
Zhang, Xingmin; Opschoor, Anne; Lucas, André

Working Paper

The importance of heterogeneity in dynamic network
models applied to European systemic risk

Tinbergen Institute Discussion Paper, No. TI 2021-085/III

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Zhang, Xingmin; Opschoor, Anne; Lucas, André (2021) : The importance of
heterogeneity in dynamic network models applied to European systemic risk, Tinbergen Institute
Discussion Paper, No. TI 2021-085/III, Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/248769

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/248769
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
TI 2021-085/III 
Tinbergen Institute Discussion Paper  
 

 
 
The Importance of Heterogeneity in 
Dynamic Network Models Applied 
to European Systemic Risk 
 
 
Xingmin Zhang1  
Anne Opschoor2 
André Lucas2 
 
 
 
 
 
 
 
 
 
1 Southwestern University of Finance and Economics 
2 Vrije Universiteit Amsterdam 
 



 
 
 
 
Tinbergen Institute is the graduate school and research institute in economics of 
Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit 
Amsterdam. 
 
Contact: discussionpapers@tinbergen.nl  
 
More TI discussion papers can be downloaded at https://www.tinbergen.nl  
 
Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 598 4580 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/


The Importance of Heterogeneity in Dynamic Network

Models Applied to European Systemic Risk∗

Xingmin Zhanga, Anne Opschoorb, and André Lucasb
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Abstract

Standard spatial time-series models for financial networks can fail substantially in un-

covering empirical network and risk dynamics. We propose a novel empirical spatial

modeling framework that solves this problem by accommodating both heterogeneity

and time-variation in economic connections and spillovers. While highly flexible, the

model is still straightforward to estimate. We apply the model to several datasets for

Eurozone sovereign credit risk during the sovereign debt crisis. Accounting for hetero-

geneity and time-variation turns out to be empirically important and the new model

uncovers intuitive patterns that would go unnoticed otherwise in currently available

homogeneous and/or static spatial financial network models.

Keywords: dynamic networks, spatial auto-regressions, heterogeneous spatial conta-

gion, network heterogeneity, sovereign risk dynamics.

1 Introduction

Spatial models have a long history in economics and regional science. More recently, however,

spatial models have also attracted quite some attention in financial economics to describe networks

∗We thank Bernd Schwaab and seminar participants at Vrije Universiteit Amsterdam for suggestions
that helped to improve the paper. This research was initiated when Zhang was visiting Vrije Universiteit
Amsterdam on a Chinese Research Council scholarship. Zhang acknowledges financial support from National
Natural Science Foundation of China (No.72101209).
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of firms and markets. Starting with the spatial models of Fernandez (2011), Fernández-Avilés et al.

(2012) and Asgharian et al. (2013) to study international stock market linkages, spatial models

have been used across a wide variety of areas, including studies into asset pricing implications

of network connections (Kou et al., 2018), cross-sectional market volatility patterns as related to

firm connections (Herskovic et al., 2020), financial markets and banking sector stability (Tonzer,

2015; Milcheva and Zhu, 2016; Pino and Sharma, 2019), contagion across energy markets (Demirer

et al., 2020) and credit ratings (Asgharian et al., 2013), and pricing and portfolio implications

in real estate markets (Zhu and Lizieri, 2021; Zhu and Milcheva, 2020). Also from a theoretical

perspective, spatial models for networks naturally emerge as Nash equilibria as in for instance

Denbee et al. (2021).

In all these models, the strengths of the linkages between network players is typically captured

by a matrix of observable variables, which may vary over time. For instance, in our application

we use quarterly cross-border banking claims in the Eurozone to measure spatial weights; see also

Tonzer (2015) and Blasques et al. (2016). On top of the relative connection strengths in the network

as captured by the observables, the overall strength of all connections in the network is generally

captured by a single, static parameter. This imposes quite some restrictions on the model speci-

fication. In dynamic and stressed settings such as a crisis, different players in the network might

have a sensitivity to other players in the network that increases or decreases disproportionately

during such periods. Such movements may not be captured by the observables used to describe the

approximate network connections. This poses two main challenges to most of the spatial models

used thus far to describe financial networks.

First, as indicated by Aquaro et al. (2021), there is a need to allow for more heterogeneity in

the spatial model parameters that describe the sensitivities of different players to shocks elsewhere

in the network. They show that standard scalar spatial models are typically inadequate and may

obscure and bias important patterns in the data. More heterogeneity in the spillover parameters

is called for to capture the network structure well. This finding is also in line with Herskovic et al.

(2020), who allow for different network sensitivities of firms in a set-up where connections between

firms are measured. Both Aquaro et al. (2021) and Herskovic et al. (2020) use heterogeneous, but

static extensions of the baseline spatial model for financial networks. This brings us to the second

challenge: time-variation in the network connections. Blasques et al. (2016), Catania and Billé

(2017), and Billé et al. (2019) show that the overall strength of network connections can change

substantially over time in stock markets, debt markets, and real estate markets. These papers

introduce dynamic extensions of the baseline spatial model that allow for additional dynamics

in network propagation strength on top of what is captured by simple observable variables. All

three papers do so with one (possibly two) dynamic parameters. The results allow one to obtain
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additional measures of systemic stress and network fragility that exhibit more dynamics during

turbulent times compared to the typical static models available in the current literature. Still, these

models allow for only a limited amount of (dynamic) heterogeneity across the network players;

compare Aquaro et al. (2021). This may severely bias the results against time-variation in network

propagation strength and hide important features of the network and its dynamics. For example,

Blasques et al. (2016) find evidence of time-varying spillover strength for European sovereign

debt, but the time-variation is surprisingly modest given the variety of countries included in their

analysis. This is likely to be due to over-restrictive pooling assumptions in the model specification.

This paper develops a new spatial dependence model for dynamic networks with heterogeneous

spatial spillover parameters, thus filling an important gap in the empirical finance literature for

dynamic network modeling. On top of time-variation in network connections via observed vari-

ables, we introduce separate time-varying spatial dependence parameters such that each network

player can have its own time-varying sensitivity to what happens elsewhere in the network. Em-

pirically and in simulations, we find that allowing for both heterogeneity and time-variation are

important. If the dynamics are omitted, differences in fragility of the network over time are not

captured adequately. Conversely, if heterogeneity is omitted, a scalar dynamic spatial parameter

only provides a very blurred picture of the different positions of the network players over time. For

instance, if the network importance of some countries plays up over time, whereas that of others

wanes, the overall scalar summary measure might incorrectly signal nothing is happening in the

network at all. Again, this may lead to flawed inference and an incorrect assessment of the true

underlying economic mechanisms. The new model avoids these issues and allows us to capture

both the heterogeneity, dynamics, and asymmetric risk propagation between network members

much more accurately. Despite all this added flexibility, the new model is still straightforward to

estimate.

To illustrate the importance of both heterogeneity and time-variation in financial and economic

networks, we apply our model to three different datasets related to European sovereign credit risk.

Our baseline analysis uses weekly changes in 5 year government bond spreads over the OIS EONIA

rate for 7 European countries over the period 2009-2020. We find that allowing for heterogeneous

dependence parameters improves the statistical fit compared to the scalar spatial model of Blasques

et al. (2016), as well as compared to static heterogeneous models or static scalar models, like the

original model of Anselin (2009). Important features characterizing the dynamics of the European

sovereign debt crisis become clear in the new heterogeneous dynamic model. This includes the

anchoring role of Germany as well as the risk sensitivities of countries like Spain, Portugal, Ireland,

and particularly Italy. Allowing for heterogeneous, time-varying spatial dependence parameters

leads to an increase in both the short- and long-run spillover risk, in some cases by factors more
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than five. Again, we stress that all such features would go unnoticed in homogeneous or static

versions of the model such that it is empirically important to allow for both heterogeneity and

time-variation in financial networks.

Our study contributes to several lines of literature. On the one hand, it opens an new av-

enue to investigate financial network properties in a much more flexible way than with the static

models used in for instance Asgharian et al. (2013), Kou et al. (2018), Herskovic et al. (2020),

and other references mentioned earlier. Given the empirical relevance of both heterogeneity and

time-variation, it may also call for further theoretical advances of baseline frameworks such as in

Denbee et al. (2021) to explain such time-variation. Our paper also links to the extant literature on

modeling financial networks to study risk propagation and financial stability, such as for instance

Acharya et al. (2014), Williamson (2003), Elliott et al. (2014), and Fernandes and Artes (2016).

