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Abstract The Dynamic Conditional Correlation (DCC) model by Engle

(2002) has become an extremely popular tool for modeling the time-varying

dependence of asset returns. However, applications to large cross-sections have

been found to be problematic, due to the curse of dimensionality. We propose

a novel DCC model with Conditional LInear Pooling (CLIP-DCC) which en-

dogenously determines an optimal degree of commonality in the correlation

innovations, allowing a part of the update to be of reduced dimension. In con-

trast to existing approaches such as the Dynamic EquiCOrrelation (DECO)

model, the CLIP-DCC model does not restrict long-run behavior, thereby nat-

urally complementing target correlation matrix shrinkage approaches. Empir-

ical findings suggest substantial benefits for a minimum-variance investor in

real-time. Combining the CLIP-DCC model with target shrinkage yields the

largest improvements, confirming that they address distinct parts of uncer-

tainty of the conditional correlation matrix.
∗vanos@ese.eur.nl
†djvandijk@ese.eur.nl



1 Introduction

The conditional covariance matrix of asset returns is of crucial importance for portfolio

construction and risk management. Multivariate ARCH-type models, such as the Dynamic

Conditional Correlation (DCC) model by Engle (2002), have become a popular tool to model

and forecast time-varying conditional covariance matrices. However, for many of these mod-

els the quality of the covariance matrix estimates is known to deteriorate as the number of

assets grows. A key contributor to the estimation uncertainty of the DCC model, particu-

larly in large cross-sections, is the unstructured nature of the information used to update the

correlations. As noted by Engle and Kelly (2012), this causes the individual correlations of

the DCC model to evolve independently, leaving the information on the correlation between

other assets untapped.

To better handle a large number of assets, we propose a DCC model with Conditional

LInear Pooling (CLIP-DCC). Inspired by the Dynamic EquiCOrrelation (DECO) model of

Engle and Kelly (2012), the CLIP-DCC model draws from the entire cross-section to model

the conditional correlations such that the value of any correlation pair depends on the history

of all pairs instead of just its own. The CLIP-DCC model differs in two important aspects,

though. First, the CLIP-DCC model does not completely synchronise the conditional corre-

lations and also allows for pair-specific dynamics to acknowledge that each correlation may

partly show idiosyncratic movements. The level of commonality is governed by a parameter

that is estimated alongside the other parameters during likelihood estimation, such that an

optimal amount of structure is determined endogenously. Second, a re-centering step is used

to avoid (implicit) restrictions on the long-run correlation matrix. As a result, the CLIP-

DCC model may, for example, still use the sample correlation matrix as the long-run target,

as in the original DCC model.

Furthermore, by preserving long-run dynamics the CLIP-DCC model naturally comple-

ments approaches that shrink the correlation targeting matrix, where a combined approach

essentially allows one to separately deal with uncertainty of the long-run correlation matrix
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and the movement around it. This separation is favorable, as these two likely warrant very

different levels of structure from a bias-variance perspective.

A Monte Carlo simulation experiment shows that the parameters of the CLIP-DCC

model may be effectively estimated using the Composite Likelihood (CL) method, similar

to the standard DCC model, see Pakel et al. (2021). Furthermore, to empirically evaluate

the performance of our dynamic correlation models, we construct global minimum variance

(GMV) portfolios in real-time and consider their out-of-sample performance. Specifically, we

consider daily US large-cap stock returns for the period February 1981 until December 2020

for a wide selection of portfolio sizes ranging from 10 to 500 stocks. We find that the CLIP-

DCC model is clearly favored, with significant reductions in out-of-sample portfolio variance

compared to the DCC model, whereby the relative improvements increase as the dimension

grows. In addition, we find that the CLIP-DCC model outperforms the DCC model greatly

around the 2008 financial crisis. Moreover, we find in a combined approach of the CLIP-

DCC model with non-linear shrinkage (NLS) of the target, using the method of Ledoit

and Wolf (2020), that improvements are additive. For example, we find for the portfolio

universe size N = 500 an out-of-sample GMV portfolio annualized standard deviation of

6.400(6.621) and 6.122(6.375) for the DCC and the CLIP-DCC model with(out) NLS of the

target, respectively. This confirms the notion that these methods address different sources

of uncertainty and are in fact complementary.

This paper is related to and builds upon a rich literature of multivariate volatility mod-

eling, see e.g. Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009) for an overview.

In particular, this paper is closely connected to various extensions of the DCC model that

help accommodate large cross-sections. This includes composite likelihood estimation, linear

and non-linear shrinkage of the target and the usage of intraday high and low prices, see

Pakel et al. (2021), Hafner and Reznikova (2012), Engle et al. (2019) and De Nard et al.

(2020), respectively. Our paper is most closely related to the (Block) DECO models intro-

duced by Engle and Kelly (2012). While the information pooling aspect of the DECO model
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is attractive, it is likely to impose too much structure by assuming that the correlations

are identical across all pairs. The Block-DECO model relaxes this assumption by instead

imposing a block structure. However, determining the optimal block size and group allo-

cation may be difficult, requiring an exogenous notion of group membership. In addition,

both the DECO and the Block-DECO model also implicitly heavily structure the long-run

correlation matrix, which may be suboptimal. Precisely these concerns are addressed in

the CLIP-DCC framework. Additionally, we extend the CLIP-DCC model to a block-based

version, which can incorporate group structure information if available. Empirically, we find

that the Block-DECO model improves upon a DECO-type model, but find no additional

advantage of a Block-CLIP-DCC model over the CLIP-DCC model. This indicates that the

industry memberships used to impose the block structure are not particularly informative

for the movement of the conditional correlations around the long-run.

The outline of this paper is as follows. Section 2 develops the CLIP-DCC model, showing

how it can be obtained from the combination of a DCC model with an appropriately scaled

DECO-type model. A simulation study to assess the consistency of the CL estimator for

the CLIP-DCC model is carried out in Section 3. Section 4 presents a real-time trading

application to daily stock data and Section 5 concludes. Finally, proofs and additional

results can be found in the Appendix.

2 Methodology

2.1 The DCC and DECO Models

Let rt denote the N × 1 vector of zero mean asset returns at time t = 1, . . . , T . Extensions

to a non-zero and possibly time-varying mean are straightforward, but not considered here

for simplicity. We assume that the conditional covariance matrix of rt is time-varying and

denoted by Σt := E[rtr′t|It−1], where It−1 denotes the set containing all information available
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at time t− 1. Following Engle (2002) and many others, we decompose Σt as

Σt = DtRtDt, (1)

where Dt denotes the diagonal matrix of square root conditional variances that in practice

may be modelled by any standard GARCH-type model and Rt is the conditional correlation

matrix. The N × 1 vector of standardized returns is denoted by zt and given as

zt = D−1
t rt. (2)

Using (1) we find that E[ztz′t|It−1] = Rt, such that the outer product of the devolatized

returns ztz′t provides an unbiased ex-post proxy of the true conditional correlation matrix

Rt.

The Dynamic Conditional Correlation (DCC) model by Engle (2002) for Rt is given as

QDCC
t = C(1− a− b) + azt−1z

′
t−1 + bQDCC

t−1 , (3)

RDCC
t = (Q̃DCC

t )−1/2 QDCC
t (Q̃DCC

t )−1/2, (4)

where Q̃DCC
t is a diagonal matrix containing the diagonal elements of QDCC

t , a and b are

non-negative scalar parameters such that a+ b < 1 and C is a (symmetric) positive definite

matrix of parameters. Note that E(Rt) ≈ C, such that C can be interpreted as the long-run

correlation matrix, whereby the approximate nature stems from the standardization step in

(4) to go from QDCC
t to RDCC

t . It is standard practice to employ a correlation targeting

approach, using the sample covariance of the standardized returns zt as an estimator for C.

Finally, we remark that Aielli (2013) finds that there is an issue with the consistency of

this target estimator for C due to the standardization. He therefore proposes a corrected

DCC (cDCC) specification. However, Engle et al. (2019) among others note that practically

there are hardly any differences between this cDCC specification and the original DCC model.
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For simplicity and with the empirical application in mind, which also considers shrinkage

of the target matrix, we therefore follow Engle et al. (2019) and consider the original DCC

specification.

Because an unrestricted correlation matrix contains O(N2) parameters, large cross-

sections pose a problem for the accuracy of the conditional correlation matrix estimates

of the DCC model. The Dynamic Equicorrelation (DECO) model by Engle and Kelly (2012)

dramatically restricts the correlation matrix by imposing that all pairwise conditional corre-

lations are equal. Practically, this restriction is implemented by applying a transformation

to the conditional correlation matrix provided by a DCC-type recursion as follows

ρt = 1
N(N − 1)ι

′
N(RDCC

t − IN)ιN , (5)

RDECO
t = ρtJN×N + (1− ρt)IN , (6)

where ρt is the average correlation at time t, ιN is a N × 1 vector of ones, IN is the N ×N

identity, JN×N is an N ×N matrix of ones, RDCC
t is obtained using (3) and (4) and RDECO

t

is the equicorrelation matrix output. From a practical standpoint, the main allure of this

model is the computational ease of estimation due to the simplicity of the likelihood, see

Engle and Kelly (2012) for details.

To visually illustrate the differences and limitations of the DCC and DECO models, we

consider a representative empirical example. Namely, we estimate both models on daily

return data of the 30 industry portfolios constructed by Kenneth French, from January

2000 until December 20091. These 30 industry portfolios are formed by assigning all NYSE,

AMEX and NASDAQ stocks to one of 30 portfolios based on their SIC code. Figure 1 depicts

the dynamic correlations between the first three portfolios of the data-set, which are Food,

Beer and Smoke, for the two correlation models.

