi,t +

∫ t
0 ηiξi,sds.

Under the defined equivalent measure Qi, the discounted foreign asset prices denominated

in currency i are Qi-martingales. To see this, define B̃i
j,t := exp(−

∫ t
0 ri,sds)Eij,t exp(

∫ t
0 rj,sds)

and S̃ij,t := exp(−
∫ t

0 ri,sds)Eij,tSj,t exp(
∫ t

0 qj,sds). By applying Itô’s formula, the dynamics of

these processes under Qi can be characterized as follows:

dB̃Qi
j,t

B̃Qi
j,t

= ηiξi,tdW
Qi
i,t − ηjξj,tdW

Qi
j,t +

m∑
k=1

(
eV

j
k,t−V

i
k,t − 1

)
dNk,t,

dS̃Qi
j,t

S̃Qi
j,t

= (1− ηj)ξj,tdWQi
j,t + ηiξi,tdW

Qi
i,t +

(
eZj,t+V

j
j,t−V

i
j,t − 1

)
dNj,t

− EQj [Jj,t]λj,tdt+
m∑
k 6=j

(
eV

j
k,t−V

i
k,t − 1

)
dNk,t.

Define Gkt :=
∫ t

0

(
eV

j
k,s−V

i
k,s − 1

)
dNk,s and Hj

t :=
∫ t

0

(
eZj,s+V

j
j,s−V

i
j,s − 1

)
dNj,s. Then, given

the assumptions on the zero mean relative jump sizes in the pricing kernels, i.e., ai,k+ 1
2b

2
i,k = 0

for k, i = 1, . . . ,m, it follows that

EQi [Gks ] = E
[
ψi,tG

k
t

]
= E

[
−
∫ t

0
ηiξi,sG

k
sψi,sdWi,s +

∫ t

0
ψi,s

(
eV

j
k,s − eV

i
k,s +Gks

(
eV

i
k,s − 1

))
dNk,s

]
= 0,
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and

EQi [Hj
t ] = E

[
ψi,tH

j
t

]
= E

[
−
∫ t

0
ηiξi,sH

j
sψi,sdWi,s +

∫ t

0
ψi,s

(
eZj,s+V

j
j,s − eV

i
j,s +Hj

s

(
eV

i
j,s − 1

))
dNj,s

]
= E

[∫ t

0
EQj [Jj,t]ψi,sλj,sds

]
.

Given that

EQi
[∫ t

0
EQj [Jj,s]λj,sds

]
= E

[
ψi,t

∫ t

0
EQj [Jj,s]λj,sds

]
= E

[∫ t

0
EQj [Jj,s]ψi,sλj,sds

]
,

it follows that the discounted processes B̃i
j,t and S̃ij,t are indeed local martingales under Qi.

Therefore, the pricing kernels rule out international arbitrage opportunities.

It is important to note that the jump intensity processes have the same dynamics under

the defined equivalent measure Qi as under the physical probability measure. To see this,

denote the compensated compound Hawkes processes by

χk,t =

∫ t

0
Jk,tdNk,t −

∫ t

0
E[Jk,s]λk,sds, k = 1, . . . ,m. (A.3)

The processes χk,t are local martingales under P by definition. Therefore, by the predictable

version of the Girsanov-Meyer theorem (see Theorem 41 in Protter (2005)),

χk,t −
∫ t

0

1

ψi,s
d〈χk, ψi〉s = χk,t −

∫ t

0
E[Jk,sU

i
k,s]λk,sds

=

∫ t

0
Jk,tdNk,t −

∫ t

0

(
E[Jk,s] + E[Jk,sU

i
k,s]
)
λk,sds

is a local martingale under Qi. Using again Jk = eZk−1 with Zk ∼ N (µk, σ
2
k) and U ik = eV

i
k −1
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with V i
k ∼ N (ai,k, b