Recent literature on systemic risk highlights the importance of spatial dependence and network

spillovers (e.g., Asgharian et al., 2013; Babii et al., 2019). Finally, methodologically our work

relates to the literature on score-driven time-varying parameter models as in Creal et al. (2013).

A similar score-driven approach is found in Blasques et al. (2016), Catania and Billé (2017), and

Billé et al. (2019). As mentioned before, however, our work differs from theirs in that we allow for

more dynamic heterogeneity across network players, which proves empirically highly important.

As such, our new spatial specification could also be used to measure contagion effects and systemic

risk; see Franklin and Douglas (2000); Billio et al. (2012); Acemoglu et al. (2015). We are also

aware of a parallel line of literature that measures network effects via vector autoregressive models

and a variance decomposition; see Diebold and Yılmaz (2014). In contrast to this approach, the

spatial approach extended in this paper provides directed links rather than symmetric links only.

Our work thus mainly concentrates on providing a way forward compared to the static and ho-

mogeneous spatial models that are used in many contemporary analyses of financial and economic

networks; see for instance Kou et al. (2018), Herskovic et al. (2020), or Tonzer (2015).

The remainder of this paper is organized as follows. Section 2 discusses the new model. The

data are discussed in Section 3, followed by the empirical results in Section 4. Section 5 presents

robustness checks. Section 6 concludes.

2 Empirical model

2.1 Spatial autoregressions

Rather then building up the model step-by-step, we provide the most general form of the model

first and then highlight how earlier models are special cases of this more general specification. We
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gather the relevant measurements of a network into the vector yt. For instance, in our setting

yt contains spread changes of sovereigns in the Eurozone, but the measurements might just as

well relate to stock returns in a network of connected firms. We use the following vector-valued

time-varying parameter spatial autoregressive (SAR) model for yt,

yt = RtWt yt +Xtβ + εt, εt
iid∼ pε(εt; Σt, ν), (1)

where yt = (y1,t, . . . , yN,t)
> ∈ RN×1 denotes the vector of cross sectional measurements for time

t = 1, . . . , T , where the cross-section dimension i relates to the network players, εt ∈ RN×1 is

a serially independently and identically distributed error term or vector of ‘structural’ shocks

with a density pε(εt; Σt, ν) such as the normal distribution or alternatively a fat-tailed Student’s

t distribution. The density is characterized by a diagonal covariance matrix Σt and a static

parameter ν. Furthermore, Xt ∈ RN×K denotes a matrix holding exogenous regressors with

corresponding static parameter vector β ∈ RK×1, Wt ∈ RN×N is an observable matrix containing

the spatial weights, and Rt ∈ RN×N is a diagonal matrix containing the unobserved time-varying

heterogeneous spatial spillover parameters, also called spatial autoregressive coefficients. The

spatial spillover parameters in Rt play a major role in the subsequent analysis. The model in (1)

is already dynamic via the observed Wt matrix that measures the time-varying connections in the

network in the standard way. On top of this, (1) also allows for further unobserved heterogeneity

via the matrix Rt. More on this follows below.

The model in (1) nests several models from the literature. For example, if Σt = Σ and

Rt ≡ ρ · IN for a scalar ρ with IN ∈ RN×N the identity matrix, then (1) collapses to the standard

spatial regression model; see for instance Anselin (2009), Asgharian et al. (2013), Kou et al. (2018),

Denbee et al. (2021). For a static Rt = R, we obtain the model with static heterogeneous spillover

strengths as in Aquaro et al. (2021) and Herskovic et al. (2020). The static model Rt = ρ · IN
was generalized to a setting with a time-varying spatial autoregressive parameter ρt by Blasques

et al. (2016) and Catania and Billé (2017). We also obtain this scalar dynamic model as a special

case by setting Rt = ρt · IN . However, our new model that allows Rt to be a non-scalar matrix,

provides a much richer description of the spatial dynamics of the model. In particular, some

network units may be important contributors to systemic risk at some times, whereas other units

may take over this role at other times. This is captured by the different diagonal elements of Rt,

the ith element measuring the spatial sensitivity of unit i to the other units. Note that (1) also

allows the structural shocks to have a time-varying variance Σt. This allows for periods where the

flow of information is high compared to other periods. The model can easily be extended further

to include, for instance, a spatial lag structure for the error term, or a non-diagonal covariance

structure for εt.

5



2.2 Modeling time-variation in spatial dynamics

The time variation in Rt and Σt can be modeled in different ways. In this paper, we endow Rt and

Σt with score-driven dynamics as proposed in Creal et al. (2011, 2013) and Harvey (2013). The

model then remains easy to estimate via standard maximum likelihood methods. It is also known

note score-driven dynamics possess information theoretic optimality properties and yield updates

of the parameters that (in expectation) improve the fit of the model to the data (as measured in

the so-called Kullback-Leibler divergence); see Blasques et al. (2015) and Creal et al. (2020).

To define the score-driven dynamics for Rt and Σt, we gather all time-varying spatial param-

eters as well as the volatilities into the vector ft. In particular, we set

ft = (R11,t, . . . ,RNN,t, log Σ11,t, . . . , log ΣNN,t)
> , (2)

where Ri,i,t and Σi,i,t are the ith diagonal elements of Rt and Σt, respectively. As Σi,i,t =

exp(fi+N,t), we ensure that the (time-varying) variances Σi,i,t of the shocks εi,t are always positive.1

The spatial model retains its network stability if the spatial spillovers die out. For this, we only

require RtWt to have all eigenvalues inside the unit circle. Note that this still allows for Ri,i,t > 1

for specific network players i, as long as the maximum eigenvalue of RtWt remains below one.

The latter depends on all elements of Rt and Wt, and not on one specific Ri,i,t only. The fact that

we allow Ri,i,t to move outside the unit interval therefore provides substantial flexibility to the

model. This comes on top of the flexibility provided by allowing the diagonal elements of Rt to

be different in the first place compared to the scalar model Rt = ρt · IN of Blasques et al. (2016).

1Other parameterization choices are also possible. One may for instance choose to model the logit
transforms log(Ri,i,t/(1−Ri,i,t)) of Ri,i,t rather than Ri,i,t itself to ensure that Ri,i,t ∈ [0, 1] for all values
of ft. Though intuitive, such reparameterizations may come at a considerable cost. In fact, we show in this
paper that using the logit transforms for Ri,i,t is actually a bad idea if there is heterogeneity in spillover
sensitivity: it unnecessarily restricts the model’s ability to capture the dynamics in the data and leads to
biased estimates, as some Ri,i,t may go outside the 0–1 range without jeopardizing the spatial stability of
the model.
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Using our definition of ft, the score-driven dynamics are given by

ft+1 = ω +Bft +Ast, (3)

st =
∂ log py (yt | ft; Σt, ν)

∂ft

=
∂ log pε

(
Σ
−1/2
t (yt −RtWtyt −Xtβ) ; Σt, ν

)
∂ft︸ ︷︷ ︸

part (i)

− 1
2

∂ log |Σt|
∂ft︸ ︷︷ ︸

part (ii)

+ 1
2

∂ log
∣∣∣(IN −RtWt)

2
∣∣∣

∂ft︸ ︷︷ ︸
part (iii)

, (4)

where we use unit scaling in the sense of Creal et al. (2013). The derivations can be found in

the appendix. Equation (4) reveals that the score dynamics of volatilities and spatial spillover

parameters contains three components: (i) a part related to the density of εt affecting both Rt

and Σt, (ii) a part related to the Jacobian of the transformation from εt to yt and affecting only

Σt, and (iii) a part related to the same Jacobian and accounting for the simultaneity bias in the

spatial lag set-up of the model, thus affecting only Rt. These three components are worked out in

detail below.