In Figure 1, we find that all DCC correlation estimates lie within the positive domain,
1Data is obtained from: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Figure 1: Selection of dynamic correlation estimates of the DCC and DECO models using
thirty industry portfolios, January 2000 until December 2009.

Note: This figure contains the dynamic correlation estimates of the Food (1), Beer (2) and Smoke
(3) industry portfolios for the DCC and DECO models from January 3, 2000 until December 9, 2009.
The models are estimated using Composite Likelihood on the devolatized returns obtained from GJR-
GARCH(1,1) specifications and with target Ĉ = T−1∑T

t=1 ztz
′
t.

reflecting positive co-movement of the considered industries. In addition, we observe that

due to the equicorrelation structure that the dynamic correlation estimates of the DECO

model lie on the 3-dimensional ‘45 degree’ line. Further comparing the DCC and the DECO

model, we make two important observations. First, we note that the DECO model also

implicitly warps the unconditional correlation matrix as a direct consequence of the structure

imposed on the conditional correlations. That is, we observe that the DCC model is centered

around an unrestricted long-run estimated by Ĉ = T−1∑T
t=1 ztz

′
t with [Ĉ12 Ĉ13 Ĉ23] =

[0.621 0.436 0.344]. In contrast, the DECO model is centered around an equicorrelation

matrix with estimated equicorrelation parameter ρ̂ = 0.537. To make this warping explicit,

note that

E[RDECO
t ] = E[ρtJN×N + (1− ρt)IN ] = ρ̄JN×N + (1− ρ̄)IN , (7)

ρ̄ = E[ρt] = 1
N(N − 1)ι

′
N(E[RDCC

t ]− IN)ιN , (8)

where ρ̄ denotes the long-run average correlation. Due to the linearity of the transformation

from RDCC
t to RDECO

t as outlined in (5) and (6), we have that the long-run equicorrelation

matrix E[RDECO
t ] can be obtained by applying the same transformation to E[RDCC

t ].
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Intuitively, however, it would be attractive if we could decouple the structure imposed

on the conditional correlations from the structure imposed on the long-run, as these two

likely require a different level of structure from a bias-variance standpoint. This stems from

the differences in effective sample size between the two. Namely, estimation of the long-run

correlation matrix can draw from the entire sample. Conversely, the conditional correlations

can only tap from a much smaller selection of recent observations. This is reflected in the

estimation scheme, where Ĉ uses the entire sample while the DCC recursion in (3) amounts

to an exponentially weighted moving average. For example, if the concentration ratio N/T is

relatively small, the sample target estimator Ĉ will provide a fairly accurate estimate of the

long-run correlation matrix, demanding little additional structure. In practice, one may also

find that Ĉ is far from an equicorrelation matrix, directly revealing ex-ante that the DECO

model is unlikely to render a reasonable description of this aspect of the data. On the other

hand, if N itself is not small and the autocorrelation of the conditional correlations is low,

then the conditional correlation matrix can likely benefit a lot from structure. Decoupling the

structure imposed on the conditional and unconditional correlations would essentially allow

us to separately deal with uncertainty of the long-run correlation matrix and the deviations

from it.

The second observation we draw from Figure 1 is that the DCC and DECO models are

extremes on the bias-variance spectrum. This is a direct consequence of the fact that the

DCC model is innovated using ztz′t, an unbiased, yet highly noisy, ex-post proxy of the true

conditional correlation matrix Rt. Therefore, at least from a cross-sectional perspective, no

structure is imposed whatsoever. In contrast, the DECO model imposes a maximal amount

of structure from a cross-sectional perspective by assuming that all pairwise correlations of

the conditional correlation matrix are equal. While this structure will undoubtedly greatly

reduce estimation uncertainty, it is likely to also come with a substantial bias. As noted by

Engle and Kelly (2012), the DCC model essentially updates the correlations independently,

while on the other hand the DECO maximally draws from the entire cross-section by con-
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sidering the average correlation at each point in time. Therefore, it might be worthwhile

exploring a setup that can fill the gap and provide a better bias-variance trade-off. Put

differently, we would prefer a model with an ‘optimal’ level of commonality in the update-

mechanism.

The main contribution of this paper, namely the DCC model with Conditional LInear

Pooling (CLIP-DCC) is the result of addressing these two concerns. Specifically, we introduce

a scaled DECO-type model to undo the warping of the long-run dynamics in Section 2.2 and

consider a mixture setup to provide a more appropriate bias-variance trade-off in Section

2.3.

2.2 The Scaled Direct DECO Model

In this section, we introduce a model similar to the DECO model, but with the structure

applied at the pseudocorrelation level Qt. Moreover, the model involves a re-centering step

to undo the warping of the long-run correlation matrix. We argue that it is generally more

convenient to apply structure in the pseudocorrelation space Qt than at the correlation level

Rt. In this way, one can consider transformations that preserve positive definiteness but do

not necessarily maintain the unit diagonal, without having to standardize twice. The re-

centering step is an example of such a transformation. Additionally, we show that imposing

structure at the pseudocorrelation level can come with large computational gains.

To facilitate discussion we first introduce the concept of a compound symmetric (CS)

matrix, which is closely related to the equicorrelation matrix.

Definition 1 A square matrix S of size N × N is a compound symmetric matrix if it

can written be as

S = oJN×N + (d− o)IN , (9)

with diagonal element d ∈ R and off-diagonal element o ∈ R.
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Lemma 1 A CS matrix S of size N × N with N ≥ 2, diagonal element d ∈ R and

off-diagonal element o ∈ R is positive definite if and only if d > 0 and o
d
∈ ( −1

N−1 , 1). Addi-

tionally, if S is positive definite then standardization, i.e. (S̃)−1/2 S (S̃)−1/2, yields a valid

equicorrelation matrix, where S̃ is a diagonal matrix containing the diagonal elements of S.

Second, we introduce a mapping that can be used to turn a square matrix into a CS

matrix. For any A ∈ RN×N with N ≥ 2 we define the mapping θ(A) as

θ(A) := θO(A)JN×N + [θD(A)− θO(A)]IN , (10)

where the scalars θD(A) and θO(A) are the diagonal and off-diagonal averages of A, that is,

θD(A) := 1
N

N∑
i=1

aii, (11)

θO(A) := 1
N(N − 1)

N∑
i=1

N∑
j 6=i

aij, (12)

where aij with i, j ∈ {1, . . . , N} are the elements of A. It follows that θ(A) is a CS matrix

of size N ×N with diagonal element θD(A) and off-diagonal element θO(A). For complete-

ness, we define θ(·) to be the identity mapping if N = 1. Note that θ(·) yields the same

output as the DECO transformation in (5) and (6) if the input has a unit diagonal, such

that RDECO
t = θ(RDCC

t ). Therefore, θ(·) can be interpreted as an intuitive extension of the

DECO transformation in (5) and (6) that accommodates a non-unit diagonal input. The

following lemma summarizes several useful properties of θ(·).

Lemma 2 θ(·) is a linear mapping that preserves positive (semi-)definiteness, that is for

A ∈ RN×N we have that

1. θ(A+B) = θ(A) + θ(B), ∀B ∈ RN×N ,
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2. θ(kA) = kθ(A), ∀k ∈ R,

3. If A is positive (semi-)definite, then θ(A) is positive (semi-)definite.

The direct DECO (dDECO) model is obtained by applying the compound symmetry

transformation θ(·) to QDCC
t as given in (3). That is, we define QdDECO

t := θ(QDCC
t ) and

using Lemma 2 we obtain

QdDECO
t = θ(C)(1− a− b) + aθ(zt−1z

′
t−1) + bQdDECO

t−1 , (13)

where QdDECO
t is positive definite if QDCC

t is positive definite. Standardization of QdDECO
t by

dividing by its diagonal elements will yield a valid equicorrelation matrix (see again Lemma

1). This model is therefore highly similar to the DECO model as it is based on the same

equal pairwise correlations assumption, with the difference between the two models being a

slightly different implementation of this constraint. Specifically, the dDECO model reverses

the order of standardization and pooling compared to the DECO model, note again that

RDECO
t = θ(RDCC

t ).

Because QdDECO
t has only two unique elements, namely its diagonal element ct :=

θD(QDCC
t ) and its off-diagonal element qt := θO(QDCC

t ), we do not need to track QDCC
t

in full. That is, we only need to consider

ct = θD(C)(1− a− b) + aθD(zt−1z
′
t−1) + bct−1, (14)

qt = θO(C)(1− a− b) + aθO(zt−1z
′
t−1) + bqt−1, (15)

which admit an intuitive form as they are driven by the diagonal and off-diagonal mean of

the DCC driving information zt−1z
′
t−1, respectively. Afterwards, QdDECO

t can be obtained

from ct and qt as in (9). Because (14) and (15) are two scalar processes, computational

demands are much lower than the DECO model, which requires tracking the N ×N matrix

RDCC
t .

10



Due the linearity of θ(·), we have that both the DECO model and the dDECO model have

(approximately) displaced the center of movement from C to θ(C), an equicorrelation matrix

if C has a unit diagonal. First noting that a direct translation, i.e. additive adjustment, is not

feasible due to positive definiteness requirements, we propose a multiplicative re-centering

step to undo the warping of the long-run correlation matrix. The scaled dDECO (sdDECO)

model is constructed from the dDECO model as follows

QsdDECO
t := [C1/2θ(C)−1/2]QdDECO

t [θ(C)−1/2C1/2], (16)

where C1/2 and θ(C)−1/2 denote the symmetric square-root of C and θ(C) obtained using

the eigenvalue decomposition. Symmetry and positive definiteness of QsdDECO
t is inherited

from the positive definiteness of QdDECO
t and immediately apparent.