2
i,k), we have

E[Jk,s] + E[Jk,sU
i
k,s] = E

[
eZk,s+V

i
k,s − eV

i
k,s

]
= exp

(
ai,k + 1

2b
2
i,k + µi + ρi,kbi,kσk + 1

2σ
2
k

)
− exp

(
ai,k + 1

2b
2
i,k

)
= exp

(
µQik + 1

2σ
2
k

)
− 1 = EQi [Jk,s],

with µQik = µk + ρi,kbi,kσk. Therefore,

∫ t

0
Jk,tdNk,t −

∫ t

0
EQi [Jk,s]λk,sds, k = 1, . . . ,m,

are Qi-local martingales, which implies, by the martingale characterization of jump intensities,

that λk,t are intensity processes for the corresponding Hawkes processes Nk,t under the risk-

neutral probability measure as well. In other words, the measure change in economy i does

not affect the dynamics of the jump intensities λk,t for k = 1, . . . ,m, and thus does not change

jump times.

Appendix B Asymptotic Properties of the Estimation Proce-

dure

In this appendix, we derive in detail the asymptotic properties of our estimators. This ulti-

mately leads to expressions for asymptotic standard errors of the parameter estimates in our

partial-information implied-state C-GMM procedure.

We start by introducing the required Hilbert space. Let π be a probability density function

on Rd. We denote by L2(π) the Hilbert space of complex-valued functions such that

L2(π) :=

{
f : Rd → C :

∫
|f(τ)|2π(τ)dτ <∞

}
.

The inner product 〈·, ·〉 and the norm ‖ · ‖ on L2(π) are defined as

〈f, g〉 :=

∫
f(τ)g(τ)π(τ)dτ, and ‖f‖ := 〈f, f〉

1
2 ,
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where g(τ) denotes the complex conjugate of g(τ).

Let us further extend the notion of inner product for vectors of functions in L2(π). For

this purpose, we first define the L2(π)k space of vector functions as

L2(π)k :=
{
f = (f1, . . . , fk)

′ : fi ∈ L2(π)
}
.

Then the inner product of two (column) vector functions f = (f1, . . . , fk)
′ and g = (g1, . . . , gk)

′

is defined as

〈f ,g〉 :=

∫
f(τ)′g(τ)π(τ)dτ =

k∑
i=1

∫
fi(τ)gi(τ)π(τ)dτ.

Similarly, for matrices F and G of L2(π) functions, with dimensions k×p and k×d, respectively,

〈F,G〉 :=
∫
F(τ)′G(τ)π(τ)dτ , a p× d matrix.

Recall that, in the full-information setting, we consider the moment function based on the

CCF of the state vector Yt and its empirical counterpart:

ht(τ ; v̂t, θ) := h(τ, Y θ
t , Y

θ
t+1; v̂t, θ) = m(r, Yt)

(
eis·gYt+1 − φ(s, Yt,∆t; v̂t, θ)

)
,

where τ = (r, s)′ with r, s ∈ R2m, and m(r, Yt) = eir·Yt is an “instrument” function. However,

in the partial-information setting, we have k sets of “marginal” moment conditions stacked in

the vector

ht(τ ; v̂t, θ) =


h

(1)
t (τ ; v̂t, θ)

...

h
(k)
t (τ ; v̂t, θ)

 ,

with

h(i)(τ ; v̂t, θ) = m(r, Y
(i)
t )

(
eis·Y (i)

t+1 − φ(i)(s, Yt,∆t; v̂t, θ)
)
, for i = 1, . . . , k,

where r, s ∈ R2, and where Y
(i)
t and φ(i)(·) are the marginal states and marginal CCFs, respec-
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tively.

Before we state our formal convergence result, we first introduce some assumptions. We

start by imposing the following assumptions on our stochastic process and moment functions:

Assumption B.1 The stochastic process Yt is a stationary Markov process.