Rather than assuming that the errors εt are normally distributed, we assume that εt follows a

fat-tailed Student’s t distribution with zero mean, covariance matrix Σt, and ν degrees of freedom,

pε (εt ; Σt, ν) =
Γ
(
1
2(ν +N)

)
Γ
(
1
2ν
)
|(ν − 2)πΣt|1/2

(
1 + ε>t Σ−1t εt/(ν − 2)

)−0.5(ν+N)
. (5)

The normal distribution is recovered as a special case for ν → ∞. The problem with the normal

distribution, however, is that it does not allow for incidentally large observations and fat tails in

the data, which is particularly problematic for financial economic data as in our application later

in the paper. In addition, the Student’s t distribution produces robust dynamics for the time-

varying parameters Rt and Σt via the score-driven updates in (4). To see the latter, we show in

the appendix that for the Student’s t distribution equation (4) reduces to

si,t =

 wt Σ−1i,i,ty
?
i,tei,t −

(
Wt (IN −RtWt)

−1
)
i,i

for i = 1, . . . , N,

1
2 wt Σ

−1
i−N,i−N,te

2
i−N,t −

1
2 for i = N + 1, . . . , 2N,

(6)
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where si,t is the ith element of st, and

y?t = (y?1,t, . . . ,y
?
N,t)

> = Wtyt, (7)

et = (e1,t, . . . , eN,t)
> = yt −RtWtyt −Xtβ, (8)

wt =

(
1 +

N + 2

ν − 2

)/(
1 +

e>t Σ−1t et
ν − 2

)
. (9)

For the normal distribution, wt = 1 in (6). For the Student’s t distribution with ν <∞, however,

the weight wt provides a robustness feature to the time-varying parameter dynamics: if an obser-

vation yt is an incidental outlier or influential observation with a large et, the weight wt tends to

zero. Such observations thus receive less impact on the volatility and spatial correlation dynamics.

This is a distinct advantage of the current model; see also similar features for other location and

scale models in for instance Creal et al. (2013) and Harvey and Luati (2014).

The two scores in (6) have an intuitive interpretation. The first set of scores for i = 1, . . . , N

relates to the spatial correlation parameters Ri,i,t. These scores consist of two terms. The first

term is the regressor weighted standardized error term ei,t, where the regressor y?i,t is the ith

element of the dependent variable yt pre-multiplied by the spatial weights matrix Wt. As Ri,i,t

can be seen as a (spatial) regression parameter, this part of the score adjusts the parameter

upwards or downwards depending on whether the most recent observation lies below or above

the estimated regression line at the previous point in time. The second term in the equations

in (6) corrects for the simultaneity bias in the regression specification due to the endogeneity of

yt. The endogeneity correction naturally becomes smaller if either Rt or Wt lie closer to zero,

i.e., if the endogeneity problem is less. The second set of equations in (6) relates to the volatility

parameters log Σi,i,t and are more familiar from the literature, see for instance Creal et al. (2011).

We recognize the GARCH type pattern for the volatilities: log Σi,i,t reacts to standardized squared

error terms e2i,t/Σi,i,t. If the weighted (wt) squared errors exceed their expectation Σi,i,t, the

volatility parameters are adjusted upwards. As mentioned before, the weights wt due to the use

of the Student’s t distribution ensure that the volatility dynamics are robust to incidental outliers

and fat tails.

2.3 Estimation

Score-driven models can easily be estimated by maximum likelihood methods via a standard pre-

diction error decomposition. Gathering all static parameters in the vector θ = (β, ν,ω,A,B), we
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obtain the objective function

`(θ) =
T∑
t=1

py(yt | ft,θ) ≡
T∑
t=1

py(yt | Rt,Σt, ν). (10)

To compute the likelihood, one proceeds as follows. Given a value of θ and an initial value f1,

one obtains the time-varying parameter values ft for all times t = 1, . . . , T using the recursion

(3). With these values of ft, we obtain the values of Rt and Σt using equation (2). These can

then directly be plugged into (10) to obtain the value of the log-likelihood function. The initial

f1 is obtained by estimating a static version of the model on the initial 2 years of observations

and setting f1 to the estimates of the spatial correlation parameters and log error variances. If

a transformation was applied in equation (2), of course the inverse of the same transformation is

first applied to these static initial estimates.

We obtain the maximum likelihood estimator as θ̂T = arg maxθ `(θ). The covariance matrix

of θ̂T can be estimated in the usual way as

V̂T = Ĥ−1T · ĴT · Ĥ
−1
T , ĴT =

T∑
t=1

dpy(yt | ft, θ̂T )

dθ

dpy(yt | ft, θ̂T )

dθ>
, ĤT = −∂

2`(θ̂T )

∂θ∂θ>
, (11)

where the computation of the outer-product-of-gradients ĴT uses the total rather than the partial

derivatives. If the model is correctly specified, ĤT = ĴT and the covariance matrix collapses to

V̂T = −Ĥ−1T

2.4 Simulation evidence

To investigate the properties of the new model and the effects of heterogeneity in the spatial

autoregressive parameters, we report the results of a small simulation experiment. The experiment

is set up as follows. We consider a data generating process (dgp) with dynamic, heterogeneous

spatial parameters Rt. We use a setting with fat-tailed structural shocks (ν = 5), no regressors

(β = 0), and no heteroskedasticity (Σt = Σ) with N = 4. We simulate around 600 observations,

similar in magnitude to the number of time series observations in the application. For Wt, we

use the row-normalized empirical spatial weight matrices Wt for Germany, France, Italy, and

the Netherlands from Section 4. For concreteness, we set A = 0.07 · IN , B = 0.9 · IN , and

(IN −B)−1ω = (0.45, 0.65, 0.90, 0.35)>, where the latter is the unconditional mean of the diagonal

elements of Rt. Qualitatively similar results are obtained for other parameter settings.

We estimate four different models: a static scalar model (ρ), a dynamic scalar model (ρt), a

static diagonal model (R), and a dynamic diagonal model (Rt). This allows us to clearly see the
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Figure 1: Simulated true and fitted spatial dependence parameters

Each panel shows the simulated and estimated paths of one out of N = 4 spatial autoregressive parameters.
The true data generating process has heterogeneous time varying spatial parameters with unconditional
means equal to 0.45 (top-left), 0.65 (top-right), 0.90 (bottom-left), and 0.35 (bottom right), respectively.
The four models estimated are the static scalar spatial autoregression (Rt = ρ · IN ), the static diagonal
model (Rt = R), the dynamic scalar model of Blasques et al. (2016) (Rt = ρt · IN ), and the new diagonal
spatial model (diagonal Rt).

separate contributions of dynamics and heterogeneity. Figure 1 reports the results for a typical

simulation. The simulated time-variation and heterogeneity are actually quite modest compared

to the empirical patterns found in the data in Section 4.

Figure 1 shows that the correctly specified model (solid blue curve) captures the movements in

the dgp (solid red) highly accurately for sample sizes similar to those in our empirical application.2

The static version of the modelRt = R (dashed blue) with heterogeneity but without dynamics still

captures the unconditional level of the true time-varying spatial correlations, but misses all of the

significant dynamics of sometimes up to size 0.4. The standard static scalar spatial autoregression

of Anselin (2009) with Rt = ρ · IN fares even worse. It has to balance the different levels of the

spatial autocorrelations both in the cross section and over time and therefore lands at some sort

of average spatial autocorrelation of ρ around 0.55 to 0.6 (dashed black).

We see a similar bias for the dynamic scalar spatial regression model (solid black) of Blasques

et al. (2016). The true spatial correlations (in red) are below the black solid curve for the top-

left and bottom-right panels, whereas it is above and on top of the black curve in the other two

panels. Again, given the heterogeneity in the true spatial correlations, the scalar model can only

2Additional unreported simulations show that the new model can also adequately track the true model
parameters even in cases where the statistical model is misspecified. This is in line with the theoretical
results in Blasques et al. (2015) and Creal et al. (2020).
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take some kind of average of these, both in terms of the overall level and in terms of the specific

dynamics over time. For the latter, we note for instance in the bottom-left graph the peaks of

similar magnitude in the black curve around observations 230 and 260, respectively. The true (in

red) dynamics of Ri,i,t for this cross-sectional unit, however, only have a peak around observation

260, and not around time 230. The latter peak in the black curve appears more attributable to the

bottom-right cross-sectional unit, which clearly peaks around time 260, but not around the earlier

time 230. As all heterogeneous dynamics of all series have to be captured by one single ρt for this

model, a mixed-up message emerges about what is actually happening in the data. Our new model

with heterogeneous, diagonal Rt avoids all these issues and captures the variety of dynamics much

better.

3 Data

We apply the model to analyze the network dynamics of sovereign systemic risk in the euro-zone.

We consider seven countries: Germany, France, Ireland, Italy, Netherlands, Portugal, and Spain.