The update recursion for QsdDECO
t can be written directly as

QsdDECO
t = C(1− a− b) + aZt−1 + bQsdDECO

t−1 , (17)

where Zt−1 is a positive semi-definite innovation term (see again Lemma 2) that pools the

information in zt−1z
′
t−1 and is scaled in order to preserve long-run behavior. Specifically, we

have that Zt−1 is given as

Zt−1 = [C1/2θ(C)−1/2]θ(zt−1z
′
t−1)[θ(C)−1/2C1/2], (18)

where due to the linearity of θ(·) we have that E(θ(zt−1z
′
t−1)) = θ(E(zt−1z

′
t−1)) ≈ θ(C),

such that E(Zt−1) ≈ C. Here the approximate nature stems from minor differences arising

from standardization. From there it straightforward to see that the sdDECO model, by

construction, has again center of movement C. Because the sdDECO model leaves the

unconditional expectation unaltered, the pooling can be interpreted to be ‘conditional’.
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2.3 The CLIP-DCC Model

Although the sdDECO model preserves long-run dynamics, it still imposes a large amount

of structure on the conditional correlations. Namely, all time-variation is generated by two

scalar processes, see again (14)-(16), which could introduce a substantial bias. Therefore,

to overcome our second concern and provide a more ‘optimal’ bias-variance trade-off, we

now present the DCC model with Conditional LInear Pooling (CLIP-DCC). Specifically, we

assume that our pseudocorrelation process QCLIP−DCC
t is a convex combination of QDCC

t

and QsdDECO
t , that is

QCLIP−DCC
t = (1− w)QDCC

t + wQsdDECO
t , (19)

where w ∈ [0, 1] is the mixture weight. Using (3) and (17), we may also directly write the

update recursion for QCLIP−DCC
t as

QCLIP−DCC
t = C(1− a− b) + a[(1− w)zt−1z

′
t−1 + wZt−1] + bQCLIP−DCC

t−1 , (20)

where Zt−1 is given by (18). It is straightforward to show that QCLIP−DCC
t is positive definite

if QDCC
t is positive definite and has center of movement C. Furthermore, re-parameterization

with a1 = a(1− w) and a2 = aw yields,

QCLIP−DCC
t = C(1− a1 − a2 − b) + a1zt−1z

′
t−1 + a2Zt−1 + bQCLIP−DCC

t−1 , (21)

which reveals that, effectively, we are simply adding a pooling term Zt−1 to the DCC recursion

as an additional explanatory variable. As noted by Engle and Kelly (2012), the correlations

of the DCC model evolve essentially independently while those of the (d)DECO model co-

move perfectly. In contrast, the CLIP-DCC model allows for a more nuanced level of cross-

dependence, with magnitude determined by w.

To visually illustrate the appeal of the CLIP-DCC framework, we again consider our
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empirical example. Figure 2 depicts the dynamic correlations between the Food, Beer and

Smoke industries for the sdDECO and CLIP-DCC models. We observe in Figure 2 that, like

Figure 2: Selection of dynamic correlation estimates of the sdDECO and CLIP-DCC models
using thirty industry portfolios, January 2000 until December 2009.

Note: This figure contains the dynamic correlation estimates of the Food (1), Beer (2) and Smoke (3)
industry portfolios for the sdDECO and CLIP-DCC models from January 3, 2000 until December 9,
2009. The models are estimated using Composite Likelihood on the devolatized returns obtained from
GJR-GARCH(1,1) specifications and with target Ĉ = T−1∑T

t=1 ztz
′
t.

the DECO model, the sdDECO model shows a line-type movement pattern. However, the

estimates of the sdDECO model have center of movement Ĉ, similar to the DCC model, as

result of the scaling step. It is worthwhile noting that the induced curvature is essentially the

result of the standardization step to go from QsdDECO
t to RsdDECO

t . Moreover, we observe that

RCLIP−DCC
t suggests a more appropriate bias-variance trade-off than RDCC

t , see again Figure

1, and RsdDECO
t , while also preserving the location of the long-run correlation matrix. The

estimated mixture weight ŵ is equal to 0.514, such that the CLIP-DCC model relies roughly

equally on the unstructured DCC innovation zt−1z
′
t−1 and the pooled sdDECO innovation

Zt−1 to update the conditional correlations, see again (20).

Finally, we note that although intuitively one may think of the sdDECO component in

the CLIP-DCC model as a shrinkage target, our approach differs from traditional shrinkage

methods because we estimate the mixture weight w simultaneously with the DCC model

parameters (based on the likelihood, as discussed in detail in Section 2.5). As a direct conse-

quence, separation of the structure imposed on the conditional and unconditional correlation
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matrix is crucial. This is because the sample correlation matrix Ĉ used for targeting already

provides the best estimate of the long-run C in-sample, such that its optimal pooling inten-

sity is near zero. As a result, a setup where a dDECO component is used instead of sdDECO

component in (19), yields very small estimates of the mixture weight w, effectively reducing

the model to the base DCC model. Structuring the long-run correlation matrix therefore

demands a different approach, which will be outlined in Section 2.5.

2.4 The Block-CLIP-DCC Model

In the presence of a clear group structure of the assets, one would like to use this information

in the estimation of the conditional correlation matrix. While the CLIP-DCC model does

not need any such information, we may extend our framework to exploit it when available.

This section therefore describes how the CLIP-DCC model can be extended to incorporate

group-membership information.

Given a K-group partition n1, n2, . . . , nK of the cross-section of N assets such that nj ∈

N+, j = 1, 2 . . . , K and ∑K
j=1 nj = N , we assume without loss of generality that the data

is already ‘sorted’ such that the assets i = 1, . . . , n1 are in the first group, the assets i =

n1 + 1, . . . , n1 + n2 are in the second group and so forth. For notational convenience, we

summarize this K-group information in the K × 1 vector G := [n1, n2, . . . , nK ]′. We now

introduce a mapping θBL(·, G) that can be used to turn a square matrix into a ‘K-block

compound symmetric matrix’ with group structure G. That is, for A ∈ RN×N with N ≥ 2,

we define

θBL(A,G) =



θ(A∗11) τ(A∗12) · · · τ(A∗1K)

τ(A∗21) θ(A∗22) · · · τ(A∗2K)
... ... . . . ...

τ(A∗K1) τ(A∗K2) · · · θ(A∗KK),


, (22)

τ(V ) = ( 1
m1m2

ι′m1V ιm2)Jm1×m2 , ∀V ∈ Rm1×m2 , (23)
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where A∗ij for i, j = 1, 2 . . . , K is the ij-th block of A using the block partition from G. Here

we observe that the diagonal blocks of θBL(A,G) are obtained by applying the compound

symmetry transformation θ(·) to the diagonal blocks of A. For the off-diagonal blocks, we

use the function τ(·), which returns a constant matrix with the mean of the input matrix

everywhere. The following lemma summarizes some useful properties of θBL(·, G), matching

the properties of θ(·).

Lemma 3 θBL(·, G), with G := [n1, n2, . . . , nK ]′, n1, n2, . . . , nK such that nj ∈ N+, j =

1, 2, . . . , K and ∑K
j=1 nj = N , is a linear mapping that preserves positive (semi-)definiteness,

that is, for A ∈ RN×N with N ≥ 2 we have that

1. θBL(A+B,G) = θBL(A,G) + θBL(B,G), ∀B ∈ RN×N ,

2. θBL(kA,G) = kθBL(A,G), ∀k ∈ R,

3. If A is positive (semi-)definite, then θBL(A,G) is positive (semi-)definite.

Using Lemma 3, we may repeat the steps in the previous sections and obtain a Block-

dDECO, a Block-sdDECO and a Block-CLIP-DCC model by replacing θ(·) with θBL(·, G).

Note that the dDECO, sdDECO and CLIP-DCC models are nested cases with K = 1 and

G = N .

In practice, we may be unsure of the ‘best’ group structure and have multiple candidate

structures. Therefore, we may in theory also allow for multiple (distinct) block structures

simultaneously. That is, we can consider a mixture setup of the DCC model with L Block-

sdDECO models, each with a distinct group structure Gl, l = 1, 2, . . . , L. This then boils

down to having L additional explanatory terms in the pseudo-correlation update recursion

of the form

Bl,t−1 = [C1/2θBL(C,Gl)−1/2]θBL(zt−1z
′
t−1, Gl)[θBL(C,Gl)−1/2C1/2], (24)
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where Bl,t−1 is a positive semi-definite (by Lemma 3) explanatory term with group structure

Gl, suitably scaled to preserve long-run dynamics (i.e. we have E(Bl,t−1) ≈ C).

Our purpose here is not to determine an optimal block-structure but merely to illustrate

that the mixture approach of the CLIP-DCC model and the Block-DECO approach can

be seen as different solutions to the same bias-variance trade-off problem, which are not

mutually exclusive.