Assumption B.2 The moment functions ht(τ ; v̂t, θ) satisfy the following conditions:

(i) ht(τ ; v, θ) is continuously differentiable w.r.t. θ and v;

(ii) ht(τ ; v, θ) ∈ L2(π)k,∀θ ∈ Θ and ∀v ∈ Rm+ ;

(iii) The equation Eθ0 [ht(τ ; vt, θ0)] = 0, ∀τ ∈ R2×2m π-almost everywhere, has a unique solu-

tion θ0 in the interior of Θ.

For the next assumption, recall that the sample analogue of the moment conditions, given

T + 1 observations, is given by

hT (τ ; v̂, θ) :=
1

T

T∑
t=1

h(τ, Y θ
t , Y

θ
t+1; v̂t, θ).

Assumption B.3 The sample moment conditions satisfy, as T →∞:

(i) supθ∈Θ ‖hT (·, v, θ)− Eθ0 [ht(·, vt, θ)]‖
P−→ 0;

(ii)
√
ThT (τ ; v, θ0)

d−→ N (0,K) on L2(π)k, where N (0,K) is the distribution of an n-dimensional

Gaussian random element of L2(π)k with mean zero and covariance operator K, the

Hilbert-Schmidt operator, defined by

K : L2(π)k → L2(π)k, Kf(τ1) :=

∫
k(τ1, τ2)f(τ2)π(τ2)dτ2, (B.1)

with kernel k(τ1, τ2) := Eθ0
[
ht(τ1; vt, θ0)ht(τ2; vt, θ0)

]
.

Note that in the partial-information setting, the kernel k(τ1, τ2) is an k × k matrix function

with (i, j)th element Eθ0
[
h

(i)
t (τ1; vt, θ0)h

(j)
t (τ2; vt, θ0)

]
.

Finally, we impose the following condition on the non-parametric spot volatility estimator:
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Assumption B.4 Let the non-parametric volatility estimator v̂t be defined from n high-frequency

returns prior to time t, and

(i) v̂t
P−→ vt, as n→∞;

(ii) n→∞ as T →∞, such that T/n→ 0.

Assumption B.4.(ii) is required for the estimation error in v̂t to be negligible in the large-T

asymptotic properties of the estimator.

Recall that the criterion function for the C-GMM estimator θ̂ is given by

QT (v̂, θ) = ‖hT (·, v̂, θ)‖2 =

∫
hT (τ, v̂, θ)′hT (τ, v̂, θ)π(τ)dτ.

We are now equipped to state the following proposition:

Proposition 2 Under Assumptions B.1–B.4, as T →∞,

√
T (θ̂ − θ0)

d−−→ N (0,A−1BA−1),

where

A :=
〈
Eθ0 [∇θht(·, v, θ0)],Eθ0 [∇θht(·, v, θ0)]

〉
,

B :=
〈
Eθ0 [∇θht(·, v, θ0)],KEθ0 [∇θht(·, v, θ0)]

〉
,

with K as defined in (B.1).

Proof : The consistency of the C-GMM procedure follows from Carrasco and Florens (2000)

and Boswijk et al. (2015). Based on this, a mean value expansion of hT (τ, v̂, θ̂) yields

hT (τ, v̂, θ̂) = hT (τ, v, θ0) +∇θhT (τ, v̄, θ̄)(θ̂ − θ0) +∇vhT (τ, v̄, θ̄)(v̂ − v),

where θ̄ and v̄ are mean values. Note that in our implied-state GMM setting we have to take
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into account both “direct” and “indirect” effects in the moment functions, i.e.,

∇θhT (τ, v, θ) =
1

T

T∑
t=1

∇θh(τ, Y θ
t , Y

θ
t+1, vt, θ)

=
1

T

T∑
t=1

∂h(τ, Yt, Yt+1, vt, θ)

∂θ′
+
∂h(τ, Yt, Yt+1, vt, θ)

∂Yt

∂Yt(θ)