Our sample period spans December 10, 2009 until July 2, 2020. As our dependent variable yt

we consider the changes of 5-year government yield spreads. The yield spread is defined as the

difference between the Euro-denominated 5-year government bond yield and the 5-year EONIA

OIS rate to concentrate on the credit risk component of sovereign bonds. Later, we also provide

a robustness analysis using a 1-year rather than 5-year maturity, as well as using CDS spreads

rather than bond yield spreads. The sample contains 543 weekly observations for each country.

Data are taken from Datastream and Bloomberg.

We base our main analysis on changes in 5-year government yield spreads rather than on log

returns. Log returns can lead to peculiar results during our sample period, as spreads near zero

can result in log returns on these spreads being very large. For instance, this may lead to Germany

being the most volatile country in the sample. By taking differences rather than log differences,

these problems are avoided and the results are much more intuitive, for instance Germany becoming

one of the safer countries in the sample. We also base our main analysis on bond yields rather

than CDS spreads (though we have a robustness analysis with CDS spreads as well). Particularly

during the later years in the sample, sovereign CDSs are less liquidly traded compared to their

underlying bonds. As a result, all CDS spreads hover more closely to zero with little variation and

instability in the estimates of the spatial correlation parameters. Again, these issues are avoided

by working with the bond yield data instead.

Figure 2 presents the government yield spreads. All countries in our sample tend to co-move

especially during the 2010–2012 European sovereign debt crisis, except for Germany and to some
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Figure 2: Government bond yield spreads of seven Eurozone sovereigns and the U.S.

Weekly Euro-denominated 5-year government yield spreads of seven European countries and the United
States from December 2009 - July 2020.

extent the Netherlands. Whereas most yields go up during the crisis, those of Germany go down,

Germany acting as an anchor and safe-haven for the euro during that time. Note that the right-

hand panel has a different vertical scale, indicating that the countries in that panel have much

higher government yield spread levels compared to the countries in the left-hand panel. This makes

sense, as these were precisely the countries that were at the center of the crisis.

Table 1 reports summary statistics. We see high volatilities for countries such as Portugal,

Ireland, Italy and Spain compared to Germany. The kurtosis is high for all series, indicating

that the data are (unconditionally) peaked and that a combination of volatility clustering and

conditional non-normality may be called for in the model. Note that the model proposed in this

paper indeed accommodates both.

We use three control variables from the literature. To control for economic conditions, we

include the (log) returns in each country’s main stock index as well as the slope of the term

structure (gpvernment bond yield 10-year minus 1-year) for each country. We also control for

various measures of market stress by including the changes in the VSTOXX index. The VSTOXX

index measures volatility in options markets and is therefore forward looking measures of market

stress and investor sentiment. It also relates to the local Eurozone developments and the risk

perceptions and appetite.

As a final ingredient of the model, we require data for the spatial weight matrices Wt. We

choose domestic banks cross-border exposures as in Tonzer (2015) using data extracted from the

BIS website.3 A small number of missing values are back-filled by the last available observations.

The consolidated statistics in the BIS database cover the positions of international bank cross

border holdings and thus provide a measure of interconnectedness of the financial system in the

3https://stats.bis.org/, retreived July 17, 2020.Like Blasques et al. (2016), we use the immediate
counterparty risk measure of banking groups’ country risk exposures.
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Table 1: Summary statistics 5-year government bonds
This table lists descriptive statistics of changes of 5-year government yield spreads of seven European
countries and the United States. The yield spread is defined as the difference between the 5-year government
bond yield and the 5-year EONIA OIS rate. In addition, we list summary statistics of stock returns and
changes in the VSTOXX index and term spread. The term spread is computed as the absolute change
between the 10-year and 1-year government bond yield. All variables are weekly from December 10, 2009
until July 2, 2020.

mean s.d. med min max skew kurt
5 year gov bond spread changes
Germany 0.000 0.052 0.001 -0.20 0.33 0.30 7.38
Spain 0.000 0.180 -0.003 -1.07 0.82 -0.22 8.64
France 0.000 0.069 -0.001 -0.64 0.35 -0.95 19.94
Ireland -0.002 0.361 0.001 -3.07 2.76 -0.90 29.65
Italy 0.001 0.196 -0.001 -0.93 0.99 0.52 8.29
Netherland -0.001 0.062 0.000 -0.27 0.41 0.72 10.90
Portugal 0.000 0.505 -0.004 -3.31 3.95 0.30 21.44
U.S. 0.002 0.088 0.004 -0.40 0.27 -0.43 4.50
Stock index returns
Germany 0.001 0.029 0.004 -0.22 0.10 -1.31 11.62
Spain -0.001 0.032 0.002 -0.23 0.10 -0.92 8.54
France 0.000 0.028 0.003 -0.22 0.10 -1.28 11.24
Ireland 0.001 0.026 0.003 -0.20 0.08 -1.47 11.18
Italy 0.000 0.033 0.002 -0.26 0.10 -1.34 11.20
Netherlands 0.001 0.026 0.003 -0.20 0.09 -1.50 12.59
Portugal -0.001 0.029 0.001 -0.20 0.07 -1.11 7.92
Gov. yield spread changes (10-year - 1-year)
Germany -0.004 0.081 -0.011 -0.278 0.523 0.994 7.44
Spain -0.005 0.224 0.000 -3.732 1.175 -8.107 144.5
France -0.004 0.083 -0.007 -0.335 0.578 0.838 8.11
Ireland -0.005 0.279 -0.012 -2.283 2.628 0.790 30.65
Italy -0.002 0.154 -0.008 -0.855 1.125 1.022 14.74
Netherlands -0.006 0.108 -0.009 -0.890 0.828 -0.112 22.57
Portugal -0.003 0.431 -0.007 -2.475 2.536 -0.035 13.00
Control variable
∆ VSTOXX -0.001 3.906 -0.150 -16.98 31.31 1.68 16.81

Eurozone. Financial system interconnectedness can be regarded as one of the prominent determi-

nants for sovereign credit risk spillovers given the bail-out incentive of governments for their local

banking sector, and its potential effect on government creditworthiness. The quarterly data on

cross-exposures are converted to weekly values by taking the latest value of the BIS data available

in that week. We lag the entries by two quarters to prevent the use of future information in Wt.

The spatial weight matrices are row-normalized.
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4 Empirical application

In this section we discuss our empirical results. Parameter estimates of the different models can

be found in Section 4.1, while Section 4.2 contains their risk spillover implications.

4.1 Spatial dependence dynamics in the euro zone

Table B.3 presents the parameter estimates for four alternative model specifications. The first two

columns relate the the static and dynamic model with homogeneous spatial dependence parameter

ρt. The last two columns correspond to the models with heterogeneous spatial autoregressive pa-

rameters Rt. For the dynamic version of this model, we use a common parameter B = β · IN , but

heterogeneous adjustment speeds for the spatial parameters, A = diag(α1, . . . , αN , αvol, . . . , αvol),

with αi the speed of adjustment of Ri,i,t, and αvol the common speed of adjustment of the volatil-

ities. Allowing for heterogeneous volatility adjustment parameters does not impact out main

results.

Allowing for heterogeneous spatial spillover parameters considerably improves the statistical fit

of the model. The maximized log-likelihood increases by roughly 195 points in the static case, and

by around 216 points for the dynamic case. Heterogeneity in spatial dynamics thus appears a key

property in the data. Allowing for dynamic rather than static spatial dependence also increases

the fit of the model. The log-likelihood increases by 42 points in the scalar case, and by 63 points

for the heterogeneous model. The value-added of the dynamics thus comes out more clear in

the heterogeneous case. This is in line with the simulation results from Section 2.4: not only the

levels, but also the dynamic patters are corrupted if we incorrectly pool spillover parameters across

countries.

The importance of both the heterogeneity and dynamics clearly shows in the plots of ρt and

Ri,i,t in Figure 3. The plots are easily obtained by evaluating ft for t = 1, . . . , T at the maximum

likelihood estimate θ̂, and then inserting ft(θ̂) into equation (2) to obtain estimated volatilities

and spatial spillover parameters. The left-hand panel shows the results for the scalar model. The

static estimate of ρ of slightly below 0.5 corresponds to the long-run average of the dynamic scalar

ρt. The variation of ρt over time is quite modest between ρt = 0.2 and ρt = 0.7.