2.5 Parameter Estimation and Target Shrinkage

The parameters of the sdDECO and CLIP-DCC models can be estimated using maximum

likelihood. In particular, we follow the standard three-step estimation procedure from the lit-

erature as suggested by Engle (2002). This entails that we first estimate univariate GARCH-

type models for each asset and use the devolatized returns to estimate the dynamic corre-

lation models. Second, in order to prevent the likelihood estimation of O(N2) parameters

contained in the intercept matrix C, see again (3), we employ a targeting approach using

the sample covariance of the devolatized returns. However, it is well established that the

quality of the sample correlation matrix degrades as the concentration ratio N/T grows, see

e.g. Ledoit and Wolf (2004). Therefore, while it may be that the deviations or movement

around the long-run correlation matrix are more noisy and require more structure, the sam-

ple covariance Ĉ used for targeting may also benefit from shrinkage for larger values of the

concentration ratio N/T . Our models are easily combined with methods that shrink the

target by replacing Ĉ with its shrinkage estimator.

For example, one could consider the non-linear shrinkage (NLS) estimator by Ledoit and

Wolf (2012) which shrinks the sample correlation matrix at the eigenvalue level and has both

theoretical and empirical advantages when compared to linear shrinkage estimators. Engle

et al. (2019) use this method to shrink the target of the DCC model, yielding significant

improvements for a minimum-variance investor in high dimensional settings and outper-

forming simpler shrinkage methods. Ledoit and Wolf (2020) provide an analytical version

16



of this approach, greatly reducing computational load. To compare and evaluate the effects

of target shrinkage, deviation shrinkage as in the CLIP-DCC framework and their possibly

synergy, we also consider this NLS estimator for the target and use the code made available

by Michael Wolf2.

Third, we use Gaussian quasi-maximum likelihood (QML) to estimate the scalar param-

eters a, b and w. However, two main problems arise for large N when using traditional full

maximum likelihood (FML) estimation for DCC models. First, this concerns estimation fea-

sibility. That is, evaluating the likelihood can quickly become very computationally intensive

as N grows. This is because one is required to perform a multitude of operations involving

matrices of size N ×N , including multiplications, determinants and inverses. Second, Pakel

et al. (2021) find that for realistic sample sizes the parameter estimates of a and b of the

DCC model become meaningfully biased as N becomes large. In particular, they find that

the estimates of a and b tend to 0 as N increases.

To tackle both problems at once, i.e. to prevent this parameter estimation bias and

greatly reduce computational load, Pakel et al. (2021) propose to estimate the model using

Composite Likelihood (CL). This method approximates the full log likelihood using an aver-

age of a selection of bivariate log likelihoods constructed from pairs of asset returns. Because

the CLIP-DCC model nests the DCC model it stands to reason that its parameters also suf-

fer a similar fate if estimated using FML. Indeed, in unreported Monte Carlo simulations,

we find that the mixture weight w appears to be overestimated when using FML estimation

when N becomes large. Of course, the CLIP-DCC model also inherits the computational re-

quirements of the DCC model. We therefore propose to also estimate the CLIP-DCC model

using CL. Throughout, we shall make use of CL estimation based on contiguous pairs, that

is we pair asset 1 and 2, 2 and 3 and so forth. This results in N − 1 pairs whose bivariate

log likelihoods will be averaged to obtain the CL to be maximized. Pakel et al. (2021) find

this yields highly similar parameter estimates as compared to CL based on all pairs, which is
2https://www.econ.uzh.ch/dam/jcr:11d24ab0-7ec2-4b3f-8ef4-7affaa727d25/analytical shrinkage.m.zip
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much more computationally intensive. To assess the consistency of the parameter estimates

by the CL method for the CLIP-DCC model, particularly in view of the mixture weight w,

we conduct a Monte Carlo study using the setup of Pakel et al. (2021) in the next section.

3 Monte Carlo Simulations

We simulate data from the CLIP-DCC model assuming a conditional multivariate Gaussian

distribution forN ∈ {10, 30, 100}, T = 2000, a = 0.05, b = 0.93 and w ∈ {0, 0.25, 0.5, 0.75, 1}.

Note that this selection of mixture weights also includes the DCC model (w = 0 ) and the

sdDECO model (w = 1). For simplicity, we set all σi,t = 1 and do not consider estimation

of the univariate GARCH models. Furthermore, we set the intercept matrix C equal to

Ci,j = πiπj for i 6= j and Ci,i = 1 for i = 1, . . . , N and j = 1, . . . , N , where the πi are

drawn from a truncated normal distribution with mean 0.5 and standard deviation 0.1 and

truncation interval [0.1, 0.9].

Table 1 contains the Monte Carlo means and standard deviations of the parameter esti-

mates of a, b and w, obtained by estimating the CLIP-DCC model on the simulated data

using CL estimation based on 500 replications. We observe for all considered settings and

for all three parameters that the average estimate is very close to the true parameter value of

the data-generating process. In particular, even for w = 0 and w = 1, when the CLIP-DCC

model collapses to the DCC model and the sdDECO model, respectively, the CL approach

performs satisfactory. Additionally, we find that the Monte Carlo standard deviations de-

crease as N increases. This suggests that the potential efficiency loss of CL decreases as

N becomes large, in line with the results of Pakel et al. (2021). Furthermore, we find in

unreported additional simulations for different values of T that bias tends to decrease as T

grows. Finally, we remark that the amount of skewness and excess kurtosis of the parameter

estimates is mostly mild except when the true mixture weight w is at either of the bounds

(w = 0 or w = 1), which naturally compresses the distribution of ŵ. These findings assure us
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Table 1: Monte Carlo means and standard deviations of the parameters of the CLIP-DCC
model estimated using CL.

w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1
a 0.052 0.050 0.051 0.050 0.051

(0.004) (0.006) (0.008) (0.010) (0.011)
N = 10 b 0.928 0.927 0.926 0.925 0.925

(0.005) (0.008) (0.012) (0.017) (0.022)
w 0.037 0.240 0.502 0.761 0.986

(0.051) (0.097) (0.087) (0.068) (0.026)

a 0.051 0.050 0.050 0.051 0.050
(0.003) (0.005) (0.006) (0.008) (0.009)

N = 30 b 0.928 0.927 0.927 0.926 0.927
(0.003) (0.005) (0.007) (0.012) (0.016)

w 0.028 0.242 0.500 0.763 0.994
(0.040) (0.081) (0.064) (0.040) (0.012)

a 0.051 0.050 0.050 0.051 0.050
(0.002) (0.004) (0.005) (0.006) (0.008)

N = 100 b 0.928 0.928 0.926 0.925 0.927
(0.002) (0.003) (0.005) (0.010) (0.014)

w 0.026 0.243 0.503 0.763 0.999
(0.034) (0.069) (0.047) (0.029) (0.004)

Note: This table contains the average parameter estimates (over the replications) of the CLIP-DCC model
estimated using CL. The standard deviations of the parameter estimates are displayed in parentheses
below the averages. The data is simulated from a CLIP-DCC model with a = 0.05, b = 0.93, w ∈
{0, 0.25, 0.5.0.75, 1}, N ∈ {10, 30, 100} and T = 2000 using 500 replications.

that the CLIP-DCC model parameters may be effectively estimated using the CL approach.

4 Empirical Application

4.1 Data

For the empirical application we collect daily stock prices from the Center for Research in

Security Prices (CRSP) database for the period from February 6, 1981 until December 31,

2020. We select a different investment universe at each estimation date by selecting the N

stocks with the highest market capitalization at that date. This data selection is similar

to the one used by Engle et al. (2019). We consider a wide range of portfolio sizes with
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N ∈ {10, 30, 50, 100, 300, 500}. Note that the investment universes for the portfolio sizes

N = 30, N = 100 and N = 500 correspond roughly to the constituents of the Dow Jones

Industrial Average (DJIA), the S&P 100 and the S&P 500, respectively. For computational

purposes the correlation models are re-estimated every 21 trading days with an estimation

window of 2500 days. At each estimation date, we use theN largest stocks with the additional

requirement that closing prices are available for both the entire estimation window as well

as 21 days ahead for evaluation purposes. This yields exactly 360 estimation times and 7560

trading days for evaluation. To investigate the effects of a smaller estimation sample, we also

perform the analysis using the same selection of stocks with an estimation window of 1250

days. Finally, we sort the data alphabetically based on the tickers at the estimation date,

similar to Pakel et al. (2021). Although the models presented are invariant to permutations

of the data, it does matter for the CL estimation procedure based on contiguous pairs.

Differences for all but the block-based models are negligible though.

4.2 Evaluation

Because it is difficult to assess the quality of correlation matrix forecasts directly in the ab-

sence of high quality ex-post measures, we follow the common practice of indirect evaluation

by using the conditional correlation matrix estimates to construct portfolios, see e.g. Engle

and Kelly (2012) and Engle et al. (2019). Specifically, we consider the global minimum vari-

ance (GMV) portfolio. This portfolio is popular due to its simplicity and its independence

of the mean return, which empirically is often poorly estimated, see e.g. Michaud (1989).

The analytical solution for the GMV portfolio weight vector ut is given as

ut = Σ−1
t ιN

ι′NΣ−1
t ιN

, (25)

where Σt denotes the covariance matrix at time t. For our empirical application we use the

covariance matrix forecasts from our models at the investment day, which can be obtained
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from the correlation matrix forecasts from the DCC models and the diagonal matrix of

volatilities obtained from the univariate GARCH-type models. Filling in this covariance

matrix forecast in (25) will then yield a feasible estimator of the GMV portfolio weights.

More specifically, we consider a daily re-balancing approach whereby we make new GMV

portfolios every day using one-step ahead forecasts of the covariance matrix. Note that for

computational considerations, we still estimate the model parameters only every 21 days.

This set-up is similar to the approach used by Engle and Kelly (2012).