∂θ′

+
∂h(τ, Yt, Yt+1, ξ, θ)

∂Yt+1

∂Yt+1(θ)

∂θ′
,

∇vhT (τ, v, θ) =
1

T

T∑
t=1

∇vh(τ, Y θ
t , Y

θ
t+1, vt, θ)

=
1

T

T∑
t=1

∂h(τ, Yt, Yt+1, vt, θ)

∂v′
+
∂h(τ, Yt, Yt+1, vt, θ)

∂Yt

∂Yt(vt)

∂v′

+
∂h(τ, Yt, Yt+1, vt, θ)

∂Yt+1

∂Yt+1(vt)

∂v′
,

where the first elements on the right-hand sides of both equations capture only the direct

dependence of the moment function on θ and v, while the remaining terms are due to the

implied-state procedure.

Employing the mean value expansion in the first-order condition for optimality, we obtain

0 =
〈
∇θhT (τ, v̂, θ̂),hT (τ, v̂, θ̂)

〉
=
〈
∇θhT (τ, v̂, θ̂),hT (τ, v, θ0) +∇θhT (τ, v̄, θ̄)(θ̂ − θ0) +∇vhT (τ, v̄, θ̄)(v̂ − v)

〉
,

so that

√
T (θ̂ − θ0) = −

〈
∇θhT (τ, v̂, θ̂),∇θhT (τ, v̄, θ̄)

〉−1 〈
∇θhT (τ, v̂, θ̂),

√
ThT (τ, v, θ0)

〉
−
〈
∇θhT (τ, v̂, θ̂),∇θhT (τ, v̄, θ̄)

〉−1 〈
∇θhT (τ, v̂, θ̂),∇vhT (τ, v̄, θ̄)

〉√
T (v̂ − v).

The second term on the right-hand side of the expression above vanishes asymptotically by

Assumption B.4. For the first term, Assumption B.3 implies that

〈
Eθ0 [∇θht(·, vt, θ0)],

√
ThT (τ, v, θ0)

〉
d−−→ N (0,B) .
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Together with consistency and Slutsky’s lemma, this yields the desired result. �

We finally discuss the estimation of the standard errors. First, given the consistent esti-

mators θ̂ and v̂, we obtain a consistent estimator of the matrix A:

ÂT =
〈
∇θhT (·, v̂, θ̂),∇θhT (·, v̂, θ̂)

〉
=

∫
∇θhT (τ, v̂, θ̂)′∇θhT (τ, v̂, θ̂)π(τ)dτ

=
k∑
i=1

∫
∇θh

(i)
T (τ, v̂, θ̂)∇θh

(i)
T (τ, v̂, θ̂)π(τ)dτ.

Next, let us denote the estimator of the covariance operator by

KT f(τ1) =

∫
kT (τ1, τ2)f(τ2)π(τ2)dτ2, (B.2)

with kernel

kT (τ1, τ2) =
1

T

T∑
t=1

ht(τ1; v̂t, θ̂)ht(τ2; v̂t, θ̂).

Then, asymptotic standard errors of our parameter estimates are obtained as the square

root of the diagonal elements of

T−1Â−1
T B̂T Â

−1
T ,

where

B̂T =
〈
∇θhT (·, v̂, θ̂),KT∇θhT (·, v̂, θ̂)

〉
=

∫
∇θhT (τ1, v̂, θ̂)

′KT∇θhT (τ1, v̂, θ̂)π(τ1)dτ1

=

∫
∇θhT (τ1, v̂, θ̂)

′
∫

kT (τ1, τ2)∇θhT (τ2, v̂, θ̂)π(τ2)dτ2π(τ1)dτ1

=

k∑
i=1

k∑
j=1

∫
∇θh

(i)
T (τ1, v̂, θ̂)