The picture changes dramatically if we consider the heterogeneous spatial spillover parameters

Ri,i,t in the right-hand panel of the figure. Note that both panels have the same vertical scale.

Whereas the scalar ρt varied between 0.2 and 0.7, the Ri,i,t vary between values below 0 up to

1.5. There are clearly two contributions to this. First, as we see for the static version of the

heterogeneous model, static spillover parameters Ri,i considerably fan out across countries and

range between a low value around 0 for Germany, to a high value of 1.1 for Italy. Note that this
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Table 2: Parameter estimates: 5-year bond yields
This table reports the estimated parameters of four spatial dependence models, applied
to weekly first differences in the spread between 5-year government bond yields and the
5-year EONIA. Results are for seven Eurozone countries. Robust (Huber sandwich)
standard errors are reported in parentheses. The models are based on Student’s t
distributed disturbances with time-varying heteroscedasticity as in model (1)–(4). For
the diagonal models, we have B = β · IN and A = diag(α1, . . . , αN , αvol, . . . , αvol)
We report the maximum log-likelihood value (LogLike) and AIC(Akaike information
criterion). The sample runs from December 2009 - July 2020. The table is continued
on the next page.

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel A: Spatial dependence parameters
ω/ωGE 0.463 0.009 0.074 -0.001

(0.022) (0.005) (0.031) (0.002)
ωSP 0.628 0.010

(0.060) (0.006)
ωFR 0.341 0.005

(0.026) (0.003)
ωIR 0.819 0.012

(0.043) (0.006)
ωIT 1.111 0.030

(0.108) (0.012)
ωNE 0.682 0.012

(0.038) (0.004)
ωPO 0.898 0.014

(0.069) (0.007)
α/αGE 0.005 0.009

(0.001) (0.003)
αSP 0.039

(0.014)
αFR 0.009

(0.003)
αIR 0.007

(0.009)
αIT 0.089

(0.038)
αNE 0.016

(0.008)
αPO 0.016

(0.014)
βρ 0.982 0.985

(0.010) (0.007)

Panel B: Volatility and control parameters
(see next page)

does not impair the spatial instability of the model: the maximum eigenvalue ofRtWt is still below

1 at all times. The effect of this large variation in spatial dependence parameters for our assessment

of the risk dynamics is also considerable, and we come back to that in the next subsection. Second,
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(Table 2 continued)

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel B: Volatility and control parameters
αvol 0.276 0.271 0.289 0.277

(0.026) (0.026) (0.027) (0.027)
βvol 0.998 0.998 0.998 0.998

(0.002) (0.002) (0.002) (0.002)
ν 3.483 3.540 4.015 4.108

(0.326) (0.334) (0.412) (0.416)
∆ VSTOXX 0.004 0.010 -0.001 0.004

(0.032) (0.029) (0.030) (0.026)
∆ term spread 0.058 0.057 0.037 0.042

(0.049) (0.045) (0.046) (0.042)
local stock -0.022 -0.021 -0.019 -0.019

(0.011) (0.010) (0.010) (0.009)

logLik 4454 4496 4649 4712
AIC -8865 -8946 -9244 -9353

(a) (b)

Figure 3: Filtered spatial autoregressive parameters

This figure depicts fitted dependencies from four different models, applied to Euro-denominated 5-year
government bond yield spreads of seven European countries. The top figure depicts the fixed and time-
varying equi-spatial dependencies, whereas the bottom figure shows the heterogeneous fixed and time-varying
dependencies through time. The sample runs from December 2009 - July 2020.

we see that the time-variation contributes to the variability of Ri,i,t. For instance, Ri,i,t for Italy

ranges from a low 0.25 at the start, to a high 1.5 in the midst of the European sovereign debt

crisis.

We also see that allowing for heterogeneity substantially impacts the dynamics of ρt versus

Ri,i,t. Whereas the scalar ρt shows mild variation over time between roughly 0.2 and 0.7 without

any differences for the Eurozone countries, the Ri,i,t dynamics are much more varied. Some coun-
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tries show a large time-variation, with quite different peaks and troughs, whereas other countries

are much more stable over time. For instance, the Ri,i,t for Germany tightly hovers between −0.1

and 0.25. The fact that it becomes slightly negative at times, corroborates Germany’s role as an

anchor and stabilizer for the Eurozone, a feature that is not clear from the scalar homogeneous

model, nor from the static version of the heterogeneous model. We also see that ρt in the scalar

model remains rather stable until mid-2011: it averages the highly opposite upward movements

of Italy and to a lesser extent Ireland and the Netherlands, versus the downward movements of

Spain, Portugal, France, and Germany. Only around the time that Italy also starts its descent,

the scalar ρt starts to react and go mildly down. The descent of Italy’s Ri,i,t comes after a range

of non-standard support measures by the following the financial crisis. One should however be

cautious in over-interpreting the dynamics of ρt or Ri,i,t on their own: in terms of systemic risk

implications, the Ri,i,t mix with the known spatial weight matrix Wt and the time-varying volatil-

ities Σt to form spatial spillovers. We come back to this in the next subsection, where we interpret

all these components jointly.

One of the striking patterns in Figure 3b is the repeated exceedance ofRi,i,t above the threshold

1 for countries like Italy, Portugal, and Spain. Again, we stress that the model remains still stable

given that RtWt is never explosive, though Rt itself may be. A second highlight in both Figure 3b

and Table B.3 is the importance of allowing for differences in adjustment speeds αi on top of the

differences in the long-run levels of Ri,i,t Countries like Germany, France, and Ireland have a low

αi, indicating that time-variation in Ri,i,t for those countries is modest in size. By contrast, other

countries such as Spain and particularly Italy require a much larger value of αi, resulting in a wider

range of variation for Ri,i,t. Not allowing for this type of heterogeneity would again substantially

distort the empirical results and result in too much stability of Rt, as the model would have

to average the different adjustment speeds. Note that all β parameters for the Ri,i,t dynamics

are pooled. Differentiating these does not increase the likelihood by much, and all persistence

parameters βi remain close to one, such that little is lost by pooling these as opposed to the result

for the αis.

Some final highlights can be found in Panel B of Table B.3. We see that none of the control

variables is statistically significant, a feature that we further corroborate in our robustness analyses

in Section 5. We also see that it is important to allow for fat tails and volatility clustering. The

persistence of volatility is high with a βvol close to one, whereas αvol is also strongly significant.4

The degrees of freedom parameter ν is also significant and actually quite low given that we also

control for volatility clustering: this indicates that government bond yield spreads changes have fat

4Note that in a score-driven model we need not have αvol +βvol < 1 as in a GARCH context, but rather
βvol < 1 only.
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tails and that even 4th order (conditional) moments of government bond yield spreads changes may

not exist. Again, this does not result in problems for our score-driven model, unlike for a standard

GARCH model where typically 4th order moments are needed for consistency; see Blasques et al.

(2021) for details on the asymptotics of score-driven models. Also note that the the heterogeneity

and dynamics resolve part of the fat-tailedness problem, as the estimate of ν increases somewhat

from 3.5 to 4.

Summarizing, the statistical improvements by allowing for heterogeneous and time-varying

spatial spillovers in European sovereign credit risk changes is statistically important. It also

results in substantial new insights in the spatial spillover dynamics compared to models that

either lack time-varying parameters or impose homogeneity in spatial spillovers. We now confirm

these findings by looking in more detail to the model’s systemic risk measurement implications.

4.2 Systemic risk spillovers in the Eurozone

In this section, we analyze how sovereign credit risk percolates across countries in our spatial

model set-up. Though we have seen the differences in spatial dynamics for the scalar ρt versus the

heterogeneous Rt specifications in the previous subsection, such differences cannot be extrapolated

immediately into risk spillover differences. The main reason for this is that the immediate spillover

is not only composed of Rt, but of the composite Rt and Wt. The full reduced form effect is a

composite of IN +RtWt + (RtWt)
2 + . . . = (IN −RtWt)

−1. We can see the latter by looking at

the spatial impulse responses and rewriting (1) as

yt = RtWtyt−1 +Xtβ + εt ⇔ (IN −RtWt)yt = Xtβ + εt ⇔

yt = (IN −RtWt)
−1 (Xtβ + εt) =

(
IN +RtWt + (RtWt)

2 + (RtWt)
3 + . . .