In terms of evaluation, we consider the (annualized) average (AV) out-of-sample daily

log returns, the (annualized) standard deviation (SD) of the out-of-sample daily log returns

and the information ratio (IR), which is obtained by dividing the average by the standard

deviation. Naturally, since the objective of the GMV portfolio is to minimize variance,

we are mostly interested in the out-of-sample standard deviation. To assess whether the

differences in out-of-sample standard deviations are significant, we employ the test by Ledoit

and Wolf (2011). Because of the large sample size (7560 out-of-sample days), we refrain

from bootstraping but use their test statistic based on heteroskedasticity-and-autocorrelation

corrected (HAC) standard errors.

4.3 Results

Table 2 contains the average and min-max range of the parameter estimates of the different

DCC models for the investment universe N = 100. Findings for the other portfolio universe

sizes are highly similar and not displayed for brevity. For the marginals, we follow Pakel

et al. (2021) and use GJR-GARCH(1,1) specifications estimated using Gaussian QML to

devolatize the returns. They find that this model produces the best volatility forecasts using

similar data. Specifically, we have that σ2
i,t = ωi + (αi + γi1[yi,t−1 < 0])y2

i,t−1 + βiσ
2
i,t−1 for

each asset i = 1, . . . , N , with ωi, αi, γi and βi the corresponding parameters.

We observe in Table 2 that the average parameter estimates â and b̂ and the corresponding

min-max range are fairly standard. That is, small values of â, large values of b̂ and a sum close
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Table 2: Average parameter estimates for the different dynamic conditional correlation mod-
els for N = 100, December 1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC
â 0.015 [0.006, 0.050] 0.039 [0.007, 0.112] 0.043 [0.008, 0.138] 0.040 [0.009, 0.136]
b̂ 0.969 [0.858, 0.991] 0.945 [0.794, 0.991] 0.944 [0.795, 0.991] 0.948 [0.800, 0.989]
ŵ 0.653 [0.474, 0.767]
â1 0.012 [0.004, 0.035]
â2 0.028 [0.005, 0.102]

Note: This table contains for N = 100 the average parameter estimates of the DCC, dDECO, sdDECO
and CLIP-DCC models across the different estimation windows. Specifically, we estimate the model every
21-days using a moving window of length T = 2500 for a total of 360 estimation moments. Furthermore,
the minimum and and maximum parameter estimates are displayed in brackets behind the average.

to 1. Comparing the parameter estimates of the DCC model to the estimates of the pooled

models, we note that the pooled models admit a larger â and a smaller b̂. This reveals that the

pooled models require on average less smoothing over time as a consequence of the imposed

cross-sectional structure. In particular, for the CLIP-DCC model, we note that â1 = â(1−ŵ),

the parameter for the DCC innovation term zt−1z
′
t−1, see (21), is fairly comparable to the

parameter estimate â of the DCC model. Therefore, despite the addition of the pooled

innovation term Zt−1, the contribution of the DCC innovation term is largely maintained in

the CLIP-DCC model, while the autoregressive parameter estimate b̂ is reduced somewhat.

This highlights the simultaneous bias-variance trade-off in the time dimension and the cross-

sectional dimension as a result of the joint estimation of the smoothing parameters a and b

and the pooling parameter w.

In Table 2, we also observe that the average estimate of the mixture weight ŵ is equal to

0.653, indicating that the sdDECO component of the CLIP-DCC model is found to dominate

the DCC component, see (19). In line with this, we have that â2 = âŵ is more than twice

as large as â1 = â(1 − ŵ) on average, indicating that the pooled innovation term Zt−1 is

found to be more informative than the unstructured DCC innovation zt−1z
′
t−1, see again

(21). Although time-variation of the parameter estimates is not necessarily insightful due to

the changing investment universe, we do remark a gradual increase of the mixture weight ŵ

over time combined with a sharper decrease in the persistence â+ b̂ after the 2008 Financial
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Crisis. The former observation suggests a mild increase in correlation co-movement around

the long-run.

Table 3 presents the summary statistics of the daily out-of-sample log returns of the

GMV portfolios constructed using the different models and the 1/N portfolio for comparison

purposes. First and foremost, we find that the CLIP-DCC model has the lowest out-of-sample

SD for all considered portfolio sizes. The SDs of the GMV portfolios decline as the portfolio

dimension N grows, in line with the increasing possibilities for diversification. Moreover, we

observe that the relative improvements of the CLIP-DCC model compared to the DCC model

increase as well. That is, for N = 10 the improvements are minor with a SD of 15.392 for the

CLIP-DCC model compared to 15.473 for the DCC model. By contrast the improvements

for N = 500 are much larger with a SD of 6.375 versus 6.621 for the CLIP-DCC and the

DCC models, respectively. These decreases in SDs of the CLIP-DCC model compared to the

DCC model are found to be highly significant for all but the smallest portfolio size N = 10,

which is only significant at the ten percent level. This suggests that allowing for a level of

commonality in the movement of the conditional correlations around the long-run becomes

more important as the dimension grows.

Second, we observe that the dDECO model performs poorly compared to the other models

in all metrics and that the sdDECO model performs much better. This suggests that an

equicorrelation structure on the long-run correlation matrix indeed incurs a too high bias

for the reduction in variance obtained. Interestingly, we find that the sdDECO model offers

comparable performance to the DCC model. This indicates that the variance reduction by

the structure of the sdDECO model roughly cancels against the bias incurred relative to the

DCC model. The outperformance of the CLIP-DCC model is then the result of allowing

for an in-between solution, providing a superior bias-variance trade-off. Third, we find that

even though the 1/N portfolio often possesses a relatively high AV, it also performs poorly

in terms of SD. This indicates that correlation modeling is certainly a worthwhile endeavour

for a minimum-variance investor in this setting.
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Table 3: Daily out-of-sample GMV porfolio performance constructed using different DCC
models for N ∈ {10, 30, 50, 100, 300, 500}, December 1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC 1/N
AV 4.856 3.758 5.778 5.272 7.283

N = 10 SD 15.473 15.745 15.480 15.392∗ 19.167
IR 0.314 0.239 0.373 0.343 0.380

AV 6.050 5.272 6.340 6.243 8.041
N = 30 SD 13.901 14.846 13.841 13.660∗∗∗ 18.457

IR 0.435 0.355 0.458 0.457 0.436

AV 4.506 3.198 3.791 4.221 8.458
N = 50 SD 13.060 14.448 13.151 12.842∗∗∗ 18.271

IR 0.345 0.221 0.288 0.329 0.463

AV 2.981 1.356 1.317 2.553 8.273
N = 100 SD 10.892 13.134 10.989 10.726∗∗∗ 18.225

IR 0.274 0.103 0.120 0.238 0.454

AV 6.239 1.654 2.516 5.418 9.034
N = 300 SD 7.987 11.163 7.877 7.751∗∗∗ 17.975

IR 0.781 0.148 0.319 0.699 0.503

AV 5.108 0.820 1.673 4.554 9.558
N = 500 SD 6.621 9.137 6.476 6.375∗∗∗ 17.961

IR 0.772 0.090 0.258 0.714 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio
(IR) of the out-of-sample daily log returns for the GMV portfolios constructed using different dynamic
correlations models and the 1/N portfolio. The lowest SD per dimension size is highlighted in bold. The
out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560 days, using an
estimation window of 2500 days and re-estimation of the parameters every 21 days. A significant decrease
of the (logarithmic squared) SD of the CLIP-DCC model compared to the DCC model is indicated with
a *,** and *** for a p− value below 0.1, 0.05 and 0.01, respectively, using the two-sided test by Ledoit
and Wolf (2011) with HAC standard errors.

For robustness, we also consider two mean-variance (MV) portfolios and the quasi-

likelihood (QLIKE) loss, see Patton and Sheppard (2009). For the MV portfolios the variance

is minimized subject to a return constraint. Here we mimic the strategies of Engle and Kelly

(2012) and Engle et al. (2019), which use the sample mean and a momentum signal for the

return constraint, respectively. Results and details can be found in Appendix Table B.1 and

B.2. There we also find the CLIP-DCC model to significantly reduce variance compared to
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the DCC model, although the effect on the mean differs across portfolio sizes. Maximum IR

portfolios or portfolios with leverage constraints are left for future research. Appendix Table

B.3 summarizes the QLIKE performance of the models, where we also find the CLIP-DCC

model to outperform the DCC model.

To further compare the DCC and CLIP-DCC models, we investigate the time course of

their difference in performance. Figure 3 presents the difference in cumulative out-of-sample

GMV portfolio variance between the DCC and CLIP-DCC models. Specifically, we subtract

the cumulative out-of-sample variance, as proxied by the sum of the GMV portfolio squared

logarithmic returns, of the CLIP-DCC model from the DCC model. A higher value therefore

reflects a larger gain from the use of the CLIP-DCC framework relative to the base DCC

model.

In Figure 3, we mostly find a steadily increasing cumulative benefit from using the CLIP-

DCC model. However, during the peak of the 2008 Financial Crisis, we observe a large

sudden increase in the difference in the cumulative variance of the DCC model and the

CLIP-DCC model. Although the movement may visually appear to be near instantaneous,

it spans about a one to three month period. Furthermore, a second similar upward jump

of a smaller magnitude is located around Black Monday, 2011, following the downgrading

of US sovereign debt by Standard and Poor’s. This highlights the beneficial effects of the

CLIP-DCC framework around periods of financial turmoil. A possible explanation is an

increase in equity correlation co-movement associated with market downturns, see e.g Ang

and Chen (2002). This would reduce the bias incurred by the cross-sectional structure of the

CLIP-DCC model. A second possible explanation may be an increase in uncertainty of the

conditional correlations during these periods of high volatility, favoring the pooling aspect

of the CLIP-DCC framework.