∫
k

(ij)
T (τ1, τ2)∇θh

(j)
T (τ2, v̂, θ̂)π(τ2)dτ2π(τ1)dτ1.
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Appendix C Jump-Robust Volatility Estimation

This appendix provides the details of the jump-robust volatility estimation procedure. We

assume that for each day t = 1, . . . , T , we observe n+ 1 intra-day equity prices at equidistant

time points: St−1+j/n, j = 0, . . . , n (implying that the opening price of day t equals the closing

price of day t − 1). Omitting the market-specific subscripts for notational convenience, we

denote the intra-day log-returns by

∆t,n
j S = log(St−1+j/n)− log(St−1+(j−1)/n).

We use the so-called threshold estimator for realized variance, originally proposed by

Mancini (2001):

v̂2
t :=

n∑
j=1

(
∆t,n
j S

)2
1{|∆t,n

j S| ≤ rn}, (C.1)

where rn is some deterministic sequence, converging to 0 as n → ∞, used as a threshold to

disentangle continuous variation from the jump contribution.

This threshold estimator has been shown to be consistent for the piece-wise constant

variance v2
t ; its efficiency depends on the choice of the threshold rn. Following Bollerslev and

Todorov (2011), we consider an adaptive thresholding with rn = αn−ω̄ and set ω̄ = 0.49 and

α = 3
√

1
5

∑5
i=1RVt−i, where RVt is the realized variance estimator imposing no threshold.

We base the parameter α on the average of the previous five days’ estimates for better option

pricing performance.15

The non-parametric jump-robust volatility estimator (C.1) allows us to forego a parametric

representation of the volatility processes, and focus on the estimation of the jump parameters

in our multivariate option pricing model. Hence, in the estimation procedure, described in

Section 3, we consider a semi-nonparametrically approximated representation of the model

with “frozen” spot volatilities. In our empirical analysis, we obtain the spot volatility estimates

based on high-frequency data of the equity indices just prior to the observation time of the

15For the first day in the sample, we use α = 3
√

min(BVt, RVt), where BVt is the bipower variation estimator
proposed by Barndorff-Nielsen and Shephard (2004).
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option panel.

Appendix D Data Selection and Processing

This appendix provides details of the various data selection criteria and transformations applied

to spot, futures and options data. First, we describe the full set of filters used to decide which

option data observations were included in each reference interval. Next, we give additional

details about the approach used to back out forward prices using the put-call parity. Finally,

we discuss the interpolation of the Black-Scholes implied volatility surfaces.

D.1 Option Data Selection

To select the set of options in a reference interval, we apply the following filter rule sequence:

(i) retain recordings with message type “Trade” or “Quote”;

(ii) retain recordings with a positive Transaction price or recordings with positive Bid and

Ask prices;

(iii) for each distinct Reuters Instrument Code (RIC) symbol retain the last Bid, Ask and

Transaction price in the reference interval;

(iv) select the Transaction price if available, otherwise calculate the mid Bid-Ask price.

The first two rules trivially filter out incomplete or erroneous recordings. The last two rules are

similar to “last close” price series published by stock exchanges, which also typically prioritize

trade data over submitted quotes.

To further reduce the presence of noise in the selected data (which can come from wide

bid-ask spreads, or synchronicity mismatches between bid and ask quote timings), we consider

a few additional filters. Complementing the aforementioned rule (iii), we have also determined

for each distinct RIC the median Bid and median Ask recorded during the reference interval in

order to calculate a “median spread” equal to the difference between median Ask and median

Bid. We then employ the following additional filters:

(i) drop RIC symbols only if all of the following four conditions are met (concurrently):
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(a) the number of either Bid or Ask quotes recorded in the interval is less than or equal

to 2;

(b) there are no trade observations available in the interval;

(c) the elapsed time between the last Bid and Ask is larger than 10 seconds;

(d) the spread between last Bid and Ask is larger than 95% × median spread.