)
(Xtβ + εt) , (12)

as long as the largest absolute eigenvalue of RtWt is smaller than one. Apart from the composition

of Rt and Wt in risk spillovers, we also want to account for the magnitude of the structural shocks

as captured by the time-varying covariance matrix Σt in order to prevent increases in Rt to be

off-set by decreases in Σt.

We consider two risk spillover measures: a short-run (SR) and a long-run (LR) risk spillover

measure, defined as

SRi,j,t = e>i Rt Wt Σ
1/2
t ej = Σ

1/2
j,j,t Ri,i,t Wi,j,t (13)

LRi,j,t = e>i (IN −Rt Wt)
−1 Σ

1/2
t ej = Σ

1/2
j,j,t (IN −Rt Wt)

−1
i,j , (14)

respectively, with ei (i = 1, . . . N) denoting the i-th column of IN . The first risk measure computes
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the first-order spatial spillover effect on country i of a one standard deviation structural shock to

country j. The second measure calculates the compound or reduced form effect of such a structural

shock. As there are 7×7 possible combinations of countries and two risk measures, we only report

a sub-selection of the results. We focus on structural shocks to 3 large Eurozone countries, namely

Germany, Spain, and Italy. We provide the results for two models: scalar ρt and heterogeneous

Rt. We thus always allow for time-variation in the spatial correlations. The results are given in

Figures 4 and 5 for SRi,j,t and LRi,j,t, respectively.

The left-hand panels in both Figures 4 and 5 relate to the scalar model (ρt), whereas the right-

hand panels are for the heterogeneous model (Rt). In all figures, the clear decrease in volatility

(Σj,j,t) towards the end of the sample is visible for all countries considered. The decreasing

standard deviations in Σt result in smaller-sized (one standard deviation) shocks to εt. Looking

at Figure 4a, we first note the effect of a one standard deviation shock to Germany in the scalar

model to all other countries. Looking at the vertical axis, we see that the impacts are modest,

and comparable for countries like Italy, Ireland and the Netherlands. Allowing for heterogeneous

spillovers like in Figure 4b changes the picture dramatically. Particularly Italy reacts substantially

to German shocks. Again, this is intuitive, Italy at the time being one of the large economies

in potential distress (Romano, 2021), and Germany being the stable anchor economy. All other

sensitivities are an order of magnitude smaller, with the exception of Ireland during 2011. Note

that the vertical axis in Figure 4b has a much wider scale than in Figure 4a.

We see a similar effect in Figures 4c and 4d. Again note the difference in the vertical axes

between the left-hand and right-hand panels. For the pooled, scalar model ρt the effects on all

other countries are modest and comparable. If we allow for heterogeneity via Rt, however, Spanish

shocks mainly reflect on Portugal, which again makes intuitive sense given the close connection of

these economies. Second in line are Italy and Ireland, which were also at the center of the European

sovereign debt crisis. The other countries only follow at a larger distance. The dynamics of the

risk spillovers based on the heterogeneous model thus follow the dynamics of the crisis much more

closely than those of the homogeneous, pooled model in Figure 4c.

Also for Italy (bottom panels), the first order risk-spillover effects are different between the

pooled and heterogeneous model specification, but much less so than for Germany or Spain. The

most striking difference is the non-diminished spillover from Italy to France till the very end of

the sample. The link to Portugal and Spain in the middle panels persists also somewhat, but

much less so. We see that the spillover of Italy to France versus other countries also peaks at very

different moments, again causing problems for the pooled ρt model to capture all these different

developments well in one and the same ρt parameter.

Compounding the first-order spillover effects from equation (13) into their reduced from effects,
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(a) German shock; ρt model (b) German shock; Rt model

(c) Spanish shock; ρt model (d) Spanish shock; Rt model

(e) Italian shock; ρt model (f) Italian shock; Rt model

Figure 4: First-order spillover effects

This figure gives the first-order effect SRi,j,t of a 1 standard deviation shock of the government bond yield
spread change of country j to country i for j equal to Germany (top panels), Spain (middle panels), or Italy
(lower panels). The left-hand panels relate to the dynamic scalar spatial model. The right-hand panels
correspond tot he dynamic diagonal spatial model. Spreads are denoted in basis points (bp). The sample
runs from December 2009 - July 2020.
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(a) German shock; ρt model (b) German shock; Rt model

(c) Spanish shock; ρt model (d) Spanish shock; Rt model

(e) Italian shock; ρt model (f) Italian shock; Rt model

Figure 5: Long-term spillover effects

This figure gives the compound reduced-form effect LRi,j,t of a 1 standard deviation shock of the government
bond yield spread of country j to country i for j equal to Germany (top panels), Spain (middle panels), or
Italy (lower panels). The left-hand panels relate to the dynamic scalar spatial model. The right-hand panels
correspond tot he dynamic diagonal spatial model. The sample runs from December 2009 - July 2020.
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we obtain the patterns in Figure 5. Again, we see a number of striking differences between the

standard scalar models versus the heterogeneous models. For the scalar models, a one standard

deviation shock only appears to have a sizeable reduced form effect on the country itself. This

holds for all countries considered, the effect in basis points (vertical axes) being understandably

higher for Spain and Italy than for Germany.

The most interesting patterns can be seen in the right-hand plots in Figure 5. One-standard-

deviation shocks to Germany in Figure 5a result in a maximum effect of around 0.14bp on Germany

and 0.04bp on Italy. In Figure 5b, however, we see that though the effect of Germany on Germany

itself remains the largest for the heterogeneous model, with a few exceptions, it is now closely

followed by the effect on Italy with about 0.1bp. Also Spain, Ireland, and Portugal have a much

higher dependence on Germany in the heterogeneous model. This confirms Germany’s role as an

anchor of the Eurozone, a feature that would have been fully unclear in the standard pooled spatial

model.

We see a similar intuitive effect for Spanish shocks in Figure 5d. The heterogeneous model

has the largest effect on Spain itself with a maximum of around 0.6bp. It is followed by the

effect on Portugal. This reduced-form spillover was not apparent for the homogeneous model from

Figure 5c. For example, whereas the scalar spatial model leads from a one standard deviation

shock to Spain to a reduced-form increase to Portugal of only 0.05 bp in July 2012, according to

the diagonal spatial model this effect increases by more than a factor 5 to 0.25 bp.

Finally, for Italy the reduced form effect of an Italian structural shock is largest on Italy,

and quite comparable between the scalar ρt and heterogeneous Rt model. The effects on other

countries are around zero throughout till the end of sample mid 2020 (start of the covid crisis),

with the exception of Spain and Portugal peaking at the beginning of 2020, particularly for the

heterogeneous model.

We conclude that allowing for heterogeneous, time-varying spatial correlations has a prominent

and empirically relevant effect on measuring risk spillover across Europe. The empirical features

that emerge are more intuitive and cannot be recovered by models without either time-variation

or heterogeneity. We expect such effects to be potentially similarly important for other dynamic

networks. Also in those settings, standard static or dynamic network models based on pooled

spatial spillovers may be much to restrictive to uncover the real network dynamics and dominant

risk players in the network. Models of the form presented in the current paper are likely to fare

considerably better in this respect and be empirically more accurate. Given that the current models

are still straightforward to estimate, such additional flexibility comes at little to no computational

cost.
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(a) (b)

Figure 6: Filtered spatial autoregressive parameters after U.S. correction

This figure depicts fitted dependencies from four different models, applied to changes of government bond
yield spreads of seven European countries after taking out the effect of U.S. yield spread changes over EONIA.
The left figure depicts the fixed and time-varying equi-spatial dependencies, whereas the right figure shows
the heterogeneous and time-varying dependencies through time. The sample runs from December 2009 -
July 2020.

5 Robustness checks

In this section, we first show that our main results persist if we correct European yield changes

for U.S. yield changes as a possibly omitted common factor. Second, we show that are results do

not hinge of the use of the 5 govenment bond year yields. Also for 1 year bond yields as well as

for 5 year CDS spreads, allowing for heterogeneity as well as time-variation in the spatial network

model proves important. In all robustness analysis, we keep the observed matrix Wt the same as

in the baseline analysis.

5.1 Remove common global (U.S.) factor

In spatial regression models, there is a concern (Hale and Lopez, 2019) that the network effects may

in part be confounded with a missing common factor. In our current context of spillover effects

in Eurozone countries, network effects could mix in with an omitted global common government

credit risk factor. As a robustness check, we therefore introduce the U.S. government bond yield

spread as an observed common factor. In a first step, we regress all Eurozone yield changes on the

U.S. yield changes to take out the common factor. Subsequently, we redo our analysis using the

residuals of these regressions as our dependent variables.