Furthermore, for N = 300 and N = 500 we find that the CLIP-DCC model offers

comparable performance to the DCC model between 2011 and 2020. This suggests that

for large cross-sections the pooling function θ(·) may be overly restrictive, as it effectively
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Figure 3: Difference in cumulative out-of-sample GMV portfolio variance between the DCC
and CLIP-DCC model, December 1990 until December 2020.

Note: This figure contains for different investment universe sizes the evolution of the difference in
cumulative out-of-sample GMV portfolio variance between the DCC and CLIP-DCC model, denoted by
∆
∑

t r2
GMV,t =

∑T
t=1[r2

DCC,t− r2
CLIP−DCC,t], where rDCC,t and rCLIP−DCC,t denote the out-of-sample

logarithmic returns of the GMV portfolio constructed by the DCC and CLIP-DCC model, respectively.
The vertical lines reflect economically relevant dates.

imposes a one-factor type structure on the sdDECO component. Allowing the degrees of

freedom of the pooled output to increase with the dimension may be beneficial. Finally, we

find an effect of the COVID-19 pandemic around the date of the US lockdown in March 2020.
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The effect of this pandemic recession is however more ambiguous, likely due to its different

nature. In particular, we have that the CLIP-DCC framework provides benefits for the

smaller investment universes N = {10, 30, 50}, losses for the medium sizes N = {100, 300}

and has almost no effect for N = 500.

Next, we investigate the effects of target shrinkage and its interplay with the CLIP-

DCC approach. Table 4 presents summary statistics of the daily out-of-sample log returns

of the GMV portfolios of the DCC, dDECO, sdDECO and CLIP-DCC models using the

NLS approach of Ledoit and Wolf (2020) for the target. Comparing Table 3 and Table 4, we

observe that NLS of the target decreases portfolio SD in all cases. We find that the benefits of

NLS are minor for the small portfolio sizes up to N = 100, but increase for the large portfolio

sizes N = 300 and N = 500. Furthermore, also when using target shrinkage the CLIP-DCC

model achieves the lowest out-of-sample SD among all models. In fact, we find that the

improvements of NLS and the CLIP-DCC model over the base DCC model are additive.

This confirms their theoretical complementary nature, acting on different components of the

uncertainty of the conditional correlation matrix. Here we find that the CLIP-DCC approach

provides the largest benefits, although for N = 500 the improvements due to NLS of the

target are close.

Appendix Tables B.4 and B.5 contain results of the GMV portfolio analysis using a

shorter estimation window of 1250 days. Qualitatively, we find similar results. We note

however that the relative benefits of the CLIP-DCC model and NLS of the target depend

on the concentration ratio N/T . For T = 1250, we find that the break-even point is at

N = 100, where both techniques provide roughly equal value. For the smaller portfolio

dimensions below N = 100 the CLIP-DCC model reduces the SD the most, while for the

large portfolio sizes N = 300 and N = 500 NLS of the target is most useful. In sum, the

NLS method appears not necessary for ‘small’ N/T , but its benefits increase as this ratio

increases. This is directly in line with intuition, because as the concentration ratio N/T

rises the quality of the sample covariance matrix deteriorates, see again Ledoit and Wolf
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(2004). On the other hand, benefits of the CLIP-DCC model start earlier, for example even

for N = 10 and T = 2500 small improvements are found, but relative improvements over

the base DCC model grow at slower rate with N/T .

Table 4: Daily out-of-sample GMV porfolio performance constructed using different DCC
models for N ∈ {10, 30, 50, 100, 300, 500} and NLS of the target, December 1990 until De-
cember 2020.

DCC dDECO sdDECO CLIP-DCC 1/N
AV 4.858 3.759 5.787 5.277 7.283

N = 10 SD 15.471 15.745 15.474 15.388∗ 19.167
IR 0.314 0.239 0.374 0.343 0.380

AV 6.064 5.271 6.377 6.261 8.041
N = 30 SD 13.891 14.845 13.826 13.649∗∗∗ 18.457

IR 0.437 0.355 0.461 0.459 0.436

AV 4.501 3.199 3.882 4.247 8.458
N = 50 SD 13.035 14.446 13.115 12.812∗∗∗ 18.271

IR 0.345 0.221 0.296 0.331 0.463

AV 2.979 1.356 1.358 2.517 8.273
N = 100 SD 10.845 13.132 10.956 10.682∗∗∗ 18.225

IR 0.275 0.103 0.124 0.236 0.454

AV 6.198 1.665 2.791 5.313 9.034
N = 300 SD 7.841 11.161 7.746 7.608∗∗∗ 17.975

IR 0.790 0.149 0.360 0.698 0.503

AV 4.865 0.820 1.779 4.305 9.558
N = 500 SD 6.400 9.137 6.206 6.122∗∗∗ 17.961

IR 0.760 0.090 0.287 0.703 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio
(IR) of the out-of-sample daily log returns for the GMV portfolios constructed using different dynamic
correlations models and the 1/N portfolio. The lowest SD per dimension size is highlighted in bold. The
out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560 days, using an
estimation window of 2500 days and re-estimation of the parameters every 21 days. A significant decrease
of the (logarithmic squared) SD of the CLIP-DCC model compared to the DCC model is indicated with
a *,** and *** for a p− value below 0.1, 0.05 and 0.01, respectively, using the two-sided test by Ledoit
and Wolf (2011) with HAC standard errors.

Finally, we examine the performance of the block-based correlation models. We follow

Engle and Kelly (2012) and use industry group membership based on SIC codes to impose
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a block structure. Specifically, we use the K = 5 and K = 10 Fama-French industry

categorisation and estimate the BL-dDECO, BL-sdDECO and BL-CLIP-DCC models for

N ∈ {100, 300, 500}, also employing NLS of the target. Table 5 summarizes the out-of-

sample performance of the GMV portfolios constructed using these models.

Table 5: Daily out-of-sample GMV porfolio performance constructed using different industry
block-based DCC models for N ∈ {100, 300, 500} and NLS of the target, December 1990 until
December 2020.

K = 5 BL-dDECO BL-sdDECO BL-CLIP-DCC 1/N
AV 1.112 1.063 2.233 8.273

N = 100 SD 12.116 10.890 10.675 18.225
IR 0.092 0.098 0.209 0.454

AV 1.594 2.818 5.250 9.034
N = 300 SD 10.130 7.711 7.590 17.975

IR 0.157 0.365 0.692 0.503

AV 1.023 1.939 4.328 9.558
N = 500 SD 8.394 6.208 6.109 17.961

IR 0.122 0.312 0.708 0.532

K = 10 BL-dDECO BL-sdDECO BL-CLIP-DCC 1/N
AV 2.028 1.842 2.694 8.273

N = 100 SD 11.657 10.872 10.694 18.225
IR 0.174 0.169 0.252 0.454

AV 2.890 3.084 5.336 9.034
N = 300 SD 9.080 7.731 7.598 17.975

IR 0.318 0.399 0.702 0.503

AV 1.628 2.096 4.339 9.558
N = 500 SD 7.347 6.234 6.122 17.961

IR 0.222 0.336 0.709 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio
(IR) of the out-of-sample daily log returns for the GMV portfolios constructed using different block-based
dynamic correlations models and the 1/N portfolio. The lowest SD per dimension size is highlighted in
bold. The out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560
days, using an estimation window of 2500 days and re-estimation of the parameters every 21 days. Five
(K = 5) and ten (K = 10) Fama-French industry membership is used as a block-structure.

In Table 5, we observe large improvements of the BL-dDECO model over the dDECO
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model, some improvements of the BL-sdDECO model over the sdDECO model and nearly

no benefit of the BL-CLIP-DCC model over the CLIP-DCC model. Comparing the block

structures, we find K = 10 to be superior for the BL-dDECO and BL-sdDECO models,

conversely K = 5 is slightly better for the BL-CLIP-DCC model. This confirms that the

poor performance of the dDECO model is mainly the result of imposing too much structure

on the long-run correlation matrix and loosening it increases performance. For example, for

N = 500 we find a SD of 9.137 for the dDECO model, a SD of 8.394 and 7.347 for the

K = 5 and K = 10 BL-dDECO models and a SD of 6.400 for the DCC model. Furthermore,

the fact that the BL-CLIP-DCC model appears to offer no benefit over the CLIP-DCC

model suggests that correlation movement information within industries is not much more

informative than information from assets in other industries. It would be interesting to

consider an empirical application with data that admits a very clear group structure, e.g.

when considering many assets from a few differently behaving asset classes. This is left for

future research.

5 Conclusion

To better accommodate large cross-sections, we propose to augment the Dynamic Condi-

tional Correlation (DCC) model of Engle (2002) by allowing for a degree of commonality in

the update information. Specifically, we propose the DCC model with Conditional LInear

Pooling (CLIP-DCC) where the degree of commonality is controlled by a parameter, such

that the optimal level of structure is determined endogenously. Additionally, the CLIP-DCC

model preserves long-run dynamics, thereby naturally complementing methods that shrink

the target. Consequently, the CLIP-DCC model differs from the Block-DECO model in two

key ways, as the latter requires an exogenous group allocation and also restricts long-run

behavior. We show in a Monte Carlo study that the parameters of the CLIP-DCC model,

including the pooling intensity parameter, can be effectively estimated using composite like-
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lihood. A real-time empirical application to a large selection of US stocks from 1981 until

2020 indicates that the CLIP-DCC framework provides significant benefits for a minimum

variance investor. We conclude that it is theoretically as well as economically interesting to

linearly pool the movement of the DCC model around the long-run correlation matrix and

that a combined approach with target shrinkage may be particularly rewarding.
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A Proofs

A.1 Lemma 1

First, we note that 1
d
S with d > 0 is positive definite if and only if S is positive definite.