(ii) for each RIC symbol replace last Bid/Ask with the corresponding median Bid/Ask if all

of the following three conditions are satisfied (concurrently):

(a) spread between last Bid and Ask is three times larger than the median spread;

(b) spread between last Bid and Ask is larger than 8 currency units;

(c) time difference between last Bid and Ask is larger than 5 seconds.

The first filter removes infrequently traded instruments which we deem likely to have illiquid

quotes. The second filter aims to strike a balance between data synchronization and quote

reliability.

D.2 Implying Forward Prices from Put-Call Parity Pairings

To circumvent potential issues which would arise if we were to make explicit modeling choices

for future dividend yields, we follow the route described in Aı̈t-Sahalia and Lo (1998) and

back out forward prices using the put-call parity relationship and estimate our model based on

log-forward returns instead of log-index returns.

More specifically, to imply forward prices, we collect for each day all the put-call pairs

with the same strike price and maturity, subject to an additional constraint that there are at

least two Bid and two Ask quotes for each option during the reference interval. The additional

constraint on the number of quotes filters out illiquid options and ensures we obtain reliable

forwards. After implying forward prices from all the available put-call pairs, we take the average

of the forward prices implied from pairs with the same option maturity and use the resulting

term structure of forward prices to calculate Black-Scholes implied volatilities. For this last

step, we require risk-free interest rates for each market. In principle, these could also be backed
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out from box spreads built from the option sets available in each interval, but this would have

required an overly complicated option pairing algorithm. We therefore opted to use publicly

available datasets with daily LIBOR-US, LIBOR-GBP and EURIBOR interest rate fixings. We

have used linear interpolation for these fixings where needed to match the considered option’s

maturity.

We also need to interpolate the forward prices implied from put-call parity pairs of ob-

served options for each maturity. We do that by exploiting a raw interpolation of discount

factors, i.e., a linear interpolation between the log of discount factors yields that logDτ =

α logDτ1 + (1 − α) logDτ2 , where Dτ = e(r−q)τ and α = τ2−τ
τ2−τ1 . Therefore, an interpolated

forward price for maturity τ = 40 can be obtained as

Ft(τ) = DτSt = (Dτ1St)
α (Dτ2St)

1−α = Ft(τ1)αFt(τ2)1−α.

Given that E-Mini S&P 500 future options are American style options, we extract forward

prices for these by matching put and call volatilities calculated using a binomial tree pricer

which, up to a modest degree of residual pricing noise, can account for early exercise pricing pre-

miums. We note that although our estimation procedure uses option pricing methods designed

for European options, the inputs are Black-Scholes implied volatilities. Therefore, having im-

plied volatilities from a binomial tree for American style E-Mini options, the estimation can

make use of these volatilities.

D.3 Volatility Surface Interpolation

This sub-section provides details of the standard interpolation technique we use to construct

the implied volatility data panel, used as input in the estimation procedure. We first provide

details of the filters employed to select the option price quotes from which implied volatilities

are calculated. Next, we provide more information about the interpolation procedure and

summary statistics for the resulting implied volatility surfaces.

Defining the moneyness level, k, as the strike-to-forward ratio, i.e., k = K/F , we designate

an option as an out-of-the-money (OTM) option if it has moneyness level k > 1.02 for call
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options and k < 0.98 for put options. We consider options to be close to at-the-money (ATM)

if 0.98 ≤ k ≤ 1.02. We designate an option as in-the-money (ITM) if it is not OTM or close

to ATM. We use call options to imply volatilities when k > 1, unless a particular call option

has a spread which is more than twice as large as its put counterpart, or the put counterpart

was quoted closer to the temporal reference point. A mirrored condition is applied for k ≤ 1.

These conditions trade off the liquidity of relevant options against the synchronicity of the data

points used as inputs for building volatility smiles. When building implied volatility smiles, we

make sure that for each volatility smile the call (put) prices (calculated for all options using

put-call parity) are monotonically decreasing (increasing) functions of k.