Figure 6 reports the new filtered heterogeneous spatial dependence parameters. It is clear that

the spatial spillover strength across government yield changes remains remarkably heterogeneous.
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Table 3: Log-likelihood AIC values for models based on 1-year government bond yield
spreads and 5 year CDS spread data.

Set-up is similar as in Table 2.
Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel A: 1y bond yields over EONIA
logLik 4733 4764 4778 4811
AIC -9424 -9482 -9503 -9551

Panel B: 5y Euro denominated CDS
logLik -10562 -10540 -10284 -10225
AIC 21167 21126 20622 20520

Countries like Italy, Spain, and Portugal still exhibit high spatial dependence strength during the

crisis, whereas a country like Germany has low and somtimes even negative spatial dependence.

Though some of the patterns change slightly when first taking out the common U.S. component,

the overall picture in Figure 6 remains remarkably similar compared to that in Figure 3.

5.2 The alternative dependent variables

As a second robustness check, we confirm that the importance of time-variation and heterogeneity

in dynamic networks for the Eurozone is not confined to the use of 5 year government bond yields.

In paricular, we analyze Euro denominated 5-year CDS (credit default swap) spread changes as well

as changes in 1-year government yields over the 1-year EONIA OIS rate. This provides two alter-

native data sets. The relevant data are retrieved from Datastream and Bloomberg. The summary

statistics of these data are provided in the appendix. Like the 5-year bond yield changes, both the

1-year yields and the 5-year CDS rates exhibit clear signs of fat-tailedness and outliers, such that

our use of the fat-tailed Student t distribution and the time-variation in Σt seem warranted.

Table 3 and Figure 7 summarize the main results. Full estimation results including all param-

eters and standard errors are provided in the appendix. The likelihood and AIC values in Table 3

For the 1-year spreads, we confirm the value-added of both the heterogeneity (plus 45 likelihood

points) and the time-variation (plus another 33 likelihood points) A similar result holds for the

5 year CDS spreads, with an increase of 278 likelihood points for adding heterogeneity, and a

further 59 points for the time variation. In both cases, the AIC values are clearly lowest for the

heterogeneous network model with time-varying parameters.

Figure 7 shows the pictures of the fitted ρt and Ri,i,ts. As in our baseline analysis, we see that

the magnitude as well as the dynamics of the scalar ρt are heavily limited due to the heterogeneity

and time-variation in the data. Because of all this pooling, hardly any interesting signal is left in

the scalar ρt. By contrast, for instance for the 1 year results, we again see the dominance in spatial
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(a) ρt for 1yr yield spreads (b) Rt for 1yr yield spreads

(c) ρt for 5 yr CDS spreads (d) Rt for 5 yr CDS spreads

Figure 7: Filtered spatial autoregressive parameters for 1-year bond yield EONIA spread
changes and 5 year CDS spread changes

This figure depicts fitted dependencies from four different models, applied to changes of government bond
yield spreads of seven European countries after taking out the effect of U.S. yield spread changes over EONIA.
The left figure depicts the fixed and time-varying equi-spatial dependencies, whereas the right figure shows
the heterogeneous and time-varying dependencies through time. The sample runs from December 2009 -
July 2020.

sensitivity of countries like Italy and Portugal, the opposite movements of Italy versus most other

countries during the first years of the sample (i.e., the sovereign debt crisis), and the sudden rise

of Spain during the start of the covid pandemic.

The results for the CDS rates are also interesting. These markets do not behave in full lock-step

with the bond markets over the sample period. Still, the importance of both network dynamics

and network heterogeneity are evident from the picture. The pooled, scalar ρt hardly shows any

time variation except towards the end of the sample. Note that the level of ρt for the 5 year CDS

spreads is almost the same as for the 1 year bond yield spreads. The cross-sectional variation

in Ri,i,t for the CDS spreads is even larger than for bond spreads. Again, Italy and Portugal
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(a) (b)

Figure 8: compound reduced-form risk spillover effect LRi,j,t for a one-standard deviation
German shock based on 5-year CDS spread data

This figure gives the compound reduced-form effect LRi,j,t of a 1 standard deviation shock of the government
bond yield spread of Germany to other Eurozone countries based on models estimated with 5 year CDS
spread changes as the dependent variable. The left-hand panels relate to the dynamic scalar spatial model.
The right-hand panels correspond tot he dynamic diagonal spatial model. The sample runs from December
2009 - July 2020.

are clearly at the top, followed by Spain and Ireland. The size of Ri,i,t is substantially above

1 for both Italy and Portugal, without jeopardizing the stability of the model, i.e., RtWt still

has all eigenvalues inside the unit circle at all times. Also the CDS data show the importance of

heterogeneity in time-variation: we also confirm for this data the different, increasing pattern in

Ri,i,t for Italy during the first years of the sample, whereas countries like Spain and Portugal show

a downward trend during that same period. As a result, hardly any pattern is left in the scalar ρt.

Pooling of all these parameters is therefore not a good idea for obtaining a clear picture of what

is happening in the data, and the proposed dynamic heterogeneous spatial model provides a good

alternative.

Finally, Figure 8 shows a prototypical picture of the effect on risk measures based on these

alternative datasets. We concentrate on the CDS spread data models and the total, reduced

form risk spillover LRi,j,t of a one standard deviation shock to Germany on the other Eurozone

countries. We see a similar effect as in Figure 5. In the scalar model, the effect of a German shock

mainly affects Germany after all spillovers have been taken into account. However, if we allow

for heterogeneity, the picture changes dramatically. Particularly during the sovereign debt crisis,

German shocks also heavily affect Spain, Portugal, Ireland, and particularly Italy. This is fully in

line with the story of the European sovereign debt crises, and not recovered by the simpler, pooled

standard models.
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6 Conclusion

In this paper, we proposed a new model for dynamic risk networks with heterogeneous and dynamic

spatial dependence coefficients. We proved that such models are much more effective in describing

dynamic risk networks than standard, homogeneous static spatial models. Discarding heterogene-

ity or time-variation of the network connections can lead to flawed conclusions about the major

players in the network and their position over time. By contrast, the new model was successful

in uncovering such patterns. Though flexible, the model remains tractable and straightforward to

estimate using maximum likelihood methods.

We applied the new model to three different datasets related to Europe perceived sovereign

credit risk over the period 2009-2020. Using pooled spatial dynamics as in standard network

models appeared quite disastrous for uncovering the importance of the different players over time.

In particular, the anchoring role of Germany for the Eurozone only becomes clear if sufficient

heterogeneity is allowed for. Similarly, risk connectedness of players like Spain, Portugal, and Italy

only emerged upon allowing for heterogeneity as well as time-variation, irrespective of which of

the three datasets was used. Empirical models for network dynamics should thus carefully account

for such differences in spillover strength and their time-variation if they are to help the researcher

finding the true story in the data and the correct assessment of risk.
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Appendix to: The Importance of Heterogeneity in

Dynamic Network Models Applied to European

Systemic Risk

Xingmin Zhanga, Anne Opschoorb, and André Lucasb

a School of Finance, Southwestern University of Finance and Economics, China

b Vrije Universiteit Amsterdam and Tinbergen Institute

A Score-driven time-varying parameters

The score updates in our model drive the two diagonal time-varying matrices Rt = R(ft) and

Σt = Σ(ft), where we gathered the time-varying parameters in a vector ft as in equation (2). The

log predictive density is given by

log py (yt;R(ft),Σ(ft), ν) = log Γ

(
ν +N

2

)
− log Γ

(ν
2

)
− N

2
log (ν − 2)− N

2
log (π)

− 1

2
log | Σt | + log | IN −RtWt | −

ν +N

2
log

(
1 +

e>t Σ−1t et
(ν − 2)

)
, (A.1)

with et defined as in (8). For Ri,i,t = h (fi,t) = fi,t for i = 1, . . . , N , we obtain the unit scaled

score

si,t =

(
∂ log py (yt;Rt,Σt, ν)

∂Ri,i,t

)(
∂h (fi,t)

∂fi,t

)
=
∂ log py (yt;Rt; Σt, ν)

∂Ri,i,t
.