Next, we may write 1
d
S = ρJN×N +(1−ρ)IN with ρ = o

d
, which may be shown to be positive

definite if and only if o
d
∈ ( −1

N−1 , 1). This follows from the fact that 1
d
S has two distinct

eigenvalues, 1 + (N − 1)ρ and 1 − ρ, which can be seen to both be positive if and only if
o
d
∈ ( −1

N−1 , 1). This also reveals that standardizing a positive definite compound symmetric

matrix S yields a valid equicorrelation matrix 1
d
S, see also Definition 2.1 and Lemma 2.1 of

Engle and Kelly (2012).

A.2 Lemma 2

For the case that N = 1 we define θ(·) to be the identity mapping, such that the properties

of Lemma 2 trivially hold. We now proceed with the case N ≥ 2. By noting that θ(·) is a

linear function of θD(·) and θO(·), which are clearly linear themselves, we have that θ(·) is a

linear mapping and properties 1 and 2 immediately follow.

Using Lemma 1, it suffices for the positive definiteness part of property 3 to show that

θD(A) > 0 and θO(A)
θD(A) ∈ ( −1

N−1 , 1). By definition we have that if A is positive definite that

x′Ax > 0,∀x ∈ RN with x 6= 0N . By selecting x to be a vector containing a single 1 at the

i-th position and 0 elsewhere, we observe that aii > 0 for all i ∈ 1, . . . , N . This implies that

all diagonal elements are strictly larger than 0, such that clearly θD(A) > 0. In addition, by

selecting x to be a vector with 1 on the i-th position, -1 on the j-th position and 0 elsewhere,

we obtain aii + ajj > 2aij for all i, j ∈ 1, . . . , N , where i 6= j. From there is straightforward

to show that θD(A) > θO(A), such that θO(A)
θD(A) < 1. Finally, by selecting x = ιN we obtain

NθD(A) + N(N − 1)θO(A) > 0 which in turn may be rewritten to show that θO(A)
θD(A) >

−1
N−1 .

Together, this entails that θO(A)
θD(A) ∈ ( −1

N−1 , 1) which concludes the proof.

For the positive semi-definite case of property 3, we note that if A is positive semi-
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definite then by definition we have that x′Ax ≥ 0,∀x ∈ RN . Therefore we may use the same

arguments as for the positive definite case but lose the strictness of the inequalities. Here

we note that if θD(A) = 0, this implies that A and also θ(A) are a N × N matrix of zeros,

which is positive semi-definite (all eigenvalues are 0). Therefore for arguments that utilize
θO(A)
θD(A) we can consider the case that θD(A) > 0. Because the eigenvalues of a CS matrix are

1 + (N − 1) θ
O(A)
θD(A) and 1− θO(A)

θD(A) , at either of the bounds one of the eigenvalues is equal to 0,

such that we are in the positive semi-definite case.

A.3 Lemma 3

From Lemma 2 we have that θ(·) is a linear function. It can be straightforwardly verified that

also the matrix averaging transformation τ(·) is a linear function. Therefore, since θBL(·, G)

is composed of θ(·) and τ(·) operations, it is straightforward to show that properties 1 and

2 of Lemma 3 hold.

With regards to property 3, we follow the proof structure of Theorem 1 from Roustant

and Deville (2017). Specifically, we first assume that A is positive semi-definite and define

the block averaging function τBL(A,G) for A ∈ RN×N with N ≥ 2 and block structure G,

τBL(A,G) =



τ(A∗11) τ(A∗12) · · · τ(A∗1K)

τ(A∗21) τ(A∗22) · · · τ(A∗2K)
... ... . . . ...

τ(A∗K1) τ(A∗K2) · · · τ(A∗KK),


, (A.1)

which may also be written as

τBL(A,G) = L(G)AL(G)′, (A.2)
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L(G) =



1/n1Jn1×n1 On1×n2 · · · On1×nK

On2×n1 1/n2Jn2×n2 · · · On2×nK

... ... . . . ...

OnK×n1 OnK×n2 · · · 1/nKJnK×nK
,


, (A.3)

where Onj×nk
is a nj×nk matrix of zeros. Here L(G) can be seen to be positive semi-definite

as it is a block diagonal matrix with positive semi-definite diagonal blocks. From there it

can be seen that τBL(A,G) is positive semi-definite if A is positive semi-definite. We then

consider the difference ∆(A,G) = θBL(A,G)− τBL(A,G) which admits the following form

∆(A,G) =



θ(A∗11)− τ(A∗11) On1×n2 · · · On1×nK

On2×n1 θ(A∗22)− τ(A∗22) · · · On2×nK

... ... . . . ...

OnK×n1 OnK×n2 · · · θ(A∗KK)− τ(A∗KK),


, (A.4)

that is, ∆(A,G) is a block diagonal matrix with diagonal matrices θ(A∗jj) − τ(A∗jj) for j =

1, . . . , K. These diagonal matrices may be rewritten as

θ(A∗jj)− τ(A∗jj) = θ(A∗jj)−
1
n2
j

ι′nj
A∗jjιnj

Jnj×nj

= θ(A∗jj)−
1
n2
j

[nj(nj − 1)θO(A∗jj) + njθ
D(A∗jj)]Jnj×nj

= θO(A∗jj)Jnj×nj
+ [θD(A∗jj)− θO(A∗jj)]Inj

− 1
n2
j

[nj(nj − 1)θO(A∗jj) + njθ
D(A∗jj)]Jnj×nj

= [θD(A∗jj)− θO(A∗jj)]Inj
+ 1
nj

[θO(A∗jj)− θD(A∗jj)]Jnj×nj

= [θD(A∗jj)− θO(A∗jj)][Inj
− 1
nj
Jnj×nj

],

(A.5)

where θD(A∗jj) − θO(A∗jj) is a non-negative scalar (see again the proof of Lemma 2) and

Inj
− 1

nj
Jnj×nj

a positive semi-definite matrix. The latter fact may be derived from Lemma

1 by noting that it is a CS matrix or from noticing that is in fact a projection matrix. We
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now have that ∆(A,G) is positive semi-definite because all its diagonal matrices are positive

semi-definite. Since θBL(A,G) = ∆(A,G) + τBL(A,G), it follows that θBL(A,G) is also

positive semi-definite as it is the sum of two positive semi-definite matrices.

Finally, we show that if A is positive definite that θBL(A,G) is also positive definite. For

x ∈ RN we consider h(x) = x′θBL(A,G)x, which may also be written as

h(x) = x′∆(A,G)x+ x′τBL(A,G)x, (A.6)

where h(x) is 0 if and only if x′∆(A,G)x and x′τBL(A,G)x are both equal to 0 (as neither

can be negative due to positive semi-definiteness). First, we have for x′τBL(A,G)x that

x′τBL(A,G)x = x′L(G)AL(G)′x = xm(G)Axm(G), (A.7)

xm(G) =
[
( 1
n1
ι′n1x

∗
1)ι′nj

( 1
n2
ι′n2x

∗
2)ι′nj

· · · ( 1
nK
ι′nK

x∗K)ι′nK

]′
, (A.8)

where x∗j for j = 1, . . . , K is the j-th subvector of x based on the group structure G. Because

A is assumed positive definite we have that x′τBL(A,G)x is 0 if and only if xm(G) = 0N . We

also observe that xm(G) can be viewed as a vector of group means, such that xm(G) = 0N if

and only if the group means of the vector x based on the group structure G are all 0. That

is x′τBL(A,G)x = 0 if and only if 1
nj
ι′nj
x∗j = 0 for are j = 1, . . . , K. Note that if nj = 1, i.e.

for groups with only one member, this directly implies that that x∗j = 0.

Second, we have for x′∆(A,G)x that

x′∆(A,G)x =
K∑
j=1

[θD(A∗jj)− θO(A∗jj)]x∗j ′[Inj
− 1
nj
Jnj×nj

]x∗j , (A.9)

which is 0 if and only if x∗j ′[Inj
− 1

nj
Jnj×nj

]x∗j = 0 for all j = 1, . . . , K, because [θD(A∗jj) −

θO(A∗jj)] > 0 for all j = 1, . . . , K with nj ≥ 2 if A is positive definite. Using the symmetric

square root of Inj
− 1

nj
Jnj×nj

we may show that x∗j ′[Inj
− 1

nj
Jnj×nj

]x∗j = 0 implies that

[Inj
− 1

nj
Jnj×nj

]1/2x∗j = 0nj
, which in turn implies [Inj

− 1
nj
Jnj×nj

]x∗j = 0nj
. From there, we
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observe that the condition x∗j − ιnj
( 1
nj
ι′nj
x∗j) = 0nj

only holds if x∗j is a scalar multiple of

ιnj
. If we combine this with the requirements for x′τBL(A,G)x = 0, we then get that h(x)

is 0 if and only if x∗j = 0nj
for all j = 1, . . . , K, which is equivalent to x = 0N . This means

that x′Ax > 0 for all x ∈ RN where x 6= 0N . We conclude that if A is positive definite then

θBL(A,G) is also positive definite.
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B Additional Results

Table B.1: Daily out-of-sample MV portfolio (standard) performance constructed using dif-
ferent DCC models for N ∈ {10, 30, 50, 100, 300, 500}, December 1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC 1/N
AV 5.211 3.960 5.727 5.379 7.283