The standard SVI parametrization of implied total variance, w(x, τ), with time-to-expiry

τ is given as a function of log-moneyness x = log(k) = log(K/F ) and a parameter set χ =

{a, b, ρ,m, σ}:

w(x, τ) = σ2
BS(x)τ = a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

)
, (D.1)

where a ∈ R, b ≥ 0, |ρ| < 1,m ∈ R, σ > 0 and a + bσ
√

1− ρ2 ≥ 0. Our application regards

the stochastic volatility inspired (SVI) model as an interpolation method akin to a polynomial

fit. In fact, when testing different approaches, we also considered a quadratic function to fit

volatility smiles. However, the SVI parametrization most of the times displayed a better fit

compared to the quadratic function. We do not treat SVI as an option pricing model per se in

the sense that we do not calibrate it to all option data using a single set of parameter values.

Instead we fit the functional form (D.1) independently for every reference interval and for every

option maturity. This allows us to compromise between interpolating with fully flexible non-

parametric approaches such as kernel smoothing and calibrating a parametric option pricing

model.

To build the input for our estimation procedure, we calibrate the SVI model at every time

point for two volatility slices using a quasi-explicit calibration approach as per De Marco and

Martini (2009). For each day we choose two volatility slices such that times-to-maturity for

the first slice τ1 ≤ τ and for the second τ2 > τ , and τ1, τ2 are the closest available maturities

61



Table 7: SVI interpolation RMSEs

FTSE 100 DAX 30 S&P 500

5 < τ ≤ 40 40 < τ ≤ 75 5 < τ ≤ 40 40 < τ ≤ 75 5 < τ ≤ 40 40 < τ ≤ 75

0.75 < k ≤ 0.85 0.68 0.37 0.81 0.35 0.56 0.30
0.85 < k ≤ 0.92 0.17 0.09 0.20 0.10 0.41 0.14
0.92 < k ≤ 0.98 0.13 0.07 0.20 0.09 0.29 0.17
0.98 < k ≤ 1.03 0.15 0.07 0.24 0.10 0.33 0.11
1.03 < k ≤ 1.10 0.22 0.11 0.34 0.14 0.44 0.16
1.10 < k ≤ 1.20 0.29 0.15 0.44 0.23 0.41 0.22
Total 0.19 0.12 0.37 0.18 0.40 0.19

This table reports the SVI interpolation RMSEs, reported as a percentage, for the filtered samples of options
written on the FTSE 100, DAX 30 and S&P 500 indices. The sample consists of the daily options data covering
the period 1 January 2006 to 13 August 2015. The data are interpolated for each market, each day, and each
maturity slice separately.

to τ . After having calibrated an SVI fit for these two volatility smiles, we interpolate between

these slices linearly in total variance to τ , which we set equal to 40 days.

Table 7 reports the RMSEs for implied volatility data based on SVI interpolations for

each of the markets we consider and for different data buckets. The results show that the SVI

interpolation generally has very small approximation errors, with RMSEs less than 0.5% for

options with moneyness levels between 0.85 and 1.1.

The moneyness range we use for our standardized option panel at each time point is

determined by the following interval rule:

max{min{k1, k2} − 0.05, 0.85} ≤ k ≤ min{max{k1, k2}+ 0.01, 1.1}.

Although it would be better to have a fully homogeneous option panel with fixed moneyness

range at every time point, there are days when the observed range is considerably narrower

than it is on other days. Extrapolating these narrow ranges to obtain a wider fixed moneyness

range would generate unreliable information. Therefore, we limit extrapolations to a maximum

of up to 5% on the left wing (relative to the ATM point) and only 1% on the right wing of each

implied volatility smile. For the estimation procedure we sample from the resulting interpolated

volatility fit up to 13 option implied volatilities evenly spaced between 0.85 and 1.09 moneyness

levels.
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