For other parameterizations of Ri,i,t as a function of ft, the second factor does not drop from the

equation. Let Ei be an N × N matrix of zeros, with a a single 1 on the ith diagonal element.5

Using the density expression in (A.1) and the definition of wt and y?t in (9) and (7), respectively,

5Again, for different parameterizations of Ri,i,t, Ei in the below derivations for Ri,i,t (though not for
Σi,i,t) has to be replaced by Ei · ∂h(fi,t)/∂fi,t.
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we obtain

si,t = wt e
>
t Σ−1t

∂Rt

∂fi,t
Wtyt − vec

((
(IN −RtWt)

−1
)>)

vec

(
∂Rt

∂fi,t
Wt

)
= wt e

>
t Σ−1t Eiy

?
t − vec

((
(IN −RtWt)

−1
)>)

vec (EiWt)

= wt e
>
i,tΣ

−1
i,i,ty

?
i,t − trace

(
(IN −RtWt)

−1EiWt

)
= wt e

>
i,tΣ

−1
i,i,ty

?
i,t −

(
Wt (IN −RtWt)

−1
)
i,i

for i = 1, . . . , N . For ν → +∞, we see wt → 1 and the score function vector collapses to that of

multivariate normal distribution.

For the scores with respect to fi+N,t = log Σi,i,t, using the diagonality of Σt, we have

si+N,t =
∂ log py (yt;R(ft),Σ(ft), ν)

∂fi+N,t
=
∂ log py (yt;Rt,Σt, ν)

∂Σi,i,t

∂ exp (fi+N,t)

∂fi+N,t

=

(
− 1

2Σi,i,t
+ 1

2wt
e2i,t

Σ2
i,i,t

)
· exp (fi+N,t) =

(
− 1

2Σi,i,t
+ 1

2wt
e2i,t

Σ2
i,i,t

)
·Σi,i,t

= 1
2wt

e2i,t
Σi,i,t

− 1

2
.

B Extra empirical results

This appendix presents additional empirical results for 1-year government bond yield spread

changes (over EONIA) and for 5-year CDS spread changes.
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Table B.1: Summary statistics 1-year Government Yield spread and CDS spreads
This table lists descriptive statistics of absolute changes of Euro-denominated CDS spreads and 1-year
government yield spreads of seven European countries and the United States. The 1-year yield spread is
defined as the difference between the 1-year government bond yield and the 1-year EONIA OIS rate. All
variables are weekly from December 10, 2009 until July 2, 2020.

mean s.d. med min max skew kurt
1-year gov bond spread changes (percentage points)
Germany -0.001 0.041 0.001 -0.19 0.21 -0.21 6.83
Spain 0.001 0.228 -0.001 -1.27 2.86 3.45 52.46
France -0.001 0.057 0.001 -0.59 0.45 -0.91 32.73
Ireland -0.001 0.397 -0.001 -2.73 3.42 0.01 29.41
Italy 0.000 0.228 -0.002 -1.02 1.36 0.86 12.07
Netherland 0.000 0.060 0.000 -0.54 0.64 0.16 45.60
Portugal -0.001 0.553 -0.002 -3.12 2.78 -0.19 14.11
U.S. 0.002 0.062 0.006 -0.56 0.25 -1.71 17.04
5-year CDS spread changes (basis points)
Germany -0.025 2.867 0.000 -19.02 15.19 0.09 14.05
Spain -0.036 17.570 -0.080 -109.51 87.30 -0.56 12.61
France -0.028 6.382 0.000 -54.84 37.90 -0.84 20.69
Ireland -0.231 24.841 -0.200 -154.33 223.13 0.83 25.33
Italy 0.051 19.320 -0.400 -99.03 98.74 -0.29 11.33
Netherland -0.033 4.861 0.000 -42.02 28.31 -1.95 32.72
Portugal -0.042 39.428 -0.050 -255.23 252.21 0.30 15.53
U.S. -0.026 2.237 0.000 -12.81 16.76 1.24 17.70
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Table B.2: Parameter estimates of spatial dependence models 1-year government bond yield
spreads

This table reports the estimated parameters of four spatial dependence models, applied
to weekly 1 year government bond yield spread changes of seven Eurozone countries.
Robust (Huber sandwich) standard errors are reported in parentheses. The models
are based on Student’s t distributed disturbances with time-varying heteroscedasticity
as in model (1)–(4). We report the maximum log-likelihood value (LogLike) and
AIC(Akaike information criterion). The sample runs from December 2009 - July 2020.

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel A: Spatial dependence parameters
ω/ωGE 0.167 0.020 0.022 0.000

(0.026) (0.010) (0.030) (0.001)
ωSP 0.276 0.010

(0.055) (0.009)
ωFR 0.099 0.003

(0.035) (0.004)
ωIR 0.529 0.015

(0.107) (0.015)
ωIT 0.566 0.035

(0.171) (0.029)
ωNE 0.299 0.015

(0.058) (0.014)
ωPO 0.528 0.015

(0.157) (0.020)
α/αGE 0.011 0.005

(0.002) (0.008)
αSP 0.021

(0.021)
αFR 0.007

(0.002)
αIR 0.033

(0.082)
αIT 0.170

(0.089)
αNE 0.027

(0.016)
αPO 0.053

(0.077)
βρ 0.919 0.974

(0.046) (0.027)
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(Table B.2 continued)

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel B: Volatility and control parameters
αvol 0.334 0.328 0.328 0.322

(0.047) (0.039) (0.041) (0.032)
βvol 0.996 0.997 0.996 0.997

(0.004) (0.004) (0.004) (0.002)
ν 3.374 3.354 3.517 3.491

(0.275) (0.273) (0.293) (0.287)
∆ VSTOXX -0.015 -0.016 -0.019 -0.014

(0.039) (0.036) (0.038) (0.035)
∆ term spread -0.050 -0.047 -0.057 -0.042

(0.047) (0.044) (0.047) (0.045)
local stock -0.001 0.001 0.000 0.001

(0.010) (0.009) (0.009) (0.009)

logLik 4733 4764 4778 4811
AIC -9424 -9482 -9503 -9551
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Table B.3: Parameter estimates of spatial dependence models
This table reports the estimated parameters of four spatial dependence models, ap-
plied to weekly CDS spread changes of seven Eurozone countries. Robust (Huber
sandwich) standard errors are reported in parentheses. The models are based on
Student’s t distributed disturbances with time-varying heteroscedasticity as in model
(1)–(4). To account for the different measurement units of the CDS changes (basis
points) compared to the yield spread changes in the other tables, the VSTOXX change
was rescaled by a factor 100. We report the maximum log-likelihood value (LogLike)
and AIC(Akaike information criterion). The sample runs from December 2009 - July
2020.

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel A: Spatial dependence parameters
ω/ωGE 0.170 0.014 0.045 -0.001

(0.014) (0.011) (0.020) (0.001)
ωSP 0.609 0.005

(0.055) (0.009)
ωFR 0.153 0.001

(0.023) (0.003)
ωIR 0.391 0.007

(0.037) (0.008)
ωIT 2.802 0.187

(0.277) (0.089)
ωNE 0.156 0.002

(0.026) (0.003)
ωPO 0.861 0.026

(0.109) (0.030)
α/αGE 0.003 0.001

(0.002) (0.001)
αSP 0.026

(0.022)
αFR 0.004

(0.002)
αIR 0.020

(0.009)
αIT 0.181

(0.083)
αNE 0.005

(0.020)
αPO 0.052

(0.061)
βρ 0.923 0.987

(0.059) (0.013)
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(Table B.3 continued)

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel B: Volatility and control parameters
αvol 0.344 0.338 0.350 0.339

(0.033) (0.034) (0.036) (0.038)
βvol 0.999 0.999 0.999 0.999

(0.000) (0.000) (0.001) (0.001)
ν 2.537 2.512 2.780 2.859

(0.249) (0.246) (0.313) (0.332)
∆ VSTOXX -0.780 -0.973 -0.377 -0.323

(0.570) (0.596) (0.953) (0.899)
local gov spread -2.648 -2.857 -2.573 -2.221

(1.134) (1.079) (1.843) (1.587)
local stock -0.111 -0.075 -0.226 -0.167

(0.270) (0.231) (0.252) (0.327)

logLik -10562 -10540 -10284 -10225
AIC 21167 21126 20622 20520
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