N = 10 SD 16.671 16.977 16.727 16.630 19.167
IR 0.313 0.233 0.342 0.323 0.380

AV 7.157 6.780 7.191 7.273 8.041
N = 30 SD 14.603 15.210 14.480 14.353∗∗∗ 18.457

IR 0.490 0.446 0.497 0.507 0.436

AV 5.522 5.098 4.693 5.268 8.458
N = 50 SD 13.609 14.507 13.647 13.378∗∗∗ 18.271

IR 0.406 0.351 0.344 0.394 0.463

AV 4.402 3.180 2.317 3.866 8.273
N = 100 SD 11.374 12.921 11.402 11.178∗∗∗ 18.225

IR 0.387 0.246 0.203 0.346 0.454

AV 7.396 3.530 3.527 6.646 9.034
N = 300 SD 8.601 11.025 8.442 8.318∗∗∗ 17.975

IR 0.860 0.320 0.418 0.799 0.503

AV 5.987 2.229 2.419 5.488 9.558
N = 500 SD 7.246 9.215 7.081 6.953∗∗∗ 17.961

IR 0.826 0.242 0.342 0.789 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio
(IR) of the out-of-sample daily log returns for the MV portfolios constructed using different dynamic
correlations models and the 1/N portfolio. Specifically, we use the geometric sample mean and a 10
percent annual return target, similar to Engle and Kelly (2012). The lowest SD per dimension size is
highlighted in bold. The out-of-sample periods ranges from December 1990 until December 2020 for a
total of 7560 days, using an estimation window of 2500 days and re-estimation of the parameters every
21 days. A significant decrease of the (logarithmic squared) SD of the CLIP-DCC model compared to
the DCC model is indicated with a *,** and *** for a p − value below 0.1, 0.05 and 0.01, respectively,
using the two-sided test by Ledoit and Wolf (2011) with HAC standard errors.
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Table B.2: Daily out-of-sample MV portfolio (momentum) performance constructed using
different DCC models for N ∈ {10, 30, 50, 100, 300, 500}, December 1990 until December
2020.

DCC dDECO sdDECO CLIP-DCC 1/N
AV 5.028 4.261 5.497 5.201 7.283

N = 10 SD 16.317 16.666 16.374 16.268 19.167
IR 0.308 0.256 0.336 0.320 0.380

AV 6.300 5.822 6.584 6.492 8.041
N = 30 SD 14.016 15.176 13.983 13.796∗∗∗ 18.457

IR 0.449 0.384 0.471 0.471 0.436

AV 4.819 3.600 4.127 4.578 8.458
N = 50 SD 13.069 14.585 13.167 12.853∗∗∗ 18.271

IR 0.369 0.247 0.313 0.356 0.463

AV 3.765 2.117 2.226 3.413 8.273
N = 100 SD 11.012 13.178 11.129 10.846∗∗∗ 18.225

IR 0.342 0.161 0.200 0.315 0.454

AV 7.023 2.570 3.133 6.261 9.034
N = 300 SD 8.115 10.985 8.060 7.895∗∗∗ 17.975

IR 0.865 0.234 0.389 0.793 0.503

AV 5.450 1.756 1.806 4.950 9.558
N = 500 SD 6.789 9.149 6.697 6.559∗∗∗ 17.961

IR 0.803 0.192 0.270 0.755 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio
(IR) of the out-of-sample daily log returns for the MV portfolios constructed using different dynamic
correlations models and the 1/N portfolio. Specifically, we use a momentum signal taking the geometric
mean over the previous 252 days, excluding the most recent 21 days, similar to Engle et al. (2019). The
target return is set to the arithmetic mean of this mean vector. The lowest SD per dimension size is
highlighted in bold. The out-of-sample periods ranges from December 1990 until December 2020 for a
total of 7560 days, using an estimation window of 2500 days and re-estimation of the parameters every
21 days. A significant decrease of the (logarithmic squared) SD of the CLIP-DCC model compared to
the DCC model is indicated with a *,** and *** for a p − value below 0.1, 0.05 and 0.01, respectively,
using the two-sided test by Ledoit and Wolf (2011) with HAC standard errors.
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Table B.3: Daily out-of-sample QLIKE using different DCC models for N ∈
{10, 30, 50, 100, 300, 500}, December 1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC
AV 14.449 15.109 14.432 14.357

N = 10 SD 13.216 13.045 12.897 12.890
PI 0.308 0.460 0.481

AV 41.882 46.497 41.326 41.136
N = 30 SD 34.644 32.843 32.897 33.286

PI 0.208 0.495 0.578

AV 71.932 78.882 69.883 69.905
N = 50 SD 51.532 47.935 47.933 48.777

PI 0.218 0.560 0.661

AV 153.837 164.419 145.324 146.550
N = 100 SD 97.050 86.360 86.837 89.782

PI 0.279 0.683 0.796

AV 515.756 517.575 452.134 464.607
N = 300 SD 307.942 237.952 253.684 270.684

PI 0.465 0.892 0.945

AV 973.402 905.116 823.696 851.357
N = 500 SD 550.633 378.781 434.648 464.157

PI 0.611 0.949 0.974

Note: This table contains the average (AV) and standard deviation (SD) of the daily out-of-sample
QLIKE score for the different DCC models. In addition, the proportion of improvement (PI) denotes
the share of dates that the model has a lower QLIKE score than the DCC model. The out-of-sample
periods ranges from December 1990 until December 2020 for a total of 7560 days, using an estimation
window of 2500 days and re-estimation of the parameters every 21 days.
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Table B.4: Daily out-of-sample GMV porfolio performance constructed using different DCC
models for N ∈ {10, 30, 50, 100, 300, 500} and T = 1250, December 1990 until December
2020.

DCC dDECO sdDECO CLIP-DCC 1/N
AV 4.224 3.168 4.746 4.485 7.283

N = 10 SD 15.589 15.909 15.592 15.521∗ 19.167
IR 0.271 0.199 0.304 0.289 0.380

AV 5.218 4.279 4.569 5.028 8.041
N = 30 SD 14.045 14.796 13.944 13.854∗∗∗ 18.457

IR 0.372 0.289 0.328 0.363 0.436

AV 2.890 2.068 1.990 2.559 8.458
N = 50 SD 13.373 14.499 13.308 13.148 ∗∗∗ 18.271

IR 0.216 0.143 0.150 0.195 0.463

AV 3.239 0.853 0.976 2.725 8.273
N = 100 SD 11.142 13.104 11.173 10.991∗∗∗ 18.225

IR 0.291 0.065 0.087 0.248 0.454

AV 5.248 1.241 2.034 4.752 9.034
N = 300 SD 8.366 10.989 8.375 8.205∗∗∗ 17.975

IR 0.627 0.113 0.243 0.579 0.503

AV 4.928 0.883 1.919 4.496 9.558
N = 500 SD 7.167 9.022 7.148 7.006∗∗∗ 17.961

IR 0.688 0.098 0.269 0.642 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio
(IR) of the out-of-sample daily log returns for the GMV portfolios constructed using different dynamic
correlations models and the 1/N portfolio. The lowest SD per dimension size is highlighted in bold. The
out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560 days, using an
estimation window of 1250 days and re-estimation of the parameters every 21 days. A significant decrease
of the (logarithmic squared) SD of the CLIP-DCC model compared to the DCC model is indicated with
a *,** and *** for a p− value below 0.1, 0.05 and 0.01, respectively, using the two-sided test by Ledoit
and Wolf (2011) with HAC standard errors.
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Table B.5: Daily out-of-sample GMV porfolio performance constructed using different DCC
models for N ∈ {10, 30, 50, 100, 300, 500}, T = 1250 and NLS of the target, December 1990
until December 2020.

DCC dDECO sdDECO CLIP-DCC 1/N
AV 4.227 3.169 4.731 4.476 7.283

N = 10 SD 15.583 15.908 15.582 15.513∗ 19.167
IR 0.271 0.199 0.304 0.289 0.380

AV 5.282 4.280 4.735 5.143 8.041
N = 30 SD 14.010 14.791 13.897 13.816∗∗∗ 18.457

IR 0.377 0.289 0.341 0.372 0.436

AV 2.945 2.070 2.227 2.686 8.458
N = 50 SD 13.308 14.495 13.226 13.081∗∗∗ 18.271

IR 0.221 0.143 0.168 0.205 0.463

AV 3.181 0.855 1.085 2.734 8.273
N = 100 SD 11.028 13.100 11.056 10.881∗∗∗ 18.225

IR 0.288 0.065 0.098 0.251 0.454

AV 5.371 1.241 2.472 4.823 9.034
N = 300 SD 7.979 10.987 7.978 7.813∗∗∗ 17.975

IR 0.673 0.113 0.310 0.617 0.503

AV 4.571 0.883 2.034 4.054 9.558
N = 500 SD 6.590 9.021 6.492 6.370∗∗∗ 17.961

IR 0.694 0.098 0.313 0.636 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio
(IR) of the out-of-sample daily log returns for the GMV portfolios constructed using different dynamic
correlations models and the 1/N portfolio. The lowest SD per dimension size is highlighted in bold. The
out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560 days, using an
estimation window of 1250 days and re-estimation of the parameters every 21 days. A significant decrease
of the (logarithmic squared) SD of the CLIP-DCC model compared to the DCC model is indicated with
a *,** and *** for a p− value below 0.1, 0.05 and 0.01, respectively, using the two-sided test by Ledoit
and Wolf (2011) with HAC standard errors.
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